nextsoftcheck must be a volatile pointer, not a pointer to a volatile.
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.25 2004/04/23 06:23:45 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93
94 #include <sys/thread2.h>
95
96 /*
97  *      Virtual memory maps provide for the mapping, protection,
98  *      and sharing of virtual memory objects.  In addition,
99  *      this module provides for an efficient virtual copy of
100  *      memory from one map to another.
101  *
102  *      Synchronization is required prior to most operations.
103  *
104  *      Maps consist of an ordered doubly-linked list of simple
105  *      entries; a single hint is used to speed up lookups.
106  *
107  *      Since portions of maps are specified by start/end addresses,
108  *      which may not align with existing map entries, all
109  *      routines merely "clip" entries to these start/end values.
110  *      [That is, an entry is split into two, bordering at a
111  *      start or end value.]  Note that these clippings may not
112  *      always be necessary (as the two resulting entries are then
113  *      not changed); however, the clipping is done for convenience.
114  *
115  *      As mentioned above, virtual copy operations are performed
116  *      by copying VM object references from one map to
117  *      another, and then marking both regions as copy-on-write.
118  */
119
120 /*
121  *      vm_map_startup:
122  *
123  *      Initialize the vm_map module.  Must be called before
124  *      any other vm_map routines.
125  *
126  *      Map and entry structures are allocated from the general
127  *      purpose memory pool with some exceptions:
128  *
129  *      - The kernel map and kmem submap are allocated statically.
130  *      - Kernel map entries are allocated out of a static pool.
131  *
132  *      These restrictions are necessary since malloc() uses the
133  *      maps and requires map entries.
134  */
135
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150                 vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153
154 void
155 vm_map_startup(void)
156 {
157         mapzone = &mapzone_store;
158         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159                 map_init, MAX_KMAP);
160         mapentzone = &mapentzone_store;
161         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162                 map_entry_init, MAX_MAPENT);
163 }
164
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(vm_offset_t min, vm_offset_t max)
172 {
173         struct vmspace *vm;
174
175         vm = zalloc(vmspace_zone);
176         vm_map_init(&vm->vm_map, min, max);
177         pmap_pinit(vmspace_pmap(vm));
178         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
179         vm->vm_refcnt = 1;
180         vm->vm_shm = NULL;
181         vm->vm_exitingcnt = 0;
182         return (vm);
183 }
184
185 void
186 vm_init2(void) 
187 {
188         zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
189         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
190         vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
191         pmap_init2();
192         vm_object_init2();
193 }
194
195 static __inline void
196 vmspace_dofree(struct vmspace *vm)
197 {
198         int count;
199
200         /*
201          * Make sure any SysV shm is freed, it might not have in
202          * exit1()
203          */
204         shmexit(vm);
205
206         KKASSERT(vm->vm_upcalls == NULL);
207
208         /*
209          * Lock the map, to wait out all other references to it.
210          * Delete all of the mappings and pages they hold, then call
211          * the pmap module to reclaim anything left.
212          */
213         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
214         vm_map_lock(&vm->vm_map);
215         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
216                 vm->vm_map.max_offset, &count);
217         vm_map_unlock(&vm->vm_map);
218         vm_map_entry_release(count);
219
220         pmap_release(vmspace_pmap(vm));
221         zfree(vmspace_zone, vm);
222 }
223
224 void
225 vmspace_free(struct vmspace *vm)
226 {
227         if (vm->vm_refcnt == 0)
228                 panic("vmspace_free: attempt to free already freed vmspace");
229
230         if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
231                 vmspace_dofree(vm);
232 }
233
234 void
235 vmspace_exitfree(struct proc *p)
236 {
237         struct vmspace *vm;
238
239         vm = p->p_vmspace;
240         p->p_vmspace = NULL;
241
242         /*
243          * cleanup by parent process wait()ing on exiting child.  vm_refcnt
244          * may not be 0 (e.g. fork() and child exits without exec()ing).
245          * exitingcnt may increment above 0 and drop back down to zero
246          * several times while vm_refcnt is held non-zero.  vm_refcnt
247          * may also increment above 0 and drop back down to zero several
248          * times while vm_exitingcnt is held non-zero.
249          *
250          * The last wait on the exiting child's vmspace will clean up
251          * the remainder of the vmspace.
252          */
253         if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
254                 vmspace_dofree(vm);
255 }
256
257 /*
258  * vmspace_swap_count() - count the approximate swap useage in pages for a
259  *                        vmspace.
260  *
261  *      Swap useage is determined by taking the proportional swap used by
262  *      VM objects backing the VM map.  To make up for fractional losses,
263  *      if the VM object has any swap use at all the associated map entries
264  *      count for at least 1 swap page.
265  */
266 int
267 vmspace_swap_count(struct vmspace *vmspace)
268 {
269         vm_map_t map = &vmspace->vm_map;
270         vm_map_entry_t cur;
271         int count = 0;
272
273         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
274                 vm_object_t object;
275
276                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
277                     (object = cur->object.vm_object) != NULL &&
278                     object->type == OBJT_SWAP
279                 ) {
280                         int n = (cur->end - cur->start) / PAGE_SIZE;
281
282                         if (object->un_pager.swp.swp_bcount) {
283                                 count += object->un_pager.swp.swp_bcount *
284                                     SWAP_META_PAGES * n / object->size + 1;
285                         }
286                 }
287         }
288         return(count);
289 }
290
291
292 /*
293  *      vm_map_create:
294  *
295  *      Creates and returns a new empty VM map with
296  *      the given physical map structure, and having
297  *      the given lower and upper address bounds.
298  */
299 vm_map_t
300 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
301 {
302         vm_map_t result;
303
304         result = zalloc(mapzone);
305         vm_map_init(result, min, max);
306         result->pmap = pmap;
307         return (result);
308 }
309
310 /*
311  * Initialize an existing vm_map structure
312  * such as that in the vmspace structure.
313  * The pmap is set elsewhere.
314  */
315 void
316 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
317 {
318         map->header.next = map->header.prev = &map->header;
319         map->nentries = 0;
320         map->size = 0;
321         map->system_map = 0;
322         map->infork = 0;
323         map->min_offset = min;
324         map->max_offset = max;
325         map->first_free = &map->header;
326         map->hint = &map->header;
327         map->timestamp = 0;
328         lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
329 }
330
331 /*
332  *      vm_map_entry_cpu_init:
333  *
334  *      Set an initial negative count so the first attempt to reserve
335  *      space preloads a bunch of vm_map_entry's for this cpu.  This
336  *      routine is called in early boot so we cannot just call
337  *      vm_map_entry_reserve().
338  *
339  *      May be called for a gd other then mycpu.
340  */
341 void
342 vm_map_entry_reserve_cpu_init(globaldata_t gd)
343 {
344         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
345 }
346
347 /*
348  *      vm_map_entry_reserve:
349  *
350  *      Reserves vm_map_entry structures so code later on can manipulate
351  *      map_entry structures within a locked map without blocking trying
352  *      to allocate a new vm_map_entry.
353  */
354 int
355 vm_map_entry_reserve(int count)
356 {
357         struct globaldata *gd = mycpu;
358         vm_map_entry_t entry;
359
360         crit_enter();
361         gd->gd_vme_avail -= count;
362
363         /*
364          * Make sure we have enough structures in gd_vme_base to handle
365          * the reservation request.
366          */
367         while (gd->gd_vme_avail < 0) {
368                 entry = zalloc(mapentzone);
369                 entry->next = gd->gd_vme_base;
370                 gd->gd_vme_base = entry;
371                 ++gd->gd_vme_avail;
372         }
373         crit_exit();
374         return(count);
375 }
376
377 /*
378  *      vm_map_entry_release:
379  *
380  *      Releases previously reserved vm_map_entry structures that were not
381  *      used.  If we have too much junk in our per-cpu cache clean some of
382  *      it out.
383  */
384 void
385 vm_map_entry_release(int count)
386 {
387         struct globaldata *gd = mycpu;
388         vm_map_entry_t entry;
389
390         crit_enter();
391         gd->gd_vme_avail += count;
392         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
393                 entry = gd->gd_vme_base;
394                 KKASSERT(entry != NULL);
395                 gd->gd_vme_base = entry->next;
396                 --gd->gd_vme_avail;
397                 crit_exit();
398                 zfree(mapentzone, entry);
399                 crit_enter();
400         }
401         crit_exit();
402 }
403
404 /*
405  *      vm_map_entry_kreserve:
406  *
407  *      Reserve map entry structures for use in kernel_map or (if it exists)
408  *      kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
409  *      basis when the map was inited.  This function is used by zalloc()
410  *      to avoid a recursion when zalloc() itself needs to allocate additional
411  *      kernel memory.
412  *
413  *      This function should only be used when the caller intends to later
414  *      call vm_map_entry_reserve() to 'normalize' the reserve cache.
415  */
416 int
417 vm_map_entry_kreserve(int count)
418 {
419         struct globaldata *gd = mycpu;
420
421         crit_enter();
422         gd->gd_vme_kdeficit += count;
423         crit_exit();
424         KKASSERT(gd->gd_vme_base != NULL);
425         return(count);
426 }
427
428 /*
429  *      vm_map_entry_krelease:
430  *
431  *      Release previously reserved map entries for kernel_map or kmem_map
432  *      use.  This routine determines how many entries were actually used and
433  *      replentishes the kernel reserve supply from vme_avail.
434  *
435  *      If there is insufficient supply vme_avail will go negative, which is
436  *      ok.  We cannot safely call zalloc in this function without getting
437  *      into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
438  *      to regenerate the lost entries.
439  */
440 void
441 vm_map_entry_krelease(int count)
442 {
443         struct globaldata *gd = mycpu;
444
445         crit_enter();
446         gd->gd_vme_kdeficit -= count;
447         gd->gd_vme_avail -= gd->gd_vme_kdeficit;        /* can go negative */
448         gd->gd_vme_kdeficit = 0;
449         crit_exit();
450 }
451
452 /*
453  *      vm_map_entry_create:    [ internal use only ]
454  *
455  *      Allocates a VM map entry for insertion.  No entry fields are filled 
456  *      in.
457  *
458  *      This routine may be called from an interrupt thread but not a FAST
459  *      interrupt.  This routine may recurse the map lock.
460  */
461 static vm_map_entry_t
462 vm_map_entry_create(vm_map_t map, int *countp)
463 {
464         struct globaldata *gd = mycpu;
465         vm_map_entry_t entry;
466
467         KKASSERT(*countp > 0);
468         --*countp;
469         crit_enter();
470         entry = gd->gd_vme_base;
471         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
472         gd->gd_vme_base = entry->next;
473         crit_exit();
474         return(entry);
475 }
476
477 /*
478  *      vm_map_entry_dispose:   [ internal use only ]
479  *
480  *      Dispose of a vm_map_entry that is no longer being referenced.  This
481  *      function may be called from an interrupt.
482  */
483 static void
484 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
485 {
486         struct globaldata *gd = mycpu;
487
488         ++*countp;
489         crit_enter();
490         entry->next = gd->gd_vme_base;
491         gd->gd_vme_base = entry;
492         crit_exit();
493 }
494
495
496 /*
497  *      vm_map_entry_{un,}link:
498  *
499  *      Insert/remove entries from maps.
500  */
501 static __inline void
502 vm_map_entry_link(vm_map_t map,
503                   vm_map_entry_t after_where,
504                   vm_map_entry_t entry)
505 {
506         map->nentries++;
507         entry->prev = after_where;
508         entry->next = after_where->next;
509         entry->next->prev = entry;
510         after_where->next = entry;
511 }
512
513 static __inline void
514 vm_map_entry_unlink(vm_map_t map,
515                     vm_map_entry_t entry)
516 {
517         vm_map_entry_t prev;
518         vm_map_entry_t next;
519
520         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
521                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
522         prev = entry->prev;
523         next = entry->next;
524         next->prev = prev;
525         prev->next = next;
526         map->nentries--;
527 }
528
529 /*
530  *      SAVE_HINT:
531  *
532  *      Saves the specified entry as the hint for
533  *      future lookups.
534  */
535 #define SAVE_HINT(map,value) \
536                 (map)->hint = (value);
537
538 /*
539  *      vm_map_lookup_entry:    [ internal use only ]
540  *
541  *      Finds the map entry containing (or
542  *      immediately preceding) the specified address
543  *      in the given map; the entry is returned
544  *      in the "entry" parameter.  The boolean
545  *      result indicates whether the address is
546  *      actually contained in the map.
547  */
548 boolean_t
549 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
550     vm_map_entry_t *entry /* OUT */)
551 {
552         vm_map_entry_t cur;
553         vm_map_entry_t last;
554
555         /*
556          * Start looking either from the head of the list, or from the hint.
557          */
558
559         cur = map->hint;
560
561         if (cur == &map->header)
562                 cur = cur->next;
563
564         if (address >= cur->start) {
565                 /*
566                  * Go from hint to end of list.
567                  *
568                  * But first, make a quick check to see if we are already looking
569                  * at the entry we want (which is usually the case). Note also
570                  * that we don't need to save the hint here... it is the same
571                  * hint (unless we are at the header, in which case the hint
572                  * didn't buy us anything anyway).
573                  */
574                 last = &map->header;
575                 if ((cur != last) && (cur->end > address)) {
576                         *entry = cur;
577                         return (TRUE);
578                 }
579         } else {
580                 /*
581                  * Go from start to hint, *inclusively*
582                  */
583                 last = cur->next;
584                 cur = map->header.next;
585         }
586
587         /*
588          * Search linearly
589          */
590
591         while (cur != last) {
592                 if (cur->end > address) {
593                         if (address >= cur->start) {
594                                 /*
595                                  * Save this lookup for future hints, and
596                                  * return
597                                  */
598
599                                 *entry = cur;
600                                 SAVE_HINT(map, cur);
601                                 return (TRUE);
602                         }
603                         break;
604                 }
605                 cur = cur->next;
606         }
607         *entry = cur->prev;
608         SAVE_HINT(map, *entry);
609         return (FALSE);
610 }
611
612 /*
613  *      vm_map_insert:
614  *
615  *      Inserts the given whole VM object into the target
616  *      map at the specified address range.  The object's
617  *      size should match that of the address range.
