Import binutils-2.20
[dragonfly.git] / contrib / binutils-2.20 / gold / ehframe.cc
1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime.  This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames.  This can
47 //    be any DWARF unwind encoding (DW_EH_PE_*).  It is normally a 4
48 //    byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 //    lookup table.  This can be any DWARF unwind encoding, and in
52 //    particular can be DW_EH_PE_omit if the count is omitted.  It is
53 //    normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries.  Currently gcc's
56 //    libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 //    which means that the values are 4 byte offsets from the start of
58 //    the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame).  This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory.  Each entry in the table is 8 bytes.
71 // Each entry represents an FDE.  The first four bytes of each entry
72 // are an offset to the starting PC for the FDE.  The last four bytes
73 // of each entry are an offset to the FDE data.  The offsets are from
74 // the start of the exception frame header information.  The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82                            const Eh_frame* eh_frame_data)
83   : Output_section_data(4),
84     eh_frame_section_(eh_frame_section),
85     eh_frame_data_(eh_frame_data),
86     fde_offsets_(),
87     any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
94 Eh_frame_hdr::set_final_data_size()
95 {
96   unsigned int data_size = eh_frame_hdr_size + 4;
97   if (!this->any_unrecognized_eh_frame_sections_)
98     {
99       unsigned int fde_count = this->eh_frame_data_->fde_count();
100       if (fde_count != 0)
101         data_size += 4 + 8 * fde_count;
102       this->fde_offsets_.reserve(fde_count);
103     }
104   this->set_data_size(data_size);
105 }
106
107 // Write the data to the flie.
108
109 void
110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112   switch (parameters->size_and_endianness())
113     {
114 #ifdef HAVE_TARGET_32_LITTLE
115     case Parameters::TARGET_32_LITTLE:
116       this->do_sized_write<32, false>(of);
117       break;
118 #endif
119 #ifdef HAVE_TARGET_32_BIG
120     case Parameters::TARGET_32_BIG:
121       this->do_sized_write<32, true>(of);
122       break;
123 #endif
124 #ifdef HAVE_TARGET_64_LITTLE
125     case Parameters::TARGET_64_LITTLE:
126       this->do_sized_write<64, false>(of);
127       break;
128 #endif
129 #ifdef HAVE_TARGET_64_BIG
130     case Parameters::TARGET_64_BIG:
131       this->do_sized_write<64, true>(of);
132       break;
133 #endif
134     default:
135       gold_unreachable();
136     }
137 }
138
139 // Write the data to the file with the right endianness.
140
141 template<int size, bool big_endian>
142 void
143 Eh_frame_hdr::do_sized_write(Output_file* of)
144 {
145   const off_t off = this->offset();
146   const off_t oview_size = this->data_size();
147   unsigned char* const oview = of->get_output_view(off, oview_size);
148
149   // Version number.
150   oview[0] = 1;
151
152   // Write out a 4 byte PC relative offset to the address of the
153   // .eh_frame section.
154   oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155   uint64_t eh_frame_address = this->eh_frame_section_->address();
156   uint64_t eh_frame_hdr_address = this->address();
157   uint64_t eh_frame_offset = (eh_frame_address -
158                               (eh_frame_hdr_address + 4));
159   elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161   if (this->any_unrecognized_eh_frame_sections_
162       || this->fde_offsets_.empty())
163     {
164       // There are no FDEs, or we didn't recognize the format of the
165       // some of the .eh_frame sections, so we can't write out the
166       // sorted table.
167       oview[2] = elfcpp::DW_EH_PE_omit;
168       oview[3] = elfcpp::DW_EH_PE_omit;
169
170       gold_assert(oview_size == 8);
171     }
172   else
173     {
174       oview[2] = elfcpp::DW_EH_PE_udata4;
175       oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177       elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178                                              this->fde_offsets_.size());
179
180       // We have the offsets of the FDEs in the .eh_frame section.  We
181       // couldn't easily get the PC values before, as they depend on
182       // relocations which are, of course, target specific.  This code
183       // is run after all those relocations have been applied to the
184       // output file.  Here we read the output file again to find the
185       // PC values.  Then we sort the list and write it out.
