Initial import from FreeBSD RELENG_4:
[dragonfly.git] / share / man / man4 / netgraph.4
1 .\" Copyright (c) 1996-1999 Whistle Communications, Inc.
2 .\" All rights reserved.
3 .\"
4 .\" Subject to the following obligations and disclaimer of warranty, use and
5 .\" redistribution of this software, in source or object code forms, with or
6 .\" without modifications are expressly permitted by Whistle Communications;
7 .\" provided, however, that:
8 .\" 1. Any and all reproductions of the source or object code must include the
9 .\"    copyright notice above and the following disclaimer of warranties; and
10 .\" 2. No rights are granted, in any manner or form, to use Whistle
11 .\"    Communications, Inc. trademarks, including the mark "WHISTLE
12 .\"    COMMUNICATIONS" on advertising, endorsements, or otherwise except as
13 .\"    such appears in the above copyright notice or in the software.
14 .\"
15 .\" THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND
16 .\" TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO
17 .\" REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE,
18 .\" INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF
19 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
20 .\" WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
21 .\" REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS
22 .\" SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE.
23 .\" IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES
24 .\" RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING
25 .\" WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
26 .\" PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR
27 .\" SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY
28 .\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 .\" THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY
31 .\" OF SUCH DAMAGE.
32 .\"
33 .\" Authors: Julian Elischer <julian@FreeBSD.org>
34 .\"          Archie Cobbs <archie@FreeBSD.org>
35 .\"
36 .\" $FreeBSD: src/share/man/man4/netgraph.4,v 1.39.2.1 2001/12/21 09:00:50 ru Exp $
37 .\" $Whistle: netgraph.4,v 1.7 1999/01/28 23:54:52 julian Exp $
38 .\"
39 .Dd January 19, 1999
40 .Dt NETGRAPH 4
41 .Os
42 .Sh NAME
43 .Nm netgraph
44 .Nd graph based kernel networking subsystem
45 .Sh DESCRIPTION
46 The
47 .Nm
48 system provides a uniform and modular system for the implementation
49 of kernel objects which perform various networking functions. The objects,
50 known as
51 .Em nodes ,
52 can be arranged into arbitrarily complicated graphs. Nodes have
53 .Em hooks
54 which are used to connect two nodes together, forming the edges in the graph.
55 Nodes communicate along the edges to process data, implement protocols, etc.
56 .Pp
57 The aim of
58 .Nm
59 is to supplement rather than replace the existing kernel networking
60 infrastructure.  It provides:
61 .Pp
62 .Bl -bullet -compact -offset 2n
63 .It
64 A flexible way of combining protocol and link level drivers
65 .It
66 A modular way to implement new protocols
67 .It
68 A common framework for kernel entities to inter-communicate
69 .It
70 A reasonably fast, kernel-based implementation
71 .El
72 .Sh Nodes and Types
73 The most fundamental concept in
74 .Nm
75 is that of a
76 .Em node .
77 All nodes implement a number of predefined methods which allow them
78 to interact with other nodes in a well defined manner.
79 .Pp
80 Each node has a
81 .Em type ,
82 which is a static property of the node determined at node creation time.
83 A node's type is described by a unique
84 .Tn ASCII
85 type name.
86 The type implies what the node does and how it may be connected
87 to other nodes.
88 .Pp
89 In object-oriented language, types are classes and nodes are instances
90 of their respective class. All node types are subclasses of the generic node
91 type, and hence inherit certain common functionality and capabilities
92 (e.g., the ability to have an
93 .Tn ASCII
94 name).
95 .Pp
96 Nodes may be assigned a globally unique
97 .Tn ASCII
98 name which can be
99 used to refer to the node.
100 The name must not contain the characters
101 .Dq .\&
102 or
103 .Dq \&:
104 and is limited to
105 .Dv "NG_NODELEN + 1"
106 characters (including NUL byte).
107 .Pp
108 Each node instance has a unique
109 .Em ID number
110 which is expressed as a 32-bit hex value. This value may be used to
111 refer to a node when there is no
112 .Tn ASCII
113 name assigned to it.
114 .Sh Hooks
115 Nodes are connected to other nodes by connecting a pair of
116 .Em hooks ,
117 one from each node. Data flows bidirectionally between nodes along
118 connected pairs of hooks.  A node may have as many hooks as it
119 needs, and may assign whatever meaning it wants to a hook.
