5c64851c3345acfb5d02790403e13460aa954a0b
[dragonfly.git] / sys / kern / usched_dfly.c
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52
53 #include <sys/ktr.h>
54
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57
58 /*
59  * Priorities.  Note that with 32 run queues per scheduler each queue
60  * represents four priority levels.
61  */
62
63 int dfly_rebalanced;
64
65 #define MAXPRI                  128
66 #define PRIMASK                 (MAXPRI - 1)
67 #define PRIBASE_REALTIME        0
68 #define PRIBASE_NORMAL          MAXPRI
69 #define PRIBASE_IDLE            (MAXPRI * 2)
70 #define PRIBASE_THREAD          (MAXPRI * 3)
71 #define PRIBASE_NULL            (MAXPRI * 4)
72
73 #define NQS     32                      /* 32 run queues. */
74 #define PPQ     (MAXPRI / NQS)          /* priorities per queue */
75 #define PPQMASK (PPQ - 1)
76
77 /*
78  * NICEPPQ      - number of nice units per priority queue
79  * ESTCPUPPQ    - number of estcpu units per priority queue
80  * ESTCPUMAX    - number of estcpu units
81  */
82 #define NICEPPQ         2
83 #define ESTCPUPPQ       512
84 #define ESTCPUMAX       (ESTCPUPPQ * NQS)
85 #define BATCHMAX        (ESTCPUFREQ * 30)
86 #define PRIO_RANGE      (PRIO_MAX - PRIO_MIN + 1)
87
88 #define ESTCPULIM(v)    min((v), ESTCPUMAX)
89
90 TAILQ_HEAD(rq, lwp);
91
92 #define lwp_priority    lwp_usdata.dfly.priority
93 #define lwp_forked      lwp_usdata.dfly.forked
94 #define lwp_rqindex     lwp_usdata.dfly.rqindex
95 #define lwp_estcpu      lwp_usdata.dfly.estcpu
96 #define lwp_estfast     lwp_usdata.dfly.estfast
97 #define lwp_uload       lwp_usdata.dfly.uload
98 #define lwp_rqtype      lwp_usdata.dfly.rqtype
99 #define lwp_qcpu        lwp_usdata.dfly.qcpu
100
101 struct usched_dfly_pcpu {
102         struct spinlock spin;
103         struct thread   helper_thread;
104         short           rrcount;
105         short           upri;
106         int             uload;
107         int             ucount;
108         struct lwp      *uschedcp;
109         struct rq       queues[NQS];
110         struct rq       rtqueues[NQS];
111         struct rq       idqueues[NQS];
112         u_int32_t       queuebits;
113         u_int32_t       rtqueuebits;
114         u_int32_t       idqueuebits;
115         int             runqcount;
116         int             cpuid;
117         cpumask_t       cpumask;
118 #ifdef SMP
119         cpu_node_t      *cpunode;
120 #endif
121 };
122
123 typedef struct usched_dfly_pcpu *dfly_pcpu_t;
124
125 static void dfly_acquire_curproc(struct lwp *lp);
126 static void dfly_release_curproc(struct lwp *lp);
127 static void dfly_select_curproc(globaldata_t gd);
128 static void dfly_setrunqueue(struct lwp *lp);
129 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
130 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
131                                 sysclock_t cpstamp);
132 static void dfly_recalculate_estcpu(struct lwp *lp);
133 static void dfly_resetpriority(struct lwp *lp);
134 static void dfly_forking(struct lwp *plp, struct lwp *lp);
135 static void dfly_exiting(struct lwp *lp, struct proc *);
136 static void dfly_uload_update(struct lwp *lp);
137 static void dfly_yield(struct lwp *lp);
138 #ifdef SMP
139 static void dfly_changeqcpu_locked(struct lwp *lp,
140                                 dfly_pcpu_t dd, dfly_pcpu_t rdd);
141 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
142 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd);
143 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
144 #endif
145
146 #ifdef SMP
147 static void dfly_need_user_resched_remote(void *dummy);
148 #endif
149 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
150                                           struct lwp *chklp, int worst);
151 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
152 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
153
154 struct usched usched_dfly = {
155         { NULL },
156         "dfly", "Original DragonFly Scheduler",
157         NULL,                   /* default registration */
158         NULL,                   /* default deregistration */
159         dfly_acquire_curproc,
160         dfly_release_curproc,
161         dfly_setrunqueue,
162         dfly_schedulerclock,
163         dfly_recalculate_estcpu,
164         dfly_resetpriority,
165         dfly_forking,
166         dfly_exiting,
167         dfly_uload_update,
168         NULL,                   /* setcpumask not supported */
169         dfly_yield
170 };
171
172 /*
173  * We have NQS (32) run queues per scheduling class.  For the normal
174  * class, there are 128 priorities scaled onto these 32 queues.  New
175  * processes are added to the last entry in each queue, and processes
176  * are selected for running by taking them from the head and maintaining
177  * a simple FIFO arrangement.  Realtime and Idle priority processes have
178  * and explicit 0-31 priority which maps directly onto their class queue
179  * index.  When a queue has something in it, the corresponding bit is
180  * set in the queuebits variable, allowing a single read to determine
181  * the state of all 32 queues and then a ffs() to find the first busy
182  * queue.
183  */
184 static cpumask_t dfly_curprocmask = -1; /* currently running a user process */
185 static cpumask_t dfly_rdyprocmask;      /* ready to accept a user process */
186 #ifdef SMP
187 static volatile int dfly_scancpu;
188 #endif
189 static volatile int dfly_ucount;        /* total running on whole system */
190 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
191 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
192 static struct sysctl_oid *usched_dfly_sysctl_tree;
193
194 /* Debug info exposed through debug.* sysctl */
195
196 static int usched_dfly_debug = -1;
197 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
198            &usched_dfly_debug, 0,
199            "Print debug information for this pid");
200
201 static int usched_dfly_pid_debug = -1;
202 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
203            &usched_dfly_pid_debug, 0,
204            "Print KTR debug information for this pid");
205
206 static int usched_dfly_chooser = 0;
207 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
208            &usched_dfly_chooser, 0,
209            "Print KTR debug information for this pid");
210
211 /*
212  * Tunning usched_dfly - configurable through kern.usched_dfly.
213  *
214  * weight1 - Tries to keep threads on their current cpu.  If you
215  *           make this value too large the scheduler will not be
216  *           able to load-balance large loads.
217  *
218  * weight2 - If non-zero, detects thread pairs undergoing synchronous
219  *           communications and tries to move them closer together.
220  *           Behavior is adjusted by bit 4 of features (0x10).
221  *
222  *           WARNING!  Weight2 is a ridiculously sensitive parameter,
223  *           a small value is recommended.
224  *
225  * weight3 - Weighting based on the number of recently runnable threads
226  *           on the userland scheduling queue (ignoring their loads).
227  *           A nominal value here prevents high-priority (low-load)
228  *           threads from accumulating on one cpu core when other
229  *           cores are available.
230  *
231  *           This value should be left fairly small relative to weight1
232  *           and weight4.
233  *
234  * weight4 - Weighting based on other cpu queues being available
235  *           or running processes with higher lwp_priority's.
236  *
237  *           This allows a thread to migrate to another nearby cpu if it
238  *           is unable to run on the current cpu based on the other cpu
239  *           being idle or running a lower priority (higher lwp_priority)
240  *           thread.  This value should be large enough to override weight1
241  *
242  * features - These flags can be set or cleared to enable or disable various
243  *            features.
244  *
245  *            0x01      Enable idle-cpu pulling                 (default)
246  *            0x02      Enable proactive pushing                (default)
247  *            0x04      Enable rebalancing rover                (default)
248  *            0x08      Enable more proactive pushing           (default)
249  *            0x10      (flip weight2 limit on same cpu)        (default)
250  *            0x20      choose best cpu for forked process
251  *            0x40      choose current cpu for forked process
252  *            0x80      choose random cpu for forked process    (default)
253  */
254 #ifdef SMP
255 static int usched_dfly_smt = 0;
256 static int usched_dfly_cache_coherent = 0;
257 static int usched_dfly_weight1 = 200;   /* keep thread on current cpu */
258 static int usched_dfly_weight2 = 1200;  /* synchronous peer's current cpu */
259 static int usched_dfly_weight3 = 40;    /* number of threads on queue */
260 static int usched_dfly_weight4 = 160;   /* availability of idle cores */
261 static int usched_dfly_features = 0x8F; /* allow pulls */
262 static int usched_dfly_swmask = ~PPQMASK; /* allow pulls */
263 #endif
264 static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
265 static int usched_dfly_decay = 8;
266
267 /* KTR debug printings */
268
269 KTR_INFO_MASTER(usched);
270
271 #if !defined(KTR_USCHED_DFLY)
272 #define KTR_USCHED_DFLY KTR_ALL
273 #endif
274
275 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
276     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
277     pid_t pid, int old_cpuid, int curr);
278
279 /*
280  * This function is called when the kernel intends to return to userland.
281  * It is responsible for making the thread the current designated userland
282  * thread for this cpu, blocking if necessary.
283  *
284  * The kernel has already depressed our LWKT priority so we must not switch
285  * until we have either assigned or disposed of the thread.
286  *
287  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
288  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
289  * occur, this function is called only under very controlled circumstances.
290  */
291 static void
292 dfly_acquire_curproc(struct lwp *lp)
293 {
294         globaldata_t gd;
295         dfly_pcpu_t dd;
296 #ifdef SMP
297         dfly_pcpu_t rdd;
298 #endif
299         thread_t td;
300         int force_resched;
301
302         /*
303          * Make sure we aren't sitting on a tsleep queue.