618  *
619  *      Requires that the map be locked, and leaves it so.  Requires that
620  *      sufficient vm_map_entry structures have been reserved and tracks
621  *      the use via countp.
622  *
623  *      If object is non-NULL, ref count must be bumped by caller
624  *      prior to making call to account for the new entry.
625  */
626 int
627 vm_map_insert(vm_map_t map, int *countp,
628               vm_object_t object, vm_ooffset_t offset,
629               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
630               int cow)
631 {
632         vm_map_entry_t new_entry;
633         vm_map_entry_t prev_entry;
634         vm_map_entry_t temp_entry;
635         vm_eflags_t protoeflags;
636
637         /*
638          * Check that the start and end points are not bogus.
639          */
640
641         if ((start < map->min_offset) || (end > map->max_offset) ||
642             (start >= end))
643                 return (KERN_INVALID_ADDRESS);
644
645         /*
646          * Find the entry prior to the proposed starting address; if it's part
647          * of an existing entry, this range is bogus.
648          */
649
650         if (vm_map_lookup_entry(map, start, &temp_entry))
651                 return (KERN_NO_SPACE);
652
653         prev_entry = temp_entry;
654
655         /*
656          * Assert that the next entry doesn't overlap the end point.
657          */
658
659         if ((prev_entry->next != &map->header) &&
660             (prev_entry->next->start < end))
661                 return (KERN_NO_SPACE);
662
663         protoeflags = 0;
664
665         if (cow & MAP_COPY_ON_WRITE)
666                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
667
668         if (cow & MAP_NOFAULT) {
669                 protoeflags |= MAP_ENTRY_NOFAULT;
670
671                 KASSERT(object == NULL,
672                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
673         }
674         if (cow & MAP_DISABLE_SYNCER)
675                 protoeflags |= MAP_ENTRY_NOSYNC;
676         if (cow & MAP_DISABLE_COREDUMP)
677                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
678
679         if (object) {
680                 /*
681                  * When object is non-NULL, it could be shared with another
682                  * process.  We have to set or clear OBJ_ONEMAPPING 
683                  * appropriately.
684                  */
685                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
686                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
687                 }
688         }
689         else if ((prev_entry != &map->header) &&
690                  (prev_entry->eflags == protoeflags) &&
691                  (prev_entry->end == start) &&
692                  (prev_entry->wired_count == 0) &&
693                  ((prev_entry->object.vm_object == NULL) ||
694                   vm_object_coalesce(prev_entry->object.vm_object,
695                                      OFF_TO_IDX(prev_entry->offset),
696                                      (vm_size_t)(prev_entry->end - prev_entry->start),
697                                      (vm_size_t)(end - prev_entry->end)))) {
698                 /*
699                  * We were able to extend the object.  Determine if we
700                  * can extend the previous map entry to include the 
701                  * new range as well.
702                  */
703                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
704                     (prev_entry->protection == prot) &&
705                     (prev_entry->max_protection == max)) {
706                         map->size += (end - prev_entry->end);
707                         prev_entry->end = end;
708                         vm_map_simplify_entry(map, prev_entry, countp);
709                         return (KERN_SUCCESS);
710                 }
711
712                 /*
713                  * If we can extend the object but cannot extend the
714                  * map entry, we have to create a new map entry.  We
715                  * must bump the ref count on the extended object to
716                  * account for it.  object may be NULL.
717                  */
718                 object = prev_entry->object.vm_object;
719                 offset = prev_entry->offset +
720                         (prev_entry->end - prev_entry->start);
721                 vm_object_reference(object);
722         }
723
724         /*
725          * NOTE: if conditionals fail, object can be NULL here.  This occurs
726          * in things like the buffer map where we manage kva but do not manage
727          * backing objects.
728          */
729
730         /*
731          * Create a new entry
732          */
733
734         new_entry = vm_map_entry_create(map, countp);
735         new_entry->start = start;
736         new_entry->end = end;
737
738         new_entry->eflags = protoeflags;
739         new_entry->object.vm_object = object;
740         new_entry->offset = offset;
741         new_entry->avail_ssize = 0;
742
743         new_entry->inheritance = VM_INHERIT_DEFAULT;
744         new_entry->protection = prot;
745         new_entry->max_protection = max;
746         new_entry->wired_count = 0;
747
748         /*
749          * Insert the new entry into the list
750          */
751
752         vm_map_entry_link(map, prev_entry, new_entry);
753         map->size += new_entry->end - new_entry->start;
754
755         /*
756          * Update the free space hint
757          */
758         if ((map->first_free == prev_entry) &&
759             (prev_entry->end >= new_entry->start)) {
760                 map->first_free = new_entry;
761         }
762
763 #if 0
764         /*
765          * Temporarily removed to avoid MAP_STACK panic, due to
766          * MAP_STACK being a huge hack.  Will be added back in
767          * when MAP_STACK (and the user stack mapping) is fixed.
768          */
769         /*
770          * It may be possible to simplify the entry
771          */
772         vm_map_simplify_entry(map, new_entry, countp);
773 #endif
774
775         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
776                 pmap_object_init_pt(map->pmap, start,
777                                     object, OFF_TO_IDX(offset), end - start,
778                                     cow & MAP_PREFAULT_PARTIAL);
779         }
780
781         return (KERN_SUCCESS);
782 }
783
784 /*
785  * Find sufficient space for `length' bytes in the given map, starting at
786  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
787  *
788  * This function will returned an arbitrarily aligned pointer.  If no
789  * particular alignment is required you should pass align as 1.  Note that
790  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
791  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
792  * argument.
793  *
794  * 'align' should be a power of 2 but is not required to be.
795  */
796 int
797 vm_map_findspace(
798         vm_map_t map,
799         vm_offset_t start,
800         vm_size_t length,
801         vm_offset_t align,
802         vm_offset_t *addr)
803 {
804         vm_map_entry_t entry, next;
805         vm_offset_t end;
806         vm_offset_t align_mask;
807
808         if (start < map->min_offset)
809                 start = map->min_offset;
810         if (start > map->max_offset)
811                 return (1);
812
813         /*
814          * If the alignment is not a power of 2 we will have to use
815          * a mod/division, set align_mask to a special value.
816          */
817         if ((align | (align - 1)) + 1 != (align << 1))
818                 align_mask = (vm_offset_t)-1;
819         else
820                 align_mask = align - 1;
821
822 retry:
823         /*
824          * Look for the first possible address; if there's already something
825          * at this address, we have to start after it.
826          */
827         if (start == map->min_offset) {
828                 if ((entry = map->first_free) != &map->header)
829                         start = entry->end;
830         } else {
831                 vm_map_entry_t tmp;
832
833                 if (vm_map_lookup_entry(map, start, &tmp))
834                         start = tmp->end;
835                 entry = tmp;
836         }
837
838         /*
839          * Look through the rest of the map, trying to fit a new region in the
840          * gap between existing regions, or after the very last region.
841          */
842         for (;; start = (entry = next)->end) {
843                 /*
844                  * Adjust the proposed start by the requested alignment,
845                  * be sure that we didn't wrap the address.
846                  */
847                 if (align_mask == (vm_offset_t)-1)
848                         end = ((start + align - 1) / align) * align;
849                 else
850                         end = (start + align_mask) & ~align_mask;
851                 if (end < start)
852                         return (1);
853                 start = end;
854                 /*
855                  * Find the end of the proposed new region.  Be sure we didn't
856                  * go beyond the end of the map, or wrap around the address.
857                  * Then check to see if this is the last entry or if the 
858                  * proposed end fits in the gap between this and the next
859                  * entry.
860                  */
861                 end = start + length;
862                 if (end > map->max_offset || end < start)
863                         return (1);
864                 next = entry->next;
865                 if (next == &map->header || next->start >= end)
866                         break;
867         }
868         SAVE_HINT(map, entry);
869         if (map == kernel_map) {
870                 vm_offset_t ksize;
871                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
872                         pmap_growkernel(ksize);
873                         goto retry;
874                 }
875         }
876         *addr = start;
877         return (0);
878 }
879
880 /*
881  *      vm_map_find finds an unallocated region in the target address
882  *      map with the given length.  The search is defined to be
883  *      first-fit from the specified address; the region found is
884  *      returned in the same parameter.
885  *
886  *      If object is non-NULL, ref count must be bumped by caller
887  *      prior to making call to account for the new entry.
888  */
889 int
890 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
891             vm_offset_t *addr,  /* IN/OUT */
892             vm_size_t length, boolean_t find_space, vm_prot_t prot,
893             vm_prot_t max, int cow)
894 {
895         vm_offset_t start;
896         int result;
897         int count;
898
899         start = *addr;
900
901         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
902         vm_map_lock(map);
903         if (find_space) {
904                 if (vm_map_findspace(map, start, length, 1, addr)) {
905                         vm_map_unlock(map);
906                         vm_map_entry_release(count);
907                         return (KERN_NO_SPACE);
908                 }
909                 start = *addr;
910         }
911         result = vm_map_insert(map, &count, object, offset,
912                 start, start + length, prot, max, cow);
913         vm_map_unlock(map);
914         vm_map_entry_release(count);
915
916         return (result);
917 }
918
919 /*
920  *      vm_map_simplify_entry:
921  *
922  *      Simplify the given map entry by merging with either neighbor.  This
923  *      routine also has the ability to merge with both neighbors.
924  *
925  *      The map must be locked.
926  *
927  *      This routine guarentees that the passed entry remains valid (though
928  *      possibly extended).  When merging, this routine may delete one or
929  *      both neighbors.  No action is taken on entries which have their
930  *      in-transition flag set.
931  */
932 void
933 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
934 {
935         vm_map_entry_t next, prev;
936         vm_size_t prevsize, esize;
937
938         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
939                 ++mycpu->gd_cnt.v_intrans_coll;
940                 return;
941         }
942
943         prev = entry->prev;
944         if (prev != &map->header) {
945                 prevsize = prev->end - prev->start;
946                 if ( (prev->end == entry->start) &&
947                      (prev->object.vm_object == entry->object.vm_object) &&
948                      (!prev->object.vm_object ||
949                         (prev->offset + prevsize == entry->offset)) &&
950                      (prev->eflags == entry->eflags) &&
951                      (prev->protection == entry->protection) &&
952                      (prev->max_protection == entry->max_protection) &&
953                      (prev->inheritance == entry->inheritance) &&
954                      (prev->wired_count == entry->wired_count)) {
955                         if (map->first_free == prev)
956                                 map->first_free = entry;
957                         if (map->hint == prev)
958                                 map->hint = entry;
959                         vm_map_entry_unlink(map, prev);
960                         entry->start = prev->start;
961                         entry->offset = prev->offset;
962                         if (prev->object.vm_object)
963                                 vm_object_deallocate(prev->object.vm_object);
964                         vm_map_entry_dispose(map, prev, countp);
965                 }
966         }
967
968         next = entry->next;
969         if (next != &map->header) {
970                 esize = entry->end - entry->start;
971                 if ((entry->end == next->start) &&
972                     (next->object.vm_object == entry->object.vm_object) &&
973                      (!entry->object.vm_object ||
974                         (entry->offset + esize == next->offset)) &&
975                     (next->eflags == entry->eflags) &&
976                     (next->protection == entry->protection) &&
977                     (next->max_protection == entry->max_protection) &&
978                     (next->inheritance == entry->inheritance) &&
979                     (next->wired_count == entry->wired_count)) {
980                         if (map->first_free == next)
981                                 map->first_free = entry;
982                         if (map->hint == next)
983                                 map->hint = entry;
984                         vm_map_entry_unlink(map, next);
985                         entry->end = next->end;
986                         if (next->object.vm_object)
987                                 vm_object_deallocate(next->object.vm_object);
988                         vm_map_entry_dispose(map, next, countp);
989                 }
990         }
991 }
992 /*
993  *      vm_map_clip_start:      [ internal use only ]
994  *
995  *      Asserts that the given entry begins at or after
996  *      the specified address; if necessary,
997  *      it splits the entry into two.
998  */
999 #define vm_map_clip_start(map, entry, startaddr, countp) \
1000 { \
1001         if (startaddr > entry->start) \
1002                 _vm_map_clip_start(map, entry, startaddr, countp); \
1003 }
1004
1005 /*
1006  *      This routine is called only when it is known that
1007  *      the entry must be split.
1008  */
1009 static void
1010 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1011 {
1012         vm_map_entry_t new_entry;
1013
1014         /*
1015          * Split off the front portion -- note that we must insert the new
1016          * entry BEFORE this one, so that this entry has the specified
1017          * starting address.
1018          */
1019
1020         vm_map_simplify_entry(map, entry, countp);
1021
1022         /*
1023          * If there is no object backing this entry, we might as well create
1024          * one now.  If we defer it, an object can get created after the map
1025          * is clipped, and individual objects will be created for the split-up
1026          * map.  This is a bit of a hack, but is also about the best place to
1027          * put this improvement.
