629be2e695b0a7d50f1a086730c0281fc1618ec4
[dragonfly.git] / sys / kern / usched_bsd4.c
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/queue.h>
37 #include <sys/proc.h>
38 #include <sys/rtprio.h>
39 #include <sys/uio.h>
40 #include <sys/sysctl.h>
41 #include <sys/resourcevar.h>
42 #include <sys/spinlock.h>
43 #include <sys/cpu_topology.h>
44 #include <sys/thread2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/mplock2.h>
47
48 #include <sys/ktr.h>
49
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52
53 /*
54  * Priorities.  Note that with 32 run queues per scheduler each queue
55  * represents four priority levels.
56  */
57
58 #define MAXPRI                  128
59 #define PRIMASK                 (MAXPRI - 1)
60 #define PRIBASE_REALTIME        0
61 #define PRIBASE_NORMAL          MAXPRI
62 #define PRIBASE_IDLE            (MAXPRI * 2)
63 #define PRIBASE_THREAD          (MAXPRI * 3)
64 #define PRIBASE_NULL            (MAXPRI * 4)
65
66 #define NQS     32                      /* 32 run queues. */
67 #define PPQ     (MAXPRI / NQS)          /* priorities per queue */
68 #define PPQMASK (PPQ - 1)
69
70 /*
71  * NICEPPQ      - number of nice units per priority queue
72  *
73  * ESTCPUPPQ    - number of estcpu units per priority queue
74  * ESTCPUMAX    - number of estcpu units
75  */
76 #define NICEPPQ         2
77 #define ESTCPUPPQ       512
78 #define ESTCPUMAX       (ESTCPUPPQ * NQS)
79 #define BATCHMAX        (ESTCPUFREQ * 30)
80 #define PRIO_RANGE      (PRIO_MAX - PRIO_MIN + 1)
81
82 #define ESTCPULIM(v)    min((v), ESTCPUMAX)
83
84 TAILQ_HEAD(rq, lwp);
85
86 #define lwp_priority    lwp_usdata.bsd4.priority
87 #define lwp_rqindex     lwp_usdata.bsd4.rqindex
88 #define lwp_estcpu      lwp_usdata.bsd4.estcpu
89 #define lwp_batch       lwp_usdata.bsd4.batch
90 #define lwp_rqtype      lwp_usdata.bsd4.rqtype
91
92 static void bsd4_acquire_curproc(struct lwp *lp);
93 static void bsd4_release_curproc(struct lwp *lp);
94 static void bsd4_select_curproc(globaldata_t gd);
95 static void bsd4_setrunqueue(struct lwp *lp);
96 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
97                                 sysclock_t cpstamp);
98 static void bsd4_recalculate_estcpu(struct lwp *lp);
99 static void bsd4_resetpriority(struct lwp *lp);
100 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
101 static void bsd4_exiting(struct lwp *lp, struct proc *);
102 static void bsd4_uload_update(struct lwp *lp);
103 static void bsd4_yield(struct lwp *lp);
104
105 #ifdef SMP
106 static void bsd4_need_user_resched_remote(void *dummy);
107 static int bsd4_batchy_looser_pri_test(struct lwp* lp);
108 static struct lwp *bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp);
109 static void bsd4_kick_helper(struct lwp *lp);
110 #endif
111 static struct lwp *bsd4_chooseproc_locked(struct lwp *chklp);
112 static void bsd4_remrunqueue_locked(struct lwp *lp);
113 static void bsd4_setrunqueue_locked(struct lwp *lp);
114
115 struct usched usched_bsd4 = {
116         { NULL },
117         "bsd4", "Original DragonFly Scheduler",
118         NULL,                   /* default registration */
119         NULL,                   /* default deregistration */
120         bsd4_acquire_curproc,
121         bsd4_release_curproc,
122         bsd4_setrunqueue,
123         bsd4_schedulerclock,
124         bsd4_recalculate_estcpu,
125         bsd4_resetpriority,
126         bsd4_forking,
127         bsd4_exiting,
128         bsd4_uload_update,
129         NULL,                   /* setcpumask not supported */
130         bsd4_yield
131 };
132
133 struct usched_bsd4_pcpu {
134         struct thread   helper_thread;
135         short           rrcount;
136         short           upri;
137         struct lwp      *uschedcp;
138         struct lwp      *old_uschedcp;
139 #ifdef SMP
140         cpu_node_t      *cpunode;
141 #endif
142 };
143
144 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t;
145
146 /*
147  * We have NQS (32) run queues per scheduling class.  For the normal
148  * class, there are 128 priorities scaled onto these 32 queues.  New
149  * processes are added to the last entry in each queue, and processes
150  * are selected for running by taking them from the head and maintaining
151  * a simple FIFO arrangement.  Realtime and Idle priority processes have
152  * and explicit 0-31 priority which maps directly onto their class queue
153  * index.  When a queue has something in it, the corresponding bit is
154  * set in the queuebits variable, allowing a single read to determine
155  * the state of all 32 queues and then a ffs() to find the first busy
156  * queue.
157  */
158 static struct rq bsd4_queues[NQS];
159 static struct rq bsd4_rtqueues[NQS];
160 static struct rq bsd4_idqueues[NQS];
161 static u_int32_t bsd4_queuebits;
162 static u_int32_t bsd4_rtqueuebits;
163 static u_int32_t bsd4_idqueuebits;
164 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */
165 static cpumask_t bsd4_rdyprocmask;      /* ready to accept a user process */
166 static int       bsd4_runqcount;
167 #ifdef SMP
168 static volatile int bsd4_scancpu;
169 #endif
170 static struct spinlock bsd4_spin;
171 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
172 static struct sysctl_ctx_list usched_bsd4_sysctl_ctx;
173 static struct sysctl_oid *usched_bsd4_sysctl_tree;
174
175 /* Debug info exposed through debug.* sysctl */
176
177 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD,
178            &bsd4_runqcount, 0,
179            "Number of run queues");
180
181 static int usched_bsd4_debug = -1;
182 SYSCTL_INT(_debug, OID_AUTO, bsd4_scdebug, CTLFLAG_RW,
183            &usched_bsd4_debug, 0,
184            "Print debug information for this pid");
185
186 static int usched_bsd4_pid_debug = -1;
187 SYSCTL_INT(_debug, OID_AUTO, bsd4_pid_debug, CTLFLAG_RW,
188            &usched_bsd4_pid_debug, 0,
189            "Print KTR debug information for this pid");
190
191 /* Tunning usched_bsd4 - configurable through kern.usched_bsd4.* */
192 #ifdef SMP
193 static int usched_bsd4_smt = 0;
194 static int usched_bsd4_cache_coherent = 0;
195 static int usched_bsd4_upri_affinity = 16; /* 32 queues - half-way */
196 static int usched_bsd4_queue_checks = 5;
197 static int usched_bsd4_stick_to_level = 0;
198 static long usched_bsd4_kicks;
199 #endif
200 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
201 static int usched_bsd4_decay = 8;
202 static int usched_bsd4_batch_time = 10;
203
204 /* KTR debug printings */
205
206 KTR_INFO_MASTER_EXTERN(usched);
207
208 #if !defined(KTR_USCHED_BSD4)
209 #define KTR_USCHED_BSD4 KTR_ALL
210 #endif
211
212 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_urw, 0,
213     "USCHED_BSD4(bsd4_acquire_curproc in user_reseched_wanted "
214     "after release: pid %d, cpuid %d, curr_cpuid %d)",
215     pid_t pid, int cpuid, int curr);
216 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_before_loop, 0,
217     "USCHED_BSD4(bsd4_acquire_curproc before loop: pid %d, cpuid %d, "
218     "curr_cpuid %d)",
219     pid_t pid, int cpuid, int curr);
220 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_not, 0,
221     "USCHED_BSD4(bsd4_acquire_curproc couldn't acquire after "
222     "bsd4_setrunqueue: pid %d, cpuid %d, curr_lp pid %d, curr_cpuid %d)",
223     pid_t pid, int cpuid, pid_t curr_pid, int curr_cpuid);
224 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_switch, 0,
225     "USCHED_BSD4(bsd4_acquire_curproc after lwkt_switch: pid %d, "
226     "cpuid %d, curr_cpuid %d)",
227     pid_t pid, int cpuid, int curr);
228
229 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_release_curproc, 0,
230     "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
231     "cpuid %d, curr_cpuid %d)",
232     pid_t pid, int cpuid, int curr);
233
234 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_select_curproc, 0,
235     "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
236     "cpuid %d, old_pid %d, old_cpuid %d, curr_cpuid %d)",
237     pid_t pid, int cpuid, pid_t old_pid, int old_cpuid, int curr);
238
239 #ifdef SMP
240 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_false, 0,
241     "USCHED_BSD4(batchy_looser_pri_test false: pid %d, "
242     "cpuid %d, verify_mask %lu)",
243     pid_t pid, int cpuid, cpumask_t mask);
244 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_true, 0,
245     "USCHED_BSD4(batchy_looser_pri_test true: pid %d, "
246     "cpuid %d, verify_mask %lu)",
247     pid_t pid, int cpuid, cpumask_t mask);
248
249 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_smt, 0,
250     "USCHED_BSD4(bsd4_setrunqueue free cpus smt: pid %d, cpuid %d, "
251     "mask %lu, curr_cpuid %d)",
252     pid_t pid, int cpuid, cpumask_t mask, int curr);
253 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_non_smt, 0,
254     "USCHED_BSD4(bsd4_setrunqueue free cpus check non_smt: pid %d, "
255     "cpuid %d, mask %lu, curr_cpuid %d)",
256     pid_t pid, int cpuid, cpumask_t mask, int curr);
257 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_rc, 0,
258     "USCHED_BSD4(bsd4_setrunqueue running cpus check: pid %d, "
259     "cpuid %d, mask %lu, curr_cpuid %d)",
260     pid_t pid, int cpuid, cpumask_t mask, int curr);
261 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found, 0,
262     "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
263     "mask %lu, found_cpuid %d, curr_cpuid %d)",
264     pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
265 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_not_found, 0,
266     "USCHED_BSD4(bsd4_setrunqueue not found cpu: pid %d, cpuid %d, "
267     "try_cpuid %d, curr_cpuid %d)",
268     pid_t pid, int cpuid, int try_cpuid, int curr);
269 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found_best_cpuid, 0,
270     "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
271     "mask %lu, found_cpuid %d, curr_cpuid %d)",
272     pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
273 #endif
274
275 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc, 0,
276     "USCHED_BSD4(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
277     pid_t pid, int old_cpuid, int curr);
278 #ifdef SMP
279 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc, 0,
280     "USCHED_BSD4(chooseproc_cc: pid %d, old_cpuid %d, curr_cpuid %d)",
281     pid_t pid, int old_cpuid, int curr);
282 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_not_good, 0,
283     "USCHED_BSD4(chooseproc_cc not good: pid %d, old_cpumask %lu, "
284     "sibling_mask %lu, curr_cpumask %lu)",
285     pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
286 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_elected, 0,
287     "USCHED_BSD4(chooseproc_cc elected: pid %d, old_cpumask %lu, "
288     "sibling_mask %lu, curr_cpumask: %lu)",
289     pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
290
291 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process, 0,
292     "USCHED_BSD4(sched_thread %d no process scheduled: pid %d, old_cpuid %d)",
293     int id, pid_t pid, int cpuid);
294 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_process, 0,
295     "USCHED_BSD4(sched_thread %d process scheduled: pid %d, old_cpuid %d)",
296     int id, pid_t pid, int cpuid);
297 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process_found, 0,
298     "USCHED_BSD4(sched_thread %d no process found; tmpmask %lu)",
299     int id, cpumask_t tmpmask);
300 #endif
301
302 /*
303  * Initialize the run queues at boot time.
