Merge branch 'vendor/LIBARCHIVE'
[dragonfly.git] / lib / libm / src / e_jn.c
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $NetBSD: e_jn.c,v 1.14 2010/11/29 15:10:06 drochner Exp $
13  */
14
15 /*
16  * jn(n, x), yn(n, x)
17  * floating point Bessel's function of the 1st and 2nd kind
18  * of order n
19  *
20  * Special cases:
21  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
22  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
23  * Note 2. About jn(n,x), yn(n,x)
24  *      For n=0, j0(x) is called,
25  *      for n=1, j1(x) is called,
26  *      for n<x, forward recursion us used starting
27  *      from values of j0(x) and j1(x).
28  *      for n>x, a continued fraction approximation to
29  *      j(n,x)/j(n-1,x) is evaluated and then backward
30  *      recursion is used starting from a supposed value
31  *      for j(n,x). The resulting value of j(0,x) is
32  *      compared with the actual value to correct the
33  *      supposed value of j(n,x).
34  *
35  *      yn(n,x) is similar in all respects, except
36  *      that forward recursion is used for all
37  *      values of n>1.
38  *
39  */
40
41 #include <math.h>
42 #include "math_private.h"
43
44 static const double
45 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
46 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
47 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
48
49 static const double zero  =  0.00000000000000000000e+00;
50
51 double
52 jn(int n, double x)
53 {
54         int32_t i,hx,ix,lx, sgn;
55         double a, b, temp, di;
56         double z, w;
57
58         temp = 0;
59     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
60      * Thus, J(-n,x) = J(n,-x)
61      */
62         EXTRACT_WORDS(hx,lx,x);
63         ix = 0x7fffffff&hx;
64     /* if J(n,NaN) is NaN */
65         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
66         if(n<0){
67                 n = -n;
68                 x = -x;
69                 hx ^= 0x80000000;
70         }
71         if(n==0) return(j0(x));
72         if(n==1) return(j1(x));
73         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
74         x = fabs(x);
75         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
76             b = zero;
77         else if((double)n<=x) {
78                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
79             if(ix>=0x52D00000) { /* x > 2**302 */
80     /* (x >> n**2)
81      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
82      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
83      *      Let s=sin(x), c=cos(x),
84      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
85      *
86      *             n    sin(xn)*sqt2    cos(xn)*sqt2
87      *          ----------------------------------
88      *             0     s-c             c+s
89      *             1    -s-c            -c+s
90      *             2    -s+c            -c-s
91      *             3     s+c             c-s
92      */
93                 switch(n&3) {
94                     case 0: temp =  cos(x)+sin(x); break;
95                     case 1: temp = -cos(x)+sin(x); break;
96                     case 2: temp = -cos(x)-sin(x); break;
97                     case 3: temp =  cos(x)-sin(x); break;
98                 }
99                 b = invsqrtpi*temp/sqrt(x);
100             } else {
101                 a = j0(x);
102                 b = j1(x);
103                 for(i=1;i<n;i++){
104                     temp = b;
105                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
106                     a = temp;
107                 }
108             }
109         } else {
110             if(ix<0x3e100000) { /* x < 2**-29 */
111     /* x is tiny, return the first Taylor expansion of J(n,x)
112      * J(n,x) = 1/n!*(x/2)^n  - ...
113      */
114                 if(n>33)        /* underflow */
115                     b = zero;
116                 else {
117                     temp = x*0.5; b = temp;
118                     for (a=one,i=2;i<=n;i++) {
119                         a *= (double)i;         /* a = n! */
120                         b *= temp;              /* b = (x/2)^n */
121                     }
122                     b = b/a;
123                 }
124             } else {
125                 /* use backward recurrence */
126                 /*                      x      x^2      x^2
127                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
128                  *                      2n  - 2(n+1) - 2(n+2)
129                  *
130                  *                      1      1        1
131                  *  (for large x)   =  ----  ------   ------   .....
132                  *                      2n   2(n+1)   2(n+2)
133                  *                      -- - ------ - ------ -
134                  *                       x     x         x
135                  *
136                  * Let w = 2n/x and h=2/x, then the above quotient
137                  * is equal to the continued fraction:
138                  *                  1
139                  *      = -----------------------
140                  *                     1
141                  *         w - -----------------
142                  *                        1
143                  *              w+h - ---------
144                  *                     w+2h - ...