120 .Pp
121 Hooks have these properties:
122 .Pp
123 .Bl -bullet -compact -offset 2n
124 .It
125 A hook has an
126 .Tn ASCII
127 name which is unique among all hooks
128 on that node (other hooks on other nodes may have the same name).
129 The name must not contain a
130 .Dq .\&
131 or a
132 .Dq \&:
133 and is
134 limited to
135 .Dv "NG_HOOKLEN + 1"
136 characters (including NUL byte).
137 .It
138 A hook is always connected to another hook. That is, hooks are
139 created at the time they are connected, and breaking an edge by
140 removing either hook destroys both hooks.
141 .El
142 .Pp
143 A node may decide to assign special meaning to some hooks.
144 For example, connecting to the hook named
145 .Dq debug
146 might trigger
147 the node to start sending debugging information to that hook.
148 .Sh Data Flow
149 Two types of information flow between nodes: data messages and
150 control messages. Data messages are passed in mbuf chains along the edges
151 in the graph, one edge at a time. The first mbuf in a chain must have the
152 .Dv M_PKTHDR
153 flag set. Each node decides how to handle data coming in on its hooks.
154 .Pp
155 Control messages are type-specific C structures sent from one node
156 directly to some arbitrary other node.  Control messages have a common
157 header format, followed by type-specific data, and are binary structures
158 for efficiency.  However, node types also may support conversion of the
159 type specific data between binary and
160 .Tn ASCII
161 for debugging and human interface purposes (see the
162 .Dv NGM_ASCII2BINARY
163 and
164 .Dv NGM_BINARY2ASCII
165 generic control messages below).  Nodes are not required to support
166 these conversions.
167 .Pp
168 There are two ways to address a control message. If
169 there is a sequence of edges connecting the two nodes, the message
170 may be
171 .Dq source routed
172 by specifying the corresponding sequence
173 of hooks as the destination address for the message (relative
174 addressing).  Otherwise, the recipient node global
175 .Tn ASCII
176 name
177 (or equivalent ID based name) is used as the destination address
178 for the message (absolute addressing).  The two types of addressing
179 may be combined, by specifying an absolute start node and a sequence
180 of hooks.
181 .Pp
182 Messages often represent commands that are followed by a reply message
183 in the reverse direction. To facilitate this, the recipient of a
184 control message is supplied with a
185 .Dq return address
186 that is suitable for addressing a reply.
187 .Pp
188 Each control message contains a 32 bit value called a
189 .Em typecookie
190 indicating the type of the message, i.e., how to interpret it.
191 Typically each type defines a unique typecookie for the messages
192 that it understands.  However, a node may choose to recognize and
193 implement more than one type of message.
194 .Sh Netgraph is Functional
195 In order to minimize latency, most
196 .Nm
197 operations are functional.
198 That is, data and control messages are delivered by making function
199 calls rather than by using queues and mailboxes.  For example, if node
200 A wishes to send a data mbuf to neighboring node B, it calls the
201 generic
202 .Nm
203 data delivery function. This function in turn locates
204 node B and calls B's
205 .Dq receive data
206 method. While this mode of operation
207 results in good performance, it has a few implications for node
208 developers:
209 .Pp
210 .Bl -bullet -compact -offset 2n
211 .It
212 Whenever a node delivers a data or control message, the node
213 may need to allow for the possibility of receiving a returning
214 message before the original delivery function call returns.
215 .It
216 Netgraph nodes and support routines generally run at
217 .Fn splnet .
218 However, some nodes may want to send data and control messages
219 from a different priority level. Netgraph supplies queueing routines which
220 utilize the NETISR system to move message delivery to
221 .Fn splnet .
222 Note that messages are always received at
223 .Fn splnet .
224 .It
225 It's possible for an infinite loop to occur if the graph contains cycles.
226 .El
227 .Pp
228 So far, these issues have not proven problematical in practice.
229 .Sh Interaction With Other Parts of the Kernel
230 A node may have a hidden interaction with other components of the
231 kernel outside of the
232 .Nm
233 subsystem, such as device hardware,
234 kernel protocol stacks, etc.  In fact, one of the benefits of
235 .Nm
236 is the ability to join disparate kernel networking entities together in a
237 consistent communication framework.