1028          */
1029
1030         if (entry->object.vm_object == NULL && !map->system_map) {
1031                 vm_object_t object;
1032                 object = vm_object_allocate(OBJT_DEFAULT,
1033                                 atop(entry->end - entry->start));
1034                 entry->object.vm_object = object;
1035                 entry->offset = 0;
1036         }
1037
1038         new_entry = vm_map_entry_create(map, countp);
1039         *new_entry = *entry;
1040
1041         new_entry->end = start;
1042         entry->offset += (start - entry->start);
1043         entry->start = start;
1044
1045         vm_map_entry_link(map, entry->prev, new_entry);
1046
1047         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1048                 vm_object_reference(new_entry->object.vm_object);
1049         }
1050 }
1051
1052 /*
1053  *      vm_map_clip_end:        [ internal use only ]
1054  *
1055  *      Asserts that the given entry ends at or before
1056  *      the specified address; if necessary,
1057  *      it splits the entry into two.
1058  */
1059
1060 #define vm_map_clip_end(map, entry, endaddr, countp) \
1061 { \
1062         if (endaddr < entry->end) \
1063                 _vm_map_clip_end(map, entry, endaddr, countp); \
1064 }
1065
1066 /*
1067  *      This routine is called only when it is known that
1068  *      the entry must be split.
1069  */
1070 static void
1071 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1072 {
1073         vm_map_entry_t new_entry;
1074
1075         /*
1076          * If there is no object backing this entry, we might as well create
1077          * one now.  If we defer it, an object can get created after the map
1078          * is clipped, and individual objects will be created for the split-up
1079          * map.  This is a bit of a hack, but is also about the best place to
1080          * put this improvement.
1081          */
1082
1083         if (entry->object.vm_object == NULL && !map->system_map) {
1084                 vm_object_t object;
1085                 object = vm_object_allocate(OBJT_DEFAULT,
1086                                 atop(entry->end - entry->start));
1087                 entry->object.vm_object = object;
1088                 entry->offset = 0;
1089         }
1090
1091         /*
1092          * Create a new entry and insert it AFTER the specified entry
1093          */
1094
1095         new_entry = vm_map_entry_create(map, countp);
1096         *new_entry = *entry;
1097
1098         new_entry->start = entry->end = end;
1099         new_entry->offset += (end - entry->start);
1100
1101         vm_map_entry_link(map, entry, new_entry);
1102
1103         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1104                 vm_object_reference(new_entry->object.vm_object);
1105         }
1106 }
1107
1108 /*
1109  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1110  *
1111  *      Asserts that the starting and ending region
1112  *      addresses fall within the valid range of the map.
1113  */
1114 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1115                 {                                       \
1116                 if (start < vm_map_min(map))            \
1117                         start = vm_map_min(map);        \
1118                 if (end > vm_map_max(map))              \
1119                         end = vm_map_max(map);          \
1120                 if (start > end)                        \
1121                         start = end;                    \
1122                 }
1123
1124 /*
1125  *      vm_map_transition_wait: [ kernel use only ]
1126  *
1127  *      Used to block when an in-transition collison occurs.  The map
1128  *      is unlocked for the sleep and relocked before the return.
1129  */
1130 static
1131 void
1132 vm_map_transition_wait(vm_map_t map)
1133 {
1134         vm_map_unlock(map);
1135         tsleep(map, 0, "vment", 0);
1136         vm_map_lock(map);
1137 }
1138
1139 /*
1140  * CLIP_CHECK_BACK
1141  * CLIP_CHECK_FWD
1142  *
1143  *      When we do blocking operations with the map lock held it is
1144  *      possible that a clip might have occured on our in-transit entry,
1145  *      requiring an adjustment to the entry in our loop.  These macros
1146  *      help the pageable and clip_range code deal with the case.  The
1147  *      conditional costs virtually nothing if no clipping has occured.
1148  */
1149
1150 #define CLIP_CHECK_BACK(entry, save_start)              \
1151     do {                                                \
1152             while (entry->start != save_start) {        \
1153                     entry = entry->prev;                \
1154                     KASSERT(entry != &map->header, ("bad entry clip")); \
1155             }                                           \
1156     } while(0)
1157
1158 #define CLIP_CHECK_FWD(entry, save_end)                 \
1159     do {                                                \
1160             while (entry->end != save_end) {            \
1161                     entry = entry->next;                \
1162                     KASSERT(entry != &map->header, ("bad entry clip")); \
1163             }                                           \
1164     } while(0)
1165
1166
1167 /*
1168  *      vm_map_clip_range:      [ kernel use only ]
1169  *
1170  *      Clip the specified range and return the base entry.  The
1171  *      range may cover several entries starting at the returned base
1172  *      and the first and last entry in the covering sequence will be
1173  *      properly clipped to the requested start and end address.
1174  *
1175  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1176  *      flag.  
1177  *
1178  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1179  *      covered by the requested range.
1180  *
1181  *      The map must be exclusively locked on entry and will remain locked
1182  *      on return. If no range exists or the range contains holes and you
1183  *      specified that no holes were allowed, NULL will be returned.  This
1184  *      routine may temporarily unlock the map in order avoid a deadlock when
1185  *      sleeping.
1186  */
1187 static
1188 vm_map_entry_t
1189 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1190         int *countp, int flags)
1191 {
1192         vm_map_entry_t start_entry;
1193         vm_map_entry_t entry;
1194
1195         /*
1196          * Locate the entry and effect initial clipping.  The in-transition
1197          * case does not occur very often so do not try to optimize it.
1198          */
1199 again:
1200         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1201                 return (NULL);
1202         entry = start_entry;
1203         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1204                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1205                 ++mycpu->gd_cnt.v_intrans_coll;
1206                 ++mycpu->gd_cnt.v_intrans_wait;
1207                 vm_map_transition_wait(map);
1208                 /*
1209                  * entry and/or start_entry may have been clipped while
1210                  * we slept, or may have gone away entirely.  We have
1211                  * to restart from the lookup.
1212                  */
1213                 goto again;
1214         }
1215         /*
1216          * Since we hold an exclusive map lock we do not have to restart
1217          * after clipping, even though clipping may block in zalloc.
1218          */
1219         vm_map_clip_start(map, entry, start, countp);
1220         vm_map_clip_end(map, entry, end, countp);
1221         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1222
1223         /*
1224          * Scan entries covered by the range.  When working on the next
1225          * entry a restart need only re-loop on the current entry which
1226          * we have already locked, since 'next' may have changed.  Also,
1227          * even though entry is safe, it may have been clipped so we
1228          * have to iterate forwards through the clip after sleeping.
1229          */
1230         while (entry->next != &map->header && entry->next->start < end) {
1231                 vm_map_entry_t next = entry->next;
1232
1233                 if (flags & MAP_CLIP_NO_HOLES) {
1234                         if (next->start > entry->end) {
1235                                 vm_map_unclip_range(map, start_entry,
1236                                         start, entry->end, countp, flags);
1237                                 return(NULL);
1238                         }
1239                 }
1240
1241                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1242                         vm_offset_t save_end = entry->end;
1243                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1244                         ++mycpu->gd_cnt.v_intrans_coll;
1245                         ++mycpu->gd_cnt.v_intrans_wait;
1246                         vm_map_transition_wait(map);
1247
1248                         /*
1249                          * clips might have occured while we blocked.
1250                          */
1251                         CLIP_CHECK_FWD(entry, save_end);
1252                         CLIP_CHECK_BACK(start_entry, start);
1253                         continue;
1254                 }
1255                 /*
1256                  * No restart necessary even though clip_end may block, we
1257                  * are holding the map lock.
1258                  */
1259                 vm_map_clip_end(map, next, end, countp);
1260                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1261                 entry = next;
1262         }
1263         if (flags & MAP_CLIP_NO_HOLES) {
1264                 if (entry->end != end) {
1265                         vm_map_unclip_range(map, start_entry,
1266                                 start, entry->end, countp, flags);
1267                         return(NULL);
1268                 }
1269         }
1270         return(start_entry);
1271 }
1272
1273 /*
1274  *      vm_map_unclip_range:    [ kernel use only ]
1275  *
1276  *      Undo the effect of vm_map_clip_range().  You should pass the same
1277  *      flags and the same range that you passed to vm_map_clip_range().
1278  *      This code will clear the in-transition flag on the entries and
1279  *      wake up anyone waiting.  This code will also simplify the sequence 
1280  *      and attempt to merge it with entries before and after the sequence.
1281  *
1282  *      The map must be locked on entry and will remain locked on return.
1283  *
1284  *      Note that you should also pass the start_entry returned by 
1285  *      vm_map_clip_range().  However, if you block between the two calls
1286  *      with the map unlocked please be aware that the start_entry may
1287  *      have been clipped and you may need to scan it backwards to find
1288  *      the entry corresponding with the original start address.  You are
1289  *      responsible for this, vm_map_unclip_range() expects the correct
1290  *      start_entry to be passed to it and will KASSERT otherwise.
1291  */
1292 static
1293 void
1294 vm_map_unclip_range(
1295         vm_map_t map,
1296         vm_map_entry_t start_entry,
1297         vm_offset_t start,
1298         vm_offset_t end,
1299         int *countp,
1300         int flags)
1301 {
1302         vm_map_entry_t entry;
1303
1304         entry = start_entry;
1305
1306         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1307         while (entry != &map->header && entry->start < end) {
1308                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1309                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1310                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1311                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1312                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1313                         wakeup(map);
1314                 }
1315                 entry = entry->next;
1316         }
1317
1318         /*
1319          * Simplification does not block so there is no restart case.
1320          */
1321         entry = start_entry;
1322         while (entry != &map->header && entry->start < end) {
1323                 vm_map_simplify_entry(map, entry, countp);
1324                 entry = entry->next;
1325         }
1326 }
1327
1328 /*
1329  *      vm_map_submap:          [ kernel use only ]
1330  *
1331  *      Mark the given range as handled by a subordinate map.
1332  *
1333  *      This range must have been created with vm_map_find,
1334  *      and no other operations may have been performed on this
1335  *      range prior to calling vm_map_submap.
1336  *
1337  *      Only a limited number of operations can be performed
1338  *      within this rage after calling vm_map_submap:
1339  *              vm_fault
1340  *      [Don't try vm_map_copy!]
1341  *
1342  *      To remove a submapping, one must first remove the
1343  *      range from the superior map, and then destroy the
1344  *      submap (if desired).  [Better yet, don't try it.]
1345  */
1346 int
1347 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1348 {
1349         vm_map_entry_t entry;
1350         int result = KERN_INVALID_ARGUMENT;
1351         int count;
1352
1353         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1354         vm_map_lock(map);
1355
1356         VM_MAP_RANGE_CHECK(map, start, end);
1357
1358         if (vm_map_lookup_entry(map, start, &entry)) {
1359                 vm_map_clip_start(map, entry, start, &count);
1360         } else {
1361                 entry = entry->next;
1362         }
1363
1364         vm_map_clip_end(map, entry, end, &count);
1365
1366         if ((entry->start == start) && (entry->end == end) &&
1367             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1368             (entry->object.vm_object == NULL)) {
1369                 entry->object.sub_map = submap;
1370                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1371                 result = KERN_SUCCESS;
1372         }
1373         vm_map_unlock(map);
1374         vm_map_entry_release(count);
1375
1376         return (result);
1377 }
1378
1379 /*
1380  *      vm_map_protect:
1381  *
1382  *      Sets the protection of the specified address
1383  *      region in the target map.  If "set_max" is
1384  *      specified, the maximum protection is to be set;
1385  *      otherwise, only the current protection is affected.
1386  */
1387 int
1388 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1389                vm_prot_t new_prot, boolean_t set_max)
1390 {
1391         vm_map_entry_t current;
1392         vm_map_entry_t entry;
1393         int count;
1394
1395         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1396         vm_map_lock(map);
1397
1398         VM_MAP_RANGE_CHECK(map, start, end);
1399
1400         if (vm_map_lookup_entry(map, start, &entry)) {
1401                 vm_map_clip_start(map, entry, start, &count);
1402         } else {
1403                 entry = entry->next;
1404         }
1405
1406         /*
1407          * Make a first pass to check for protection violations.
1408          */
1409
1410         current = entry;
1411         while ((current != &map->header) && (current->start < end)) {
1412                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1413                         vm_map_unlock(map);
1414                         vm_map_entry_release(count);
1415                         return (KERN_INVALID_ARGUMENT);
1416                 }
1417                 if ((new_prot & current->max_protection) != new_prot) {
1418                         vm_map_unlock(map);
1419                         vm_map_entry_release(count);
1420                         return (KERN_PROTECTION_FAILURE);
1421                 }
1422                 current = current->next;
1423         }
1424
1425         /*
1426          * Go back and fix up protections. [Note that clipping is not
1427          * necessary the second time.]
1428          */
1429         current = entry;
1430
1431         while ((current != &map->header) && (current->start < end)) {
1432                 vm_prot_t old_prot;
1433
1434                 vm_map_clip_end(map, current, end, &count);
1435
1436                 old_prot = current->protection;
1437                 if (set_max)
1438                         current->protection =
1439                             (current->max_protection = new_prot) &
1440                             old_prot;
1441                 else
1442                         current->protection = new_prot;
1443
1444                 /*
1445                  * Update physical map if necessary. Worry about copy-on-write
1446                  * here -- CHECK THIS XXX
1447                  */
1448
1449                 if (current->protection != old_prot) {
1450 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1451                                                         VM_PROT_ALL)
1452
1453                         pmap_protect(map->pmap, current->start,
1454                             current->end,
1455                             current->protection & MASK(current));
1456 #undef  MASK
1457                 }
1458
1459                 vm_map_simplify_entry(map, current, &count);
1460
1461                 current = current->next;
1462         }
1463
1464         vm_map_unlock(map);
1465         vm_map_entry_release(count);
1466         return (KERN_SUCCESS);
1467 }
1468
1469 /*
1470  *      vm_map_madvise:
1471  *
1472  *      This routine traverses a processes map handling the madvise
1473  *      system call.  Advisories are classified as either those effecting
1474  *      the vm_map_entry structure, or those effecting the underlying 
1475  *      objects.