186
187       Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188       this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189                                                 &fde_addresses);
190
191       std::sort(fde_addresses.begin(), fde_addresses.end(),
192                 Fde_address_compare<size>());
193
194       typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195       output_address = this->address();
196
197       unsigned char* pfde = oview + 12;
198       for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199            p != fde_addresses.end();
200            ++p)
201         {
202           elfcpp::Swap<32, big_endian>::writeval(pfde,
203                                                  p->first - output_address);
204           elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205                                                  p->second - output_address);
206           pfde += 8;
207         }
208
209       gold_assert(pfde - oview == oview_size);
210     }
211
212   of->write_output_view(off, oview_size, oview);
213 }
214
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
218 // FDE's PC.
219
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
222 Eh_frame_hdr::get_fde_pc(
223     typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224     const unsigned char* eh_frame_contents,
225     section_offset_type fde_offset,
226     unsigned char fde_encoding)
227 {
228   // The FDE starts with a 4 byte length and a 4 byte offset to the
229   // CIE.  The PC follows.
230   const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232   typename elfcpp::Elf_types<size>::Elf_Addr pc;
233   bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234   int pc_size = fde_encoding & 7;
235   if (pc_size == elfcpp::DW_EH_PE_absptr)
236     {
237       if (size == 32)
238         pc_size = elfcpp::DW_EH_PE_udata4;
239       else if (size == 64)
240         pc_size = elfcpp::DW_EH_PE_udata8;
241       else
242         gold_unreachable();
243     }
244
245   switch (pc_size)
246     {
247     case elfcpp::DW_EH_PE_udata2:
248       pc = elfcpp::Swap<16, big_endian>::readval(p);
249       if (is_signed)
250         pc = (pc ^ 0x8000) - 0x8000;
251       break;
252
253     case elfcpp::DW_EH_PE_udata4:
254       pc = elfcpp::Swap<32, big_endian>::readval(p);
255       if (size > 32 && is_signed)
256         pc = (pc ^ 0x80000000) - 0x80000000;
257       break;
258
259     case elfcpp::DW_EH_PE_udata8:
260       gold_assert(size == 64);
261       pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262       break;
263
264     default:
265       // All other cases were rejected in Eh_frame::read_cie.
266       gold_unreachable();
267     }
268
269   switch (fde_encoding & 0xf0)
270     {
271     case 0:
272       break;
273
274     case elfcpp::DW_EH_PE_pcrel:
275       pc += eh_frame_address + fde_offset + 8;
276       break;
277
278     default:
279       // If other cases arise, then we have to handle them, or we have
280       // to reject them by returning false in Eh_frame::read_cie.
281       gold_unreachable();
282     }
283
284   return pc;
285 }
286
287 // Given an array of FDE offsets in the .eh_frame section, return an
288 // array of offsets from the exception frame header to the FDE's
289 // output PC and to the output address of the FDE itself.  We get the
290 // FDE's PC by actually looking in the .eh_frame section we just wrote
291 // to the output file.
292
293 template<int size, bool big_endian>
294 void
295 Eh_frame_hdr::get_fde_addresses(Output_file* of,
296                                 const Fde_offsets* fde_offsets,
297                                 Fde_addresses<size>* fde_addresses)
298 {
299   typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
300   eh_frame_address = this->eh_frame_section_->address();
301   off_t eh_frame_offset = this->eh_frame_section_->offset();
302   off_t eh_frame_size = this->eh_frame_section_->data_size();
303   const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
304                                                               eh_frame_size);
305
306   for (Fde_offsets::const_iterator p = fde_offsets->begin();
307        p != fde_offsets->end();
308        ++p)
309     {
310       typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
311       fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
312                                                   eh_frame_contents,
313                                                   p->first, p->second);
314       fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
315     }
316
317   of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
318 }
319
320 // Class Fde.
321
322 // Write the FDE to OVIEW starting at OFFSET.  CIE_OFFSET is the
323 // offset of the CIE in OVIEW.  FDE_ENCODING is the encoding, from the
324 // CIE.  ADDRALIGN is the required alignment.  Record the FDE pc for
325 // EH_FRAME_HDR.  Return the new offset.
326
327 template<int size, bool big_endian>
328 section_offset_type
329 Fde::write(unsigned char* oview, section_offset_type offset,
330            unsigned int addralign, section_offset_type cie_offset,
331            unsigned char fde_encoding, Eh_frame_hdr* eh_frame_hdr)
332 {
333   gold_assert((offset & (addralign - 1)) == 0);
334
335   size_t length = this->contents_.length();
336
337   // We add 8 when getting the aligned length to account for the
338   // length word and the CIE offset.