238 .Pp
239 An example is the node type
240 .Em socket
241 which is both a netgraph node and a
242 .Xr socket 2
243 .Bx
244 socket in the protocol family
245 .Dv PF_NETGRAPH .
246 Socket nodes allow user processes to participate in
247 .Nm .
248 Other nodes communicate with socket nodes using the usual methods, and the
249 node hides the fact that it is also passing information to and from a
250 cooperating user process.
251 .Pp
252 Another example is a device driver that presents
253 a node interface to the hardware.
254 .Sh Node Methods
255 Nodes are notified of the following actions via function calls
256 to the following node methods (all at
257 .Fn splnet )
258 and may accept or reject that action (by returning the appropriate
259 error code):
260 .Bl -tag -width xxx
261 .It Creation of a new node
262 The constructor for the type is called. If creation of a new node is
263 allowed, the constructor must call the generic node creation
264 function (in object-oriented terms, the superclass constructor)
265 and then allocate any special resources it needs. For nodes that
266 correspond to hardware, this is typically done during the device
267 attach routine. Often a global
268 .Tn ASCII
269 name corresponding to the
270 device name is assigned here as well.
271 .It Creation of a new hook
272 The hook is created and tentatively
273 linked to the node, and the node is told about the name that will be
274 used to describe this hook. The node sets up any special data structures
275 it needs, or may reject the connection, based on the name of the hook.
276 .It Successful connection of two hooks
277 After both ends have accepted their
278 hooks, and the links have been made, the nodes get a chance to
279 find out who their peer is across the link and can then decide to reject
280 the connection. Tear-down is automatic.
281 .It Destruction of a hook
282 The node is notified of a broken connection. The node may consider some hooks
283 to be critical to operation and others to be expendable: the disconnection
284 of one hook may be an acceptable event while for another it
285 may affect a total shutdown for the node.
286 .It Shutdown of a node
287 This method allows a node to clean up
288 and to ensure that any actions that need to be performed
289 at this time are taken. The method must call the generic (i.e., superclass)
290 node destructor to get rid of the generic components of the node.
291 Some nodes (usually associated with a piece of hardware) may be
292 .Em persistent
293 in that a shutdown breaks all edges and resets the node,
294 but doesn't remove it, in which case the generic destructor is not called.
295 .El
296 .Sh Sending and Receiving Data
297 Three other methods are also supported by all nodes:
298 .Bl -tag -width xxx
299 .It Receive data message
300 An mbuf chain is passed to the node.
301 The node is notified on which hook the data arrived,
302 and can use this information in its processing decision.
303 The node must must always
304 .Fn m_freem
305 the mbuf chain on completion or error, or pass it on to another node
306 (or kernel module) which will then be responsible for freeing it.
307 .Pp
308 In addition to the mbuf chain itself there is also a pointer to a
309 structure describing meta-data about the message
310 (e.g. priority information). This pointer may be
311 .Dv NULL
312 if there is no additional information. The format for this information is
313 described in
314 .Pa sys/netgraph/netgraph.h .
315 The memory for meta-data must allocated via
316 .Fn malloc
317 with type
318 .Dv M_NETGRAPH .
319 As with the data itself, it is the receiver's responsibility to
320 .Fn free
321 the meta-data. If the mbuf chain is freed the meta-data must
322 be freed at the same time. If the meta-data is freed but the
323 real data on is passed on, then a
324 .Dv NULL
325 pointer must be substituted.
326 .Pp
327 The receiving node may decide to defer the data by queueing it in the
328 .Nm
329 NETISR system (see below).
330 .Pp
331 The structure and use of meta-data is still experimental, but is
332 presently used in frame-relay to indicate that management packets
333 should be queued for transmission
334 at a higher priority than data packets. This is required for
335 conformance with Frame Relay standards.
336 .Pp
337 .It Receive queued data message
338 Usually this will be the same function as
339 .Em Receive data message.
340 This is the entry point called when a data message is being handed to
341 the node after having been queued in the NETISR system.
342 This allows a node to decide in the
343 .Em Receive data message
344 method that a message should be deferred and queued,
345 and be sure that when it is processed from the queue,
346 it will not be queued again.
347 .It Receive control message
348 This method is called when a control message is addressed to the node.
349 A return address is always supplied, giving the address of the node
350 that originated the message so a reply message can be sent anytime later.
351 .Pp
352 It is possible for a synchronous reply to be made, and in fact this
353 is more common in practice.