1476  */
1477
1478 int
1479 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1480 {
1481         vm_map_entry_t current, entry;
1482         int modify_map = 0;
1483         int count;
1484
1485         /*
1486          * Some madvise calls directly modify the vm_map_entry, in which case
1487          * we need to use an exclusive lock on the map and we need to perform 
1488          * various clipping operations.  Otherwise we only need a read-lock
1489          * on the map.
1490          */
1491
1492         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1493
1494         switch(behav) {
1495         case MADV_NORMAL:
1496         case MADV_SEQUENTIAL:
1497         case MADV_RANDOM:
1498         case MADV_NOSYNC:
1499         case MADV_AUTOSYNC:
1500         case MADV_NOCORE:
1501         case MADV_CORE:
1502                 modify_map = 1;
1503                 vm_map_lock(map);
1504                 break;
1505         case MADV_WILLNEED:
1506         case MADV_DONTNEED:
1507         case MADV_FREE:
1508                 vm_map_lock_read(map);
1509                 break;
1510         default:
1511                 vm_map_entry_release(count);
1512                 return (KERN_INVALID_ARGUMENT);
1513         }
1514
1515         /*
1516          * Locate starting entry and clip if necessary.
1517          */
1518
1519         VM_MAP_RANGE_CHECK(map, start, end);
1520
1521         if (vm_map_lookup_entry(map, start, &entry)) {
1522                 if (modify_map)
1523                         vm_map_clip_start(map, entry, start, &count);
1524         } else {
1525                 entry = entry->next;
1526         }
1527
1528         if (modify_map) {
1529                 /*
1530                  * madvise behaviors that are implemented in the vm_map_entry.
1531                  *
1532                  * We clip the vm_map_entry so that behavioral changes are
1533                  * limited to the specified address range.
1534                  */
1535                 for (current = entry;
1536                      (current != &map->header) && (current->start < end);
1537                      current = current->next
1538                 ) {
1539                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1540                                 continue;
1541
1542                         vm_map_clip_end(map, current, end, &count);
1543
1544                         switch (behav) {
1545                         case MADV_NORMAL:
1546                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1547                                 break;
1548                         case MADV_SEQUENTIAL:
1549                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1550                                 break;
1551                         case MADV_RANDOM:
1552                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1553                                 break;
1554                         case MADV_NOSYNC:
1555                                 current->eflags |= MAP_ENTRY_NOSYNC;
1556                                 break;
1557                         case MADV_AUTOSYNC:
1558                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1559                                 break;
1560                         case MADV_NOCORE:
1561                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1562                                 break;
1563                         case MADV_CORE:
1564                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1565                                 break;
1566                         default:
1567                                 break;
1568                         }
1569                         vm_map_simplify_entry(map, current, &count);
1570                 }
1571                 vm_map_unlock(map);
1572         } else {
1573                 vm_pindex_t pindex;
1574                 int count;
1575
1576                 /*
1577                  * madvise behaviors that are implemented in the underlying
1578                  * vm_object.
1579                  *
1580                  * Since we don't clip the vm_map_entry, we have to clip
1581                  * the vm_object pindex and count.
1582                  */
1583                 for (current = entry;
1584                      (current != &map->header) && (current->start < end);
1585                      current = current->next
1586                 ) {
1587                         vm_offset_t useStart;
1588
1589                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1590                                 continue;
1591
1592                         pindex = OFF_TO_IDX(current->offset);
1593                         count = atop(current->end - current->start);
1594                         useStart = current->start;
1595
1596                         if (current->start < start) {
1597                                 pindex += atop(start - current->start);
1598                                 count -= atop(start - current->start);
1599                                 useStart = start;
1600                         }
1601                         if (current->end > end)
1602                                 count -= atop(current->end - end);
1603
1604                         if (count <= 0)
1605                                 continue;
1606
1607                         vm_object_madvise(current->object.vm_object,
1608                                           pindex, count, behav);
1609                         if (behav == MADV_WILLNEED) {
1610                                 pmap_object_init_pt(
1611                                     map->pmap, 
1612                                     useStart,
1613                                     current->object.vm_object,
1614                                     pindex, 
1615                                     (count << PAGE_SHIFT),
1616                                     MAP_PREFAULT_MADVISE
1617                                 );
1618                         }
1619                 }
1620                 vm_map_unlock_read(map);
1621         }
1622         vm_map_entry_release(count);
1623         return(0);
1624 }       
1625
1626
1627 /*
1628  *      vm_map_inherit:
1629  *
1630  *      Sets the inheritance of the specified address
1631  *      range in the target map.  Inheritance
1632  *      affects how the map will be shared with
1633  *      child maps at the time of vm_map_fork.
1634  */
1635 int
1636 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1637                vm_inherit_t new_inheritance)
1638 {
1639         vm_map_entry_t entry;
1640         vm_map_entry_t temp_entry;
1641         int count;
1642
1643         switch (new_inheritance) {
1644         case VM_INHERIT_NONE:
1645         case VM_INHERIT_COPY:
1646         case VM_INHERIT_SHARE:
1647                 break;
1648         default:
1649                 return (KERN_INVALID_ARGUMENT);
1650         }
1651
1652         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1653         vm_map_lock(map);
1654
1655         VM_MAP_RANGE_CHECK(map, start, end);
1656
1657         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1658                 entry = temp_entry;
1659                 vm_map_clip_start(map, entry, start, &count);
1660         } else
1661                 entry = temp_entry->next;
1662
1663         while ((entry != &map->header) && (entry->start < end)) {
1664                 vm_map_clip_end(map, entry, end, &count);
1665
1666                 entry->inheritance = new_inheritance;
1667
1668                 vm_map_simplify_entry(map, entry, &count);
1669
1670                 entry = entry->next;
1671         }
1672         vm_map_unlock(map);
1673         vm_map_entry_release(count);
1674         return (KERN_SUCCESS);
1675 }
1676
1677 /*
1678  * Implement the semantics of mlock
1679  */
1680 int
1681 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1682     boolean_t new_pageable)
1683 {
1684         vm_map_entry_t entry;
1685         vm_map_entry_t start_entry;
1686         vm_offset_t end;
1687         int rv = KERN_SUCCESS;
1688         int count;
1689
1690         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1691         vm_map_lock(map);
1692         VM_MAP_RANGE_CHECK(map, start, real_end);
1693         end = real_end;
1694
1695         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1696         if (start_entry == NULL) {
1697                 vm_map_unlock(map);
1698                 vm_map_entry_release(count);
1699                 return (KERN_INVALID_ADDRESS);
1700         }
1701
1702         if (new_pageable == 0) {
1703                 entry = start_entry;
1704                 while ((entry != &map->header) && (entry->start < end)) {
1705                         vm_offset_t save_start;
1706                         vm_offset_t save_end;
1707
1708                         /*
1709                          * Already user wired or hard wired (trivial cases)
1710                          */
1711                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1712                                 entry = entry->next;
1713                                 continue;
1714                         }
1715                         if (entry->wired_count != 0) {
1716                                 entry->wired_count++;
1717                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1718                                 entry = entry->next;
1719                                 continue;
1720                         }
1721
1722                         /*
1723                          * A new wiring requires instantiation of appropriate
1724                          * management structures and the faulting in of the
1725                          * page.
1726                          */
1727                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1728                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1729                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1730
1731                                         vm_object_shadow(&entry->object.vm_object,
1732                                             &entry->offset,
1733                                             atop(entry->end - entry->start));
1734                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1735
1736                                 } else if (entry->object.vm_object == NULL &&
1737                                            !map->system_map) {
1738
1739                                         entry->object.vm_object =
1740                                             vm_object_allocate(OBJT_DEFAULT,
1741                                                 atop(entry->end - entry->start));
1742                                         entry->offset = (vm_offset_t) 0;
1743
1744                                 }
1745                         }
1746                         entry->wired_count++;
1747                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1748
1749                         /*
1750                          * Now fault in the area.  The map lock needs to be
1751                          * manipulated to avoid deadlocks.  The in-transition
1752                          * flag protects the entries. 
1753                          */
1754                         save_start = entry->start;
1755                         save_end = entry->end;
1756                         vm_map_unlock(map);
1757                         map->timestamp++;
1758                         rv = vm_fault_user_wire(map, save_start, save_end);
1759                         vm_map_lock(map);
1760                         if (rv) {
1761                                 CLIP_CHECK_BACK(entry, save_start);
1762                                 for (;;) {
1763                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1764                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1765                                         entry->wired_count = 0;
1766                                         if (entry->end == save_end)
1767                                                 break;
1768                                         entry = entry->next;
1769                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1770                                 }
1771                                 end = save_start;       /* unwire the rest */
1772                                 break;
1773                         }
1774                         /*
1775                          * note that even though the entry might have been
1776                          * clipped, the USER_WIRED flag we set prevents
1777                          * duplication so we do not have to do a 
1778                          * clip check.
1779                          */
1780                         entry = entry->next;
1781                 }
1782
1783                 /*
1784                  * If we failed fall through to the unwiring section to
1785                  * unwire what we had wired so far.  'end' has already
1786                  * been adjusted.
1787                  */
1788                 if (rv)
1789                         new_pageable = 1;
1790
1791                 /*
1792                  * start_entry might have been clipped if we unlocked the
1793                  * map and blocked.  No matter how clipped it has gotten
1794                  * there should be a fragment that is on our start boundary.
1795                  */
1796                 CLIP_CHECK_BACK(start_entry, start);
1797         }
1798
1799         /*
1800          * Deal with the unwiring case.
1801          */
1802         if (new_pageable) {
1803                 /*
1804                  * This is the unwiring case.  We must first ensure that the
1805                  * range to be unwired is really wired down.  We know there
1806                  * are no holes.
1807                  */
1808                 entry = start_entry;
1809                 while ((entry != &map->header) && (entry->start < end)) {
1810                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1811                                 rv = KERN_INVALID_ARGUMENT;
1812                                 goto done;
1813                         }
1814                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1815                         entry = entry->next;
1816                 }
1817
1818                 /*
1819                  * Now decrement the wiring count for each region. If a region
1820                  * becomes completely unwired, unwire its physical pages and
1821                  * mappings.
1822                  */
1823                 /*
1824                  * The map entries are processed in a loop, checking to
1825                  * make sure the entry is wired and asserting it has a wired
1826                  * count. However, another loop was inserted more-or-less in
1827                  * the middle of the unwiring path. This loop picks up the
1828                  * "entry" loop variable from the first loop without first
1829                  * setting it to start_entry. Naturally, the secound loop
1830                  * is never entered and the pages backing the entries are
1831                  * never unwired. This can lead to a leak of wired pages.
1832                  */
1833                 entry = start_entry;
1834                 while ((entry != &map->header) && (entry->start < end)) {
1835                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1836                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1837                         entry->wired_count--;
1838                         if (entry->wired_count == 0)
1839                                 vm_fault_unwire(map, entry->start, entry->end);
1840                         entry = entry->next;
1841                 }
1842         }
1843 done:
1844         vm_map_unclip_range(map, start_entry, start, real_end, &count,
1845                 MAP_CLIP_NO_HOLES);
1846         map->timestamp++;
1847         vm_map_unlock(map);
1848         vm_map_entry_release(count);
1849         return (rv);
1850 }
1851
1852 /*
1853  *      vm_map_wire:
1854  *
1855  *      Sets the pageability of the specified address
1856  *      range in the target map.  Regions specified
1857  *      as not pageable require locked-down physical
1858  *      memory and physical page maps.
1859  *
1860  *      The map must not be locked, but a reference
1861  *      must remain to the map throughout the call.
1862  *
1863  *      This function may be called via the zalloc path and must properly
1864  *      reserve map entries for kernel_map.
1865  */
1866 int
1867 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1868 {
1869         vm_map_entry_t entry;
1870         vm_map_entry_t start_entry;
1871         vm_offset_t end;
1872         int rv = KERN_SUCCESS;
1873         int count;
1874         int s;
1875
1876         if (kmflags & KM_KRESERVE)
1877                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1878         else
1879                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1880         vm_map_lock(map);
1881         VM_MAP_RANGE_CHECK(map, start, real_end);
1882         end = real_end;
1883
1884         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1885         if (start_entry == NULL) {
1886                 vm_map_unlock(map);
1887                 rv = KERN_INVALID_ADDRESS;
1888                 goto failure;
1889         }
1890         if ((kmflags & KM_PAGEABLE) == 0) {
1891                 /*
1892                  * Wiring.  
1893                  *
1894                  * 1.  Holding the write lock, we create any shadow or zero-fill
1895                  * objects that need to be created. Then we clip each map
1896                  * entry to the region to be wired and increment its wiring
1897                  * count.  We create objects before clipping the map entries
1898                  * to avoid object proliferation.
1899                  *
1900                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
1901                  * fault in the pages for any newly wired area (wired_count is
1902                  * 1).
1903                  *
1904                  * Downgrading to a read lock for vm_fault_wire avoids a 
1905                  * possible deadlock with another process that may have faulted
1906                  * on one of the pages to be wired (it would mark the page busy,
1907                  * blocking us, then in turn block on the map lock that we
1908                  * hold).  Because of problems in the recursive lock package,
1909                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1910                  * any actions that require the write lock must be done
1911                  * beforehand.  Because we keep the read lock on the map, the
1912                  * copy-on-write status of the entries we modify here cannot
1913                  * change.
1914                  */
1915
1916                 entry = start_entry;
1917                 while ((entry != &map->header) && (entry->start < end)) {
1918                         /*
1919                          * Trivial case if the entry is already wired
1920                          */
1921                         if (entry->wired_count) {
1922                                 entry->wired_count++;
1923                                 entry = entry->next;
1924                                 continue;
1925                         }
1926
1927                         /*
1928                          * The entry is being newly wired, we have to setup
1929                          * appropriate management structures.  A shadow 
1930                          * object is required for a copy-on-write region,
1931                          * or a normal object for a zero-fill region.  We
1932                          * do not have to do this for entries that point to sub
1933                          * maps because we won't hold the lock on the sub map.
