Initial import from FreeBSD RELENG_4:
[dragonfly.git] / contrib / libstdc++ / tests / tcomplex.cc
1 // Tests for the -*- C++ -*- complex number classes.
2 // Copyright (C) 1994 Free Software Foundation
3
4 // This file is part of the GNU ANSI C++ Library.  This library is free
5 // software; you can redistribute it and/or modify it under the terms of
6 // the GNU General Public License as published by the Free Software
7 // Foundation; either version 2, or (at your option) any later version.
8
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 // GNU General Public License for more details.
13
14 // You should have received a copy of the GNU General Public License
15 // along with this library; see the file COPYING.  If not, write to the Free
16 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18 #include <assert.h>
19 #include <iostream.h>
20 #include <complex>
21
22 // to test near-equality
23
24 const double eps = 0.000001;
25
26 static void close_enough(const double_complex& a, const double_complex& b)
27 {
28   assert(fabs(real(a) - real(b)) < eps &&
29          fabs(imag(a) - imag(b)) < eps);
30 }
31
32
33 void test3(double_complex& a, double_complex& b, double_complex& c)
34 {
35
36   close_enough(-(-a) , a);
37   close_enough((a + b) ,  (b + a));
38   close_enough((a + (-b)) ,  (a - b));
39   close_enough((a * b) ,  (b * a));
40   close_enough((a * (-b)) , -(a * b));
41   close_enough((a / (-b)) , -(a / b));
42   close_enough((a - b) ,  -(b - a));
43   close_enough((a + (b + c)) , ((a + b) + c));
44   close_enough((a * (b * c)) , ((a * b) * c));
45   close_enough((a * (b + c)) , ((a * b) + (a * c)));
46   close_enough(((a - b) + b) , a);
47   close_enough(((a + b) - b) , a);
48   close_enough(((a * b) / b) , a);
49   close_enough(((a / b) * b) , a);
50
51
52   double_complex x = a;
53   x *= b;
54   close_enough(x , (a * b));
55   x += c;
56   close_enough(x , ((a * b) + c));
57   x -= a;
58   close_enough(x , (((a * b) + c) - a));
59   x /= b;
60   close_enough(x , ((((a * b) + c) - a) / b));
61
62 }
63
64 main()
65 {
66   double_complex one = 1.0;
67   double_complex i (0.0, 1.0);
68   double_complex neg_one = -1.0;
69
70   cout << "double_complex one = " << one << "\n";
71   cout << "i = " << i << "\n";
72   cout << "neg_one = " << neg_one << "\n";
73   cout << "sqrt(neg_one) = " << sqrt(neg_one) << "\n";
74
75   double_complex a (2.0, 3.0);
76   double_complex b (4.0, 5.0);
77
78   cout << "a = " << a << "\n";
79   cout << "b = " << b << "\n";
80
81   cout << "a + one = " << (a + one) << "\n";
82   (close_enough((a+one), double_complex(3.0, 3.0)));
83   cout << "a - one = " << (a - one) << "\n";
84   (close_enough((a-one), double_complex(1.0, 3.0)));
85   cout << "a * one = " << (a * one) << "\n";
86   (close_enough((a*one), a));
87   cout << "a / one = " << (a / one) << "\n";
88   (close_enough((a/one), a));
89
90   cout << "a + b = " << (a + b) << "\n";
91   (close_enough((a+b), double_complex(6.0, 8.0)));
92   cout << "a - b = " << (a - b) << "\n";
93   (close_enough((a-b), double_complex(-2.0, -2.0)));
94   cout << "a * b = " << (a * b) << "\n";
95   (close_enough((a*b), double_complex(-7.0, 22.0)));
96   cout << "a / b = " << (a / b) << "\n";
97   (close_enough((a/b), double_complex(0.5609760976, 0.0487804878)));
98
99   double_complex c;
100
101   c = a; cout << "c = a; c += b = " << (c += b) << "\n";
102   c = a; cout << "c = a; c -= b = " << (c -= b) << "\n";
103   c = a; cout << "c = a; c *= b = " << (c *= b) << "\n";
104   c = a; cout << "c = a; c /= b = " << (c /= b) << "\n";
105
106   cout << "-a = " << (-a) << "\n";
107   cout << "real(a) = " << real(a) << "\n";
108   assert(real(a) == 2.0);
109   cout << "imag(a) = " << imag(a) << "\n";
110   assert(imag(a) == 3.0);
111   cout << "conj(a) = " << conj(a) << "\n";
112   assert(conj(a) == double_complex(2.0, -3.0));
113   cout << "norm(a) = " << norm(a) << "\n";
114   assert(norm(a) == 13.0);
115
116   cout << "abs(a) = " << abs(a) << "\n";
117   cout << "arg(a) = " << arg(a) << "\n";
118   cout << "cos(a) = " << cos(a) << "\n";
119   cout << "sin(a) = " << sin(a) << "\n";
120   cout << "cosh(a) = " << cosh(a) << "\n";
121   cout << "sinh(a) = " << sinh(a) << "\n";
122   cout << "log(a) = " << log(a) << "\n";
123   cout << "exp(a) = " << exp(a) << "\n";
124   cout << "sqrt(a) = " << sqrt(a) << "\n";
125   cout << "pow(a, 2) = " << pow(a, 2) << "\n";
126   {
127      double_complex p = pow(a, b);
128      if(sizeof(float)==sizeof(double)) {
129         long w = (long)(p.imag()*100000);
130         if (w==-98642)
131            p=double_complex(-0.753046,-0.986429);
132      }
133      cout << "pow(a, b) = " << p << "\n";
134   }
135
136   double_complex d (10, 20);
137   double_complex e = pow(a, 2);
138  
139   test3(one, one, one);
140   test3(a, a, a);
141   test3(a, b, d);
142   test3(e, i, b);
143   test3(d, d, i);
144
145   cout << "enter a complex number in form a or (a) or (a, b): ";
146   cin >> c;
147   cout << "number = " << c << "\n";
148
149   cout << "\nEnd of test\n";
150   return 0;
151 }