354 This is done by setting a pointer (supplied as an extra function parameter)
355 to point to the reply.
356 Then when the control message delivery function returns,
357 the caller can check if this pointer has been made non-NULL,
358 and if so then it points to the reply message allocated via
359 .Fn malloc
360 and containing the synchronous response. In both directions,
361 (request and response) it is up to the
362 receiver of that message to
363 .Fn free
364 the control message buffer. All control messages and replies are
365 allocated with
366 .Fn malloc
367 type
368 .Dv M_NETGRAPH .
369 .El
370 .Pp
371 Much use has been made of reference counts, so that nodes being
372 free'd of all references are automatically freed, and this behaviour
373 has been tested and debugged to present a consistent and trustworthy
374 framework for the
375 .Dq type module
376 writer to use.
377 .Sh Addressing
378 The
379 .Nm
380 framework provides an unambiguous and simple to use method of specifically
381 addressing any single node in the graph. The naming of a node is
382 independent of its type, in that another node, or external component
383 need not know anything about the node's type in order to address it so as
384 to send it a generic message type. Node and hook names should be
385 chosen so as to make addresses meaningful.
386 .Pp
387 Addresses are either absolute or relative. An absolute address begins
388 with a node name, (or ID), followed by a colon, followed by a sequence of hook
389 names separated by periods. This addresses the node reached by starting
390 at the named node and following the specified sequence of hooks.
391 A relative address includes only the sequence of hook names, implicitly
392 starting hook traversal at the local node.
393 .Pp
394 There are a couple of special possibilities for the node name.
395 The name
396 .Dq .\&
397 (referred to as
398 .Dq \&.: )
399 always refers to the local node.
400 Also, nodes that have no global name may be addressed by their ID numbers,
401 by enclosing the hex representation of the ID number within square brackets.
402 Here are some examples of valid netgraph addresses:
403 .Bd -literal -offset 4n -compact
404
405   .:
406   foo:
407   .:hook1
408   foo:hook1.hook2
409   [f057cd80]:hook1
410 .Ed
411 .Pp
412 Consider the following set of nodes might be created for a site with
413 a single physical frame relay line having two active logical DLCI channels,
414 with RFC-1490 frames on DLCI 16 and PPP frames over DLCI 20:
415 .Pp
416 .Bd -literal
417 [type SYNC ]                  [type FRAME]                 [type RFC1490]
418 [ "Frame1" ](uplink)<-->(data)[<un-named>](dlci16)<-->(mux)[<un-named>  ]
419 [    A     ]                  [    B     ](dlci20)<---+    [     C      ]
420                                                       |
421                                                       |      [ type PPP ]
422                                                       +>(mux)[<un-named>]
423                                                              [    D     ]
424 .Ed
425 .Pp
426 One could always send a control message to node C from anywhere
427 by using the name
428 .Em "Frame1:uplink.dlci16" .
429 Similarly,
430 .Em "Frame1:uplink.dlci20"
431 could reliably be used to reach node D, and node A could refer
432 to node B as
433 .Em ".:uplink" ,
434 or simply
435 .Em "uplink" .
436 Conversely, B can refer to A as
437 .Em "data" .
438 The address
439 .Em "mux.data"
440 could be used by both nodes C and D to address a message to node A.
441 .Pp
442 Note that this is only for
443 .Em control messages .
444 Data messages are routed one hop at a time, by specifying the departing
445 hook, with each node making the next routing decision. So when B
446 receives a frame on hook
447 .Em data
448 it decodes the frame relay header to determine the DLCI,
449 and then forwards the unwrapped frame to either C or D.