145                  *
146                  * To determine how many terms needed, let
147                  * Q(0) = w, Q(1) = w(w+h) - 1,
148                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
149                  * When Q(k) > 1e4      good for single
150                  * When Q(k) > 1e9      good for double
151                  * When Q(k) > 1e17     good for quadruple
152                  */
153             /* determine k */
154                 double t,v;
155                 double q0,q1,h,tmp; int32_t k,m;
156                 w  = (n+n)/(double)x; h = 2.0/(double)x;
157                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
158                 while(q1<1.0e9) {
159                         k += 1; z += h;
160                         tmp = z*q1 - q0;
161                         q0 = q1;
162                         q1 = tmp;
163                 }
164                 m = n+n;
165                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
166                 a = t;
167                 b = one;
168                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
169                  *  Hence, if n*(log(2n/x)) > ...
170                  *  single 8.8722839355e+01
171                  *  double 7.09782712893383973096e+02
172                  *  long double 1.1356523406294143949491931077970765006170e+04
173                  *  then recurrent value may overflow and the result is
174                  *  likely underflow to zero
175                  */
176                 tmp = n;
177                 v = two/x;
178                 tmp = tmp*log(fabs(v*tmp));
179                 if(tmp<7.09782712893383973096e+02) {
180                     for(i=n-1,di=(double)(i+i);i>0;i--){
181                         temp = b;
182                         b *= di;
183                         b  = b/x - a;
184                         a = temp;
185                         di -= two;
186                     }
187                 } else {
188                     for(i=n-1,di=(double)(i+i);i>0;i--){
189                         temp = b;
190                         b *= di;
191                         b  = b/x - a;
192                         a = temp;
193                         di -= two;
194                     /* scale b to avoid spurious overflow */
195                         if(b>1e100) {
196                             a /= b;
197                             t /= b;
198                             b  = one;
199                         }
200                     }
201                 }
202                 z = j0(x);
203                 w = j1(x);
204                 if (fabs(z) >= fabs(w))
205                         b = (t*z/b);
206                 else
207                         b = (t*w/a);
208             }
209         }
210         if(sgn==1) return -b; else return b;
211 }
212
213 double
214 yn(int n, double x)
215 {
216         int32_t i,hx,ix,lx;
217         int32_t sign;
218         double a, b, temp;
219
220         temp = 0;
221         EXTRACT_WORDS(hx,lx,x);
222         ix = 0x7fffffff&hx;
223     /* if Y(n,NaN) is NaN */
224         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
225         if((ix|lx)==0) return -one/zero;
226         if(hx<0) return zero/zero;
227         sign = 1;
228         if(n<0){
229                 n = -n;
230                 sign = 1 - ((n&1)<<1);
231         }
232         if(n==0) return(y0(x));
233         if(n==1) return(sign*y1(x));
234         if(ix==0x7ff00000) return zero;
235         if(ix>=0x52D00000) { /* x > 2**302 */
236     /* (x >> n**2)
237      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
238      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
239      *      Let s=sin(x), c=cos(x),
240      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
241      *
242      *             n    sin(xn)*sqt2    cos(xn)*sqt2
243      *          ----------------------------------
244      *             0     s-c             c+s
245      *             1    -s-c            -c+s
246      *             2    -s+c            -c-s
247      *             3     s+c             c-s
248      */
249                 switch(n&3) {
250                     case 0: temp =  sin(x)-cos(x); break;
251                     case 1: temp = -sin(x)-cos(x); break;
252                     case 2: temp = -sin(x)+cos(x); break;
253                     case 3: temp =  sin(x)+cos(x); break;
254                 }
255                 b = invsqrtpi*temp/sqrt(x);
256         } else {
257             u_int32_t high;
258             a = y0(x);
259             b = y1(x);
260         /* quit if b is -inf */
261             GET_HIGH_WORD(high,b);
262             for(i=1;i<n&&high!=0xfff00000;i++){
263                 temp = b;
264                 b = ((double)(i+i)/x)*b - a;
265                 GET_HIGH_WORD(high,b);
266                 a = temp;
267             }
268         }
269         if(sign>0) return b; else return -b;
270 }