1934                          */
1935                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1936                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1937                                 if (copyflag &&
1938                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
1939
1940                                         vm_object_shadow(&entry->object.vm_object,
1941                                             &entry->offset,
1942                                             atop(entry->end - entry->start));
1943                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1944                                 } else if (entry->object.vm_object == NULL &&
1945                                            !map->system_map) {
1946                                         entry->object.vm_object =
1947                                             vm_object_allocate(OBJT_DEFAULT,
1948                                                 atop(entry->end - entry->start));
1949                                         entry->offset = (vm_offset_t) 0;
1950                                 }
1951                         }
1952
1953                         entry->wired_count++;
1954                         entry = entry->next;
1955                 }
1956
1957                 /*
1958                  * Pass 2.
1959                  */
1960
1961                 /*
1962                  * HACK HACK HACK HACK
1963                  *
1964                  * Unlock the map to avoid deadlocks.  The in-transit flag
1965                  * protects us from most changes but note that
1966                  * clipping may still occur.  To prevent clipping from
1967                  * occuring after the unlock, except for when we are
1968                  * blocking in vm_fault_wire, we must run at splvm().
1969                  * Otherwise our accesses to entry->start and entry->end
1970                  * could be corrupted.  We have to set splvm() prior to
1971                  * unlocking so start_entry does not change out from
1972                  * under us at the very beginning of the loop.
1973                  *
1974                  * HACK HACK HACK HACK
1975                  */
1976
1977                 s = splvm();
1978                 vm_map_unlock(map);
1979
1980                 entry = start_entry;
1981                 while (entry != &map->header && entry->start < end) {
1982                         /*
1983                          * If vm_fault_wire fails for any page we need to undo
1984                          * what has been done.  We decrement the wiring count
1985                          * for those pages which have not yet been wired (now)
1986                          * and unwire those that have (later).
1987                          */
1988                         vm_offset_t save_start = entry->start;
1989                         vm_offset_t save_end = entry->end;
1990
1991                         if (entry->wired_count == 1)
1992                                 rv = vm_fault_wire(map, entry->start, entry->end);
1993                         if (rv) {
1994                                 CLIP_CHECK_BACK(entry, save_start);
1995                                 for (;;) {
1996                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1997                                         entry->wired_count = 0;
1998                                         if (entry->end == save_end)
1999                                                 break;
2000                                         entry = entry->next;
2001                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2002                                 }
2003                                 end = save_start;
2004                                 break;
2005                         }
2006                         CLIP_CHECK_FWD(entry, save_end);
2007                         entry = entry->next;
2008                 }
2009                 splx(s);
2010
2011                 /*
2012                  * relock.  start_entry is still IN_TRANSITION and must
2013                  * still exist, but may have been clipped (handled just
2014                  * below).
2015                  */
2016                 vm_map_lock(map);
2017
2018                 /*
2019                  * If a failure occured undo everything by falling through
2020                  * to the unwiring code.  'end' has already been adjusted
2021                  * appropriately.
2022                  */
2023                 if (rv)
2024                         kmflags |= KM_PAGEABLE;
2025
2026                 /*
2027                  * start_entry might have been clipped if we unlocked the
2028                  * map and blocked.  No matter how clipped it has gotten
2029                  * there should be a fragment that is on our start boundary.
2030                  */
2031                 CLIP_CHECK_BACK(start_entry, start);
2032         }
2033
2034         if (kmflags & KM_PAGEABLE) {
2035                 /*
2036                  * This is the unwiring case.  We must first ensure that the
2037                  * range to be unwired is really wired down.  We know there
2038                  * are no holes.
2039                  */
2040                 entry = start_entry;
2041                 while ((entry != &map->header) && (entry->start < end)) {
2042                         if (entry->wired_count == 0) {
2043                                 rv = KERN_INVALID_ARGUMENT;
2044                                 goto done;
2045                         }
2046                         entry = entry->next;
2047                 }
2048
2049                 /*
2050                  * Now decrement the wiring count for each region. If a region
2051                  * becomes completely unwired, unwire its physical pages and
2052                  * mappings.
2053                  */
2054                 entry = start_entry;
2055                 while ((entry != &map->header) && (entry->start < end)) {
2056                         entry->wired_count--;
2057                         if (entry->wired_count == 0)
2058                                 vm_fault_unwire(map, entry->start, entry->end);
2059                         entry = entry->next;
2060                 }
2061         }
2062 done:
2063         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2064                 MAP_CLIP_NO_HOLES);
2065         map->timestamp++;
2066         vm_map_unlock(map);
2067 failure:
2068         if (kmflags & KM_KRESERVE)
2069                 vm_map_entry_krelease(count);
2070         else
2071                 vm_map_entry_release(count);
2072         return (rv);
2073 }
2074
2075 /*
2076  * vm_map_set_wired_quick()
2077  *
2078  *      Mark a newly allocated address range as wired but do not fault in
2079  *      the pages.  The caller is expected to load the pages into the object.
2080  *
2081  *      The map must be locked on entry and will remain locked on return.
2082  */
2083 void
2084 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2085 {
2086         vm_map_entry_t scan;
2087         vm_map_entry_t entry;
2088
2089         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2090         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2091             KKASSERT(entry->wired_count == 0);
2092             entry->wired_count = 1;                                              
2093         }
2094         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2095 }
2096
2097 /*
2098  * vm_map_clean
2099  *
2100  * Push any dirty cached pages in the address range to their pager.
2101  * If syncio is TRUE, dirty pages are written synchronously.
2102  * If invalidate is TRUE, any cached pages are freed as well.
2103  *
2104  * Returns an error if any part of the specified range is not mapped.
2105  */
2106 int
2107 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2108     boolean_t invalidate)
2109 {
2110         vm_map_entry_t current;
2111         vm_map_entry_t entry;
2112         vm_size_t size;
2113         vm_object_t object;
2114         vm_ooffset_t offset;
2115
2116         vm_map_lock_read(map);
2117         VM_MAP_RANGE_CHECK(map, start, end);
2118         if (!vm_map_lookup_entry(map, start, &entry)) {
2119                 vm_map_unlock_read(map);
2120                 return (KERN_INVALID_ADDRESS);
2121         }
2122         /*
2123          * Make a first pass to check for holes.
2124          */
2125         for (current = entry; current->start < end; current = current->next) {
2126                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2127                         vm_map_unlock_read(map);
2128                         return (KERN_INVALID_ARGUMENT);
2129                 }
2130                 if (end > current->end &&
2131                     (current->next == &map->header ||
2132                         current->end != current->next->start)) {
2133                         vm_map_unlock_read(map);
2134                         return (KERN_INVALID_ADDRESS);
2135                 }
2136         }
2137
2138         if (invalidate)
2139                 pmap_remove(vm_map_pmap(map), start, end);
2140         /*
2141          * Make a second pass, cleaning/uncaching pages from the indicated
2142          * objects as we go.
2143          */
2144         for (current = entry; current->start < end; current = current->next) {
2145                 offset = current->offset + (start - current->start);
2146                 size = (end <= current->end ? end : current->end) - start;
2147                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2148                         vm_map_t smap;
2149                         vm_map_entry_t tentry;
2150                         vm_size_t tsize;
2151
2152                         smap = current->object.sub_map;
2153                         vm_map_lock_read(smap);
2154                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2155                         tsize = tentry->end - offset;
2156                         if (tsize < size)
2157                                 size = tsize;
2158                         object = tentry->object.vm_object;
2159                         offset = tentry->offset + (offset - tentry->start);
2160                         vm_map_unlock_read(smap);
2161                 } else {
2162                         object = current->object.vm_object;
2163                 }
2164                 /*
2165                  * Note that there is absolutely no sense in writing out
2166                  * anonymous objects, so we track down the vnode object
2167                  * to write out.
2168                  * We invalidate (remove) all pages from the address space
2169                  * anyway, for semantic correctness.
2170                  *
2171                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2172                  * may start out with a NULL object.
2173                  */
2174                 while (object && object->backing_object) {
2175                         object = object->backing_object;
2176                         offset += object->backing_object_offset;
2177                         if (object->size < OFF_TO_IDX( offset + size))
2178                                 size = IDX_TO_OFF(object->size) - offset;
2179                 }
2180                 if (object && (object->type == OBJT_VNODE) && 
2181                     (current->protection & VM_PROT_WRITE)) {
2182                         /*
2183                          * Flush pages if writing is allowed, invalidate them
2184                          * if invalidation requested.  Pages undergoing I/O
2185                          * will be ignored by vm_object_page_remove().
2186                          *
2187                          * We cannot lock the vnode and then wait for paging
2188                          * to complete without deadlocking against vm_fault.
2189                          * Instead we simply call vm_object_page_remove() and
2190                          * allow it to block internally on a page-by-page 
2191                          * basis when it encounters pages undergoing async 
2192                          * I/O.
2193                          */
2194                         int flags;
2195
2196                         vm_object_reference(object);
2197                         vn_lock(object->handle, NULL,
2198                                 LK_EXCLUSIVE | LK_RETRY, curthread);
2199                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2200                         flags |= invalidate ? OBJPC_INVAL : 0;
2201                         vm_object_page_clean(object,
2202                             OFF_TO_IDX(offset),
2203                             OFF_TO_IDX(offset + size + PAGE_MASK),
2204                             flags);
2205                         VOP_UNLOCK(object->handle, NULL, 0, curthread);
2206                         vm_object_deallocate(object);
2207                 }
2208                 if (object && invalidate &&
2209                    ((object->type == OBJT_VNODE) ||
2210                     (object->type == OBJT_DEVICE))) {
2211                         vm_object_reference(object);
2212                         vm_object_page_remove(object,
2213                             OFF_TO_IDX(offset),
2214                             OFF_TO_IDX(offset + size + PAGE_MASK),
2215                             TRUE);
2216                         vm_object_deallocate(object);
2217                 }
2218                 start += size;
2219         }
2220
2221         vm_map_unlock_read(map);
2222         return (KERN_SUCCESS);
2223 }
2224
2225 /*
2226  *      vm_map_entry_unwire:    [ internal use only ]
2227  *
2228  *      Make the region specified by this entry pageable.
2229  *
2230  *      The map in question should be locked.
2231  *      [This is the reason for this routine's existence.]
2232  */
2233 static void 
2234 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2235 {
2236         vm_fault_unwire(map, entry->start, entry->end);
2237         entry->wired_count = 0;
2238 }
2239
2240 /*
2241  *      vm_map_entry_delete:    [ internal use only ]
2242  *
2243  *      Deallocate the given entry from the target map.
2244  */
2245 static void
2246 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2247 {
2248         vm_map_entry_unlink(map, entry);
2249         map->size -= entry->end - entry->start;
2250
2251         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2252                 vm_object_deallocate(entry->object.vm_object);
2253         }
2254
2255         vm_map_entry_dispose(map, entry, countp);
2256 }
2257
2258 /*
2259  *      vm_map_delete:  [ internal use only ]
2260  *
2261  *      Deallocates the given address range from the target
2262  *      map.
2263  */
2264 int
2265 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2266 {
2267         vm_object_t object;
2268         vm_map_entry_t entry;
2269         vm_map_entry_t first_entry;
2270
2271         /*
2272          * Find the start of the region, and clip it
2273          */
2274
2275 again:
2276         if (!vm_map_lookup_entry(map, start, &first_entry))
2277                 entry = first_entry->next;
2278         else {
2279                 entry = first_entry;
2280                 vm_map_clip_start(map, entry, start, countp);
2281                 /*
2282                  * Fix the lookup hint now, rather than each time though the
2283                  * loop.
2284                  */
2285                 SAVE_HINT(map, entry->prev);
2286         }
2287
2288         /*
2289          * Save the free space hint
2290          */
2291
2292         if (entry == &map->header) {
2293                 map->first_free = &map->header;
2294         } else if (map->first_free->start >= start) {
2295                 map->first_free = entry->prev;
2296         }
2297
2298         /*
2299          * Step through all entries in this region
2300          */
2301
2302         while ((entry != &map->header) && (entry->start < end)) {
2303                 vm_map_entry_t next;
2304                 vm_offset_t s, e;
2305                 vm_pindex_t offidxstart, offidxend, count;
2306
2307                 /*
2308                  * If we hit an in-transition entry we have to sleep and
2309                  * retry.  It's easier (and not really slower) to just retry
2310                  * since this case occurs so rarely and the hint is already
2311                  * pointing at the right place.  We have to reset the
2312                  * start offset so as not to accidently delete an entry
2313                  * another process just created in vacated space.
2314                  */
2315                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2316                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2317                         start = entry->start;
2318                         ++mycpu->gd_cnt.v_intrans_coll;
2319                         ++mycpu->gd_cnt.v_intrans_wait;
2320                         vm_map_transition_wait(map);
2321                         goto again;
2322                 }
2323                 vm_map_clip_end(map, entry, end, countp);
2324
2325                 s = entry->start;
2326                 e = entry->end;
2327                 next = entry->next;
2328
2329                 offidxstart = OFF_TO_IDX(entry->offset);
2330                 count = OFF_TO_IDX(e - s);
2331                 object = entry->object.vm_object;
2332
2333                 /*
2334                  * Unwire before removing addresses from the pmap; otherwise,
2335                  * unwiring will put the entries back in the pmap.