304          */
305         td = lp->lwp_thread;
306         crit_enter_quick(td);
307         if (td->td_flags & TDF_TSLEEPQ)
308                 tsleep_remove(td);
309         dfly_recalculate_estcpu(lp);
310
311         gd = mycpu;
312         dd = &dfly_pcpu[gd->gd_cpuid];
313
314         /*
315          * Process any pending interrupts/ipi's, then handle reschedule
316          * requests.  dfly_release_curproc() will try to assign a new
317          * uschedcp that isn't us and otherwise NULL it out.
318          */
319         force_resched = 0;
320         if (user_resched_wanted()) {
321                 if (dd->uschedcp == lp)
322                         force_resched = 1;
323                 clear_user_resched();
324                 dfly_release_curproc(lp);
325         }
326
327         /*
328          * Loop until we are the current user thread.
329          *
330          * NOTE: dd spinlock not held at top of loop.
331          */
332         if (dd->uschedcp == lp)
333                 lwkt_yield_quick();
334
335         while (dd->uschedcp != lp) {
336                 lwkt_yield_quick();
337
338                 spin_lock(&dd->spin);
339
340                 /*
341                  * We are not or are no longer the current lwp and a forced
342                  * reschedule was requested.  Figure out the best cpu to
343                  * run on (our current cpu will be given significant weight).
344                  *
345                  * (if a reschedule was not requested we want to move this
346                  *  step after the uschedcp tests).
347                  */
348 #ifdef SMP
349                 if (force_resched &&
350                     (usched_dfly_features & 0x08) &&
351                     (rdd = dfly_choose_best_queue(lp)) != dd) {
352                         dfly_changeqcpu_locked(lp, dd, rdd);
353                         spin_unlock(&dd->spin);
354                         lwkt_deschedule(lp->lwp_thread);
355                         dfly_setrunqueue_dd(rdd, lp);
356                         lwkt_switch();
357                         gd = mycpu;
358                         dd = &dfly_pcpu[gd->gd_cpuid];
359                         continue;
360                 }
361 #endif
362
363                 /*
364                  * Either no reschedule was requested or the best queue was
365                  * dd, and no current process has been selected.  We can
366                  * trivially become the current lwp on the current cpu.
367                  */
368                 if (dd->uschedcp == NULL) {
369                         atomic_set_cpumask(&dfly_curprocmask, gd->gd_cpumask);
370                         dd->uschedcp = lp;
371                         dd->upri = lp->lwp_priority;
372                         KKASSERT(lp->lwp_qcpu == dd->cpuid);
373                         spin_unlock(&dd->spin);
374                         break;
375                 }
376
377                 /*
378                  * Can we steal the current designated user thread?
379                  *
380                  * If we do the other thread will stall when it tries to
381                  * return to userland, possibly rescheduling elsewhere.
382                  *
383                  * It is important to do a masked test to avoid the edge
384                  * case where two near-equal-priority threads are constantly
385                  * interrupting each other.  Since our context is the one
386                  * that is active NOW, we WANT to steal the uschedcp
387                  * designation and not switch-flap.
388                  */
389                 if (dd->uschedcp &&
390                    (dd->upri & ~PPQMASK) >=
391                    (lp->lwp_priority & ~PPQMASK)) {
392                         dd->uschedcp = lp;
393                         dd->upri = lp->lwp_priority;
394                         KKASSERT(lp->lwp_qcpu == dd->cpuid);
395                         spin_unlock(&dd->spin);
396                         break;
397                 }
398
399 #ifdef SMP
400                 /*
401                  * We are not the current lwp, figure out the best cpu
402                  * to run on (our current cpu will be given significant
403                  * weight).  Loop on cpu change.
404                  */
405                 if ((usched_dfly_features & 0x02) &&
406                     force_resched == 0 &&
407                     (rdd = dfly_choose_best_queue(lp)) != dd) {
408                         dfly_changeqcpu_locked(lp, dd, rdd);
409                         spin_unlock(&dd->spin);
410                         lwkt_deschedule(lp->lwp_thread);
411                         dfly_setrunqueue_dd(rdd, lp);
412                         lwkt_switch();
413                         gd = mycpu;
414                         dd = &dfly_pcpu[gd->gd_cpuid];
415                         continue;
416                 }
417 #endif
418
419                 /*
420                  * We cannot become the current lwp, place the lp on the
421                  * run-queue of this or another cpu and deschedule ourselves.
422                  *
423                  * When we are reactivated we will have another chance.
424                  *
425                  * Reload after a switch or setrunqueue/switch possibly
426                  * moved us to another cpu.
427                  */
428                 spin_unlock(&dd->spin);
429                 lwkt_deschedule(lp->lwp_thread);
430                 dfly_setrunqueue_dd(dd, lp);
431                 lwkt_switch();
432                 gd = mycpu;
433                 dd = &dfly_pcpu[gd->gd_cpuid];
434         }
435
436         /*
437          * Make sure upri is synchronized, then yield to LWKT threads as
438          * needed before returning.  This could result in another reschedule.
439          * XXX
440          */
441         crit_exit_quick(td);
442
443         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
444 }
445
446 /*
447  * DFLY_RELEASE_CURPROC
448  *
449  * This routine detaches the current thread from the userland scheduler,
450  * usually because the thread needs to run or block in the kernel (at
451  * kernel priority) for a while.
452  *
453  * This routine is also responsible for selecting a new thread to
454  * make the current thread.
455  *
456  * NOTE: This implementation differs from the dummy example in that
457  * dfly_select_curproc() is able to select the current process, whereas
458  * dummy_select_curproc() is not able to select the current process.
459  * This means we have to NULL out uschedcp.
460  *
461  * Additionally, note that we may already be on a run queue if releasing
462  * via the lwkt_switch() in dfly_setrunqueue().
463  */
464 static void
465 dfly_release_curproc(struct lwp *lp)
466 {
467         globaldata_t gd = mycpu;
468         dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
469
470         /*
471          * Make sure td_wakefromcpu is defaulted.  This will be overwritten
472          * by wakeup().
473          */
474         if (dd->uschedcp == lp) {
475                 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
476                 spin_lock(&dd->spin);
477                 if (dd->uschedcp == lp) {
478                         dd->uschedcp = NULL;    /* don't let lp be selected */
479                         dd->upri = PRIBASE_NULL;
480                         atomic_clear_cpumask(&dfly_curprocmask, gd->gd_cpumask);
481                         spin_unlock(&dd->spin);
482                         dfly_select_curproc(gd);
483                 } else {
484                         spin_unlock(&dd->spin);
485                 }
486         }
487 }
488
489 /*
490  * DFLY_SELECT_CURPROC
491  *
492  * Select a new current process for this cpu and clear any pending user
493  * reschedule request.  The cpu currently has no current process.
494  *
495  * This routine is also responsible for equal-priority round-robining,
496  * typically triggered from dfly_schedulerclock().  In our dummy example
497  * all the 'user' threads are LWKT scheduled all at once and we just
498  * call lwkt_switch().
499  *
500  * The calling process is not on the queue and cannot be selected.
501  */
502 static
503 void
504 dfly_select_curproc(globaldata_t gd)
505 {
506         dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
507         struct lwp *nlp;
508         int cpuid = gd->gd_cpuid;
509
510         crit_enter_gd(gd);
511
512         spin_lock(&dd->spin);
513         nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
514
515         if (nlp) {
516                 atomic_set_cpumask(&dfly_curprocmask, CPUMASK(cpuid));
517                 dd->upri = nlp->lwp_priority;
518                 dd->uschedcp = nlp;
519                 dd->rrcount = 0;                /* reset round robin */
520                 spin_unlock(&dd->spin);
521 #ifdef SMP
522                 lwkt_acquire(nlp->lwp_thread);
523 #endif
524                 lwkt_schedule(nlp->lwp_thread);
525         } else {
526                 spin_unlock(&dd->spin);
527         }
528         crit_exit_gd(gd);
529 }
530
531 /*
532  * Place the specified lwp on the user scheduler's run queue.  This routine
533  * must be called with the thread descheduled.  The lwp must be runnable.
534  * It must not be possible for anyone else to explicitly schedule this thread.
535  *
536  * The thread may be the current thread as a special case.
537  */
538 static void
539 dfly_setrunqueue(struct lwp *lp)
540 {
541         dfly_pcpu_t dd;
542         dfly_pcpu_t rdd;
543
544         /*
545          * First validate the process LWKT state.
546          */
547         KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
548         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
549             ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
550              lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
551         KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
552
553         /*
554          * NOTE: dd/rdd do not necessarily represent the current cpu.
555          *       Instead they may represent the cpu the thread was last
556          *       scheduled on or inherited by its parent.
557          */
558         dd = &dfly_pcpu[lp->lwp_qcpu];
559         rdd = dd;
560
561         /*
562          * This process is not supposed to be scheduled anywhere or assigned
563          * as the current process anywhere.  Assert the condition.
564          */
565         KKASSERT(rdd->uschedcp != lp);
566
567 #ifndef SMP
568         /*
569          * If we are not SMP we do not have a scheduler helper to kick
570          * and must directly activate the process if none are scheduled.
571          *
572          * This is really only an issue when bootstrapping init since
573          * the caller in all other cases will be a user process, and
574          * even if released (rdd->uschedcp == NULL), that process will
575          * kickstart the scheduler when it returns to user mode from
576          * the kernel.
577          *
578          * NOTE: On SMP we can't just set some other cpu's uschedcp.