339   size_t aligned_full_length = align_address(length + 8, addralign);
340
341   // Write the length of the FDE as a 32-bit word.  The length word
342   // does not include the four bytes of the length word itself, but it
343   // does include the offset to the CIE.
344   elfcpp::Swap<32, big_endian>::writeval(oview + offset,
345                                          aligned_full_length - 4);
346
347   // Write the offset to the CIE as a 32-bit word.  This is the
348   // difference between the address of the offset word itself and the
349   // CIE address.
350   elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
351                                          offset + 4 - cie_offset);
352
353   // Copy the rest of the FDE.  Note that this is run before
354   // relocation processing is done on this section, so the relocations
355   // will later be applied to the FDE data.
356   memcpy(oview + offset + 8, this->contents_.data(), length);
357
358   if (aligned_full_length > length + 8)
359     memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
360
361   // Tell the exception frame header about this FDE.
362   if (eh_frame_hdr != NULL)
363     eh_frame_hdr->record_fde(offset, fde_encoding);
364
365   return offset + aligned_full_length;
366 }
367
368 // Class Cie.
369
370 // Destructor.
371
372 Cie::~Cie()
373 {
374   for (std::vector<Fde*>::iterator p = this->fdes_.begin();
375        p != this->fdes_.end();
376        ++p)
377     delete *p;
378 }
379
380 // Set the output offset of a CIE.  Return the new output offset.
381
382 section_offset_type
383 Cie::set_output_offset(section_offset_type output_offset,
384                        unsigned int addralign,
385                        Merge_map* merge_map)
386 {
387   size_t length = this->contents_.length();
388
389   // Add 4 for length and 4 for zero CIE identifier tag.
390   length += 8;
391
392   merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
393                          length, output_offset);
394
395   length = align_address(length, addralign);
396
397   for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
398        p != this->fdes_.end();
399        ++p)
400     {
401       (*p)->add_mapping(output_offset + length, merge_map);
402
403       size_t fde_length = (*p)->length();
404       fde_length = align_address(fde_length, addralign);
405       length += fde_length;
406     }
407
408   return output_offset + length;
409 }
410
411 // Write the CIE to OVIEW starting at OFFSET.  EH_FRAME_HDR is for FDE
412 // recording.  Round up the bytes to ADDRALIGN.  Return the new
413 // offset.
414
415 template<int size, bool big_endian>
416 section_offset_type
417 Cie::write(unsigned char* oview, section_offset_type offset,
418            unsigned int addralign, Eh_frame_hdr* eh_frame_hdr)
419 {
420   gold_assert((offset & (addralign - 1)) == 0);
421
422   section_offset_type cie_offset = offset;
423
424   size_t length = this->contents_.length();
425
426   // We add 8 when getting the aligned length to account for the
427   // length word and the CIE tag.
428   size_t aligned_full_length = align_address(length + 8, addralign);
429
430   // Write the length of the CIE as a 32-bit word.  The length word
431   // does not include the four bytes of the length word itself.
432   elfcpp::Swap<32, big_endian>::writeval(oview + offset,
433                                          aligned_full_length - 4);
434
435   // Write the tag which marks this as a CIE: a 32-bit zero.
436   elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
437
438   // Write out the CIE data.
439   memcpy(oview + offset + 8, this->contents_.data(), length);
440
441   if (aligned_full_length > length + 8)
442     memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
443
444   offset += aligned_full_length;
445
446   // Write out the associated FDEs.
447   unsigned char fde_encoding = this->fde_encoding_;
448   for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
449        p != this->fdes_.end();
450        ++p)
451     offset = (*p)->write<size, big_endian>(oview, offset, addralign,
452                                            cie_offset, fde_encoding,
453                                            eh_frame_hdr);
454
455   return offset;
456 }
457
458 // We track all the CIEs we see, and merge them when possible.  This
459 // works because each FDE holds an offset to the relevant CIE: we
460 // rewrite the FDEs to point to the merged CIE.  This is worthwhile
461 // because in a typical C++ program many FDEs in many different object
462 // files will use the same CIE.
463
464 // An equality operator for Cie.