304  */
305 static void
306 bsd4_rqinit(void *dummy)
307 {
308         int i;
309
310         spin_init(&bsd4_spin);
311         for (i = 0; i < NQS; i++) {
312                 TAILQ_INIT(&bsd4_queues[i]);
313                 TAILQ_INIT(&bsd4_rtqueues[i]);
314                 TAILQ_INIT(&bsd4_idqueues[i]);
315         }
316         atomic_clear_cpumask(&bsd4_curprocmask, 1);
317 }
318 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, bsd4_rqinit, NULL)
319
320 /*
321  * BSD4_ACQUIRE_CURPROC
322  *
323  * This function is called when the kernel intends to return to userland.
324  * It is responsible for making the thread the current designated userland
325  * thread for this cpu, blocking if necessary.
326  *
327  * The kernel has already depressed our LWKT priority so we must not switch
328  * until we have either assigned or disposed of the thread.
329  *
330  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
331  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
332  * occur, this function is called only under very controlled circumstances.
333  *
334  * MPSAFE
335  */
336 static void
337 bsd4_acquire_curproc(struct lwp *lp)
338 {
339         globaldata_t gd;
340         bsd4_pcpu_t dd;
341         thread_t td;
342 #if 0
343         struct lwp *olp;
344 #endif
345
346         /*
347          * Make sure we aren't sitting on a tsleep queue.
348          */
349         td = lp->lwp_thread;
350         crit_enter_quick(td);
351         if (td->td_flags & TDF_TSLEEPQ)
352                 tsleep_remove(td);
353         bsd4_recalculate_estcpu(lp);
354
355         /*
356          * If a reschedule was requested give another thread the
357          * driver's seat.
358          */
359         if (user_resched_wanted()) {
360                 clear_user_resched();
361                 bsd4_release_curproc(lp);
362
363                 KTR_COND_LOG(usched_bsd4_acquire_curproc_urw,
364                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
365                     lp->lwp_proc->p_pid,
366                     lp->lwp_thread->td_gd->gd_cpuid,
367                     mycpu->gd_cpuid);
368         }
369
370         /*
371          * Loop until we are the current user thread
372          */
373         gd = mycpu;
374         dd = &bsd4_pcpu[gd->gd_cpuid];
375
376         KTR_COND_LOG(usched_bsd4_acquire_curproc_before_loop,
377             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
378             lp->lwp_proc->p_pid,
379             lp->lwp_thread->td_gd->gd_cpuid,
380             gd->gd_cpuid);
381
382         do {
383                 /*
384                  * Process any pending events and higher priority threads.
385                  */
386                 lwkt_yield();
387
388                 /*
389                  * Become the currently scheduled user thread for this cpu
390                  * if we can do so trivially.
391                  *
392                  * We can steal another thread's current thread designation
393                  * on this cpu since if we are running that other thread
394                  * must not be, so we can safely deschedule it.
395                  */
396                 if (dd->uschedcp == lp) {
397                         /*
398                          * We are already the current lwp (hot path).
399                          */
400                         dd->upri = lp->lwp_priority;
401                 } else if (dd->uschedcp == NULL) {
402                         /*
403                          * We can trivially become the current lwp.
404                          */
405                         atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
406                         dd->uschedcp = lp;
407                         dd->upri = lp->lwp_priority;
408                 } else if (dd->upri > lp->lwp_priority) {
409                         /*
410                          * We can steal the current cpu's lwp designation
411                          * away simply by replacing it.  The other thread
412                          * will stall when it tries to return to userland.
413                          */
414                         dd->uschedcp = lp;
415                         dd->upri = lp->lwp_priority;
416                         /*
417                         lwkt_deschedule(olp->lwp_thread);
418                         bsd4_setrunqueue(olp);
419                         */
420                 } else {
421                         /*
422                          * We cannot become the current lwp, place the lp
423                          * on the bsd4 run-queue and deschedule ourselves.
424                          *
425                          * When we are reactivated we will have another
426                          * chance.
427                          */
428                         lwkt_deschedule(lp->lwp_thread);
429
430                         bsd4_setrunqueue(lp);
431
432                         KTR_COND_LOG(usched_bsd4_acquire_curproc_not,
433                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
434                             lp->lwp_proc->p_pid,
435                             lp->lwp_thread->td_gd->gd_cpuid,
436                             dd->uschedcp->lwp_proc->p_pid,
437                             gd->gd_cpuid);
438
439
440                         lwkt_switch();
441
442                         /*
443                          * Reload after a switch or setrunqueue/switch possibly
444                          * moved us to another cpu.
445                          */
446                         gd = mycpu;
447                         dd = &bsd4_pcpu[gd->gd_cpuid];
448
449                         KTR_COND_LOG(usched_bsd4_acquire_curproc_switch,
450                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
451                             lp->lwp_proc->p_pid,
452                             lp->lwp_thread->td_gd->gd_cpuid,
453                             gd->gd_cpuid);
454                 }
455         } while (dd->uschedcp != lp);
456
457         crit_exit_quick(td);
458         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
459 }
460
461 /*
462  * BSD4_RELEASE_CURPROC
463  *
464  * This routine detaches the current thread from the userland scheduler,
465  * usually because the thread needs to run or block in the kernel (at
466  * kernel priority) for a while.
467  *
468  * This routine is also responsible for selecting a new thread to
469  * make the current thread.
470  *
471  * NOTE: This implementation differs from the dummy example in that
472  * bsd4_select_curproc() is able to select the current process, whereas
473  * dummy_select_curproc() is not able to select the current process.
474  * This means we have to NULL out uschedcp.
475  *
476  * Additionally, note that we may already be on a run queue if releasing
477  * via the lwkt_switch() in bsd4_setrunqueue().
478  *
479  * MPSAFE
480  */
481
482 static void
483 bsd4_release_curproc(struct lwp *lp)
484 {
485         globaldata_t gd = mycpu;
486         bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
487
488         if (dd->uschedcp == lp) {
489                 crit_enter();
490                 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
491
492                 KTR_COND_LOG(usched_bsd4_release_curproc,
493                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
494                     lp->lwp_proc->p_pid,
495                     lp->lwp_thread->td_gd->gd_cpuid,
496                     gd->gd_cpuid);
497
498                 dd->uschedcp = NULL;    /* don't let lp be selected */
499                 dd->upri = PRIBASE_NULL;
500                 atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
501                 dd->old_uschedcp = lp;  /* used only for KTR debug prints */
502                 bsd4_select_curproc(gd);
503                 crit_exit();
504         }
505 }
506
507 /*
508  * BSD4_SELECT_CURPROC
509  *
510  * Select a new current process for this cpu and clear any pending user
511  * reschedule request.  The cpu currently has no current process.