2336                  */
2337                 if (entry->wired_count != 0) {
2338                         vm_map_entry_unwire(map, entry);
2339                 }
2340
2341                 offidxend = offidxstart + count;
2342
2343                 if ((object == kernel_object) || (object == kmem_object)) {
2344                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2345                 } else {
2346                         pmap_remove(map->pmap, s, e);
2347                         if (object != NULL &&
2348                             object->ref_count != 1 &&
2349                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2350                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2351                                 vm_object_collapse(object);
2352                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2353                                 if (object->type == OBJT_SWAP) {
2354                                         swap_pager_freespace(object, offidxstart, count);
2355                                 }
2356                                 if (offidxend >= object->size &&
2357                                     offidxstart < object->size) {
2358                                         object->size = offidxstart;
2359                                 }
2360                         }
2361                 }
2362
2363                 /*
2364                  * Delete the entry (which may delete the object) only after
2365                  * removing all pmap entries pointing to its pages.
2366                  * (Otherwise, its page frames may be reallocated, and any
2367                  * modify bits will be set in the wrong object!)
2368                  */
2369                 vm_map_entry_delete(map, entry, countp);
2370                 entry = next;
2371         }
2372         return (KERN_SUCCESS);
2373 }
2374
2375 /*
2376  *      vm_map_remove:
2377  *
2378  *      Remove the given address range from the target map.
2379  *      This is the exported form of vm_map_delete.
2380  */
2381 int
2382 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2383 {
2384         int result;
2385         int count;
2386
2387         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2388         vm_map_lock(map);
2389         VM_MAP_RANGE_CHECK(map, start, end);
2390         result = vm_map_delete(map, start, end, &count);
2391         vm_map_unlock(map);
2392         vm_map_entry_release(count);
2393
2394         return (result);
2395 }
2396
2397 /*
2398  *      vm_map_check_protection:
2399  *
2400  *      Assert that the target map allows the specified
2401  *      privilege on the entire address region given.
2402  *      The entire region must be allocated.
2403  */
2404 boolean_t
2405 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2406                         vm_prot_t protection)
2407 {
2408         vm_map_entry_t entry;
2409         vm_map_entry_t tmp_entry;
2410
2411         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2412                 return (FALSE);
2413         }
2414         entry = tmp_entry;
2415
2416         while (start < end) {
2417                 if (entry == &map->header) {
2418                         return (FALSE);
2419                 }
2420                 /*
2421                  * No holes allowed!
2422                  */
2423
2424                 if (start < entry->start) {
2425                         return (FALSE);
2426                 }
2427                 /*
2428                  * Check protection associated with entry.
2429                  */
2430
2431                 if ((entry->protection & protection) != protection) {
2432                         return (FALSE);
2433                 }
2434                 /* go to next entry */
2435
2436                 start = entry->end;
2437                 entry = entry->next;
2438         }
2439         return (TRUE);
2440 }
2441
2442 /*
2443  * Split the pages in a map entry into a new object.  This affords
2444  * easier removal of unused pages, and keeps object inheritance from
2445  * being a negative impact on memory usage.
2446  */
2447 static void
2448 vm_map_split(vm_map_entry_t entry)
2449 {
2450         vm_page_t m;
2451         vm_object_t orig_object, new_object, source;
2452         vm_offset_t s, e;
2453         vm_pindex_t offidxstart, offidxend, idx;
2454         vm_size_t size;
2455         vm_ooffset_t offset;
2456
2457         orig_object = entry->object.vm_object;
2458         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2459                 return;
2460         if (orig_object->ref_count <= 1)
2461                 return;
2462
2463         offset = entry->offset;
2464         s = entry->start;
2465         e = entry->end;
2466
2467         offidxstart = OFF_TO_IDX(offset);
2468         offidxend = offidxstart + OFF_TO_IDX(e - s);
2469         size = offidxend - offidxstart;
2470
2471         new_object = vm_pager_allocate(orig_object->type,
2472                 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2473         if (new_object == NULL)
2474                 return;
2475
2476         source = orig_object->backing_object;
2477         if (source != NULL) {
2478                 vm_object_reference(source);    /* Referenced by new_object */
2479                 LIST_INSERT_HEAD(&source->shadow_head,
2480                                   new_object, shadow_list);
2481                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2482                 new_object->backing_object_offset = 
2483                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2484                 new_object->backing_object = source;
2485                 source->shadow_count++;
2486                 source->generation++;
2487         }
2488
2489         for (idx = 0; idx < size; idx++) {
2490                 vm_page_t m;
2491
2492         retry:
2493                 m = vm_page_lookup(orig_object, offidxstart + idx);
2494                 if (m == NULL)
2495                         continue;
2496
2497                 /*
2498                  * We must wait for pending I/O to complete before we can
2499                  * rename the page.
2500                  *
2501                  * We do not have to VM_PROT_NONE the page as mappings should
2502                  * not be changed by this operation.
2503                  */
2504                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2505                         goto retry;
2506                         
2507                 vm_page_busy(m);
2508                 vm_page_rename(m, new_object, idx);
2509                 /* page automatically made dirty by rename and cache handled */
2510                 vm_page_busy(m);
2511         }
2512
2513         if (orig_object->type == OBJT_SWAP) {
2514                 vm_object_pip_add(orig_object, 1);
2515                 /*
2516                  * copy orig_object pages into new_object
2517                  * and destroy unneeded pages in
2518                  * shadow object.
2519                  */
2520                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2521                 vm_object_pip_wakeup(orig_object);
2522         }
2523
2524         for (idx = 0; idx < size; idx++) {
2525                 m = vm_page_lookup(new_object, idx);
2526                 if (m) {
2527                         vm_page_wakeup(m);
2528                 }
2529         }
2530
2531         entry->object.vm_object = new_object;
2532         entry->offset = 0LL;
2533         vm_object_deallocate(orig_object);
2534 }
2535
2536 /*
2537  *      vm_map_copy_entry:
2538  *
2539  *      Copies the contents of the source entry to the destination
2540  *      entry.  The entries *must* be aligned properly.
2541  */
2542 static void
2543 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2544         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2545 {
2546         vm_object_t src_object;
2547
2548         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2549                 return;
2550
2551         if (src_entry->wired_count == 0) {
2552
2553                 /*
2554                  * If the source entry is marked needs_copy, it is already
2555                  * write-protected.
2556                  */
2557                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2558                         pmap_protect(src_map->pmap,
2559                             src_entry->start,
2560                             src_entry->end,
2561                             src_entry->protection & ~VM_PROT_WRITE);
2562                 }
2563
2564                 /*
2565                  * Make a copy of the object.
2566                  */
2567                 if ((src_object = src_entry->object.vm_object) != NULL) {
2568
2569                         if ((src_object->handle == NULL) &&
2570                                 (src_object->type == OBJT_DEFAULT ||
2571                                  src_object->type == OBJT_SWAP)) {
2572                                 vm_object_collapse(src_object);
2573                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2574                                         vm_map_split(src_entry);
2575                                         src_object = src_entry->object.vm_object;
2576                                 }
2577                         }
2578
2579                         vm_object_reference(src_object);
2580                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2581                         dst_entry->object.vm_object = src_object;
2582                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2583                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2584                         dst_entry->offset = src_entry->offset;
2585                 } else {
2586                         dst_entry->object.vm_object = NULL;
2587                         dst_entry->offset = 0;
2588                 }
2589
2590                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2591                     dst_entry->end - dst_entry->start, src_entry->start);
2592         } else {
2593                 /*
2594                  * Of course, wired down pages can't be set copy-on-write.
2595                  * Cause wired pages to be copied into the new map by
2596                  * simulating faults (the new pages are pageable)
2597                  */
2598                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2599         }
2600 }
2601
2602 /*
2603  * vmspace_fork:
2604  * Create a new process vmspace structure and vm_map
2605  * based on those of an existing process.  The new map
2606  * is based on the old map, according to the inheritance
2607  * values on the regions in that map.
2608  *
2609  * The source map must not be locked.
2610  */
2611 struct vmspace *
2612 vmspace_fork(struct vmspace *vm1)
2613 {
2614         struct vmspace *vm2;
2615         vm_map_t old_map = &vm1->vm_map;
2616         vm_map_t new_map;
2617         vm_map_entry_t old_entry;
2618         vm_map_entry_t new_entry;
2619         vm_object_t object;
2620         int count;
2621
2622         vm_map_lock(old_map);
2623         old_map->infork = 1;
2624
2625         /*
2626          * XXX Note: upcalls are not copied.
2627          */
2628         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2629         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2630             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2631         new_map = &vm2->vm_map; /* XXX */
2632         new_map->timestamp = 1;
2633
2634         count = 0;
2635         old_entry = old_map->header.next;
2636         while (old_entry != &old_map->header) {
2637                 ++count;
2638                 old_entry = old_entry->next;
2639         }
2640
2641         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2642
2643         old_entry = old_map->header.next;
2644         while (old_entry != &old_map->header) {
2645                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2646                         panic("vm_map_fork: encountered a submap");
2647
2648                 switch (old_entry->inheritance) {
2649                 case VM_INHERIT_NONE:
2650                         break;
2651
2652                 case VM_INHERIT_SHARE:
2653                         /*
2654                          * Clone the entry, creating the shared object if necessary.
2655                          */
2656                         object = old_entry->object.vm_object;
2657                         if (object == NULL) {
2658                                 object = vm_object_allocate(OBJT_DEFAULT,
2659                                         atop(old_entry->end - old_entry->start));
2660                                 old_entry->object.vm_object = object;
2661                                 old_entry->offset = (vm_offset_t) 0;
2662                         }
2663
2664                         /*
2665                          * Add the reference before calling vm_object_shadow
2666                          * to insure that a shadow object is created.
2667                          */
2668                         vm_object_reference(object);
2669                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2670                                 vm_object_shadow(&old_entry->object.vm_object,
2671                                         &old_entry->offset,
2672                                         atop(old_entry->end - old_entry->start));
2673                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2674                                 /* Transfer the second reference too. */
2675                                 vm_object_reference(
2676                                     old_entry->object.vm_object);
2677                                 vm_object_deallocate(object);
2678                                 object = old_entry->object.vm_object;
2679                         }
2680                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2681
2682                         /*
2683                          * Clone the entry, referencing the shared object.
2684                          */
2685                         new_entry = vm_map_entry_create(new_map, &count);
2686                         *new_entry = *old_entry;
2687                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2688                         new_entry->wired_count = 0;
2689
2690                         /*
2691                          * Insert the entry into the new map -- we know we're
2692                          * inserting at the end of the new map.
2693                          */
2694
2695                         vm_map_entry_link(new_map, new_map->header.prev,
2696                             new_entry);
2697
2698                         /*
2699                          * Update the physical map
2700                          */
2701
2702                         pmap_copy(new_map->pmap, old_map->pmap,
2703                             new_entry->start,
2704                             (old_entry->end - old_entry->start),
2705                             old_entry->start);
2706                         break;
2707
2708                 case VM_INHERIT_COPY:
2709                         /*
2710                          * Clone the entry and link into the map.
2711                          */
2712                         new_entry = vm_map_entry_create(new_map, &count);
2713                         *new_entry = *old_entry;
2714                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2715                         new_entry->wired_count = 0;
2716                         new_entry->object.vm_object = NULL;
2717                         vm_map_entry_link(new_map, new_map->header.prev,
2718                             new_entry);
2719                         vm_map_copy_entry(old_map, new_map, old_entry,
2720                             new_entry);
2721                         break;
2722                 }
2723                 old_entry = old_entry->next;
2724         }
2725
2726         new_map->size = old_map->size;
2727         old_map->infork = 0;
2728         vm_map_unlock(old_map);
2729         vm_map_entry_release(count);
2730
2731         return (vm2);
2732 }
2733
2734 int
2735 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2736               vm_prot_t prot, vm_prot_t max, int cow)
2737 {
2738         vm_map_entry_t prev_entry;
2739         vm_map_entry_t new_stack_entry;
2740         vm_size_t      init_ssize;
2741         int            rv;
2742         int             count;
2743
2744         if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2745                 return (KERN_NO_SPACE);
2746
2747         if (max_ssize < sgrowsiz)
2748                 init_ssize = max_ssize;
2749         else
2750                 init_ssize = sgrowsiz;
2751
2752         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2753         vm_map_lock(map);
2754
2755         /* If addr is already mapped, no go */
2756         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2757                 vm_map_unlock(map);
2758                 vm_map_entry_release(count);
2759                 return (KERN_NO_SPACE);
2760         }
2761
2762         /* If we would blow our VMEM resource limit, no go */
2763         if (map->size + init_ssize >
2764             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2765                 vm_map_unlock(map);
2766                 vm_map_entry_release(count);
2767                 return (KERN_NO_SPACE);
2768         }
2769
2770         /* If we can't accomodate max_ssize in the current mapping,
2771          * no go.  However, we need to be aware that subsequent user
2772          * mappings might map into the space we have reserved for
2773          * stack, and currently this space is not protected.  
2774          * 
2775          * Hopefully we will at least detect this condition 
2776          * when we try to grow the stack.
2777          */
2778         if ((prev_entry->next != &map->header) &&
2779             (prev_entry->next->start < addrbos + max_ssize)) {
2780                 vm_map_unlock(map);
2781                 vm_map_entry_release(count);
2782                 return (KERN_NO_SPACE);
2783         }
2784
2785         /* We initially map a stack of only init_ssize.  We will
2786          * grow as needed later.  Since this is to be a grow 
2787          * down stack, we map at the top of the range.
2788          *
2789          * Note: we would normally expect prot and max to be
2790          * VM_PROT_ALL, and cow to be 0.  Possibly we should
2791          * eliminate these as input parameters, and just
2792          * pass these values here in the insert call.