465
466 bool
467 operator==(const Cie& cie1, const Cie& cie2)
468 {
469   return (cie1.personality_name_ == cie2.personality_name_
470           && cie1.contents_ == cie2.contents_);
471 }
472
473 // A less-than operator for Cie.
474
475 bool
476 operator<(const Cie& cie1, const Cie& cie2)
477 {
478   if (cie1.personality_name_ != cie2.personality_name_)
479     return cie1.personality_name_ < cie2.personality_name_;
480   return cie1.contents_ < cie2.contents_;
481 }
482
483 // Class Eh_frame.
484
485 Eh_frame::Eh_frame()
486   : Output_section_data(Output_data::default_alignment()),
487     eh_frame_hdr_(NULL),
488     cie_offsets_(),
489     unmergeable_cie_offsets_(),
490     merge_map_(),
491     mappings_are_done_(false),
492     final_data_size_(0)
493 {
494 }
495
496 // Skip an LEB128, updating *PP to point to the next character.
497 // Return false if we ran off the end of the string.
498
499 bool
500 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
501 {
502   const unsigned char* p;
503   for (p = *pp; p < pend; ++p)
504     {
505       if ((*p & 0x80) == 0)
506         {
507           *pp = p + 1;
508           return true;
509         }
510     }
511   return false;
512 }
513
514 // Add input section SHNDX in OBJECT to an exception frame section.
515 // SYMBOLS is the contents of the symbol table section (size
516 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
517 // SYMBOL_NAMES_SIZE).  RELOC_SHNDX is the index of a relocation
518 // section applying to SHNDX, or 0 if none, or -1U if more than one.
519 // RELOC_TYPE is the type of the reloc section if there is one, either
520 // SHT_REL or SHT_RELA.  We try to parse the input exception frame
521 // data into our data structures.  If we can't do it, we return false
522 // to mean that the section should be handled as a normal input
523 // section.
524
525 template<int size, bool big_endian>
526 bool
527 Eh_frame::add_ehframe_input_section(
528     Sized_relobj<size, big_endian>* object,
529     const unsigned char* symbols,
530     section_size_type symbols_size,
531     const unsigned char* symbol_names,
532     section_size_type symbol_names_size,
533     unsigned int shndx,
534     unsigned int reloc_shndx,
535     unsigned int reloc_type)
536 {
537   // Get the section contents.
538   section_size_type contents_len;
539   const unsigned char* pcontents = object->section_contents(shndx,
540                                                             &contents_len,
541                                                             false);
542   if (contents_len == 0)
543     return false;
544
545   // If this is the marker section for the end of the data, then
546   // return false to force it to be handled as an ordinary input
547   // section.  If we don't do this, we won't correctly handle the case
548   // of unrecognized .eh_frame sections.
549   if (contents_len == 4
550       && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
551     return false;
552
553   New_cies new_cies;
554   if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
555                                           symbol_names, symbol_names_size,
556                                           shndx, reloc_shndx,
557                                           reloc_type, pcontents,
558                                           contents_len, &new_cies))
559     {
560       if (this->eh_frame_hdr_ != NULL)
561         this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
562
563       for (New_cies::iterator p = new_cies.begin();
564            p != new_cies.end();
565            ++p)
566         delete p->first;
567
568       return false;
569     }
570
571   // Now that we know we are using this section, record any new CIEs
572   // that we found.
573   for (New_cies::const_iterator p = new_cies.begin();
574        p != new_cies.end();
575        ++p)
576     {
577       if (p->second)
578         this->cie_offsets_.insert(p->first);
579       else
580         this->unmergeable_cie_offsets_.push_back(p->first);
581     }
582
583   return true;
584 }
585
586 // The bulk of the implementation of add_ehframe_input_section.
587
588 template<int size, bool big_endian>
589 bool
590 Eh_frame::do_add_ehframe_input_section(
591     Sized_relobj<size, big_endian>* object,
592     const unsigned char* symbols,
593     section_size_type symbols_size,
594     const unsigned char* symbol_names,
595     section_size_type symbol_names_size,
596     unsigned int shndx,
597     unsigned int reloc_shndx,
598     unsigned int reloc_type,
599     const unsigned char* pcontents,
600     section_size_type contents_len,
601     New_cies* new_cies)
602 {
603   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
604   Track_relocs<size, big_endian> relocs;
605
606   const unsigned char* p = pcontents;
607   const unsigned char* pend = p + contents_len;
608
609   // Get the contents of the reloc section if any.