512  *
513  * This routine is also responsible for equal-priority round-robining,
514  * typically triggered from bsd4_schedulerclock().  In our dummy example
515  * all the 'user' threads are LWKT scheduled all at once and we just
516  * call lwkt_switch().
517  *
518  * The calling process is not on the queue and cannot be selected.
519  *
520  * MPSAFE
521  */
522 static
523 void
524 bsd4_select_curproc(globaldata_t gd)
525 {
526         bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
527         struct lwp *nlp;
528         int cpuid = gd->gd_cpuid;
529
530         crit_enter_gd(gd);
531
532         spin_lock(&bsd4_spin);
533 #ifdef SMP
534         if(usched_bsd4_cache_coherent)
535                 nlp = bsd4_chooseproc_locked_cache_coherent(dd->uschedcp);
536         else
537 #endif
538                 nlp = bsd4_chooseproc_locked(dd->uschedcp);
539
540         if (nlp) {
541
542                 KTR_COND_LOG(usched_bsd4_select_curproc,
543                     nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
544                     nlp->lwp_proc->p_pid,
545                     nlp->lwp_thread->td_gd->gd_cpuid,
546                     dd->old_uschedcp->lwp_proc->p_pid,
547                     dd->old_uschedcp->lwp_thread->td_gd->gd_cpuid,
548                     gd->gd_cpuid);
549
550                 atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
551                 dd->upri = nlp->lwp_priority;
552                 dd->uschedcp = nlp;
553                 dd->rrcount = 0;                /* reset round robin */
554                 spin_unlock(&bsd4_spin);
555 #ifdef SMP
556                 lwkt_acquire(nlp->lwp_thread);
557 #endif
558                 lwkt_schedule(nlp->lwp_thread);
559         } else {
560                 spin_unlock(&bsd4_spin);
561         }
562
563 #if 0
564         } else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
565                 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
566                 spin_unlock(&bsd4_spin);
567                 lwkt_schedule(&dd->helper_thread);
568         } else {
569                 spin_unlock(&bsd4_spin);
570         }
571 #endif
572         crit_exit_gd(gd);
573 }
574 #ifdef SMP
575
576 /*
577  * batchy_looser_pri_test() - determine if a process is batchy or not
578  * relative to the other processes running in the system
579  */
580 static int
581 bsd4_batchy_looser_pri_test(struct lwp* lp)
582 {
583         cpumask_t mask;
584         bsd4_pcpu_t other_dd;
585         int cpu;
586
587         /* Current running processes */
588         mask = bsd4_curprocmask & smp_active_mask
589             & usched_global_cpumask;
590
591         while(mask) {
592                 cpu = BSFCPUMASK(mask);
593                 other_dd = &bsd4_pcpu[cpu];
594                 if (other_dd->upri - lp->lwp_priority > usched_bsd4_upri_affinity * PPQ) {
595
596                         KTR_COND_LOG(usched_batchy_test_false,
597                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
598                             lp->lwp_proc->p_pid,
599                             lp->lwp_thread->td_gd->gd_cpuid,
600                             (unsigned long)mask);
601
602                         return 0;
603                 }
604                 mask &= ~CPUMASK(cpu);
605         }
606
607         KTR_COND_LOG(usched_batchy_test_true,
608             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
609             lp->lwp_proc->p_pid,
610             lp->lwp_thread->td_gd->gd_cpuid,
611             (unsigned long)mask);
612
613         return 1;
614 }
615
616 #endif
617 /*
618  *
619  * BSD4_SETRUNQUEUE
620  *
621  * Place the specified lwp on the user scheduler's run queue.  This routine
622  * must be called with the thread descheduled.  The lwp must be runnable.
623  *
624  * The thread may be the current thread as a special case.
625  *
626  * MPSAFE
627  */
628 static void
629 bsd4_setrunqueue(struct lwp *lp)
630 {
631         globaldata_t gd;
632         bsd4_pcpu_t dd;
633 #ifdef SMP
634         int cpuid;
635         cpumask_t mask;
636         cpumask_t tmpmask;
637 #endif
638
639         /*
640          * First validate the process state relative to the current cpu.
641          * We don't need the spinlock for this, just a critical section.
642          * We are in control of the process.
643          */
644         crit_enter();
645         KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
646         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
647             ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
648              lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
649         KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
650
651         /*
652          * Note: gd and dd are relative to the target thread's last cpu,
653          * NOT our current cpu.
654          */
655         gd = lp->lwp_thread->td_gd;
656         dd = &bsd4_pcpu[gd->gd_cpuid];
657
658         /*
659          * This process is not supposed to be scheduled anywhere or assigned
660          * as the current process anywhere.  Assert the condition.
661          */
662         KKASSERT(dd->uschedcp != lp);
663
664 #ifndef SMP
665         /*
666          * If we are not SMP we do not have a scheduler helper to kick
667          * and must directly activate the process if none are scheduled.
668          *
669          * This is really only an issue when bootstrapping init since
670          * the caller in all other cases will be a user process, and
671          * even if released (dd->uschedcp == NULL), that process will
672          * kickstart the scheduler when it returns to user mode from
673          * the kernel.
674          */
675         if (dd->uschedcp == NULL) {
676                 atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
677                 dd->uschedcp = lp;
678                 dd->upri = lp->lwp_priority;
679                 lwkt_schedule(lp->lwp_thread);
680                 crit_exit();
681                 return;
682         }
683 #endif
684
685 #ifdef SMP
686         /*
687          * XXX fixme.  Could be part of a remrunqueue/setrunqueue
688          * operation when the priority is recalculated, so TDF_MIGRATING
689          * may already be set.
690          */
691         if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
692                 lwkt_giveaway(lp->lwp_thread);
693 #endif
694
695         /*
696          * We lose control of lp the moment we release the spinlock after
697          * having placed lp on the queue.  i.e. another cpu could pick it
698          * up and it could exit, or its priority could be further adjusted,
699          * or something like that.
700          */
701         spin_lock(&bsd4_spin);
702         bsd4_setrunqueue_locked(lp);
703         lp->lwp_rebal_ticks = sched_ticks;
704
705 #ifdef SMP
706         /*
707          * Kick the scheduler helper on one of the other cpu's
708          * and request a reschedule if appropriate.
709          *
710          * NOTE: We check all cpus whos rdyprocmask is set.  First we
711          *       look for cpus without designated lps, then we look for
712          *       cpus with designated lps with a worse priority than our
713          *       process.
714          */
715         ++bsd4_scancpu;
716
717         if (usched_bsd4_smt) {
718
719                 /*
720                  * SMT heuristic - Try to schedule on a free physical core.
721                  * If no physical core found than choose the one that has
722                  * an interactive thread.
723                  */
724
725                 int best_cpuid = -1;
726                 int min_prio = MAXPRI * MAXPRI;
727                 int sibling;
728
729                 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
730                 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
731                     smp_active_mask & usched_global_cpumask;
732
733                 KTR_COND_LOG(usched_bsd4_setrunqueue_fc_smt,
734                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
735                     lp->lwp_proc->p_pid,
736                     lp->lwp_thread->td_gd->gd_cpuid,
737                     (unsigned long)mask,
738                     mycpu->gd_cpuid);
739
740                 while (mask) {
741                         tmpmask = ~(CPUMASK(cpuid) - 1);
742                         if (mask & tmpmask)
743                                 cpuid = BSFCPUMASK(mask & tmpmask);
744                         else
745                                 cpuid = BSFCPUMASK(mask);
746                         gd = globaldata_find(cpuid);
747                         dd = &bsd4_pcpu[cpuid];
748
749                         if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
750                                 if (dd->cpunode->parent_node->members & ~dd->cpunode->members & mask) {
751
752                                         KTR_COND_LOG(usched_bsd4_setrunqueue_found,
753                                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
754                                             lp->lwp_proc->p_pid,
755                                             lp->lwp_thread->td_gd->gd_cpuid,
756                                             (unsigned long)mask,
757                                             cpuid,
758                                             mycpu->gd_cpuid);
759
760                                         goto found;
761                                 } else {
762                                         sibling = BSFCPUMASK(dd->cpunode->parent_node->members &
763                                             ~dd->cpunode->members);
764                                         if (min_prio > bsd4_pcpu[sibling].upri) {
765                                                 min_prio = bsd4_pcpu[sibling].upri;
766                                                 best_cpuid = cpuid;
767                                         }
768                                 }
769                         }
770                         mask &= ~CPUMASK(cpuid);
771                 }
772
773                 if (best_cpuid != -1) {
774                         cpuid = best_cpuid;
775                         gd = globaldata_find(cpuid);
776                         dd = &bsd4_pcpu[cpuid];
777
778                         KTR_COND_LOG(usched_bsd4_setrunqueue_found_best_cpuid,
779                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
780                             lp->lwp_proc->p_pid,
781                             lp->lwp_thread->td_gd->gd_cpuid,
782                             (unsigned long)mask,
783                             cpuid,
784                             mycpu->gd_cpuid);
785
786                         goto found;
787                 }
788         } else {
789                 /* Fallback to the original heuristic */
790                 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
791                 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
792                        smp_active_mask & usched_global_cpumask;
793
794                 KTR_COND_LOG(usched_bsd4_setrunqueue_fc_non_smt,
795                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
796                     lp->lwp_proc->p_pid,
797                     lp->lwp_thread->td_gd->gd_cpuid,
798                     (unsigned long)mask,
799                     mycpu->gd_cpuid);
800
801                 while (mask) {
802                         tmpmask = ~(CPUMASK(cpuid) - 1);
803                         if (mask & tmpmask)
804                                 cpuid = BSFCPUMASK(mask & tmpmask);
805                         else
806                                 cpuid = BSFCPUMASK(mask);
807                         gd = globaldata_find(cpuid);
808                         dd = &bsd4_pcpu[cpuid];
809
810                         if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
811
812                                 KTR_COND_LOG(usched_bsd4_setrunqueue_found,
813                                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
814                                     lp->lwp_proc->p_pid,
815                                     lp->lwp_thread->td_gd->gd_cpuid,
816                                     (unsigned long)mask,
817                                     cpuid,
818                                     mycpu->gd_cpuid);
819
820                                 goto found;
821                         }
822                         mask &= ~CPUMASK(cpuid);
823                 }
824         }
825
826         /*
827          * Then cpus which might have a currently running lp
828          */
829         mask = bsd4_curprocmask & bsd4_rdyprocmask &
830                lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
831
832         KTR_COND_LOG(usched_bsd4_setrunqueue_rc,
833             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
834             lp->lwp_proc->p_pid,
835             lp->lwp_thread->td_gd->gd_cpuid,
836             (unsigned long)mask,
837             mycpu->gd_cpuid);
838
839         while (mask) {
840                 tmpmask = ~(CPUMASK(cpuid) - 1);
841                 if (mask & tmpmask)
842                         cpuid = BSFCPUMASK(mask & tmpmask);
843                 else
844                         cpuid = BSFCPUMASK(mask);
845                 gd = globaldata_find(cpuid);
846                 dd = &bsd4_pcpu[cpuid];
847
848                 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
849
850                         KTR_COND_LOG(usched_bsd4_setrunqueue_found,
851                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
852                             lp->lwp_proc->p_pid,
853                             lp->lwp_thread->td_gd->gd_cpuid,
854                             (unsigned long)mask,
855                             cpuid,
856                             mycpu->gd_cpuid);
857
858                         goto found;
859                 }
860                 mask &= ~CPUMASK(cpuid);
861         }
862
863         /*
864          * If we cannot find a suitable cpu we reload from bsd4_scancpu
865          * and round-robin.  Other cpus will pickup as they release their
866          * current lwps or become ready.