579          */
580         if (rdd->uschedcp == NULL) {
581                 spin_lock(&rdd->spin);
582                 if (rdd->uschedcp == NULL) {
583                         atomic_set_cpumask(&dfly_curprocmask, 1);
584                         rdd->uschedcp = lp;
585                         rdd->upri = lp->lwp_priority;
586                         spin_unlock(&rdd->spin);
587                         lwkt_schedule(lp->lwp_thread);
588                         return;
589                 }
590                 spin_unlock(&rdd->spin);
591         }
592 #endif
593
594 #ifdef SMP
595         /*
596          * Ok, we have to setrunqueue some target cpu and request a reschedule
597          * if necessary.
598          *
599          * We have to choose the best target cpu.  It might not be the current
600          * target even if the current cpu has no running user thread (for
601          * example, because the current cpu might be a hyperthread and its
602          * sibling has a thread assigned).
603          *
604          * If we just forked it is most optimal to run the child on the same
605          * cpu just in case the parent decides to wait for it (thus getting
606          * off that cpu).  As long as there is nothing else runnable on the
607          * cpu, that is.  If we did this unconditionally a parent forking
608          * multiple children before waiting (e.g. make -j N) leaves other
609          * cpus idle that could be working.
610          */
611         if (lp->lwp_forked) {
612                 lp->lwp_forked = 0;
613                 if (usched_dfly_features & 0x20)
614                         rdd = dfly_choose_best_queue(lp);
615                 else if (usched_dfly_features & 0x40)
616                         rdd = &dfly_pcpu[lp->lwp_qcpu];
617                 else if (usched_dfly_features & 0x80)
618                         rdd = dfly_choose_queue_simple(rdd, lp);
619                 else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
620                         rdd = dfly_choose_best_queue(lp);
621                 else
622                         rdd = &dfly_pcpu[lp->lwp_qcpu];
623         } else {
624                 rdd = dfly_choose_best_queue(lp);
625                 /* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
626         }
627         if (lp->lwp_qcpu != rdd->cpuid) {
628                 spin_lock(&dd->spin);
629                 dfly_changeqcpu_locked(lp, dd, rdd);
630                 spin_unlock(&dd->spin);
631         }
632 #endif
633         dfly_setrunqueue_dd(rdd, lp);
634 }
635
636 #ifdef SMP
637
638 /*
639  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
640  * spin-locked on-call.  rdd does not have to be.
641  */
642 static void
643 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
644 {
645         if (lp->lwp_qcpu != rdd->cpuid) {
646                 if (lp->lwp_mpflags & LWP_MP_ULOAD) {
647                         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
648                         atomic_add_int(&dd->uload, -lp->lwp_uload);
649                         atomic_add_int(&dd->ucount, -1);
650                         atomic_add_int(&dfly_ucount, -1);
651                 }
652                 lp->lwp_qcpu = rdd->cpuid;
653         }
654 }
655
656 #endif
657
658 /*
659  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
660  * also performs all necessary ancillary notification actions.
661  */
662 static void
663 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
664 {
665 #ifdef SMP
666         globaldata_t rgd;
667
668         /*
669          * We might be moving the lp to another cpu's run queue, and once
670          * on the runqueue (even if it is our cpu's), another cpu can rip
671          * it away from us.
672          *
673          * TDF_MIGRATING might already be set if this is part of a
674          * remrunqueue+setrunqueue sequence.
675          */
676         if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
677                 lwkt_giveaway(lp->lwp_thread);
678
679         rgd = globaldata_find(rdd->cpuid);
680
681         /*
682          * We lose control of the lp the moment we release the spinlock
683          * after having placed it on the queue.  i.e. another cpu could pick
684          * it up, or it could exit, or its priority could be further
685          * adjusted, or something like that.
686          *
687          * WARNING! rdd can point to a foreign cpu!
688          */
689         spin_lock(&rdd->spin);
690         dfly_setrunqueue_locked(rdd, lp);
691
692         if (rgd == mycpu) {
693                 if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
694                         spin_unlock(&rdd->spin);
695                         if (rdd->uschedcp == NULL) {
696                                 wakeup_mycpu(&rdd->helper_thread); /* XXX */
697                                 need_user_resched();
698                         } else {
699                                 need_user_resched();
700                         }
701                 } else {
702                         spin_unlock(&rdd->spin);
703                 }
704         } else {
705                 if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
706                         spin_unlock(&rdd->spin);
707                         lwkt_send_ipiq(rgd, dfly_need_user_resched_remote,
708                                        NULL);
709                 } else if (dfly_rdyprocmask & rgd->gd_cpumask) {
710                         atomic_clear_cpumask(&dfly_rdyprocmask,
711                                              rgd->gd_cpumask);
712                         spin_unlock(&rdd->spin);
713                         wakeup(&rdd->helper_thread);
714                 } else {
715                         spin_unlock(&rdd->spin);
716                 }
717         }
718 #else
719         /*
720          * Request a reschedule if appropriate.
721          */
722         spin_lock(&rdd->spin);
723         dfly_setrunqueue_locked(rdd, lp);
724         spin_unlock(&rdd->spin);
725         if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
726                 need_user_resched();
727         }
728 #endif
729 }
730
731 /*
732  * This routine is called from a systimer IPI.  It MUST be MP-safe and
733  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
734  * each cpu.
735  */
736 static
737 void
738 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
739 {
740         globaldata_t gd = mycpu;
741         dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
742
743         /*
744          * Spinlocks also hold a critical section so there should not be
745          * any active.
746          */
747         KKASSERT(gd->gd_spinlocks_wr == 0);
748
749         if (lp == NULL)
750                 return;
751
752         /*
753          * Do we need to round-robin?  We round-robin 10 times a second.
754          * This should only occur for cpu-bound batch processes.
755          */
756         if (++dd->rrcount >= usched_dfly_rrinterval) {
757                 lp->lwp_thread->td_wakefromcpu = -1;
758                 dd->rrcount = 0;
759                 need_user_resched();
760         }
761
762         /*
763          * Adjust estcpu upward using a real time equivalent calculation,
764          * and recalculate lp's priority.
765          */
766         lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
767         dfly_resetpriority(lp);
768
769         /*
770          * Rebalance two cpus every 8 ticks, pulling the worst thread
771          * from the worst cpu's queue into a rotating cpu number.
772          *
773          * This mechanic is needed because the push algorithms can
774          * steady-state in an non-optimal configuration.  We need to mix it
775          * up a little, even if it means breaking up a paired thread, so
776          * the push algorithms can rebalance the degenerate conditions.
777          * This portion of the algorithm exists to ensure stability at the
778          * selected weightings.
779          *
780          * Because we might be breaking up optimal conditions we do not want
781          * to execute this too quickly, hence we only rebalance approximately
782          * ~7-8 times per second.  The push's, on the otherhand, are capable
783          * moving threads to other cpus at a much higher rate.
784          *
785          * We choose the most heavily loaded thread from the worst queue
786          * in order to ensure that multiple heavy-weight threads on the same
787          * queue get broken up, and also because these threads are the most
788          * likely to be able to remain in place.  Hopefully then any pairings,
789          * if applicable, migrate to where these threads are.
790          */
791 #ifdef SMP
792         if ((usched_dfly_features & 0x04) &&
793             ((u_int)sched_ticks & 7) == 0 &&
794             (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
795                 /*
796                  * Our cpu is up.
797                  */
798                 struct lwp *nlp;
799                 dfly_pcpu_t rdd;
800
801                 rdd = dfly_choose_worst_queue(dd);
802                 if (rdd) {
803                         spin_lock(&dd->spin);
804                         if (spin_trylock(&rdd->spin)) {
805                                 nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
806                                 spin_unlock(&rdd->spin);
807                                 if (nlp == NULL)
808                                         spin_unlock(&dd->spin);
809                         } else {
810                                 spin_unlock(&dd->spin);
811                                 nlp = NULL;
812                         }
813                 } else {
814                         nlp = NULL;
815                 }
816                 /* dd->spin held if nlp != NULL */
817
818                 /*
819                  * Either schedule it or add it to our queue.
820                  */
821                 if (nlp &&
822                     (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
823                         atomic_set_cpumask(&dfly_curprocmask, dd->cpumask);
824                         dd->upri = nlp->lwp_priority;
825                         dd->uschedcp = nlp;
826                         dd->rrcount = 0;        /* reset round robin */
827                         spin_unlock(&dd->spin);
828                         lwkt_acquire(nlp->lwp_thread);
829                         lwkt_schedule(nlp->lwp_thread);
830                 } else if (nlp) {
831                         dfly_setrunqueue_locked(dd, nlp);
832                         spin_unlock(&dd->spin);
833                 }
834         }
835 #endif
836 }
837
838 /*
839  * Called from acquire and from kern_synch's one-second timer (one of the
840  * callout helper threads) with a critical section held.
841  *
842  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
843  * overall system load.
844  *
845  * Note that no recalculation occurs for a process which sleeps and wakes
846  * up in the same tick.  That is, a system doing thousands of context
847  * switches per second will still only do serious estcpu calculations
848  * ESTCPUFREQ times per second.
849  */
850 static
851 void
852 dfly_recalculate_estcpu(struct lwp *lp)
853 {
854         globaldata_t gd = mycpu;
855         sysclock_t cpbase;
856         sysclock_t ttlticks;
857         int estcpu;
858         int decay_factor;
859         int ucount;
860
861         /*
862          * We have to subtract periodic to get the last schedclock
863          * timeout time, otherwise we would get the upcoming timeout.
864          * Keep in mind that a process can migrate between cpus and
865          * while the scheduler clock should be very close, boundary
866          * conditions could lead to a small negative delta.
867          */
868         cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
869
870         if (lp->lwp_slptime > 1) {
871                 /*
872                  * Too much time has passed, do a coarse correction.