610   if (!relocs.initialize(object, reloc_shndx, reloc_type))
611     return false;
612
613   // Keep track of which CIEs are at which offsets.
614   Offsets_to_cie cies;
615
616   while (p < pend)
617     {
618       if (pend - p < 4)
619         return false;
620
621       // There shouldn't be any relocations here.
622       if (relocs.advance(p + 4 - pcontents) > 0)
623         return false;
624
625       unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
626       p += 4;
627       if (len == 0)
628         {
629           // We should only find a zero-length entry at the end of the
630           // section.
631           if (p < pend)
632             return false;
633           break;
634         }
635       // We don't support a 64-bit .eh_frame.
636       if (len == 0xffffffff)
637         return false;
638       if (static_cast<unsigned int>(pend - p) < len)
639         return false;
640
641       const unsigned char* const pentend = p + len;
642
643       if (pend - p < 4)
644         return false;
645       if (relocs.advance(p + 4 - pcontents) > 0)
646         return false;
647
648       unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
649       p += 4;
650
651       if (id == 0)
652         {
653           // CIE.
654           if (!this->read_cie(object, shndx, symbols, symbols_size,
655                               symbol_names, symbol_names_size,
656                               pcontents, p, pentend, &relocs, &cies,
657                               new_cies))
658             return false;
659         }
660       else
661         {
662           // FDE.
663           if (!this->read_fde(object, shndx, symbols, symbols_size,
664                               pcontents, id, p, pentend, &relocs, &cies))
665             return false;
666         }
667
668       p = pentend;
669     }
670
671   return true;
672 }
673
674 // Read a CIE.  Return false if we can't parse the information.
675
676 template<int size, bool big_endian>
677 bool
678 Eh_frame::read_cie(Sized_relobj<size, big_endian>* object,
679                    unsigned int shndx,
680                    const unsigned char* symbols,
681                    section_size_type symbols_size,
682                    const unsigned char* symbol_names,
683                    section_size_type symbol_names_size,
684                    const unsigned char* pcontents,
685                    const unsigned char* pcie,
686                    const unsigned char *pcieend,
687                    Track_relocs<size, big_endian>* relocs,
688                    Offsets_to_cie* cies,
689                    New_cies* new_cies)
690 {
691   bool mergeable = true;
692
693   // We need to find the personality routine if there is one, since we
694   // can only merge CIEs which use the same routine.  We also need to
695   // find the FDE encoding if there is one, so that we can read the PC
696   // from the FDE.
697
698   const unsigned char* p = pcie;
699
700   if (pcieend - p < 1)
701     return false;
702   unsigned char version = *p++;
703   if (version != 1 && version != 3)
704     return false;
705
706   const unsigned char* paug = p;
707   const void* paugendv = memchr(p, '\0', pcieend - p);
708   const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
709   if (paugend == NULL)
710     return false;
711   p = paugend + 1;
712
713   if (paug[0] == 'e' && paug[1] == 'h')
714     {
715       // This is a CIE from gcc before version 3.0.  We can't merge
716       // these.  We can still read the FDEs.
717       mergeable = false;
718       paug += 2;
719       if (*paug != '\0')
720         return false;
721       if (pcieend - p < size / 8)
722         return false;
723       p += size / 8;
724     }
725
726   // Skip the code alignment.
727   if (!skip_leb128(&p, pcieend))
728     return false;
729
730   // Skip the data alignment.
731   if (!skip_leb128(&p, pcieend))
732     return false;
733
734   // Skip the return column.
735   if (version == 1)
736     {
737       if (pcieend - p < 1)
738         return false;
739       ++p;
740     }
741   else
742     {
743       if (!skip_leb128(&p, pcieend))
744         return false;
745     }
746
747   if (*paug == 'z')
748     {
749       ++paug;
750       // Skip the augmentation size.
751       if (!skip_leb128(&p, pcieend))
752         return false;
753     }
754
755   unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
756   int per_offset = -1;
757   while (*paug != '\0')
758     {
759       switch (*paug)
760         {
761         case 'L': // LSDA encoding.
762           if (pcieend - p < 1)
763             return false;
764           ++p;
765           break;
766
767         case 'R': // FDE encoding.