867          *
868          * Avoid a degenerate system lockup case if usched_global_cpumask
869          * is set to 0 or otherwise does not cover lwp_cpumask.
870          *
871          * We only kick the target helper thread in this case, we do not
872          * set the user resched flag because
873          */
874         cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
875         if ((CPUMASK(cpuid) & usched_global_cpumask) == 0) {
876                 cpuid = 0;
877         }
878         gd = globaldata_find(cpuid);
879         dd = &bsd4_pcpu[cpuid];
880
881         KTR_COND_LOG(usched_bsd4_setrunqueue_not_found,
882             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
883             lp->lwp_proc->p_pid,
884             lp->lwp_thread->td_gd->gd_cpuid,
885             cpuid,
886             mycpu->gd_cpuid);
887
888 found:
889         if (gd == mycpu) {
890                 spin_unlock(&bsd4_spin);
891                 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
892                         if (dd->uschedcp == NULL) {
893                                 wakeup_mycpu(&dd->helper_thread);
894                         } else {
895                                 need_user_resched();
896                         }
897                 }
898         } else {
899                 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
900                 spin_unlock(&bsd4_spin);
901                 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
902                         lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
903                 else
904                         wakeup(&dd->helper_thread);
905         }
906 #else
907         /*
908          * Request a reschedule if appropriate.
909          */
910         spin_unlock(&bsd4_spin);
911         if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
912                 need_user_resched();
913         }
914 #endif
915         crit_exit();
916 }
917
918 /*
919  * This routine is called from a systimer IPI.  It MUST be MP-safe and
920  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
921  * each cpu.
922  *
923  * This routine is called on every sched tick.  If the currently running
924  * thread belongs to this scheduler it will be called with a non-NULL lp,
925  * otherwise it will be called with a NULL lp.
926  *
927  * MPSAFE
928  */
929 static
930 void
931 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
932 {
933         globaldata_t gd = mycpu;
934         bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
935
936         /*
937          * No impl if no lp running.
938          */
939         if (lp == NULL)
940                 return;
941
942         /*
943          * Do we need to round-robin?  We round-robin 10 times a second.
944          * This should only occur for cpu-bound batch processes.
945          */
946         if (++dd->rrcount >= usched_bsd4_rrinterval) {
947                 dd->rrcount = 0;
948                 need_user_resched();
949         }
950
951         /*
952          * Adjust estcpu upward using a real time equivalent calculation.
953          */
954         lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
955
956         /*
957          * Spinlocks also hold a critical section so there should not be
958          * any active.
959          */
960         KKASSERT(gd->gd_spinlocks_wr == 0);
961
962         bsd4_resetpriority(lp);
963 }
964
965 /*
966  * Called from acquire and from kern_synch's one-second timer (one of the
967  * callout helper threads) with a critical section held.
968  *
969  * Decay p_estcpu based on the number of ticks we haven't been running
970  * and our p_nice.  As the load increases each process observes a larger
971  * number of idle ticks (because other processes are running in them).
972  * This observation leads to a larger correction which tends to make the
973  * system more 'batchy'.
974  *
975  * Note that no recalculation occurs for a process which sleeps and wakes
976  * up in the same tick.  That is, a system doing thousands of context
977  * switches per second will still only do serious estcpu calculations
978  * ESTCPUFREQ times per second.
979  *
980  * MPSAFE
981  */
982 static
983 void
984 bsd4_recalculate_estcpu(struct lwp *lp)
985 {
986         globaldata_t gd = mycpu;
987         sysclock_t cpbase;
988         sysclock_t ttlticks;
989         int estcpu;
990         int decay_factor;
991
992         /*
993          * We have to subtract periodic to get the last schedclock
994          * timeout time, otherwise we would get the upcoming timeout.
995          * Keep in mind that a process can migrate between cpus and
996          * while the scheduler clock should be very close, boundary
997          * conditions could lead to a small negative delta.
998          */
999         cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
1000
1001         if (lp->lwp_slptime > 1) {
1002                 /*
1003                  * Too much time has passed, do a coarse correction.
1004                  */
1005                 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
1006                 bsd4_resetpriority(lp);
1007                 lp->lwp_cpbase = cpbase;
1008                 lp->lwp_cpticks = 0;
1009                 lp->lwp_batch -= ESTCPUFREQ;
1010                 if (lp->lwp_batch < 0)
1011                         lp->lwp_batch = 0;
1012         } else if (lp->lwp_cpbase != cpbase) {
1013                 /*
1014                  * Adjust estcpu if we are in a different tick.  Don't waste
1015                  * time if we are in the same tick.
1016                  *
1017                  * First calculate the number of ticks in the measurement
1018                  * interval.  The ttlticks calculation can wind up 0 due to
1019                  * a bug in the handling of lwp_slptime  (as yet not found),
1020                  * so make sure we do not get a divide by 0 panic.
1021                  */
1022                 ttlticks = (cpbase - lp->lwp_cpbase) /
1023                            gd->gd_schedclock.periodic;
1024                 if (ttlticks < 0) {
1025                         ttlticks = 0;
1026                         lp->lwp_cpbase = cpbase;
1027                 }
1028                 if (ttlticks == 0)
1029                         return;
1030                 updatepcpu(lp, lp->lwp_cpticks, ttlticks);
1031
1032                 /*
1033                  * Calculate the percentage of one cpu used factoring in ncpus
1034                  * and the load and adjust estcpu.  Handle degenerate cases
1035                  * by adding 1 to bsd4_runqcount.
1036                  *
1037                  * estcpu is scaled by ESTCPUMAX.
1038                  *
1039                  * bsd4_runqcount is the excess number of user processes
1040                  * that cannot be immediately scheduled to cpus.  We want
1041                  * to count these as running to avoid range compression
1042                  * in the base calculation (which is the actual percentage
1043                  * of one cpu used).
1044                  */
1045                 estcpu = (lp->lwp_cpticks * ESTCPUMAX) *
1046                          (bsd4_runqcount + ncpus) / (ncpus * ttlticks);
1047
1048                 /*
1049                  * If estcpu is > 50% we become more batch-like
1050                  * If estcpu is <= 50% we become less batch-like
1051                  *
1052                  * It takes 30 cpu seconds to traverse the entire range.
1053                  */
1054                 if (estcpu > ESTCPUMAX / 2) {
1055                         lp->lwp_batch += ttlticks;
1056                         if (lp->lwp_batch > BATCHMAX)
1057                                 lp->lwp_batch = BATCHMAX;
1058                 } else {
1059                         lp->lwp_batch -= ttlticks;
1060                         if (lp->lwp_batch < 0)
1061                                 lp->lwp_batch = 0;
1062                 }
1063
1064                 if (usched_bsd4_debug == lp->lwp_proc->p_pid) {
1065                         kprintf("pid %d lwp %p estcpu %3d %3d bat %d cp %d/%d",
1066                                 lp->lwp_proc->p_pid, lp,
1067                                 estcpu, lp->lwp_estcpu,
1068                                 lp->lwp_batch,
1069                                 lp->lwp_cpticks, ttlticks);
1070                 }
1071
1072                 /*
1073                  * Adjust lp->lwp_esetcpu.  The decay factor determines how
1074                  * quickly lwp_estcpu collapses to its realtime calculation.