873                  */
874                 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
875                 dfly_resetpriority(lp);
876                 lp->lwp_cpbase = cpbase;
877                 lp->lwp_cpticks = 0;
878                 lp->lwp_estfast = 0;
879         } else if (lp->lwp_cpbase != cpbase) {
880                 /*
881                  * Adjust estcpu if we are in a different tick.  Don't waste
882                  * time if we are in the same tick.
883                  *
884                  * First calculate the number of ticks in the measurement
885                  * interval.  The ttlticks calculation can wind up 0 due to
886                  * a bug in the handling of lwp_slptime  (as yet not found),
887                  * so make sure we do not get a divide by 0 panic.
888                  */
889                 ttlticks = (cpbase - lp->lwp_cpbase) /
890                            gd->gd_schedclock.periodic;
891                 if (ttlticks < 0) {
892                         ttlticks = 0;
893                         lp->lwp_cpbase = cpbase;
894                 }
895                 if (ttlticks == 0)
896                         return;
897                 updatepcpu(lp, lp->lwp_cpticks, ttlticks);
898
899                 /*
900                  * Calculate the percentage of one cpu being used then
901                  * compensate for any system load in excess of ncpus.
902                  *
903                  * For example, if we have 8 cores and 16 running cpu-bound
904                  * processes then all things being equal each process will
905                  * get 50% of one cpu.  We need to pump this value back
906                  * up to 100% so the estcpu calculation properly adjusts
907                  * the process's dynamic priority.
908                  *
909                  * estcpu is scaled by ESTCPUMAX, pctcpu is scaled by FSCALE.
910                  */
911                 estcpu = (lp->lwp_pctcpu * ESTCPUMAX) >> FSHIFT;
912                 ucount = dfly_ucount;
913                 if (ucount > ncpus) {
914                         estcpu += estcpu * (ucount - ncpus) / ncpus;
915                 }
916
917                 if (usched_dfly_debug == lp->lwp_proc->p_pid) {
918                         kprintf("pid %d lwp %p estcpu %3d %3d cp %d/%d",
919                                 lp->lwp_proc->p_pid, lp,
920                                 estcpu, lp->lwp_estcpu,
921                                 lp->lwp_cpticks, ttlticks);
922                 }
923
924                 /*
925                  * Adjust lp->lwp_esetcpu.  The decay factor determines how
926                  * quickly lwp_estcpu collapses to its realtime calculation.
927                  * A slower collapse gives us a more accurate number over
928                  * the long term but can create problems with bursty threads
929                  * or threads which become cpu hogs.
930                  *
931                  * To solve this problem, newly started lwps and lwps which
932                  * are restarting after having been asleep for a while are
933                  * given a much, much faster decay in order to quickly
934                  * detect whether they become cpu-bound.
935                  *
936                  * NOTE: p_nice is accounted for in dfly_resetpriority(),
937                  *       and not here, but we must still ensure that a
938                  *       cpu-bound nice -20 process does not completely
939                  *       override a cpu-bound nice +20 process.
940                  *
941                  * NOTE: We must use ESTCPULIM() here to deal with any
942                  *       overshoot.
943                  */
944                 decay_factor = usched_dfly_decay;
945                 if (decay_factor < 1)
946                         decay_factor = 1;
947                 if (decay_factor > 1024)
948                         decay_factor = 1024;
949
950                 if (lp->lwp_estfast < usched_dfly_decay) {
951                         ++lp->lwp_estfast;
952                         lp->lwp_estcpu = ESTCPULIM(
953                                 (lp->lwp_estcpu * lp->lwp_estfast + estcpu) /
954                                 (lp->lwp_estfast + 1));
955                 } else {
956                         lp->lwp_estcpu = ESTCPULIM(
957                                 (lp->lwp_estcpu * decay_factor + estcpu) /
958                                 (decay_factor + 1));
959                 }
960
961                 if (usched_dfly_debug == lp->lwp_proc->p_pid)
962                         kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
963                 dfly_resetpriority(lp);
964                 lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
965                 lp->lwp_cpticks = 0;
966         }
967 }
968
969 /*
970  * Compute the priority of a process when running in user mode.
971  * Arrange to reschedule if the resulting priority is better
972  * than that of the current process.
973  *
974  * This routine may be called with any process.
975  *
976  * This routine is called by fork1() for initial setup with the process
977  * of the run queue, and also may be called normally with the process on or
978  * off the run queue.
979  */
980 static void
981 dfly_resetpriority(struct lwp *lp)
982 {
983         dfly_pcpu_t rdd;
984         int newpriority;
985         u_short newrqtype;
986         int rcpu;
987         int checkpri;
988         int estcpu;
989         int delta_uload;
990
991         crit_enter();
992
993         /*
994          * Lock the scheduler (lp) belongs to.  This can be on a different
995          * cpu.  Handle races.  This loop breaks out with the appropriate
996          * rdd locked.
997          */
998         for (;;) {
999                 rcpu = lp->lwp_qcpu;
1000                 cpu_ccfence();
1001                 rdd = &dfly_pcpu[rcpu];
1002                 spin_lock(&rdd->spin);
1003                 if (rcpu == lp->lwp_qcpu)
1004                         break;
1005                 spin_unlock(&rdd->spin);
1006         }
1007
1008         /*
1009          * Calculate the new priority and queue type
1010          */
1011         newrqtype = lp->lwp_rtprio.type;
1012
1013         switch(newrqtype) {
1014         case RTP_PRIO_REALTIME:
1015         case RTP_PRIO_FIFO:
1016                 newpriority = PRIBASE_REALTIME +
1017                              (lp->lwp_rtprio.prio & PRIMASK);
1018                 break;
1019         case RTP_PRIO_NORMAL:
1020                 /*
1021                  *
1022                  */
1023                 estcpu = lp->lwp_estcpu;
1024
1025                 /*
1026                  * p_nice piece         Adds (0-40) * 2         0-80
1027                  * estcpu               Adds 16384  * 4 / 512   0-128
1028                  */
1029                 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1030                 newpriority += estcpu * PPQ / ESTCPUPPQ;
1031                 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1032                               NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1033                 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1034                 break;
1035         case RTP_PRIO_IDLE:
1036                 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1037                 break;
1038         case RTP_PRIO_THREAD:
1039                 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1040                 break;
1041         default:
1042                 panic("Bad RTP_PRIO %d", newrqtype);
1043                 /* NOT REACHED */
1044         }
1045
1046         /*
1047          * The LWKT scheduler doesn't dive usched structures, give it a hint
1048          * on the relative priority of user threads running in the kernel.
1049          * The LWKT scheduler will always ensure that a user thread running
1050          * in the kernel will get cpu some time, regardless of its upri,
1051          * but can decide not to instantly switch from one kernel or user
1052          * mode user thread to a kernel-mode user thread when it has a less
1053          * desireable user priority.
1054          *
1055          * td_upri has normal sense (higher values are more desireable), so
1056          * negate it.
1057          */
1058         lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1059
1060         /*
1061          * The newpriority incorporates the queue type so do a simple masked
1062          * check to determine if the process has moved to another queue.  If
1063          * it has, and it is currently on a run queue, then move it.
1064          *
1065          * Since uload is ~PPQMASK masked, no modifications are necessary if
1066          * we end up in the same run queue.
1067          */
1068         if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1069                 if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1070                         dfly_remrunqueue_locked(rdd, lp);
1071                         lp->lwp_priority = newpriority;
1072                         lp->lwp_rqtype = newrqtype;
1073                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1074                         dfly_setrunqueue_locked(rdd, lp);
1075                         checkpri = 1;
1076                 } else {
1077                         lp->lwp_priority = newpriority;
1078                         lp->lwp_rqtype = newrqtype;
1079                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1080                         checkpri = 0;
1081                 }
1082         } else {
1083                 /*
1084                  * In the same PPQ, uload cannot change.
1085                  */
1086                 lp->lwp_priority = newpriority;
1087                 checkpri = 1;
1088                 rcpu = -1;
1089         }
1090
1091         /*
1092          * Adjust effective load
1093          */
1094         delta_uload = lp->lwp_estcpu / NQS;     /* 0-511, 0-100% cpu */
1095         delta_uload -= lp->lwp_uload;
1096         lp->lwp_uload += delta_uload;
1097         if (lp->lwp_mpflags & LWP_MP_ULOAD)
1098                 atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1099
1100         /*
1101          * Determine if we need to reschedule the target cpu.  This only
1102          * occurs if the LWP is already on a scheduler queue, which means
1103          * that idle cpu notification has already occured.  At most we
1104          * need only issue a need_user_resched() on the appropriate cpu.
1105          *
1106          * The LWP may be owned by a CPU different from the current one,
1107          * in which case dd->uschedcp may be modified without an MP lock
1108          * or a spinlock held.  The worst that happens is that the code
1109          * below causes a spurious need_user_resched() on the target CPU
1110          * and dd->pri to be wrong for a short period of time, both of
1111          * which are harmless.
1112          *
1113          * If checkpri is 0 we are adjusting the priority of the current
1114          * process, possibly higher (less desireable), so ignore the upri
1115          * check which will fail in that case.