2793          */
2794         rv = vm_map_insert(map, &count,
2795                            NULL, 0, addrbos + max_ssize - init_ssize,
2796                            addrbos + max_ssize, prot, max, cow);
2797
2798         /* Now set the avail_ssize amount */
2799         if (rv == KERN_SUCCESS){
2800                 if (prev_entry != &map->header)
2801                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2802                 new_stack_entry = prev_entry->next;
2803                 if (new_stack_entry->end   != addrbos + max_ssize ||
2804                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
2805                         panic ("Bad entry start/end for new stack entry");
2806                 else 
2807                         new_stack_entry->avail_ssize = max_ssize - init_ssize;
2808         }
2809
2810         vm_map_unlock(map);
2811         vm_map_entry_release(count);
2812         return (rv);
2813 }
2814
2815 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2816  * desired address is already mapped, or if we successfully grow
2817  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2818  * stack range (this is strange, but preserves compatibility with
2819  * the grow function in vm_machdep.c).
2820  */
2821 int
2822 vm_map_growstack (struct proc *p, vm_offset_t addr)
2823 {
2824         vm_map_entry_t prev_entry;
2825         vm_map_entry_t stack_entry;
2826         vm_map_entry_t new_stack_entry;
2827         struct vmspace *vm = p->p_vmspace;
2828         vm_map_t map = &vm->vm_map;
2829         vm_offset_t    end;
2830         int grow_amount;
2831         int rv = KERN_SUCCESS;
2832         int is_procstack;
2833         int use_read_lock = 1;
2834         int count;
2835
2836         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2837 Retry:
2838         if (use_read_lock)
2839                 vm_map_lock_read(map);
2840         else
2841                 vm_map_lock(map);
2842
2843         /* If addr is already in the entry range, no need to grow.*/
2844         if (vm_map_lookup_entry(map, addr, &prev_entry))
2845                 goto done;
2846
2847         if ((stack_entry = prev_entry->next) == &map->header)
2848                 goto done;
2849         if (prev_entry == &map->header) 
2850                 end = stack_entry->start - stack_entry->avail_ssize;
2851         else
2852                 end = prev_entry->end;
2853
2854         /* This next test mimics the old grow function in vm_machdep.c.
2855          * It really doesn't quite make sense, but we do it anyway
2856          * for compatibility.
2857          *
2858          * If not growable stack, return success.  This signals the
2859          * caller to proceed as he would normally with normal vm.
2860          */
2861         if (stack_entry->avail_ssize < 1 ||
2862             addr >= stack_entry->start ||
2863             addr <  stack_entry->start - stack_entry->avail_ssize) {
2864                 goto done;
2865         } 
2866         
2867         /* Find the minimum grow amount */
2868         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2869         if (grow_amount > stack_entry->avail_ssize) {
2870                 rv = KERN_NO_SPACE;
2871                 goto done;
2872         }
2873
2874         /* If there is no longer enough space between the entries
2875          * nogo, and adjust the available space.  Note: this 
2876          * should only happen if the user has mapped into the
2877          * stack area after the stack was created, and is
2878          * probably an error.
2879          *
2880          * This also effectively destroys any guard page the user
2881          * might have intended by limiting the stack size.
2882          */
2883         if (grow_amount > stack_entry->start - end) {
2884                 if (use_read_lock && vm_map_lock_upgrade(map)) {
2885                         use_read_lock = 0;
2886                         goto Retry;
2887                 }
2888                 use_read_lock = 0;
2889                 stack_entry->avail_ssize = stack_entry->start - end;
2890                 rv = KERN_NO_SPACE;
2891                 goto done;
2892         }
2893
2894         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2895
2896         /* If this is the main process stack, see if we're over the 
2897          * stack limit.
2898          */
2899         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2900                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2901                 rv = KERN_NO_SPACE;
2902                 goto done;
2903         }
2904
2905         /* Round up the grow amount modulo SGROWSIZ */
2906         grow_amount = roundup (grow_amount, sgrowsiz);
2907         if (grow_amount > stack_entry->avail_ssize) {
2908                 grow_amount = stack_entry->avail_ssize;
2909         }
2910         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2911                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2912                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2913                               ctob(vm->vm_ssize);
2914         }
2915
2916         /* If we would blow our VMEM resource limit, no go */
2917         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2918                 rv = KERN_NO_SPACE;
2919                 goto done;
2920         }
2921
2922         if (use_read_lock && vm_map_lock_upgrade(map)) {
2923                 use_read_lock = 0;
2924                 goto Retry;
2925         }
2926         use_read_lock = 0;
2927
2928         /* Get the preliminary new entry start value */
2929         addr = stack_entry->start - grow_amount;
2930
2931         /* If this puts us into the previous entry, cut back our growth
2932          * to the available space.  Also, see the note above.
2933          */
2934         if (addr < end) {
2935                 stack_entry->avail_ssize = stack_entry->start - end;
2936                 addr = end;
2937         }
2938
2939         rv = vm_map_insert(map, &count,
2940                            NULL, 0, addr, stack_entry->start,
2941                            VM_PROT_ALL,
2942                            VM_PROT_ALL,
2943                            0);
2944
2945         /* Adjust the available stack space by the amount we grew. */
2946         if (rv == KERN_SUCCESS) {
2947                 if (prev_entry != &map->header)
2948                         vm_map_clip_end(map, prev_entry, addr, &count);
2949                 new_stack_entry = prev_entry->next;
2950                 if (new_stack_entry->end   != stack_entry->start  ||
2951                     new_stack_entry->start != addr)
2952                         panic ("Bad stack grow start/end in new stack entry");
2953                 else {
2954                         new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2955                                                         (new_stack_entry->end -
2956                                                          new_stack_entry->start);
2957                         if (is_procstack)
2958                                 vm->vm_ssize += btoc(new_stack_entry->end -
2959                                                      new_stack_entry->start);
2960                 }
2961         }
2962
2963 done:
2964         if (use_read_lock)
2965                 vm_map_unlock_read(map);
2966         else
2967                 vm_map_unlock(map);
2968         vm_map_entry_release(count);
2969         return (rv);
2970 }
2971
2972 /*
2973  * Unshare the specified VM space for exec.  If other processes are
2974  * mapped to it, then create a new one.  The new vmspace is null.
2975  */
2976
2977 void
2978 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
2979 {
2980         struct vmspace *oldvmspace = p->p_vmspace;
2981         struct vmspace *newvmspace;
2982         vm_map_t map = &p->p_vmspace->vm_map;
2983
2984         /*
2985          * If we are execing a resident vmspace we fork it, otherwise
2986          * we create a new vmspace.  Note that exitingcnt and upcalls
2987          * are not copied to the new vmspace.
2988          */
2989         if (vmcopy)  {
2990             newvmspace = vmspace_fork(vmcopy);
2991         } else {
2992             newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2993             bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2994                 (caddr_t)&oldvmspace->vm_endcopy - 
2995                     (caddr_t)&oldvmspace->vm_startcopy);
2996         }
2997
2998         /*
2999          * This code is written like this for prototype purposes.  The
3000          * goal is to avoid running down the vmspace here, but let the
3001          * other process's that are still using the vmspace to finally
3002          * run it down.  Even though there is little or no chance of blocking
3003          * here, it is a good idea to keep this form for future mods.
3004          */
3005         p->p_vmspace = newvmspace;
3006         pmap_pinit2(vmspace_pmap(newvmspace));
3007         if (p == curproc)
3008                 pmap_activate(p);
3009         vmspace_free(oldvmspace);
3010 }
3011
3012 /*
3013  * Unshare the specified VM space for forcing COW.  This
3014  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3015  *
3016  * The exitingcnt test is not strictly necessary but has been
3017  * included for code sanity (to make the code a bit more deterministic).
3018  */
3019
3020 void
3021 vmspace_unshare(struct proc *p) 
3022 {
3023         struct vmspace *oldvmspace = p->p_vmspace;
3024         struct vmspace *newvmspace;
3025
3026         if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3027                 return;
3028         newvmspace = vmspace_fork(oldvmspace);
3029         p->p_vmspace = newvmspace;
3030         pmap_pinit2(vmspace_pmap(newvmspace));
3031         if (p == curproc)
3032                 pmap_activate(p);
3033         vmspace_free(oldvmspace);
3034 }
3035
3036 /*
3037  *      vm_map_lookup:
3038  *
3039  *      Finds the VM object, offset, and
3040  *      protection for a given virtual address in the
3041  *      specified map, assuming a page fault of the
3042  *      type specified.
3043  *
3044  *      Leaves the map in question locked for read; return
3045  *      values are guaranteed until a vm_map_lookup_done
3046  *      call is performed.  Note that the map argument
3047  *      is in/out; the returned map must be used in
3048  *      the call to vm_map_lookup_done.
3049  *
3050  *      A handle (out_entry) is returned for use in
3051  *      vm_map_lookup_done, to make that fast.
3052  *
3053  *      If a lookup is requested with "write protection"
3054  *      specified, the map may be changed to perform virtual
3055  *      copying operations, although the data referenced will
3056  *      remain the same.
3057  */
3058 int
3059 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3060               vm_offset_t vaddr,
3061               vm_prot_t fault_typea,
3062               vm_map_entry_t *out_entry,        /* OUT */
3063               vm_object_t *object,              /* OUT */
3064               vm_pindex_t *pindex,              /* OUT */
3065               vm_prot_t *out_prot,              /* OUT */
3066               boolean_t *wired)                 /* OUT */
3067 {
3068         vm_map_entry_t entry;
3069         vm_map_t map = *var_map;
3070         vm_prot_t prot;
3071         vm_prot_t fault_type = fault_typea;
3072         int use_read_lock = 1;
3073         int rv = KERN_SUCCESS;
3074
3075 RetryLookup:
3076         if (use_read_lock)
3077                 vm_map_lock_read(map);
3078         else
3079                 vm_map_lock(map);
3080
3081         /*
3082          * If the map has an interesting hint, try it before calling full
3083          * blown lookup routine.
3084          */
3085         entry = map->hint;
3086         *out_entry = entry;
3087
3088         if ((entry == &map->header) ||
3089             (vaddr < entry->start) || (vaddr >= entry->end)) {
3090                 vm_map_entry_t tmp_entry;
3091
3092                 /*
3093                  * Entry was either not a valid hint, or the vaddr was not
3094                  * contained in the entry, so do a full lookup.
3095                  */
3096                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3097                         rv = KERN_INVALID_ADDRESS;
3098                         goto done;
3099                 }
3100
3101                 entry = tmp_entry;
3102                 *out_entry = entry;
3103         }
3104         
3105         /*
3106          * Handle submaps.
3107          */
3108
3109         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3110                 vm_map_t old_map = map;
3111
3112                 *var_map = map = entry->object.sub_map;
3113                 if (use_read_lock)
3114                         vm_map_unlock_read(old_map);
3115                 else
3116                         vm_map_unlock(old_map);
3117                 use_read_lock = 1;
3118                 goto RetryLookup;
3119         }
3120
3121         /*
3122          * Check whether this task is allowed to have this page.
3123          * Note the special case for MAP_ENTRY_COW
3124          * pages with an override.  This is to implement a forced
3125          * COW for debuggers.
3126          */
3127
3128         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3129                 prot = entry->max_protection;
3130         else
3131                 prot = entry->protection;
3132
3133         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3134         if ((fault_type & prot) != fault_type) {
3135                 rv = KERN_PROTECTION_FAILURE;
3136                 goto done;
3137         }
3138
3139         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3140             (entry->eflags & MAP_ENTRY_COW) &&
3141             (fault_type & VM_PROT_WRITE) &&
3142             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3143                 rv = KERN_PROTECTION_FAILURE;
3144                 goto done;
3145         }
3146
3147         /*
3148          * If this page is not pageable, we have to get it for all possible
3149          * accesses.
3150          */
3151
3152         *wired = (entry->wired_count != 0);
3153         if (*wired)
3154                 prot = fault_type = entry->protection;
3155
3156         /*
3157          * If the entry was copy-on-write, we either ...
3158          */
3159
3160         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3161                 /*
3162                  * If we want to write the page, we may as well handle that
3163                  * now since we've got the map locked.
3164                  *
3165                  * If we don't need to write the page, we just demote the
3166                  * permissions allowed.
3167                  */
3168
3169                 if (fault_type & VM_PROT_WRITE) {
3170                         /*
3171                          * Make a new object, and place it in the object
3172                          * chain.  Note that no new references have appeared
3173                          * -- one just moved from the map to the new
3174                          * object.
3175                          */
3176
3177                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3178                                 use_read_lock = 0;
3179                                 goto RetryLookup;
3180                         }
3181                         use_read_lock = 0;
3182
3183                         vm_object_shadow(
3184                             &entry->object.vm_object,
3185                             &entry->offset,
3186                             atop(entry->end - entry->start));
3187
3188                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3189                 } else {
3190                         /*
3191                          * We're attempting to read a copy-on-write page --
3192                          * don't allow writes.
3193                          */
3194
3195                         prot &= ~VM_PROT_WRITE;
3196                 }
3197         }
3198
3199         /*
3200          * Create an object if necessary.
3201          */
3202         if (entry->object.vm_object == NULL &&
3203             !map->system_map) {
3204                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3205                         use_read_lock = 0;
3206                         goto RetryLookup;
3207                 }
3208                 use_read_lock = 0;
3209                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3210                     atop(entry->end - entry->start));
3211                 entry->offset = 0;
3212         }
3213
3214         /*
3215          * Return the object/offset from this entry.  If the entry was
3216          * copy-on-write or empty, it has been fixed up.
3217          */
3218
3219         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3220         *object = entry->object.vm_object;
3221
3222         /*
3223          * Return whether this is the only map sharing this data.  On
3224          * success we return with a read lock held on the map.  On failure
3225          * we return with the map unlocked.