1075                  * A slower collapse gives us a more accurate number but
1076                  * can cause a cpu hog to eat too much cpu before the
1077                  * scheduler decides to downgrade it.
1078                  *
1079                  * NOTE: p_nice is accounted for in bsd4_resetpriority(),
1080                  *       and not here, but we must still ensure that a
1081                  *       cpu-bound nice -20 process does not completely
1082                  *       override a cpu-bound nice +20 process.
1083                  *
1084                  * NOTE: We must use ESTCPULIM() here to deal with any
1085                  *       overshoot.
1086                  */
1087                 decay_factor = usched_bsd4_decay;
1088                 if (decay_factor < 1)
1089                         decay_factor = 1;
1090                 if (decay_factor > 1024)
1091                         decay_factor = 1024;
1092
1093                 lp->lwp_estcpu = ESTCPULIM(
1094                         (lp->lwp_estcpu * decay_factor + estcpu) /
1095                         (decay_factor + 1));
1096
1097                 if (usched_bsd4_debug == lp->lwp_proc->p_pid)
1098                         kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
1099                 bsd4_resetpriority(lp);
1100                 lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
1101                 lp->lwp_cpticks = 0;
1102         }
1103 }
1104
1105 /*
1106  * Compute the priority of a process when running in user mode.
1107  * Arrange to reschedule if the resulting priority is better
1108  * than that of the current process.
1109  *
1110  * This routine may be called with any process.
1111  *
1112  * This routine is called by fork1() for initial setup with the process
1113  * of the run queue, and also may be called normally with the process on or
1114  * off the run queue.
1115  *
1116  * MPSAFE
1117  */
1118 static void
1119 bsd4_resetpriority(struct lwp *lp)
1120 {
1121         bsd4_pcpu_t dd;
1122         int newpriority;
1123         u_short newrqtype;
1124         int reschedcpu;
1125         int checkpri;
1126         int estcpu;
1127
1128         /*
1129          * Calculate the new priority and queue type
1130          */
1131         crit_enter();
1132         spin_lock(&bsd4_spin);
1133
1134         newrqtype = lp->lwp_rtprio.type;
1135
1136         switch(newrqtype) {
1137         case RTP_PRIO_REALTIME:
1138         case RTP_PRIO_FIFO:
1139                 newpriority = PRIBASE_REALTIME +
1140                              (lp->lwp_rtprio.prio & PRIMASK);
1141                 break;
1142         case RTP_PRIO_NORMAL:
1143                 /*
1144                  * Detune estcpu based on batchiness.  lwp_batch ranges
1145                  * from 0 to  BATCHMAX.  Limit estcpu for the sake of
1146                  * the priority calculation to between 50% and 100%.
1147                  */
1148                 estcpu = lp->lwp_estcpu * (lp->lwp_batch + BATCHMAX) /
1149                          (BATCHMAX * 2);
1150
1151                 /*
1152                  * p_nice piece         Adds (0-40) * 2         0-80
1153                  * estcpu               Adds 16384  * 4 / 512   0-128
1154                  */
1155                 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1156                 newpriority += estcpu * PPQ / ESTCPUPPQ;
1157                 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1158                               NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1159                 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1160                 break;
1161         case RTP_PRIO_IDLE:
1162                 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1163                 break;
1164         case RTP_PRIO_THREAD:
1165                 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1166                 break;
1167         default:
1168                 panic("Bad RTP_PRIO %d", newrqtype);
1169                 /* NOT REACHED */
1170         }
1171
1172         /*
1173          * The newpriority incorporates the queue type so do a simple masked
1174          * check to determine if the process has moved to another queue.  If
1175          * it has, and it is currently on a run queue, then move it.
1176          */
1177         if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1178                 lp->lwp_priority = newpriority;
1179                 if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1180                         bsd4_remrunqueue_locked(lp);
1181                         lp->lwp_rqtype = newrqtype;
1182                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1183                         bsd4_setrunqueue_locked(lp);
1184                         checkpri = 1;
1185                 } else {
1186                         lp->lwp_rqtype = newrqtype;
1187                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1188                         checkpri = 0;
1189                 }
1190                 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
1191         } else {
1192                 lp->lwp_priority = newpriority;
1193                 reschedcpu = -1;
1194                 checkpri = 1;
1195         }
1196
1197         /*
1198          * Determine if we need to reschedule the target cpu.  This only
1199          * occurs if the LWP is already on a scheduler queue, which means
1200          * that idle cpu notification has already occured.  At most we
1201          * need only issue a need_user_resched() on the appropriate cpu.
1202          *
1203          * The LWP may be owned by a CPU different from the current one,
1204          * in which case dd->uschedcp may be modified without an MP lock
1205          * or a spinlock held.  The worst that happens is that the code
1206          * below causes a spurious need_user_resched() on the target CPU
1207          * and dd->pri to be wrong for a short period of time, both of
1208          * which are harmless.
1209          *
1210          * If checkpri is 0 we are adjusting the priority of the current
1211          * process, possibly higher (less desireable), so ignore the upri
1212          * check which will fail in that case.
1213          */
1214         if (reschedcpu >= 0) {
1215                 dd = &bsd4_pcpu[reschedcpu];
1216                 if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
1217                     (checkpri == 0 ||
1218                      (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK))) {
1219 #ifdef SMP
1220                         if (reschedcpu == mycpu->gd_cpuid) {
1221                                 spin_unlock(&bsd4_spin);
1222                                 need_user_resched();
1223                         } else {
1224                                 spin_unlock(&bsd4_spin);
1225                                 atomic_clear_cpumask(&bsd4_rdyprocmask,
1226                                                      CPUMASK(reschedcpu));
1227                                 lwkt_send_ipiq(lp->lwp_thread->td_gd,
1228                                                bsd4_need_user_resched_remote,
1229                                                NULL);
1230                         }
1231 #else
1232                         spin_unlock(&bsd4_spin);
1233                         need_user_resched();
1234 #endif
1235                 } else {
1236                         spin_unlock(&bsd4_spin);
1237                 }
1238         } else {
1239                 spin_unlock(&bsd4_spin);
1240         }
1241         crit_exit();
1242 }
1243
1244 /*
1245  * MPSAFE
1246  */
1247 static
1248 void
1249 bsd4_yield(struct lwp *lp)
1250 {
1251 #if 0
1252         /* FUTURE (or something similar) */
1253         switch(lp->lwp_rqtype) {
1254         case RTP_PRIO_NORMAL:
1255                 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
1256                 break;
1257         default:
1258                 break;
1259         }
1260 #endif
1261         need_user_resched();
1262 }
1263
1264 /*
1265  * Called from fork1() when a new child process is being created.
1266  *
1267  * Give the child process an initial estcpu that is more batch then
1268  * its parent and dock the parent for the fork (but do not
1269  * reschedule the parent).   This comprises the main part of our batch
1270  * detection heuristic for both parallel forking and sequential execs.
1271  *
1272  * XXX lwp should be "spawning" instead of "forking"
1273  *
1274  * MPSAFE
1275  */
1276 static void
1277 bsd4_forking(struct lwp *plp, struct lwp *lp)
1278 {
1279         /*
1280          * Put the child 4 queue slots (out of 32) higher than the parent
1281          * (less desireable than the parent).
1282          */
1283         lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1284
1285         /*
1286          * The batch status of children always starts out centerline
1287          * and will inch-up or inch-down as appropriate.  It takes roughly
1288          * ~15 seconds of >50% cpu to hit the limit.
1289          */
1290         lp->lwp_batch = BATCHMAX / 2;
1291
1292         /*
1293          * Dock the parent a cost for the fork, protecting us from fork
1294          * bombs.  If the parent is forking quickly make the child more
1295          * batchy.
1296          */
1297         plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1298 }
1299
1300 /*
1301  * Called when a lwp is being removed from this scheduler, typically
1302  * during lwp_exit().
1303  */
1304 static void
1305 bsd4_exiting(struct lwp *lp, struct proc *child_proc)
1306 {
1307 }
1308
1309 static void
1310 bsd4_uload_update(struct lwp *lp)
1311 {
1312 }
1313
1314 /*
1315  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1316  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1317  * has a better or equal priority then the process that would otherwise be
1318  * chosen, NULL is returned.
1319  *
1320  * Until we fix the RUNQ code the chklp test has to be strict or we may
1321  * bounce between processes trying to acquire the current process designation.
1322  *
1323  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
1324  *          left intact through the entire routine.