1116          */
1117         if (rcpu >= 0) {
1118                 if ((dfly_rdyprocmask & CPUMASK(rcpu)) &&
1119                     (checkpri == 0 ||
1120                      (rdd->upri & ~PRIMASK) >
1121                      (lp->lwp_priority & ~PRIMASK))) {
1122 #ifdef SMP
1123                         if (rcpu == mycpu->gd_cpuid) {
1124                                 spin_unlock(&rdd->spin);
1125                                 need_user_resched();
1126                         } else {
1127                                 atomic_clear_cpumask(&dfly_rdyprocmask,
1128                                                      CPUMASK(rcpu));
1129                                 spin_unlock(&rdd->spin);
1130                                 lwkt_send_ipiq(globaldata_find(rcpu),
1131                                                dfly_need_user_resched_remote,
1132                                                NULL);
1133                         }
1134 #else
1135                         spin_unlock(&rdd->spin);
1136                         need_user_resched();
1137 #endif
1138                 } else {
1139                         spin_unlock(&rdd->spin);
1140                 }
1141         } else {
1142                 spin_unlock(&rdd->spin);
1143         }
1144         crit_exit();
1145 }
1146
1147 static
1148 void
1149 dfly_yield(struct lwp *lp)
1150 {
1151 #if 0
1152         /* FUTURE (or something similar) */
1153         switch(lp->lwp_rqtype) {
1154         case RTP_PRIO_NORMAL:
1155                 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
1156                 break;
1157         default:
1158                 break;
1159         }
1160 #endif
1161         need_user_resched();
1162 }
1163
1164 /*
1165  * Called from fork1() when a new child process is being created.
1166  *
1167  * Give the child process an initial estcpu that is more batch then
1168  * its parent and dock the parent for the fork (but do not
1169  * reschedule the parent).
1170  *
1171  * fast
1172  *
1173  * XXX lwp should be "spawning" instead of "forking"
1174  */
1175 static void
1176 dfly_forking(struct lwp *plp, struct lwp *lp)
1177 {
1178         /*
1179          * Put the child 4 queue slots (out of 32) higher than the parent
1180          * (less desireable than the parent).
1181          */
1182         lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1183         lp->lwp_forked = 1;
1184         lp->lwp_estfast = 0;
1185
1186         /*
1187          * Dock the parent a cost for the fork, protecting us from fork
1188          * bombs.  If the parent is forking quickly make the child more
1189          * batchy.
1190          */
1191         plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1192 }
1193
1194 /*
1195  * Called when a lwp is being removed from this scheduler, typically
1196  * during lwp_exit().  We have to clean out any ULOAD accounting before
1197  * we can let the lp go.  The dd->spin lock is not needed for uload
1198  * updates.
1199  *
1200  * Scheduler dequeueing has already occurred, no further action in that
1201  * regard is needed.
1202  */
1203 static void
1204 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1205 {
1206         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1207
1208         if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1209                 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1210                 atomic_add_int(&dd->uload, -lp->lwp_uload);
1211                 atomic_add_int(&dd->ucount, -1);
1212                 atomic_add_int(&dfly_ucount, -1);
1213         }
1214 }
1215
1216 /*
1217  * This function cannot block in any way, but spinlocks are ok.
1218  *
1219  * Update the uload based on the state of the thread (whether it is going
1220  * to sleep or running again).  The uload is meant to be a longer-term
1221  * load and not an instantanious load.
1222  */
1223 static void
1224 dfly_uload_update(struct lwp *lp)
1225 {
1226         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1227
1228         if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1229                 if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1230                         spin_lock(&dd->spin);
1231                         if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1232                                 atomic_set_int(&lp->lwp_mpflags,
1233                                                LWP_MP_ULOAD);
1234                                 atomic_add_int(&dd->uload, lp->lwp_uload);
1235                                 atomic_add_int(&dd->ucount, 1);
1236                                 atomic_add_int(&dfly_ucount, 1);
1237                         }
1238                         spin_unlock(&dd->spin);
1239                 }
1240         } else if (lp->lwp_slptime > 0) {
1241                 if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1242                         spin_lock(&dd->spin);
1243                         if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1244                                 atomic_clear_int(&lp->lwp_mpflags,
1245                                                  LWP_MP_ULOAD);
1246                                 atomic_add_int(&dd->uload, -lp->lwp_uload);
1247                                 atomic_add_int(&dd->ucount, -1);
1248                                 atomic_add_int(&dfly_ucount, -1);
1249                         }
1250                         spin_unlock(&dd->spin);
1251                 }
1252         }
1253 }
1254
1255 /*
1256  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1257  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1258  * has a better or equal priority then the process that would otherwise be
1259  * chosen, NULL is returned.
1260  *
1261  * Until we fix the RUNQ code the chklp test has to be strict or we may
1262  * bounce between processes trying to acquire the current process designation.
1263  *
1264  * Must be called with rdd->spin locked.  The spinlock is left intact through
1265  * the entire routine.  dd->spin does not have to be locked.
1266  *
1267  * If worst is non-zero this function finds the worst thread instead of the
1268  * best thread (used by the schedulerclock-based rover).
1269  */
1270 static
1271 struct lwp *
1272 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1273                        struct lwp *chklp, int worst)
1274 {
1275         struct lwp *lp;
1276         struct rq *q;
1277         u_int32_t *which, *which2;
1278         u_int32_t pri;
1279         u_int32_t rtqbits;
1280         u_int32_t tsqbits;
1281         u_int32_t idqbits;
1282
1283         rtqbits = rdd->rtqueuebits;
1284         tsqbits = rdd->queuebits;
1285         idqbits = rdd->idqueuebits;
1286
1287         if (worst) {
1288                 if (idqbits) {
1289                         pri = bsrl(idqbits);
1290                         q = &rdd->idqueues[pri];
1291                         which = &rdd->idqueuebits;
1292                         which2 = &idqbits;
1293                 } else if (tsqbits) {
1294                         pri = bsrl(tsqbits);
1295                         q = &rdd->queues[pri];
1296                         which = &rdd->queuebits;
1297                         which2 = &tsqbits;
1298                 } else if (rtqbits) {
1299                         pri = bsrl(rtqbits);
1300                         q = &rdd->rtqueues[pri];
1301                         which = &rdd->rtqueuebits;
1302                         which2 = &rtqbits;
1303                 } else {
1304                         return (NULL);
1305                 }
1306                 lp = TAILQ_LAST(q, rq);
1307         } else {
1308                 if (rtqbits) {
1309                         pri = bsfl(rtqbits);
1310                         q = &rdd->rtqueues[pri];
1311                         which = &rdd->rtqueuebits;
1312                         which2 = &rtqbits;
1313                 } else if (tsqbits) {
1314                         pri = bsfl(tsqbits);
1315                         q = &rdd->queues[pri];
1316                         which = &rdd->queuebits;
1317                         which2 = &tsqbits;
1318                 } else if (idqbits) {
1319                         pri = bsfl(idqbits);
1320                         q = &rdd->idqueues[pri];
1321                         which = &rdd->idqueuebits;
1322                         which2 = &idqbits;
1323                 } else {
1324                         return (NULL);
1325                 }
1326                 lp = TAILQ_FIRST(q);
1327         }
1328         KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1329
1330         /*
1331          * If the passed lwp <chklp> is reasonably close to the selected
1332          * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1333          *
1334          * Note that we must error on the side of <chklp> to avoid bouncing
1335          * between threads in the acquire code.
1336          */
1337         if (chklp) {
1338                 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1339                         return(NULL);
1340         }
1341
1342         KTR_COND_LOG(usched_chooseproc,
1343             lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1344             lp->lwp_proc->p_pid,
1345             lp->lwp_thread->td_gd->gd_cpuid,
1346             mycpu->gd_cpuid);
1347
1348         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1349         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1350         TAILQ_REMOVE(q, lp, lwp_procq);
1351         --rdd->runqcount;
1352         if (TAILQ_EMPTY(q))
1353                 *which &= ~(1 << pri);
1354
1355         /*
1356          * If we are choosing a process from rdd with the intent to
1357          * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1358          * is still held.
1359          */
1360         if (rdd != dd) {
1361                 if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1362                         atomic_add_int(&rdd->uload, -lp->lwp_uload);
1363                         atomic_add_int(&rdd->ucount, -1);
1364                         atomic_add_int(&dfly_ucount, -1);
1365                 }
1366                 lp->lwp_qcpu = dd->cpuid;
1367                 atomic_add_int(&dd->uload, lp->lwp_uload);
1368                 atomic_add_int(&dd->ucount, 1);
1369                 atomic_add_int(&dfly_ucount, 1);
1370                 atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1371         }
1372         return lp;
1373 }
1374
1375 #ifdef SMP
1376
1377 /*
1378  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1379  *
1380  * Choose a cpu node to schedule lp on, hopefully nearby its current
1381  * node.
1382  *
1383  * We give the current node a modest advantage for obvious reasons.
1384  *
1385  * We also give the node the thread was woken up FROM a slight advantage
1386  * in order to try to schedule paired threads which synchronize/block waiting
1387  * for each other fairly close to each other.  Similarly in a network setting
1388  * this feature will also attempt to place a user process near the kernel
1389  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1390  * algorithm as it heuristically groups synchronizing processes for locality
1391  * of reference in multi-socket systems.
1392  *
1393  * We check against running processes and give a big advantage if there
1394  * are none running.
1395  *
1396  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1397  *
1398  * When the topology is known choose a cpu whos group has, in aggregate,
1399  * has the lowest weighted load.
1400  */
1401 static
1402 dfly_pcpu_t
1403 dfly_choose_best_queue(struct lwp *lp)
1404 {
1405         cpumask_t wakemask;
1406         cpumask_t mask;
1407         cpu_node_t *cpup;
1408         cpu_node_t *cpun;
1409         cpu_node_t *cpub;
1410         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1411         dfly_pcpu_t rdd;
1412         int wakecpu;
1413         int cpuid;
1414         int n;
1415         int count;
1416         int load;
1417         int lowest_load;
1418
1419         /*
1420          * When the topology is unknown choose a random cpu that is hopefully
1421          * idle.