3226          */
3227         *out_prot = prot;
3228 done:
3229         if (rv == KERN_SUCCESS) {
3230                 if (use_read_lock == 0)
3231                         vm_map_lock_downgrade(map);
3232         } else if (use_read_lock) {
3233                 vm_map_unlock_read(map);
3234         } else {
3235                 vm_map_unlock(map);
3236         }
3237         return (rv);
3238 }
3239
3240 /*
3241  *      vm_map_lookup_done:
3242  *
3243  *      Releases locks acquired by a vm_map_lookup
3244  *      (according to the handle returned by that lookup).
3245  */
3246
3247 void
3248 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3249 {
3250         /*
3251          * Unlock the main-level map
3252          */
3253         vm_map_unlock_read(map);
3254         if (count)
3255                 vm_map_entry_release(count);
3256 }
3257
3258 #ifdef ENABLE_VFS_IOOPT
3259
3260 /*
3261  * Implement uiomove with VM operations.  This handles (and collateral changes)
3262  * support every combination of source object modification, and COW type
3263  * operations.
3264  */
3265 int
3266 vm_uiomove(vm_map_t mapa, vm_object_t srcobject, off_t cp, int cnta,
3267     vm_offset_t uaddra, int *npages)
3268 {
3269         vm_map_t map;
3270         vm_object_t first_object, oldobject, object;
3271         vm_map_entry_t entry;
3272         vm_prot_t prot;
3273         boolean_t wired;
3274         int tcnt, rv;
3275         vm_offset_t uaddr, start, end, tend;
3276         vm_pindex_t first_pindex, osize, oindex;
3277         off_t ooffset;
3278         int cnt;
3279         int count;
3280
3281         if (npages)
3282                 *npages = 0;
3283
3284         cnt = cnta;
3285         uaddr = uaddra;
3286
3287         while (cnt > 0) {
3288                 map = mapa;
3289
3290                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3291
3292                 if ((vm_map_lookup(&map, uaddr,
3293                         VM_PROT_READ, &entry, &first_object,
3294                         &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3295                         return EFAULT;
3296                 }
3297
3298                 vm_map_clip_start(map, entry, uaddr, &count);
3299
3300                 tcnt = cnt;
3301                 tend = uaddr + tcnt;
3302                 if (tend > entry->end) {
3303                         tcnt = entry->end - uaddr;
3304                         tend = entry->end;
3305                 }
3306
3307                 vm_map_clip_end(map, entry, tend, &count);
3308
3309                 start = entry->start;
3310                 end = entry->end;
3311
3312                 osize = atop(tcnt);
3313
3314                 oindex = OFF_TO_IDX(cp);
3315                 if (npages) {
3316                         vm_pindex_t idx;
3317                         for (idx = 0; idx < osize; idx++) {
3318                                 vm_page_t m;
3319                                 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3320                                         vm_map_lookup_done(map, entry, count);
3321                                         return 0;
3322                                 }
3323                                 /*
3324                                  * disallow busy or invalid pages, but allow
3325                                  * m->busy pages if they are entirely valid.
3326                                  */
3327                                 if ((m->flags & PG_BUSY) ||
3328                                         ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3329                                         vm_map_lookup_done(map, entry, count);
3330                                         return 0;
3331                                 }
3332                         }
3333                 }
3334
3335 /*
3336  * If we are changing an existing map entry, just redirect
3337  * the object, and change mappings.
3338  */
3339                 if ((first_object->type == OBJT_VNODE) &&
3340                         ((oldobject = entry->object.vm_object) == first_object)) {
3341
3342                         if ((entry->offset != cp) || (oldobject != srcobject)) {
3343                                 /*
3344                                 * Remove old window into the file
3345                                 */
3346                                 pmap_remove (map->pmap, uaddr, tend);
3347
3348                                 /*
3349                                 * Force copy on write for mmaped regions
3350                                 */
3351                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3352
3353                                 /*
3354                                 * Point the object appropriately
3355                                 */
3356                                 if (oldobject != srcobject) {
3357
3358                                 /*
3359                                 * Set the object optimization hint flag
3360                                 */
3361                                         vm_object_set_flag(srcobject, OBJ_OPT);
3362                                         vm_object_reference(srcobject);
3363                                         entry->object.vm_object = srcobject;
3364
3365                                         if (oldobject) {
3366                                                 vm_object_deallocate(oldobject);
3367                                         }
3368                                 }
3369
3370                                 entry->offset = cp;
3371                                 map->timestamp++;
3372                         } else {
3373                                 pmap_remove (map->pmap, uaddr, tend);
3374                         }
3375
3376                 } else if ((first_object->ref_count == 1) &&
3377                         (first_object->size == osize) &&
3378                         ((first_object->type == OBJT_DEFAULT) ||
3379                                 (first_object->type == OBJT_SWAP)) ) {
3380
3381                         oldobject = first_object->backing_object;
3382
3383                         if ((first_object->backing_object_offset != cp) ||
3384                                 (oldobject != srcobject)) {
3385                                 /*
3386                                 * Remove old window into the file
3387                                 */
3388                                 pmap_remove (map->pmap, uaddr, tend);
3389
3390                                 /*
3391                                  * Remove unneeded old pages
3392                                  */
3393                                 vm_object_page_remove(first_object, 0, 0, 0);
3394
3395                                 /*
3396                                  * Invalidate swap space
3397                                  */
3398                                 if (first_object->type == OBJT_SWAP) {
3399                                         swap_pager_freespace(first_object,
3400                                                 0,
3401                                                 first_object->size);
3402                                 }
3403
3404                                 /*
3405                                 * Force copy on write for mmaped regions
3406                                 */
3407                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3408
3409                                 /*
3410                                 * Point the object appropriately
3411                                 */
3412                                 if (oldobject != srcobject) {
3413
3414                                 /*
3415                                 * Set the object optimization hint flag
3416                                 */
3417                                         vm_object_set_flag(srcobject, OBJ_OPT);
3418                                         vm_object_reference(srcobject);
3419
3420                                         if (oldobject) {
3421                                                 LIST_REMOVE(
3422                                                         first_object, shadow_list);
3423                                                 oldobject->shadow_count--;
3424                                                 /* XXX bump generation? */
3425                                                 vm_object_deallocate(oldobject);
3426                                         }
3427
3428                                         LIST_INSERT_HEAD(&srcobject->shadow_head,
3429                                                 first_object, shadow_list);
3430                                         srcobject->shadow_count++;
3431                                         /* XXX bump generation? */
3432
3433                                         first_object->backing_object = srcobject;
3434                                 }
3435                                 first_object->backing_object_offset = cp;
3436                                 map->timestamp++;
3437                         } else {
3438                                 pmap_remove (map->pmap, uaddr, tend);
3439                         }
3440 /*
3441  * Otherwise, we have to do a logical mmap.
3442  */
3443                 } else {
3444
3445                         vm_object_set_flag(srcobject, OBJ_OPT);
3446                         vm_object_reference(srcobject);
3447
3448                         pmap_remove (map->pmap, uaddr, tend);
3449
3450                         vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3451                         vm_map_lock_upgrade(map);
3452
3453                         if (entry == &map->header) {
3454                                 map->first_free = &map->header;
3455                         } else if (map->first_free->start >= start) {
3456                                 map->first_free = entry->prev;
3457                         }
3458
3459                         SAVE_HINT(map, entry->prev);
3460                         vm_map_entry_delete(map, entry, &count);
3461
3462                         object = srcobject;
3463                         ooffset = cp;
3464
3465                         rv = vm_map_insert(map, &count,
3466                                 object, ooffset, start, tend,
3467                                 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3468
3469                         if (rv != KERN_SUCCESS)
3470                                 panic("vm_uiomove: could not insert new entry: %d", rv);
3471                 }
3472
3473 /*
3474  * Map the window directly, if it is already in memory
3475  */
3476                 pmap_object_init_pt(map->pmap, uaddr,
3477                         srcobject, oindex, tcnt, 0);
3478
3479                 map->timestamp++;
3480                 vm_map_unlock(map);
3481                 vm_map_entry_release(count);
3482
3483                 cnt -= tcnt;
3484                 uaddr += tcnt;
3485                 cp += tcnt;
3486                 if (npages)
3487                         *npages += osize;
3488         }
3489         return 0;
3490 }
3491
3492 #endif
3493
3494 /*
3495  * Performs the copy_on_write operations necessary to allow the virtual copies
3496  * into user space to work.  This has to be called for write(2) system calls
3497  * from other processes, file unlinking, and file size shrinkage.
3498  */
3499 void
3500 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3501 {
3502         int rv;
3503         vm_object_t robject;
3504         vm_pindex_t idx;
3505
3506         if ((object == NULL) ||
3507                 ((object->flags & OBJ_OPT) == 0))
3508                 return;
3509
3510         if (object->shadow_count > object->ref_count)
3511                 panic("vm_freeze_copyopts: sc > rc");
3512
3513         while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3514                 vm_pindex_t bo_pindex;
3515                 vm_page_t m_in, m_out;
3516
3517                 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3518
3519                 vm_object_reference(robject);
3520
3521                 vm_object_pip_wait(robject, "objfrz");
3522
3523                 if (robject->ref_count == 1) {
3524                         vm_object_deallocate(robject);
3525                         continue;
3526                 }
3527
3528                 vm_object_pip_add(robject, 1);
3529
3530                 for (idx = 0; idx < robject->size; idx++) {
3531
3532                         m_out = vm_page_grab(robject, idx,
3533                                             VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3534
3535                         if (m_out->valid == 0) {
3536                                 m_in = vm_page_grab(object, bo_pindex + idx,
3537                                             VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3538                                 if (m_in->valid == 0) {
3539                                         rv = vm_pager_get_pages(object, &m_in, 1, 0);
3540                                         if (rv != VM_PAGER_OK) {
3541                                                 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3542                                                 continue;
3543                                         }
3544                                         vm_page_deactivate(m_in);
3545                                 }
3546
3547                                 vm_page_protect(m_in, VM_PROT_NONE);
3548                                 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3549                                 m_out->valid = m_in->valid;
3550                                 vm_page_dirty(m_out);
3551                                 vm_page_activate(m_out);
3552                                 vm_page_wakeup(m_in);
3553                         }
3554                         vm_page_wakeup(m_out);
3555                 }
3556
3557                 object->shadow_count--;
3558                 object->ref_count--;
3559                 LIST_REMOVE(robject, shadow_list);
3560                 robject->backing_object = NULL;
3561                 robject->backing_object_offset = 0;
3562
3563                 vm_object_pip_wakeup(robject);
3564                 vm_object_deallocate(robject);
3565         }
3566
3567         vm_object_clear_flag(object, OBJ_OPT);
3568 }
3569
3570 #include "opt_ddb.h"
3571 #ifdef DDB
3572 #include <sys/kernel.h>
3573
3574 #include <ddb/ddb.h>
3575
3576 /*
3577  *      vm_map_print:   [ debug ]
3578  */
3579 DB_SHOW_COMMAND(map, vm_map_print)
3580 {
3581         static int nlines;
3582         /* XXX convert args. */
3583         vm_map_t map = (vm_map_t)addr;
3584         boolean_t full = have_addr;
3585
3586         vm_map_entry_t entry;
3587
3588         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3589             (void *)map,
3590             (void *)map->pmap, map->nentries, map->timestamp);
3591         nlines++;
3592
3593         if (!full && db_indent)
3594                 return;
3595
3596         db_indent += 2;
3597         for (entry = map->header.next; entry != &map->header;
3598             entry = entry->next) {
3599                 db_iprintf("map entry %p: start=%p, end=%p\n",
3600                     (void *)entry, (void *)entry->start, (void *)entry->end);
3601                 nlines++;
3602                 {
3603                         static char *inheritance_name[4] =
3604                         {"share", "copy", "none", "donate_copy"};
3605
3606                         db_iprintf(" prot=%x/%x/%s",
3607                             entry->protection,
3608                             entry->max_protection,
3609                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3610                         if (entry->wired_count != 0)
3611                                 db_printf(", wired");
3612                 }
3613                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3614                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3615                         db_printf(", share=%p, offset=0x%lx\n",
3616                             (void *)entry->object.sub_map,
3617                             (long)entry->offset);
3618                         nlines++;
3619                         if ((entry->prev == &map->header) ||
3620                             (entry->prev->object.sub_map !=
3621                                 entry->object.sub_map)) {
3622                                 db_indent += 2;
3623                                 vm_map_print((db_expr_t)(intptr_t)
3624                                              entry->object.sub_map,
3625                                              full, 0, (char *)0);
3626                                 db_indent -= 2;
3627                         }
3628                 } else {
3629                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3630                         db_printf(", object=%p, offset=0x%lx",
3631                             (void *)entry->object.vm_object,
3632                             (long)entry->offset);
3633                         if (entry->eflags & MAP_ENTRY_COW)
3634                                 db_printf(", copy (%s)",
3635                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3636                         db_printf("\n");
3637                         nlines++;
3638
3639                         if ((entry->prev == &map->header) ||
3640                             (entry->prev->object.vm_object !=
3641                                 entry->object.vm_object)) {
3642                                 db_indent += 2;
3643                                 vm_object_print((db_expr_t)(intptr_t)
3644                                                 entry->object.vm_object,
3645                                                 full, 0, (char *)0);
3646                                 nlines += 4;
3647                                 db_indent -= 2;
3648                         }
3649                 }
3650         }
3651         db_indent -= 2;
3652         if (db_indent == 0)
3653                 nlines = 0;
3654 }
3655
3656
3657 DB_SHOW_COMMAND(procvm, procvm)
3658 {
3659         struct proc *p;
3660
3661         if (have_addr) {
3662                 p = (struct proc *) addr;
3663         } else {
3664                 p = curproc;
3665         }
3666
3667         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3668             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3669             (void *)vmspace_pmap(p->p_vmspace));
3670
3671         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3672 }
3673
3674 #endif /* DDB */