450 .Pp
451 A similar graph might be used to represent multi-link PPP running
452 over an ISDN line:
453 .Pp
454 .Bd -literal
455 [ type BRI ](B1)<--->(link1)[ type MPP  ]
456 [  "ISDN1" ](B2)<--->(link2)[ (no name) ]
457 [          ](D) <-+
458                   |
459  +----------------+
460  |
461  +->(switch)[ type Q.921 ](term1)<---->(datalink)[ type Q.931 ]
462             [ (no name)  ]                       [ (no name)  ]
463 .Ed
464 .Sh Netgraph Structures
465 Interesting members of the node and hook structures are shown below:
466 .Bd -literal
467 struct  ng_node {
468   char    *name;                /* Optional globally unique name */
469   void    *private;             /* Node implementation private info */
470   struct  ng_type *type;        /* The type of this node */
471   int     refs;                 /* Number of references to this struct */
472   int     numhooks;             /* Number of connected hooks */
473   hook_p  hooks;                /* Linked list of (connected) hooks */
474 };
475 typedef struct ng_node *node_p;
476
477 struct  ng_hook {
478   char           *name;         /* This node's name for this hook */
479   void           *private;      /* Node implementation private info */
480   int            refs;          /* Number of references to this struct */
481   struct ng_node *node;         /* The node this hook is attached to */
482   struct ng_hook *peer;         /* The other hook in this connected pair */
483   struct ng_hook *next;         /* Next in list of hooks for this node */
484 };
485 typedef struct ng_hook *hook_p;
486 .Ed
487 .Pp
488 The maintenance of the name pointers, reference counts, and linked list
489 of hooks for each node is handled automatically by the
490 .Nm
491 subsystem.
492 Typically a node's private info contains a back-pointer to the node or hook
493 structure, which counts as a new reference that must be registered by
494 incrementing
495 .Dv "node->refs" .
496 .Pp
497 From a hook you can obtain the corresponding node, and from
498 a node the list of all active hooks.
499 .Pp
500 Node types are described by these structures:
501 .Bd -literal
502 /** How to convert a control message from binary <-> ASCII */
503 struct ng_cmdlist {
504   u_int32_t                  cookie;     /* typecookie */
505   int                        cmd;        /* command number */
506   const char                 *name;      /* command name */
507   const struct ng_parse_type *mesgType;  /* args if !NGF_RESP */
508   const struct ng_parse_type *respType;  /* args if NGF_RESP */
509 };
510
511 struct ng_type {
512   u_int32_t version;                    /* Must equal NG_VERSION */
513   const  char *name;                    /* Unique type name */
514
515   /* Module event handler */
516   modeventhand_t  mod_event;            /* Handle load/unload (optional) */
517
518   /* Constructor */
519   int    (*constructor)(node_p *node);  /* Create a new node */
520
521   /** Methods using the node **/
522   int    (*rcvmsg)(node_p node,         /* Receive control message */
523             struct ng_mesg *msg,                /* The message */
524             const char *retaddr,                /* Return address */
525             struct ng_mesg **resp);             /* Synchronous response */
526   int    (*shutdown)(node_p node);      /* Shutdown this node */
527   int    (*newhook)(node_p node,        /* create a new hook */
528             hook_p hook,                        /* Pre-allocated struct */
529             const char *name);                  /* Name for new hook */
530
531   /** Methods using the hook **/
532   int    (*connect)(hook_p hook);       /* Confirm new hook attachment */
533   int    (*rcvdata)(hook_p hook,        /* Receive data on a hook */
534             struct mbuf *m,                     /* The data in an mbuf */
535             meta_p meta);                       /* Meta-data, if any */
536   int    (*disconnect)(hook_p hook);    /* Notify disconnection of hook */
537
538   /** How to convert control messages binary <-> ASCII */
539   const struct ng_cmdlist *cmdlist;     /* Optional; may be NULL */
540 };
541 .Ed
542 .Pp
543 Control messages have the following structure:
544 .Bd -literal
545 #define NG_CMDSTRLEN    15      /* Max command string (16 with null) */
546
547 struct ng_mesg {
548   struct ng_msghdr {
549     u_char      version;        /* Must equal NG_VERSION */
550     u_char      spare;          /* Pad to 2 bytes */
551     u_short     arglen;         /* Length of cmd/resp data */
552     u_long      flags;          /* Message status flags */
553     u_long      token;          /* Reply should have the same token */
554     u_long      typecookie;     /* Node type understanding this message */
555     u_long      cmd;            /* Command identifier */
556     u_char      cmdstr[NG_CMDSTRLEN+1]; /* Cmd string (for debug) */
557   } header;
558   char  data[0];                /* Start of cmd/resp data */
559 };
560
561 #define NG_VERSION      1               /* Netgraph version */
562 #define NGF_ORIG        0x0000          /* Command */
563 #define NGF_RESP        0x0001          /* Response */
564 .Ed
565 .Pp
566 Control messages have the fixed header shown above, followed by a
567 variable length data section which depends on the type cookie
568 and the command. Each field is explained below:
569 .Bl -tag -width xxx
570 .It Dv version
571 Indicates the version of netgraph itself. The current version is
572 .Dv NG_VERSION .