1422          */
1423         if (dd->cpunode == NULL)
1424                 return (dfly_choose_queue_simple(dd, lp));
1425
1426         /*
1427          * Pairing mask
1428          */
1429         if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1430                 wakemask = dfly_pcpu[wakecpu].cpumask;
1431         else
1432                 wakemask = 0;
1433
1434         /*
1435          * When the topology is known choose a cpu whos group has, in
1436          * aggregate, has the lowest weighted load.
1437          */
1438         cpup = root_cpu_node;
1439         rdd = dd;
1440
1441         while (cpup) {
1442                 /*
1443                  * Degenerate case super-root
1444                  */
1445                 if (cpup->child_node && cpup->child_no == 1) {
1446                         cpup = cpup->child_node;
1447                         continue;
1448                 }
1449
1450                 /*
1451                  * Terminal cpunode
1452                  */
1453                 if (cpup->child_node == NULL) {
1454                         rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1455                         break;
1456                 }
1457
1458                 cpub = NULL;
1459                 lowest_load = 0x7FFFFFFF;
1460
1461                 for (n = 0; n < cpup->child_no; ++n) {
1462                         /*
1463                          * Accumulate load information for all cpus
1464                          * which are members of this node.
1465                          */
1466                         cpun = &cpup->child_node[n];
1467                         mask = cpun->members & usched_global_cpumask &
1468                                smp_active_mask & lp->lwp_cpumask;
1469                         if (mask == 0)
1470                                 continue;
1471
1472                         count = 0;
1473                         load = 0;
1474
1475                         while (mask) {
1476                                 cpuid = BSFCPUMASK(mask);
1477                                 rdd = &dfly_pcpu[cpuid];
1478                                 load += rdd->uload;
1479                                 load += rdd->ucount * usched_dfly_weight3;
1480
1481                                 if (rdd->uschedcp == NULL &&
1482                                     rdd->runqcount == 0) {
1483                                         load -= usched_dfly_weight4;
1484                                 } else if (rdd->upri > lp->lwp_priority + PPQ) {
1485                                         load -= usched_dfly_weight4 / 2;
1486                                 }
1487                                 mask &= ~CPUMASK(cpuid);
1488                                 ++count;
1489                         }
1490
1491                         /*
1492                          * Compensate if the lp is already accounted for in
1493                          * the aggregate uload for this mask set.  We want
1494                          * to calculate the loads as if lp were not present,
1495                          * otherwise the calculation is bogus.
1496                          */
1497                         if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1498                             (dd->cpumask & cpun->members)) {
1499                                 load -= lp->lwp_uload;
1500                                 load -= usched_dfly_weight3;
1501                         }
1502
1503                         load /= count;
1504
1505                         /*
1506                          * Advantage the cpu group (lp) is already on.
1507                          */
1508                         if (cpun->members & dd->cpumask)
1509                                 load -= usched_dfly_weight1;
1510
1511                         /*
1512                          * Advantage the cpu group we want to pair (lp) to,
1513                          * but don't let it go to the exact same cpu as
1514                          * the wakecpu target.
1515                          *
1516                          * We do this by checking whether cpun is a
1517                          * terminal node or not.  All cpun's at the same
1518                          * level will either all be terminal or all not
1519                          * terminal.
1520                          *
1521                          * If it is and we match we disadvantage the load.
1522                          * If it is and we don't match we advantage the load.
1523                          *
1524                          * Also note that we are effectively disadvantaging
1525                          * all-but-one by the same amount, so it won't effect
1526                          * the weight1 factor for the all-but-one nodes.
1527                          */
1528                         if (cpun->members & wakemask) {
1529                                 if (cpun->child_node != NULL) {
1530                                         /* advantage */
1531                                         load -= usched_dfly_weight2;
1532                                 } else {
1533                                         if (usched_dfly_features & 0x10)
1534                                                 load += usched_dfly_weight2;
1535                                         else
1536                                                 load -= usched_dfly_weight2;
1537                                 }
1538                         }
1539
1540                         /*
1541                          * Calculate the best load
1542                          */
1543                         if (cpub == NULL || lowest_load > load ||
1544                             (lowest_load == load &&
1545                              (cpun->members & dd->cpumask))
1546                         ) {
1547                                 lowest_load = load;
1548                                 cpub = cpun;
1549                         }
1550                 }
1551                 cpup = cpub;
1552         }
1553         if (usched_dfly_chooser)
1554                 kprintf("lp %02d->%02d %s\n",
1555                         lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1556         return (rdd);
1557 }
1558
1559 /*
1560  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1561  *
1562  * Choose the worst queue close to dd's cpu node with a non-empty runq
1563  * that is NOT dd.  Also require that the moving of the highest-load thread
1564  * from rdd to dd does not cause the uload's to cross each other.
1565  *
1566  * This is used by the thread chooser when the current cpu's queues are
1567  * empty to steal a thread from another cpu's queue.  We want to offload
1568  * the most heavily-loaded queue.
1569  */
1570 static
1571 dfly_pcpu_t
1572 dfly_choose_worst_queue(dfly_pcpu_t dd)
1573 {
1574         cpumask_t mask;
1575         cpu_node_t *cpup;
1576         cpu_node_t *cpun;
1577         cpu_node_t *cpub;
1578         dfly_pcpu_t rdd;
1579         int cpuid;
1580         int n;
1581         int count;
1582         int load;
1583 #if 0
1584         int pri;
1585         int hpri;
1586 #endif
1587         int highest_load;
1588
1589         /*
1590          * When the topology is unknown choose a random cpu that is hopefully
1591          * idle.
1592          */
1593         if (dd->cpunode == NULL) {
1594                 return (NULL);
1595         }
1596
1597         /*
1598          * When the topology is known choose a cpu whos group has, in
1599          * aggregate, has the lowest weighted load.
1600          */
1601         cpup = root_cpu_node;
1602         rdd = dd;
1603         while (cpup) {
1604                 /*
1605                  * Degenerate case super-root
1606                  */
1607                 if (cpup->child_node && cpup->child_no == 1) {
1608                         cpup = cpup->child_node;
1609                         continue;
1610                 }
1611
1612                 /*
1613                  * Terminal cpunode
1614                  */
1615                 if (cpup->child_node == NULL) {
1616                         rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1617                         break;
1618                 }
1619
1620                 cpub = NULL;
1621                 highest_load = 0;
1622
1623                 for (n = 0; n < cpup->child_no; ++n) {
1624                         /*
1625                          * Accumulate load information for all cpus
1626                          * which are members of this node.
1627                          */
1628                         cpun = &cpup->child_node[n];
1629                         mask = cpun->members & usched_global_cpumask &
1630                                smp_active_mask;
1631                         if (mask == 0)
1632                                 continue;
1633                         count = 0;
1634                         load = 0;
1635
1636                         while (mask) {
1637                                 cpuid = BSFCPUMASK(mask);
1638                                 rdd = &dfly_pcpu[cpuid];
1639                                 load += rdd->uload;
1640                                 load += rdd->ucount * usched_dfly_weight3;
1641                                 if (rdd->uschedcp == NULL &&
1642                                     rdd->runqcount == 0 &&
1643                                     globaldata_find(cpuid)->gd_tdrunqcount == 0
1644                                 ) {
1645                                         load -= usched_dfly_weight4;
1646                                 } else if (rdd->upri > dd->upri + PPQ) {
1647                                         load -= usched_dfly_weight4 / 2;
1648                                 }
1649                                 mask &= ~CPUMASK(cpuid);
1650                                 ++count;
1651                         }
1652                         load /= count;
1653
1654                         /*
1655                          * Prefer candidates which are somewhat closer to
1656                          * our cpu.
1657                          */
1658                         if (dd->cpumask & cpun->members)
1659                                 load += usched_dfly_weight1;
1660
1661                         /*
1662                          * The best candidate is the one with the worst
1663                          * (highest) load.
1664                          */
1665                         if (cpub == NULL || highest_load < load) {
1666                                 highest_load = load;
1667                                 cpub = cpun;
1668                         }
1669                 }
1670                 cpup = cpub;
1671         }
1672
1673         /*
1674          * We never return our own node (dd), and only return a remote
1675          * node if it's load is significantly worse than ours (i.e. where
1676          * stealing a thread would be considered reasonable).
1677          *
1678          * This also helps us avoid breaking paired threads apart which
1679          * can have disastrous effects on performance.
1680          */
1681         if (rdd == dd)
1682                 return(NULL);
1683
1684 #if 0
1685         hpri = 0;
1686         if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
1687                 hpri = pri;
1688         if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
1689                 hpri = pri;
1690         if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
1691                 hpri = pri;
1692         hpri *= PPQ;
1693         if (rdd->uload - hpri < dd->uload + hpri)
1694                 return(NULL);
1695 #endif
1696         return (rdd);
1697 }
1698
1699 static
1700 dfly_pcpu_t
1701 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
1702 {
1703         dfly_pcpu_t rdd;
1704         cpumask_t tmpmask;
1705         cpumask_t mask;
1706         int cpuid;
1707
1708         /*
1709          * Fallback to the original heuristic, select random cpu,
1710          * first checking cpus not currently running a user thread.