1325  */
1326 static
1327 struct lwp *
1328 bsd4_chooseproc_locked(struct lwp *chklp)
1329 {
1330         struct lwp *lp;
1331         struct rq *q;
1332         u_int32_t *which, *which2;
1333         u_int32_t pri;
1334         u_int32_t rtqbits;
1335         u_int32_t tsqbits;
1336         u_int32_t idqbits;
1337         cpumask_t cpumask;
1338
1339         rtqbits = bsd4_rtqueuebits;
1340         tsqbits = bsd4_queuebits;
1341         idqbits = bsd4_idqueuebits;
1342         cpumask = mycpu->gd_cpumask;
1343
1344
1345 #ifdef SMP
1346 again:
1347 #endif
1348         if (rtqbits) {
1349                 pri = bsfl(rtqbits);
1350                 q = &bsd4_rtqueues[pri];
1351                 which = &bsd4_rtqueuebits;
1352                 which2 = &rtqbits;
1353         } else if (tsqbits) {
1354                 pri = bsfl(tsqbits);
1355                 q = &bsd4_queues[pri];
1356                 which = &bsd4_queuebits;
1357                 which2 = &tsqbits;
1358         } else if (idqbits) {
1359                 pri = bsfl(idqbits);
1360                 q = &bsd4_idqueues[pri];
1361                 which = &bsd4_idqueuebits;
1362                 which2 = &idqbits;
1363         } else {
1364                 return NULL;
1365         }
1366         lp = TAILQ_FIRST(q);
1367         KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1368
1369 #ifdef SMP
1370         while ((lp->lwp_cpumask & cpumask) == 0) {
1371                 lp = TAILQ_NEXT(lp, lwp_procq);
1372                 if (lp == NULL) {
1373                         *which2 &= ~(1 << pri);
1374                         goto again;
1375                 }
1376         }
1377 #endif
1378
1379         /*
1380          * If the passed lwp <chklp> is reasonably close to the selected
1381          * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1382          *
1383          * Note that we must error on the side of <chklp> to avoid bouncing
1384          * between threads in the acquire code.
1385          */
1386         if (chklp) {
1387                 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1388                         return(NULL);
1389         }
1390
1391 #ifdef SMP
1392         /*
1393          * If the chosen lwp does not reside on this cpu spend a few
1394          * cycles looking for a better candidate at the same priority level.
1395          * This is a fallback check, setrunqueue() tries to wakeup the
1396          * correct cpu and is our front-line affinity.
1397          */
1398         if (lp->lwp_thread->td_gd != mycpu &&
1399             (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
1400         ) {
1401                 if (chklp->lwp_thread->td_gd == mycpu) {
1402                         lp = chklp;
1403                 }
1404         }
1405 #endif
1406
1407         KTR_COND_LOG(usched_chooseproc,
1408             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1409             lp->lwp_proc->p_pid,
1410             lp->lwp_thread->td_gd->gd_cpuid,
1411             mycpu->gd_cpuid);
1412
1413         TAILQ_REMOVE(q, lp, lwp_procq);
1414         --bsd4_runqcount;
1415         if (TAILQ_EMPTY(q))
1416                 *which &= ~(1 << pri);
1417         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1418         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1419
1420         return lp;
1421 }
1422
1423 #ifdef SMP
1424 /*
1425  * chooseproc() - with a cache coherence heuristic. Try to pull a process that
1426  * has its home on the current CPU> If the process doesn't have its home here
1427  * and is a batchy one (see batcy_looser_pri_test), we can wait for a
1428  * sched_tick, may be its home will become free and pull it in. Anyway,
1429  * we can't wait more than one tick. If that tick expired, we pull in that
1430  * process, no matter what.
1431  */
1432 static
1433 struct lwp *
1434 bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp)
1435 {
1436         struct lwp *lp;
1437         struct rq *q;
1438         u_int32_t *which, *which2;
1439         u_int32_t pri;
1440         u_int32_t checks;
1441         u_int32_t rtqbits;
1442         u_int32_t tsqbits;
1443         u_int32_t idqbits;
1444         cpumask_t cpumask;
1445
1446         struct lwp * min_level_lwp = NULL;
1447         struct rq *min_q = NULL;
1448         cpumask_t siblings;
1449         cpu_node_t* cpunode = NULL;
1450         u_int32_t min_level = MAXCPU;   /* number of levels < MAXCPU */
1451         u_int32_t *min_which = NULL;
1452         u_int32_t min_pri = 0;
1453         u_int32_t level = 0;
1454
1455         rtqbits = bsd4_rtqueuebits;
1456         tsqbits = bsd4_queuebits;
1457         idqbits = bsd4_idqueuebits;
1458         cpumask = mycpu->gd_cpumask;
1459
1460         /* Get the mask coresponding to the sysctl configured level */
1461         cpunode = bsd4_pcpu[mycpu->gd_cpuid].cpunode;
1462         level = usched_bsd4_stick_to_level;
1463         while (level) {
1464                 cpunode = cpunode->parent_node;
1465                 level--;
1466         }
1467         /* The cpus which can ellect a process */
1468         siblings = cpunode->members;
1469         checks = 0;
1470
1471 again:
1472         if (rtqbits) {
1473                 pri = bsfl(rtqbits);
1474                 q = &bsd4_rtqueues[pri];
1475                 which = &bsd4_rtqueuebits;
1476                 which2 = &rtqbits;
1477         } else if (tsqbits) {
1478                 pri = bsfl(tsqbits);
1479                 q = &bsd4_queues[pri];
1480                 which = &bsd4_queuebits;
1481                 which2 = &tsqbits;
1482         } else if (idqbits) {
1483                 pri = bsfl(idqbits);
1484                 q = &bsd4_idqueues[pri];
1485                 which = &bsd4_idqueuebits;
1486                 which2 = &idqbits;
1487         } else {
1488                 /*
1489                  * No more left and we didn't reach the checks limit.
1490                  */
1491                 bsd4_kick_helper(min_level_lwp);
1492                 return NULL;
1493         }
1494         lp = TAILQ_FIRST(q);
1495         KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1496
1497         /*
1498          * Limit the number of checks/queue to a configurable value to
1499          * minimize the contention (we are in a locked region
1500          */
1501         while (checks < usched_bsd4_queue_checks) {
1502                 if ((lp->lwp_cpumask & cpumask) == 0 ||
1503                     ((siblings & lp->lwp_thread->td_gd->gd_cpumask) == 0 &&
1504                       (lp->lwp_rebal_ticks == sched_ticks ||
1505                        lp->lwp_rebal_ticks == (int)(sched_ticks - 1)) &&
1506                       bsd4_batchy_looser_pri_test(lp))) {
1507
1508                         KTR_COND_LOG(usched_chooseproc_cc_not_good,
1509                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1510                             lp->lwp_proc->p_pid,
1511                             (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1512                             (unsigned long)siblings,
1513                             (unsigned long)cpumask);
1514
1515                         cpunode = bsd4_pcpu[lp->lwp_thread->td_gd->gd_cpuid].cpunode;
1516                         level = 0;
1517                         while (cpunode) {
1518                                 if (cpunode->members & cpumask)
1519                                         break;
1520                                 cpunode = cpunode->parent_node;
1521                                 level++;
1522                         }
1523                         if (level < min_level ||
1524                             (level == min_level && min_level_lwp &&
1525                              lp->lwp_priority < min_level_lwp->lwp_priority)) {
1526                                 bsd4_kick_helper(min_level_lwp);
1527                                 min_level_lwp = lp;
1528                                 min_level = level;
1529                                 min_q = q;
1530                                 min_which = which;
1531                                 min_pri = pri;
1532                         } else {
1533                                 bsd4_kick_helper(lp);
1534                         }
1535                         lp = TAILQ_NEXT(lp, lwp_procq);
1536                         if (lp == NULL) {
1537                                 *which2 &= ~(1 << pri);
1538                                 goto again;
1539                         }
1540                 } else {
1541                         KTR_COND_LOG(usched_chooseproc_cc_elected,
1542                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1543                             lp->lwp_proc->p_pid,
1544                             (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1545                             (unsigned long)siblings,
1546                             (unsigned long)cpumask);
1547
1548                         goto found;
1549                 }
1550                 ++checks;
1551         }
1552
1553         /*
1554          * Checks exhausted, we tried to defer too many threads, so schedule
1555          * the best of the worst.
1556          */
1557         lp = min_level_lwp;
1558         q = min_q;
1559         which = min_which;
1560         pri = min_pri;
1561         KASSERT(lp, ("chooseproc: at least the first lp was good"));
1562
1563 found:
1564
1565         /*
1566          * If the passed lwp <chklp> is reasonably close to the selected
1567          * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1568          *
1569          * Note that we must error on the side of <chklp> to avoid bouncing
1570          * between threads in the acquire code.
1571          */
1572         if (chklp) {
1573                 if (chklp->lwp_priority < lp->lwp_priority + PPQ) {
1574                         bsd4_kick_helper(lp);
1575                         return(NULL);
1576                 }
1577         }
1578
1579         KTR_COND_LOG(usched_chooseproc_cc,
1580             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1581             lp->lwp_proc->p_pid,
1582             lp->lwp_thread->td_gd->gd_cpuid,
1583             mycpu->gd_cpuid);
1584
1585         TAILQ_REMOVE(q, lp, lwp_procq);
1586         --bsd4_runqcount;
1587         if (TAILQ_EMPTY(q))
1588                 *which &= ~(1 << pri);
1589         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1590         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1591
1592         return lp;
1593 }
1594
1595 /*
1596  * If we aren't willing to schedule a ready process on our cpu, give it's
1597  * target cpu a kick rather than wait for the next tick.