768           if (pcieend - p < 1)
769             return false;
770           fde_encoding = *p;
771           switch (fde_encoding & 7)
772             {
773             case elfcpp::DW_EH_PE_absptr:
774             case elfcpp::DW_EH_PE_udata2:
775             case elfcpp::DW_EH_PE_udata4:
776             case elfcpp::DW_EH_PE_udata8:
777               break;
778             default:
779               // We don't expect to see any other cases here, and
780               // we're not prepared to handle them.
781               return false;
782             }
783           ++p;
784           break;
785
786         case 'S':
787           break;
788
789         case 'P':
790           // Personality encoding.
791           {
792             if (pcieend - p < 1)
793               return false;
794             unsigned char per_encoding = *p;
795             ++p;
796
797             if ((per_encoding & 0x60) == 0x60)
798               return false;
799             unsigned int per_width;
800             switch (per_encoding & 7)
801               {
802               case elfcpp::DW_EH_PE_udata2:
803                 per_width = 2;
804                 break;
805               case elfcpp::DW_EH_PE_udata4:
806                 per_width = 4;
807                 break;
808               case elfcpp::DW_EH_PE_udata8:
809                 per_width = 8;
810                 break;
811               case elfcpp::DW_EH_PE_absptr:
812                 per_width = size / 8;
813                 break;
814               default:
815                 return false;
816               }
817
818             if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
819               {
820                 unsigned int len = p - pcie;
821                 len += per_width - 1;
822                 len &= ~ (per_width - 1);
823                 if (static_cast<unsigned int>(pcieend - p) < len)
824                   return false;
825                 p += len;
826               }
827
828             per_offset = p - pcontents;
829
830             if (static_cast<unsigned int>(pcieend - p) < per_width)
831               return false;
832             p += per_width;
833           }
834           break;
835
836         default:
837           return false;
838         }
839
840       ++paug;
841     }
842
843   const char* personality_name = "";
844   if (per_offset != -1)
845     {
846       if (relocs->advance(per_offset) > 0)
847         return false;
848       if (relocs->next_offset() != per_offset)
849         return false;
850
851       unsigned int personality_symndx = relocs->next_symndx();
852       if (personality_symndx == -1U)
853         return false;
854
855       if (personality_symndx < object->local_symbol_count())
856         {
857           // We can only merge this CIE if the personality routine is
858           // a global symbol.  We can still read the FDEs.
859           mergeable = false;
860         }
861       else
862         {
863           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
864           if (personality_symndx >= symbols_size / sym_size)
865             return false;
866           elfcpp::Sym<size, big_endian> sym(symbols
867                                             + (personality_symndx * sym_size));
868           unsigned int name_offset = sym.get_st_name();
869           if (name_offset >= symbol_names_size)
870             return false;
871           personality_name = (reinterpret_cast<const char*>(symbol_names)
872                               + name_offset);
873         }
874
875       int r = relocs->advance(per_offset + 1);
876       gold_assert(r == 1);
877     }
878
879   if (relocs->advance(pcieend - pcontents) > 0)
880     return false;
881
882   Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding, 
883           personality_name, pcie, pcieend - pcie);
884   Cie* cie_pointer = NULL;
885   if (mergeable)
886     {
887       Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
888       if (find_cie != this->cie_offsets_.end())
889         cie_pointer = *find_cie;
890       else
891         {
892           // See if we already saw this CIE in this object file.
893           for (New_cies::const_iterator pc = new_cies->begin();
894                pc != new_cies->end();
895                ++pc)
896             {
897               if (*(pc->first) == cie)
898                 {
899                   cie_pointer = pc->first;
900                   break;
901                 }
902             }
903         }
904     }
905
906   if (cie_pointer == NULL)
907     {
908       cie_pointer = new Cie(cie);
909       new_cies->push_back(std::make_pair(cie_pointer, mergeable));
910     }
911   else
912     {
913       // We are deleting this CIE.  Record that in our mapping from
914       // input sections to the output section.  At this point we don't
915       // know for sure that we are doing a special mapping for this
916       // input section, but that's OK--if we don't do a special
917       // mapping, nobody will ever ask for the mapping we add here.
918       this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
919                                    pcieend - (pcie - 8), -1);
920     }
921
922   // Record this CIE plus the offset in the input section.
923   cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
924
925   return true;
926 }
927
928 // Read an FDE.  Return false if we can't parse the information.