1711          */
1712         ++dfly_scancpu;
1713         cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1714         mask = ~dfly_curprocmask & dfly_rdyprocmask & lp->lwp_cpumask &
1715                smp_active_mask & usched_global_cpumask;
1716
1717         while (mask) {
1718                 tmpmask = ~(CPUMASK(cpuid) - 1);
1719                 if (mask & tmpmask)
1720                         cpuid = BSFCPUMASK(mask & tmpmask);
1721                 else
1722                         cpuid = BSFCPUMASK(mask);
1723                 rdd = &dfly_pcpu[cpuid];
1724
1725                 if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
1726                         goto found;
1727                 mask &= ~CPUMASK(cpuid);
1728         }
1729
1730         /*
1731          * Then cpus which might have a currently running lp
1732          */
1733         cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1734         mask = dfly_curprocmask & dfly_rdyprocmask &
1735                lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
1736
1737         while (mask) {
1738                 tmpmask = ~(CPUMASK(cpuid) - 1);
1739                 if (mask & tmpmask)
1740                         cpuid = BSFCPUMASK(mask & tmpmask);
1741                 else
1742                         cpuid = BSFCPUMASK(mask);
1743                 rdd = &dfly_pcpu[cpuid];
1744
1745                 if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
1746                         goto found;
1747                 mask &= ~CPUMASK(cpuid);
1748         }
1749
1750         /*
1751          * If we cannot find a suitable cpu we reload from dfly_scancpu
1752          * and round-robin.  Other cpus will pickup as they release their
1753          * current lwps or become ready.
1754          *
1755          * Avoid a degenerate system lockup case if usched_global_cpumask
1756          * is set to 0 or otherwise does not cover lwp_cpumask.
1757          *
1758          * We only kick the target helper thread in this case, we do not
1759          * set the user resched flag because
1760          */
1761         cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1762         if ((CPUMASK(cpuid) & usched_global_cpumask) == 0)
1763                 cpuid = 0;
1764         rdd = &dfly_pcpu[cpuid];
1765 found:
1766         return (rdd);
1767 }
1768
1769 static
1770 void
1771 dfly_need_user_resched_remote(void *dummy)
1772 {
1773         globaldata_t gd = mycpu;
1774         dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
1775
1776         need_user_resched();
1777
1778         /* Call wakeup_mycpu to avoid sending IPIs to other CPUs */
1779         wakeup_mycpu(&dd->helper_thread);
1780 }
1781
1782 #endif
1783
1784 /*
1785  * dfly_remrunqueue_locked() removes a given process from the run queue
1786  * that it is on, clearing the queue busy bit if it becomes empty.
1787  *
1788  * Note that user process scheduler is different from the LWKT schedule.
1789  * The user process scheduler only manages user processes but it uses LWKT
1790  * underneath, and a user process operating in the kernel will often be
1791  * 'released' from our management.
1792  *
1793  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
1794  * to sleep or the lwp is moved to a different runq.
1795  */
1796 static void
1797 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1798 {
1799         struct rq *q;
1800         u_int32_t *which;
1801         u_int8_t pri;
1802
1803         KKASSERT(rdd->runqcount >= 0);
1804
1805         pri = lp->lwp_rqindex;
1806
1807         switch(lp->lwp_rqtype) {
1808         case RTP_PRIO_NORMAL:
1809                 q = &rdd->queues[pri];
1810                 which = &rdd->queuebits;
1811                 break;
1812         case RTP_PRIO_REALTIME:
1813         case RTP_PRIO_FIFO:
1814                 q = &rdd->rtqueues[pri];
1815                 which = &rdd->rtqueuebits;
1816                 break;
1817         case RTP_PRIO_IDLE:
1818                 q = &rdd->idqueues[pri];
1819                 which = &rdd->idqueuebits;
1820                 break;
1821         default:
1822                 panic("remrunqueue: invalid rtprio type");
1823                 /* NOT REACHED */
1824         }
1825         KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1826         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1827         TAILQ_REMOVE(q, lp, lwp_procq);
1828         --rdd->runqcount;
1829         if (TAILQ_EMPTY(q)) {
1830                 KASSERT((*which & (1 << pri)) != 0,
1831                         ("remrunqueue: remove from empty queue"));
1832                 *which &= ~(1 << pri);
1833         }
1834 }
1835
1836 /*
1837  * dfly_setrunqueue_locked()
1838  *
1839  * Add a process whos rqtype and rqindex had previously been calculated
1840  * onto the appropriate run queue.   Determine if the addition requires
1841  * a reschedule on a cpu and return the cpuid or -1.
1842  *
1843  * NOTE:          Lower priorities are better priorities.
1844  *
1845  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
1846  *                sum of the rough lwp_priority for all running and runnable
1847  *                processes.  Lower priority processes (higher lwp_priority
1848  *                values) actually DO count as more load, not less, because
1849  *                these are the programs which require the most care with
1850  *                regards to cpu selection.
1851  */
1852 static void
1853 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1854 {
1855         struct rq *q;
1856         u_int32_t *which;
1857         int pri;
1858
1859         KKASSERT(lp->lwp_qcpu == rdd->cpuid);
1860
1861         if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1862                 atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1863                 atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, lp->lwp_uload);
1864                 atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].ucount, 1);
1865                 atomic_add_int(&dfly_ucount, 1);
1866         }
1867
1868         pri = lp->lwp_rqindex;
1869
1870         switch(lp->lwp_rqtype) {
1871         case RTP_PRIO_NORMAL:
1872                 q = &rdd->queues[pri];
1873                 which = &rdd->queuebits;
1874                 break;
1875         case RTP_PRIO_REALTIME:
1876         case RTP_PRIO_FIFO:
1877                 q = &rdd->rtqueues[pri];
1878                 which = &rdd->rtqueuebits;
1879                 break;
1880         case RTP_PRIO_IDLE:
1881                 q = &rdd->idqueues[pri];
1882                 which = &rdd->idqueuebits;
1883                 break;
1884         default:
1885                 panic("remrunqueue: invalid rtprio type");
1886                 /* NOT REACHED */
1887         }
1888
1889         /*
1890          * Add to the correct queue and set the appropriate bit.  If no
1891          * lower priority (i.e. better) processes are in the queue then
1892          * we want a reschedule, calculate the best cpu for the job.
1893          *
1894          * Always run reschedules on the LWPs original cpu.
1895          */
1896         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1897         atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1898         ++rdd->runqcount;
1899         TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1900         *which |= 1 << pri;
1901 }
1902
1903 #ifdef SMP
1904
1905 /*
1906  * For SMP systems a user scheduler helper thread is created for each
1907  * cpu and is used to allow one cpu to wakeup another for the purposes of
1908  * scheduling userland threads from setrunqueue().
1909  *
1910  * UP systems do not need the helper since there is only one cpu.
1911  *
1912  * We can't use the idle thread for this because we might block.
1913  * Additionally, doing things this way allows us to HLT idle cpus
1914  * on MP systems.
1915  */
1916 static void
1917 dfly_helper_thread(void *dummy)
1918 {
1919     globaldata_t gd;
1920     dfly_pcpu_t dd;
1921     dfly_pcpu_t rdd;
1922     struct lwp *nlp;
1923     cpumask_t mask;
1924     int cpuid;
1925
1926     gd = mycpu;
1927     cpuid = gd->gd_cpuid;       /* doesn't change */
1928     mask = gd->gd_cpumask;      /* doesn't change */
1929     dd = &dfly_pcpu[cpuid];
1930
1931     /*
1932      * Since we only want to be woken up only when no user processes
1933      * are scheduled on a cpu, run at an ultra low priority.
1934      */
1935     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1936
1937     tsleep(&dd->helper_thread, 0, "schslp", 0);
1938
1939     for (;;) {
1940         /*
1941          * We use the LWKT deschedule-interlock trick to avoid racing
1942          * dfly_rdyprocmask.  This means we cannot block through to the
1943          * manual lwkt_switch() call we make below.
1944          */
1945         crit_enter_gd(gd);
1946         tsleep_interlock(&dd->helper_thread, 0);
1947
1948         spin_lock(&dd->spin);
1949
1950         atomic_set_cpumask(&dfly_rdyprocmask, mask);
1951         clear_user_resched();   /* This satisfied the reschedule request */
1952         dd->rrcount = 0;        /* Reset the round-robin counter */
1953
1954         if (dd->runqcount || dd->uschedcp != NULL) {
1955                 /*
1956                  * Threads are available.  A thread may or may not be
1957                  * currently scheduled.  Get the best thread already queued
1958                  * to this cpu.
1959                  */
1960                 nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
1961                 if (nlp) {
1962                         atomic_set_cpumask(&dfly_curprocmask, mask);
1963                         dd->upri = nlp->lwp_priority;
1964                         dd->uschedcp = nlp;
1965                         dd->rrcount = 0;        /* reset round robin */
1966                         spin_unlock(&dd->spin);
1967                         lwkt_acquire(nlp->lwp_thread);
1968                         lwkt_schedule(nlp->lwp_thread);
1969                 } else {
1970                         /*
1971                          * This situation should not occur because we had
1972                          * at least one thread available.
1973                          */
1974                         spin_unlock(&dd->spin);
1975                 }
1976         } else if (usched_dfly_features & 0x01) {
1977                 /*
1978                  * This cpu is devoid of runnable threads, steal a thread
1979                  * from another cpu.  Since we're stealing, might as well
1980                  * load balance at the same time.
1981                  *
1982                  * We choose the highest-loaded thread from the worst queue.
1983                  *
1984                  * NOTE! This function only returns a non-NULL rdd when
1985                  *       another cpu's queue is obviously overloaded.  We
1986                  *       do not want to perform the type of rebalancing
1987                  *       the schedclock does here because it would result
1988                  *       in insane process pulling when 'steady' state is
1989                  *       partially unbalanced (e.g. 6 runnables and only
1990                  *       4 cores).