1598  *
1599  * Called with bsd4_spin held.
1600  */
1601 static
1602 void
1603 bsd4_kick_helper(struct lwp *lp)
1604 {
1605         globaldata_t gd;
1606         bsd4_pcpu_t dd;
1607
1608         if (lp == NULL)
1609                 return;
1610         gd = lp->lwp_thread->td_gd;
1611         dd = &bsd4_pcpu[gd->gd_cpuid];
1612         if ((smp_active_mask & usched_global_cpumask &
1613             bsd4_rdyprocmask & gd->gd_cpumask) == 0) {
1614                 return;
1615         }
1616         ++usched_bsd4_kicks;
1617         atomic_clear_cpumask(&bsd4_rdyprocmask, gd->gd_cpumask);
1618         if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
1619                 lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
1620         } else {
1621                 wakeup(&dd->helper_thread);
1622         }
1623 }
1624
1625 static
1626 void
1627 bsd4_need_user_resched_remote(void *dummy)
1628 {
1629         globaldata_t gd = mycpu;
1630         bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
1631
1632         need_user_resched();
1633
1634         /* Call wakeup_mycpu to avoid sending IPIs to other CPUs */
1635         wakeup_mycpu(&dd->helper_thread);
1636 }
1637
1638 #endif
1639
1640 /*
1641  * bsd4_remrunqueue_locked() removes a given process from the run queue
1642  * that it is on, clearing the queue busy bit if it becomes empty.
1643  *
1644  * Note that user process scheduler is different from the LWKT schedule.
1645  * The user process scheduler only manages user processes but it uses LWKT
1646  * underneath, and a user process operating in the kernel will often be
1647  * 'released' from our management.
1648  *
1649  * MPSAFE - bsd4_spin must be held exclusively on call
1650  */
1651 static void
1652 bsd4_remrunqueue_locked(struct lwp *lp)
1653 {
1654         struct rq *q;
1655         u_int32_t *which;
1656         u_int8_t pri;
1657
1658         KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1659         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1660         --bsd4_runqcount;
1661         KKASSERT(bsd4_runqcount >= 0);
1662
1663         pri = lp->lwp_rqindex;
1664         switch(lp->lwp_rqtype) {
1665         case RTP_PRIO_NORMAL:
1666                 q = &bsd4_queues[pri];
1667                 which = &bsd4_queuebits;
1668                 break;
1669         case RTP_PRIO_REALTIME:
1670         case RTP_PRIO_FIFO:
1671                 q = &bsd4_rtqueues[pri];
1672                 which = &bsd4_rtqueuebits;
1673                 break;
1674         case RTP_PRIO_IDLE:
1675                 q = &bsd4_idqueues[pri];
1676                 which = &bsd4_idqueuebits;
1677                 break;
1678         default:
1679                 panic("remrunqueue: invalid rtprio type");
1680                 /* NOT REACHED */
1681         }
1682         TAILQ_REMOVE(q, lp, lwp_procq);
1683         if (TAILQ_EMPTY(q)) {
1684                 KASSERT((*which & (1 << pri)) != 0,
1685                         ("remrunqueue: remove from empty queue"));
1686                 *which &= ~(1 << pri);
1687         }
1688 }
1689
1690 /*
1691  * bsd4_setrunqueue_locked()
1692  *
1693  * Add a process whos rqtype and rqindex had previously been calculated
1694  * onto the appropriate run queue.   Determine if the addition requires
1695  * a reschedule on a cpu and return the cpuid or -1.
1696  *
1697  * NOTE: Lower priorities are better priorities.
1698  *
1699  * MPSAFE - bsd4_spin must be held exclusively on call
1700  */
1701 static void
1702 bsd4_setrunqueue_locked(struct lwp *lp)
1703 {
1704         struct rq *q;
1705         u_int32_t *which;
1706         int pri;
1707
1708         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1709         atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1710         ++bsd4_runqcount;
1711
1712         pri = lp->lwp_rqindex;
1713
1714         switch(lp->lwp_rqtype) {
1715         case RTP_PRIO_NORMAL:
1716                 q = &bsd4_queues[pri];
1717                 which = &bsd4_queuebits;
1718                 break;
1719         case RTP_PRIO_REALTIME:
1720         case RTP_PRIO_FIFO:
1721                 q = &bsd4_rtqueues[pri];
1722                 which = &bsd4_rtqueuebits;
1723                 break;
1724         case RTP_PRIO_IDLE:
1725                 q = &bsd4_idqueues[pri];
1726                 which = &bsd4_idqueuebits;
1727                 break;
1728         default:
1729                 panic("remrunqueue: invalid rtprio type");
1730                 /* NOT REACHED */
1731         }
1732
1733         /*
1734          * Add to the correct queue and set the appropriate bit.  If no
1735          * lower priority (i.e. better) processes are in the queue then
1736          * we want a reschedule, calculate the best cpu for the job.
1737          *
1738          * Always run reschedules on the LWPs original cpu.
1739          */
1740         TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1741         *which |= 1 << pri;
1742 }
1743
1744 #ifdef SMP
1745
1746 /*
1747  * For SMP systems a user scheduler helper thread is created for each
1748  * cpu and is used to allow one cpu to wakeup another for the purposes of
1749  * scheduling userland threads from setrunqueue().
1750  *
1751  * UP systems do not need the helper since there is only one cpu.
1752  *
1753  * We can't use the idle thread for this because we might block.
1754  * Additionally, doing things this way allows us to HLT idle cpus
1755  * on MP systems.
1756  *
1757  * MPSAFE
1758  */
1759 static void
1760 sched_thread(void *dummy)
1761 {
1762     globaldata_t gd;
1763     bsd4_pcpu_t  dd;
1764     bsd4_pcpu_t  tmpdd;
1765     struct lwp *nlp;
1766     cpumask_t mask;
1767     int cpuid;
1768     cpumask_t tmpmask;
1769     int tmpid;
1770
1771     gd = mycpu;
1772     cpuid = gd->gd_cpuid;       /* doesn't change */
1773     mask = gd->gd_cpumask;      /* doesn't change */
1774     dd = &bsd4_pcpu[cpuid];
1775
1776     /*
1777      * Since we are woken up only when no user processes are scheduled
1778      * on a cpu, we can run at an ultra low priority.
1779      */
1780     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1781
1782     tsleep(&dd->helper_thread, 0, "sched_thread_sleep", 0);
1783
1784     for (;;) {
1785         /*
1786          * We use the LWKT deschedule-interlock trick to avoid racing
1787          * bsd4_rdyprocmask.  This means we cannot block through to the
1788          * manual lwkt_switch() call we make below.
1789          */
1790         crit_enter_gd(gd);
1791         tsleep_interlock(&dd->helper_thread, 0);
1792         spin_lock(&bsd4_spin);
1793         atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1794
1795         clear_user_resched();   /* This satisfied the reschedule request */
1796         dd->rrcount = 0;        /* Reset the round-robin counter */
1797
1798         if ((bsd4_curprocmask & mask) == 0) {
1799                 /*
1800                  * No thread is currently scheduled.
1801                  */
1802                 KKASSERT(dd->uschedcp == NULL);
1803                 if ((nlp = bsd4_chooseproc_locked(NULL)) != NULL) {
1804                         KTR_COND_LOG(usched_sched_thread_no_process,
1805                             nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1806                             gd->gd_cpuid,
1807                             nlp->lwp_proc->p_pid,
1808                             nlp->lwp_thread->td_gd->gd_cpuid);
1809
1810                         atomic_set_cpumask(&bsd4_curprocmask, mask);
1811                         dd->upri = nlp->lwp_priority;
1812                         dd->uschedcp = nlp;
1813                         dd->rrcount = 0;        /* reset round robin */
1814                         spin_unlock(&bsd4_spin);
1815                         lwkt_acquire(nlp->lwp_thread);
1816                         lwkt_schedule(nlp->lwp_thread);
1817                 } else {
1818                         spin_unlock(&bsd4_spin);
1819                 }
1820         } else if (bsd4_runqcount) {
1821                 if ((nlp = bsd4_chooseproc_locked(dd->uschedcp)) != NULL) {
1822                         KTR_COND_LOG(usched_sched_thread_process,
1823                             nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1824                             gd->gd_cpuid,
1825                             nlp->lwp_proc->p_pid,
1826                             nlp->lwp_thread->td_gd->gd_cpuid);
1827
1828                         dd->upri = nlp->lwp_priority;
1829                         dd->uschedcp = nlp;
1830                         dd->rrcount = 0;        /* reset round robin */
1831                         spin_unlock(&bsd4_spin);
1832                         lwkt_acquire(nlp->lwp_thread);
1833                         lwkt_schedule(nlp->lwp_thread);
1834                 } else {
1835                         /*
1836                          * CHAINING CONDITION TRAIN
1837                          *
1838                          * We could not deal with the scheduler wakeup
1839                          * request on this cpu, locate a ready scheduler
1840                          * with no current lp assignment and chain to it.
1841                          *
1842                          * This ensures that a wakeup race which fails due
1843                          * to priority test does not leave other unscheduled
1844                          * cpus idle when the runqueue is not empty.