929
930 template<int size, bool big_endian>
931 bool
932 Eh_frame::read_fde(Sized_relobj<size, big_endian>* object,
933                    unsigned int shndx,
934                    const unsigned char* symbols,
935                    section_size_type symbols_size,
936                    const unsigned char* pcontents,
937                    unsigned int offset,
938                    const unsigned char* pfde,
939                    const unsigned char *pfdeend,
940                    Track_relocs<size, big_endian>* relocs,
941                    Offsets_to_cie* cies)
942 {
943   // OFFSET is the distance between the 4 bytes before PFDE to the
944   // start of the CIE.  The offset we recorded for the CIE is 8 bytes
945   // after the start of the CIE--after the length and the zero tag.
946   unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
947   Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
948   if (pcie == cies->end())
949     return false;
950   Cie* cie = pcie->second;
951
952   // The FDE should start with a reloc to the start of the code which
953   // it describes.
954   if (relocs->advance(pfde - pcontents) > 0)
955     return false;
956
957   if (relocs->next_offset() != pfde - pcontents)
958     return false;
959
960   unsigned int symndx = relocs->next_symndx();
961   if (symndx == -1U)
962     return false;
963
964   // There can be another reloc in the FDE, if the CIE specifies an
965   // LSDA (language specific data area).  We currently don't care.  We
966   // will care later if we want to optimize the LSDA from an absolute
967   // pointer to a PC relative offset when generating a shared library.
968   relocs->advance(pfdeend - pcontents);
969
970   unsigned int fde_shndx;
971   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
972   if (symndx >= symbols_size / sym_size)
973     return false;
974   elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
975   bool is_ordinary;
976   fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
977                                        &is_ordinary);
978
979   if (is_ordinary
980       && fde_shndx != elfcpp::SHN_UNDEF
981       && fde_shndx < object->shnum()
982       && !object->is_section_included(fde_shndx))
983     {
984       // This FDE applies to a section which we are discarding.  We
985       // can discard this FDE.
986       this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
987                                    pfdeend - (pfde - 8), -1);
988       return true;
989     }
990
991   cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
992                        pfde, pfdeend - pfde));
993
994   return true;
995 }
996
997 // Return the number of FDEs.
998
999 unsigned int
1000 Eh_frame::fde_count() const
1001 {
1002   unsigned int ret = 0;
1003   for (Unmergeable_cie_offsets::const_iterator p =
1004          this->unmergeable_cie_offsets_.begin();
1005        p != this->unmergeable_cie_offsets_.end();
1006        ++p)
1007     ret += (*p)->fde_count();
1008   for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1009        p != this->cie_offsets_.end();
1010        ++p)
1011     ret += (*p)->fde_count();
1012   return ret;
1013 }
1014
1015 // Set the final data size.
1016
1017 void
1018 Eh_frame::set_final_data_size()
1019 {
1020   // We can be called more than once if Layout::set_segment_offsets
1021   // finds a better mapping.  We don't want to add all the mappings
1022   // again.
1023   if (this->mappings_are_done_)
1024     {
1025       this->set_data_size(this->final_data_size_);
1026       return;
1027     }
1028
1029   section_offset_type output_offset = 0;
1030
1031   for (Unmergeable_cie_offsets::iterator p =
1032          this->unmergeable_cie_offsets_.begin();
1033        p != this->unmergeable_cie_offsets_.end();
1034        ++p)
1035     output_offset = (*p)->set_output_offset(output_offset,
1036                                             this->addralign(),
1037                                             &this->merge_map_);
1038
1039   for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1040        p != this->cie_offsets_.end();
1041        ++p)
1042     output_offset = (*p)->set_output_offset(output_offset,
1043                                             this->addralign(),
1044                                             &this->merge_map_);
1045
1046   this->mappings_are_done_ = true;
1047   this->final_data_size_ = output_offset;
1048
1049   gold_assert((output_offset & (this->addralign() - 1)) == 0);
1050   this->set_data_size(output_offset);
1051 }
1052
1053 // Return an output offset for an input offset.
1054
1055 bool
1056 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1057                            section_offset_type offset,
1058                            section_offset_type* poutput) const
1059 {
1060   return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1061 }
1062
1063 // Return whether this is the merge section for an input section.