1991                  */
1992                 rdd = dfly_choose_worst_queue(dd);
1993                 if (rdd && spin_trylock(&rdd->spin)) {
1994                         nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
1995                         spin_unlock(&rdd->spin);
1996                 } else {
1997                         nlp = NULL;
1998                 }
1999                 if (nlp) {
2000                         atomic_set_cpumask(&dfly_curprocmask, mask);
2001                         dd->upri = nlp->lwp_priority;
2002                         dd->uschedcp = nlp;
2003                         dd->rrcount = 0;        /* reset round robin */
2004                         spin_unlock(&dd->spin);
2005                         lwkt_acquire(nlp->lwp_thread);
2006                         lwkt_schedule(nlp->lwp_thread);
2007                 } else {
2008                         /*
2009                          * Leave the thread on our run queue.  Another
2010                          * scheduler will try to pull it later.
2011                          */
2012                         spin_unlock(&dd->spin);
2013                 }
2014         } else {
2015                 /*
2016                  * devoid of runnable threads and not allowed to steal
2017                  * any.
2018                  */
2019                 spin_unlock(&dd->spin);
2020         }
2021
2022         /*
2023          * We're descheduled unless someone scheduled us.  Switch away.
2024          * Exiting the critical section will cause splz() to be called
2025          * for us if interrupts and such are pending.
2026          */
2027         crit_exit_gd(gd);
2028         tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
2029     }
2030 }
2031
2032 #if 0
2033 static int
2034 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2035 {
2036         int error, new_val;
2037
2038         new_val = usched_dfly_stick_to_level;
2039
2040         error = sysctl_handle_int(oidp, &new_val, 0, req);
2041         if (error != 0 || req->newptr == NULL)
2042                 return (error);
2043         if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2044                 return (EINVAL);
2045         usched_dfly_stick_to_level = new_val;
2046         return (0);
2047 }
2048 #endif
2049
2050 /*
2051  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
2052  * been cleared by rqinit() and we should not mess with it further.
2053  */
2054 static void
2055 dfly_helper_thread_cpu_init(void)
2056 {
2057         int i;
2058         int j;
2059         int cpuid;
2060         int smt_not_supported = 0;
2061         int cache_coherent_not_supported = 0;
2062
2063         if (bootverbose)
2064                 kprintf("Start scheduler helpers on cpus:\n");
2065
2066         sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2067         usched_dfly_sysctl_tree =
2068                 SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2069                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2070                                 "usched_dfly", CTLFLAG_RD, 0, "");
2071
2072         for (i = 0; i < ncpus; ++i) {
2073                 dfly_pcpu_t dd = &dfly_pcpu[i];
2074                 cpumask_t mask = CPUMASK(i);
2075
2076                 if ((mask & smp_active_mask) == 0)
2077                     continue;
2078
2079                 spin_init(&dd->spin);
2080                 dd->cpunode = get_cpu_node_by_cpuid(i);
2081                 dd->cpuid = i;
2082                 dd->cpumask = CPUMASK(i);
2083                 for (j = 0; j < NQS; j++) {
2084                         TAILQ_INIT(&dd->queues[j]);
2085                         TAILQ_INIT(&dd->rtqueues[j]);
2086                         TAILQ_INIT(&dd->idqueues[j]);
2087                 }
2088                 atomic_clear_cpumask(&dfly_curprocmask, 1);
2089
2090                 if (dd->cpunode == NULL) {
2091                         smt_not_supported = 1;
2092                         cache_coherent_not_supported = 1;
2093                         if (bootverbose)
2094                                 kprintf ("\tcpu%d - WARNING: No CPU NODE "
2095                                          "found for cpu\n", i);
2096                 } else {
2097                         switch (dd->cpunode->type) {
2098                         case THREAD_LEVEL:
2099                                 if (bootverbose)
2100                                         kprintf ("\tcpu%d - HyperThreading "
2101                                                  "available. Core siblings: ",
2102                                                  i);
2103                                 break;
2104                         case CORE_LEVEL:
2105                                 smt_not_supported = 1;
2106
2107                                 if (bootverbose)
2108                                         kprintf ("\tcpu%d - No HT available, "
2109                                                  "multi-core/physical "
2110                                                  "cpu. Physical siblings: ",
2111                                                  i);
2112                                 break;
2113                         case CHIP_LEVEL:
2114                                 smt_not_supported = 1;
2115
2116                                 if (bootverbose)
2117                                         kprintf ("\tcpu%d - No HT available, "
2118                                                  "single-core/physical cpu. "
2119                                                  "Package Siblings: ",
2120                                                  i);
2121                                 break;
2122                         default:
2123                                 /* Let's go for safe defaults here */
2124                                 smt_not_supported = 1;
2125                                 cache_coherent_not_supported = 1;
2126                                 if (bootverbose)
2127                                         kprintf ("\tcpu%d - Unknown cpunode->"
2128                                                  "type=%u. Siblings: ",
2129                                                  i,
2130                                                  (u_int)dd->cpunode->type);
2131                                 break;
2132                         }
2133
2134                         if (bootverbose) {
2135                                 if (dd->cpunode->parent_node != NULL) {
2136                                         CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
2137                                                 kprintf("cpu%d ", cpuid);
2138                                         kprintf("\n");
2139                                 } else {
2140                                         kprintf(" no siblings\n");
2141                                 }
2142                         }
2143                 }
2144
2145                 lwkt_create(dfly_helper_thread, NULL, NULL, &dd->helper_thread,
2146                             0, i, "usched %d", i);
2147
2148                 /*
2149                  * Allow user scheduling on the target cpu.  cpu #0 has already
2150                  * been enabled in rqinit().
2151                  */
2152                 if (i)
2153                     atomic_clear_cpumask(&dfly_curprocmask, mask);
2154                 atomic_set_cpumask(&dfly_rdyprocmask, mask);
2155                 dd->upri = PRIBASE_NULL;
2156
2157         }
2158
2159         /* usched_dfly sysctl configurable parameters */
2160
2161         SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2162                        SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2163                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2164                        &usched_dfly_rrinterval, 0, "");
2165         SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2166                        SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2167                        OID_AUTO, "decay", CTLFLAG_RW,
2168                        &usched_dfly_decay, 0, "Extra decay when not running");
2169
2170         /* Add enable/disable option for SMT scheduling if supported */
2171         if (smt_not_supported) {
2172                 usched_dfly_smt = 0;
2173                 SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2174                                   SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2175                                   OID_AUTO, "smt", CTLFLAG_RD,
2176                                   "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2177         } else {
2178                 usched_dfly_smt = 1;
2179                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2180                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2181                                OID_AUTO, "smt", CTLFLAG_RW,
2182                                &usched_dfly_smt, 0, "Enable SMT scheduling");
2183         }
2184
2185         /*
2186          * Add enable/disable option for cache coherent scheduling
2187          * if supported
2188          */
2189         if (cache_coherent_not_supported) {
2190                 usched_dfly_cache_coherent = 0;
2191                 SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2192                                   SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2193                                   OID_AUTO, "cache_coherent", CTLFLAG_RD,
2194                                   "NOT SUPPORTED", 0,
2195                                   "Cache coherence NOT SUPPORTED");
2196         } else {
2197                 usched_dfly_cache_coherent = 1;
2198                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2199                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2200                                OID_AUTO, "cache_coherent", CTLFLAG_RW,
2201                                &usched_dfly_cache_coherent, 0,
2202                                "Enable/Disable cache coherent scheduling");
2203
2204                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2205                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2206                                OID_AUTO, "weight1", CTLFLAG_RW,
2207                                &usched_dfly_weight1, 10,
2208                                "Weight selection for current cpu");
2209
2210                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2211                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2212                                OID_AUTO, "weight2", CTLFLAG_RW,
2213                                &usched_dfly_weight2, 5,
2214                                "Weight selection for wakefrom cpu");
2215
2216                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2217                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2218                                OID_AUTO, "weight3", CTLFLAG_RW,
2219                                &usched_dfly_weight3, 50,
2220                                "Weight selection for num threads on queue");
2221
2222                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2223                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2224                                OID_AUTO, "weight4", CTLFLAG_RW,
2225                                &usched_dfly_weight4, 50,
2226                                "Availability of other idle cpus");
2227
2228                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2229                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2230                                OID_AUTO, "features", CTLFLAG_RW,
2231                                &usched_dfly_features, 15,
2232                                "Allow pulls into empty queues");
2233
2234                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2235                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2236                                OID_AUTO, "swmask", CTLFLAG_RW,
2237                                &usched_dfly_swmask, ~PPQMASK,
2238                                "Queue mask to force thread switch");
2239
2240
2241 #if 0
2242                 SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2243                                 SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2244                                 OID_AUTO, "stick_to_level",
2245                                 CTLTYPE_INT | CTLFLAG_RW,
2246                                 NULL, sizeof usched_dfly_stick_to_level,
2247                                 sysctl_usched_dfly_stick_to_level, "I",
2248                                 "Stick a process to this level. See sysctl"
2249                                 "paremter hw.cpu_topology.level_description");
2250 #endif
2251         }
2252 }
2253 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2254         dfly_helper_thread_cpu_init, NULL)
2255
2256 #else /* No SMP options - just add the configurable parameters to sysctl */
2257
2258 static void
2259 sched_sysctl_tree_init(void)
2260 {
2261         sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2262         usched_dfly_sysctl_tree =
2263                 SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2264                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2265                                 "usched_dfly", CTLFLAG_RD, 0, "");
2266
2267         /* usched_dfly sysctl configurable parameters */
2268         SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2269                        SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2270                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2271                        &usched_dfly_rrinterval, 0, "");
2272         SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2273                        SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2274                        OID_AUTO, "decay", CTLFLAG_RW,
2275                        &usched_dfly_decay, 0, "Extra decay when not running");
2276 }
2277 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2278         sched_sysctl_tree_init, NULL)
2279 #endif