1845                          */
1846                         tmpmask = ~bsd4_curprocmask &
1847                                   bsd4_rdyprocmask & smp_active_mask;
1848                         if (tmpmask) {
1849                                 tmpid = BSFCPUMASK(tmpmask);
1850                                 tmpdd = &bsd4_pcpu[tmpid];
1851                                 atomic_clear_cpumask(&bsd4_rdyprocmask,
1852                                                      CPUMASK(tmpid));
1853                                 spin_unlock(&bsd4_spin);
1854                                 wakeup(&tmpdd->helper_thread);
1855                         } else {
1856                                 spin_unlock(&bsd4_spin);
1857                         }
1858
1859                         KTR_LOG(usched_sched_thread_no_process_found,
1860                                 gd->gd_cpuid, (unsigned long)tmpmask);
1861                 }
1862         } else {
1863                 /*
1864                  * The runq is empty.
1865                  */
1866                 spin_unlock(&bsd4_spin);
1867         }
1868
1869         /*
1870          * We're descheduled unless someone scheduled us.  Switch away.
1871          * Exiting the critical section will cause splz() to be called
1872          * for us if interrupts and such are pending.
1873          */
1874         crit_exit_gd(gd);
1875         tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
1876     }
1877 }
1878
1879 /* sysctl stick_to_level parameter */
1880 static int
1881 sysctl_usched_bsd4_stick_to_level(SYSCTL_HANDLER_ARGS)
1882 {
1883         int error, new_val;
1884
1885         new_val = usched_bsd4_stick_to_level;
1886
1887         error = sysctl_handle_int(oidp, &new_val, 0, req);
1888         if (error != 0 || req->newptr == NULL)
1889                 return (error);
1890         if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
1891                 return (EINVAL);
1892         usched_bsd4_stick_to_level = new_val;
1893         return (0);
1894 }
1895
1896 /*
1897  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1898  * been cleared by rqinit() and we should not mess with it further.
1899  */
1900 static void
1901 sched_thread_cpu_init(void)
1902 {
1903         int i;
1904         int cpuid;
1905         int smt_not_supported = 0;
1906         int cache_coherent_not_supported = 0;
1907
1908         if (bootverbose)
1909                 kprintf("Start scheduler helpers on cpus:\n");
1910
1911         sysctl_ctx_init(&usched_bsd4_sysctl_ctx);
1912         usched_bsd4_sysctl_tree =
1913                 SYSCTL_ADD_NODE(&usched_bsd4_sysctl_ctx,
1914                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
1915                                 "usched_bsd4", CTLFLAG_RD, 0, "");
1916
1917         for (i = 0; i < ncpus; ++i) {
1918                 bsd4_pcpu_t dd = &bsd4_pcpu[i];
1919                 cpumask_t mask = CPUMASK(i);
1920
1921                 if ((mask & smp_active_mask) == 0)
1922                     continue;
1923
1924                 dd->cpunode = get_cpu_node_by_cpuid(i);
1925
1926                 if (dd->cpunode == NULL) {
1927                         smt_not_supported = 1;
1928                         cache_coherent_not_supported = 1;
1929                         if (bootverbose)
1930                                 kprintf ("\tcpu%d - WARNING: No CPU NODE "
1931                                          "found for cpu\n", i);
1932                 } else {
1933                         switch (dd->cpunode->type) {
1934                         case THREAD_LEVEL:
1935                                 if (bootverbose)
1936                                         kprintf ("\tcpu%d - HyperThreading "
1937                                                  "available. Core siblings: ",
1938                                                  i);
1939                                 break;
1940                         case CORE_LEVEL:
1941                                 smt_not_supported = 1;
1942
1943                                 if (bootverbose)
1944                                         kprintf ("\tcpu%d - No HT available, "
1945                                                  "multi-core/physical "
1946                                                  "cpu. Physical siblings: ",
1947                                                  i);
1948                                 break;
1949                         case CHIP_LEVEL:
1950                                 smt_not_supported = 1;
1951
1952                                 if (bootverbose)
1953                                         kprintf ("\tcpu%d - No HT available, "
1954                                                  "single-core/physical cpu. "
1955                                                  "Package Siblings: ",
1956                                                  i);
1957                                 break;
1958                         default:
1959                                 /* Let's go for safe defaults here */
1960                                 smt_not_supported = 1;
1961                                 cache_coherent_not_supported = 1;
1962                                 if (bootverbose)
1963                                         kprintf ("\tcpu%d - Unknown cpunode->"
1964                                                  "type=%u. Siblings: ",
1965                                                  i,
1966                                                  (u_int)dd->cpunode->type);
1967                                 break;
1968                         }
1969
1970                         if (bootverbose) {
1971                                 if (dd->cpunode->parent_node != NULL) {
1972                                         CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
1973                                                 kprintf("cpu%d ", cpuid);
1974                                         kprintf("\n");
1975                                 } else {
1976                                         kprintf(" no siblings\n");
1977                                 }
1978                         }
1979                 }
1980
1981                 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1982                             0, i, "usched %d", i);
1983
1984                 /*
1985                  * Allow user scheduling on the target cpu.  cpu #0 has already
1986                  * been enabled in rqinit().
1987                  */
1988                 if (i)
1989                     atomic_clear_cpumask(&bsd4_curprocmask, mask);
1990                 atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1991                 dd->upri = PRIBASE_NULL;
1992
1993         }
1994
1995         /* usched_bsd4 sysctl configurable parameters */
1996
1997         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1998                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1999                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2000                        &usched_bsd4_rrinterval, 0, "");
2001         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2002                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2003                        OID_AUTO, "decay", CTLFLAG_RW,
2004                        &usched_bsd4_decay, 0, "Extra decay when not running");
2005         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2006                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2007                        OID_AUTO, "batch_time", CTLFLAG_RW,
2008                        &usched_bsd4_batch_time, 0, "Min batch counter value");
2009         SYSCTL_ADD_LONG(&usched_bsd4_sysctl_ctx,
2010                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2011                        OID_AUTO, "kicks", CTLFLAG_RW,
2012                        &usched_bsd4_kicks, "Number of kickstarts");
2013
2014         /* Add enable/disable option for SMT scheduling if supported */
2015         if (smt_not_supported) {
2016                 usched_bsd4_smt = 0;
2017                 SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
2018                                   SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2019                                   OID_AUTO, "smt", CTLFLAG_RD,
2020                                   "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2021         } else {
2022                 usched_bsd4_smt = 1;
2023                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2024                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2025                                OID_AUTO, "smt", CTLFLAG_RW,
2026                                &usched_bsd4_smt, 0, "Enable SMT scheduling");
2027         }
2028
2029         /*
2030          * Add enable/disable option for cache coherent scheduling
2031          * if supported
2032          */
2033         if (cache_coherent_not_supported) {
2034                 usched_bsd4_cache_coherent = 0;
2035                 SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
2036                                   SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2037                                   OID_AUTO, "cache_coherent", CTLFLAG_RD,
2038                                   "NOT SUPPORTED", 0,
2039                                   "Cache coherence NOT SUPPORTED");
2040         } else {
2041                 usched_bsd4_cache_coherent = 1;
2042                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2043                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2044                                OID_AUTO, "cache_coherent", CTLFLAG_RW,
2045                                &usched_bsd4_cache_coherent, 0,
2046                                "Enable/Disable cache coherent scheduling");
2047
2048                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2049                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2050                                OID_AUTO, "upri_affinity", CTLFLAG_RW,
2051                                &usched_bsd4_upri_affinity, 1,
2052                                "Number of PPQs in user priority check");
2053
2054                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2055                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2056                                OID_AUTO, "queue_checks", CTLFLAG_RW,
2057                                &usched_bsd4_queue_checks, 5,
2058                                "LWPs to check from a queue before giving up");
2059
2060                 SYSCTL_ADD_PROC(&usched_bsd4_sysctl_ctx,
2061                                 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2062                                 OID_AUTO, "stick_to_level",
2063                                 CTLTYPE_INT | CTLFLAG_RW,
2064                                 NULL, sizeof usched_bsd4_stick_to_level,
2065                                 sysctl_usched_bsd4_stick_to_level, "I",
2066                                 "Stick a process to this level. See sysctl"
2067                                 "paremter hw.cpu_topology.level_description");
2068         }
2069 }
2070 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2071         sched_thread_cpu_init, NULL)
2072
2073 #else /* No SMP options - just add the configurable parameters to sysctl */
2074
2075 static void
2076 sched_sysctl_tree_init(void)
2077 {
2078         sysctl_ctx_init(&usched_bsd4_sysctl_ctx);
2079         usched_bsd4_sysctl_tree =
2080                 SYSCTL_ADD_NODE(&usched_bsd4_sysctl_ctx,
2081                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2082                                 "usched_bsd4", CTLFLAG_RD, 0, "");
2083
2084         /* usched_bsd4 sysctl configurable parameters */
2085         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2086                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2087                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2088                        &usched_bsd4_rrinterval, 0, "");
2089         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2090                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2091                        OID_AUTO, "decay", CTLFLAG_RW,
2092                        &usched_bsd4_decay, 0, "Extra decay when not running");
2093         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2094                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2095                        OID_AUTO, "batch_time", CTLFLAG_RW,
2096                        &usched_bsd4_batch_time, 0, "Min batch counter value");
2097 }
2098 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2099         sched_sysctl_tree_init, NULL)
2100 #endif