573 .It Dv arglen
574 This is the length of any extra arguments, which begin at
575 .Dv data .
576 .It Dv flags
577 Indicates whether this is a command or a response control message.
578 .It Dv token
579 The
580 .Dv token
581 is a means by which a sender can match a reply message to the
582 corresponding command message; the reply always has the same token.
583 .Pp
584 .It Dv typecookie
585 The corresponding node type's unique 32-bit value.
586 If a node doesn't recognize the type cookie it must reject the message
587 by returning
588 .Er EINVAL .
589 .Pp
590 Each type should have an include file that defines the commands,
591 argument format, and cookie for its own messages.
592 The typecookie
593 insures that the same header file was included by both sender and
594 receiver; when an incompatible change in the header file is made,
595 the typecookie
596 .Em must
597 be changed.
598 The de facto method for generating unique type cookies is to take the
599 seconds from the epoch at the time the header file is written
600 (i.e., the output of
601 .Dv "date -u +'%s'" ) .
602 .Pp
603 There is a predefined typecookie
604 .Dv NGM_GENERIC_COOKIE
605 for the
606 .Dq generic
607 node type, and
608 a corresponding set of generic messages which all nodes understand.
609 The handling of these messages is automatic.
610 .It Dv command
611 The identifier for the message command. This is type specific,
612 and is defined in the same header file as the typecookie.
613 .It Dv cmdstr
614 Room for a short human readable version of
615 .Dq command
616 (for debugging purposes only).
617 .El
618 .Pp
619 Some modules may choose to implement messages from more than one
620 of the header files and thus recognize more than one type cookie.
621 .Sh Control Message ASCII Form
622 Control messages are in binary format for efficiency.  However, for
623 debugging and human interface purposes, and if the node type supports
624 it, control messages may be converted to and from an equivalent
625 .Tn ASCII
626 form.  The
627 .Tn ASCII
628 form is similar to the binary form, with two exceptions:
629 .Pp
630 .Bl -tag -compact -width xxx
631 .It o
632 The
633 .Dv cmdstr
634 header field must contain the
635 .Tn ASCII
636 name of the command, corresponding to the
637 .Dv cmd
638 header field.
639 .It o
640 The
641 .Dv args
642 field contains a NUL-terminated
643 .Tn ASCII
644 string version of the message arguments.
645 .El
646 .Pp
647 In general, the arguments field of a control messgage can be any
648 arbitrary C data type.  Netgraph includes parsing routines to support
649 some pre-defined datatypes in
650 .Tn ASCII
651 with this simple syntax:
652 .Pp
653 .Bl -tag -compact -width xxx
654 .It o
655 Integer types are represented by base 8, 10, or 16 numbers.
656 .It o
657 Strings are enclosed in double quotes and respect the normal
658 C language backslash escapes.
659 .It o
660 IP addresses have the obvious form.
661 .It o
662 Arrays are enclosed in square brackets, with the elements listed
663 consecutively starting at index zero.  An element may have an optional
664 index and equals sign preceding it.  Whenever an element
665 does not have an explicit index, the index is implicitly the previous
666 element's index plus one.
667 .It o
668 Structures are enclosed in curly braces, and each field is specified
669 in the form
670 .Dq fieldname=value .
671 .It o
672 Any array element or structure field whose value is equal to its
673 .Dq default value
674 may be omitted. For integer types, the default value
675 is usually zero; for string types, the empty string.
676 .It o
677 Array elements and structure fields may be specified in any order.
678 .El
679 .Pp
680 Each node type may define its own arbitrary types by providing
681 the necessary routines to parse and unparse.
682 .Tn ASCII
683 forms defined
684 for a specific node type are documented in the documentation for
685 that node type.
686 .Sh Generic Control Messages
687 There are a number of standard predefined messages that will work
688 for any node, as they are supported directly by the framework itself.
689 These are defined in
690 .Pa ng_message.h
691 along with the basic layout of messages and other similar information.
692 .Bl -tag -width xxx
693 .It Dv NGM_CONNECT
694 Connect to another node, using the supplied hook names on either end.
695 .It Dv NGM_MKPEER
696 Construct a node of the given type and then connect to it using the
697 supplied hook names.