1064
1065 bool
1066 Eh_frame::do_is_merge_section_for(const Relobj* object,
1067                                   unsigned int shndx) const
1068 {
1069   return this->merge_map_.is_merge_section_for(object, shndx);
1070 }
1071
1072 // Write the data to the output file.
1073
1074 void
1075 Eh_frame::do_write(Output_file* of)
1076 {
1077   const off_t offset = this->offset();
1078   const off_t oview_size = this->data_size();
1079   unsigned char* const oview = of->get_output_view(offset, oview_size);
1080
1081   switch (parameters->size_and_endianness())
1082     {
1083 #ifdef HAVE_TARGET_32_LITTLE
1084     case Parameters::TARGET_32_LITTLE:
1085       this->do_sized_write<32, false>(oview);
1086       break;
1087 #endif
1088 #ifdef HAVE_TARGET_32_BIG
1089     case Parameters::TARGET_32_BIG:
1090       this->do_sized_write<32, true>(oview);
1091       break;
1092 #endif
1093 #ifdef HAVE_TARGET_64_LITTLE
1094     case Parameters::TARGET_64_LITTLE:
1095       this->do_sized_write<64, false>(oview);
1096       break;
1097 #endif
1098 #ifdef HAVE_TARGET_64_BIG
1099     case Parameters::TARGET_64_BIG:
1100       this->do_sized_write<64, true>(oview);
1101       break;
1102 #endif
1103     default:
1104       gold_unreachable();
1105     }
1106
1107   of->write_output_view(offset, oview_size, oview);
1108 }
1109
1110 // Write the data to the output file--template version.
1111
1112 template<int size, bool big_endian>
1113 void
1114 Eh_frame::do_sized_write(unsigned char* oview)
1115 {
1116   unsigned int addralign = this->addralign();
1117   section_offset_type o = 0;
1118   for (Unmergeable_cie_offsets::iterator p =
1119          this->unmergeable_cie_offsets_.begin();
1120        p != this->unmergeable_cie_offsets_.end();
1121        ++p)
1122     o = (*p)->write<size, big_endian>(oview, o, addralign,
1123                                       this->eh_frame_hdr_);
1124   for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1125        p != this->cie_offsets_.end();
1126        ++p)
1127     o = (*p)->write<size, big_endian>(oview, o, addralign,
1128                                       this->eh_frame_hdr_);
1129 }
1130
1131 #ifdef HAVE_TARGET_32_LITTLE
1132 template
1133 bool
1134 Eh_frame::add_ehframe_input_section<32, false>(
1135     Sized_relobj<32, false>* object,
1136     const unsigned char* symbols,
1137     section_size_type symbols_size,
1138     const unsigned char* symbol_names,
1139     section_size_type symbol_names_size,
1140     unsigned int shndx,
1141     unsigned int reloc_shndx,
1142     unsigned int reloc_type);
1143 #endif
1144
1145 #ifdef HAVE_TARGET_32_BIG
1146 template
1147 bool
1148 Eh_frame::add_ehframe_input_section<32, true>(
1149     Sized_relobj<32, true>* object,
1150     const unsigned char* symbols,
1151     section_size_type symbols_size,
1152     const unsigned char* symbol_names,
1153     section_size_type symbol_names_size,
1154     unsigned int shndx,
1155     unsigned int reloc_shndx,
1156     unsigned int reloc_type);
1157 #endif
1158
1159 #ifdef HAVE_TARGET_64_LITTLE
1160 template
1161 bool
1162 Eh_frame::add_ehframe_input_section<64, false>(
1163     Sized_relobj<64, false>* object,
1164     const unsigned char* symbols,
1165     section_size_type symbols_size,
1166     const unsigned char* symbol_names,
1167     section_size_type symbol_names_size,
1168     unsigned int shndx,
1169     unsigned int reloc_shndx,
1170     unsigned int reloc_type);
1171 #endif
1172
1173 #ifdef HAVE_TARGET_64_BIG
1174 template
1175 bool
1176 Eh_frame::add_ehframe_input_section<64, true>(
1177     Sized_relobj<64, true>* object,
1178     const unsigned char* symbols,
1179     section_size_type symbols_size,
1180     const unsigned char* symbol_names,
1181     section_size_type symbol_names_size,
1182     unsigned int shndx,
1183     unsigned int reloc_shndx,
1184     unsigned int reloc_type);
1185 #endif
1186
1187 } // End namespace gold.