698 .It Dv NGM_SHUTDOWN
699 The target node should disconnect from all its neighbours and shut down.
700 Persistent nodes such as those representing physical hardware
701 might not disappear from the node namespace, but only reset themselves.
702 The node must disconnect all of its hooks.
703 This may result in neighbors shutting themselves down, and possibly a
704 cascading shutdown of the entire connected graph.
705 .It Dv NGM_NAME
706 Assign a name to a node. Nodes can exist without having a name, and this
707 is the default for nodes created using the
708 .Dv NGM_MKPEER
709 method. Such nodes can only be addressed relatively or by their ID number.
710 .It Dv NGM_RMHOOK
711 Ask the node to break a hook connection to one of its neighbours.
712 Both nodes will have their
713 .Dq disconnect
714 method invoked.
715 Either node may elect to totally shut down as a result.
716 .It Dv NGM_NODEINFO
717 Asks the target node to describe itself. The four returned fields
718 are the node name (if named), the node type, the node ID and the
719 number of hooks attached. The ID is an internal number unique to that node.
720 .It Dv NGM_LISTHOOKS
721 This returns the information given by
722 .Dv NGM_NODEINFO ,
723 but in addition
724 includes an array of fields describing each link, and the description for
725 the node at the far end of that link.
726 .It Dv NGM_LISTNAMES
727 This returns an array of node descriptions (as for
728 .Dv NGM_NODEINFO ")"
729 where each entry of the array describes a named node.
730 All named nodes will be described.
731 .It Dv NGM_LISTNODES
732 This is the same as
733 .Dv NGM_LISTNAMES
734 except that all nodes are listed regardless of whether they have a name or not.
735 .It Dv NGM_LISTTYPES
736 This returns a list of all currently installed netgraph types.
737 .It Dv NGM_TEXT_STATUS
738 The node may return a text formatted status message.
739 The status information is determined entirely by the node type.
740 It is the only "generic" message
741 that requires any support within the node itself and as such the node may
742 elect to not support this message. The text response must be less than
743 .Dv NG_TEXTRESPONSE
744 bytes in length (presently 1024). This can be used to return general
745 status information in human readable form.
746 .It Dv NGM_BINARY2ASCII
747 This message converts a binary control message to its
748 .Tn ASCII
749 form.
750 The entire control message to be converted is contained within the
751 arguments field of the
752 .Dv NGM_BINARY2ASCII
753 message itself.  If successful, the reply will contain the same control
754 message in
755 .Tn ASCII
756 form.
757 A node will typically only know how to translate messages that it
758 itself understands, so the target node of the
759 .Dv NGM_BINARY2ASCII
760 is often the same node that would actually receive that message.
761 .It Dv NGM_ASCII2BINARY
762 The opposite of
763 .Dv NGM_BINARY2ASCII .
764 The entire control message to be converted, in
765 .Tn ASCII
766 form, is contained
767 in the arguments section of the
768 .Dv NGM_ASCII2BINARY
769 and need only have the
770 .Dv flags ,
771 .Dv cmdstr ,
772 and
773 .Dv arglen
774 header fields filled in, plus the NUL-terminated string version of
775 the arguments in the arguments field.  If successful, the reply
776 contains the binary version of the control message.
777 .El
778 .Sh Metadata
779 Data moving through the
780 .Nm
781 system can be accompanied by meta-data that describes some
782 aspect of that data. The form of the meta-data is a fixed header,
783 which contains enough information for most uses, and can optionally
784 be supplemented by trailing
785 .Em option
786 structures, which contain a
787 .Em cookie
788 (see the section on control messages), an identifier, a length and optional
789 data. If a node does not recognize the cookie associated with an option,
790 it should ignore that option.
791 .Pp
792 Meta data might include such things as priority, discard eligibility,
793 or special processing requirements. It might also mark a packet for
794 debug status, etc. The use of meta-data is still experimental.
795 .Sh INITIALIZATION
796 The base
797 .Nm
798 code may either be statically compiled
799 into the kernel or else loaded dynamically as a KLD via
800 .Xr kldload 8 .
801 In the former case, include
802 .Pp
803 .Dl options NETGRAPH
804 .Pp
805 in your kernel configuration file. You may also include selected
806 node types in the kernel compilation, for example:
807 .Bd -literal -offset indent
808 options NETGRAPH
809 options NETGRAPH_SOCKET
810 options NETGRAPH_ECHO
811 .Ed
812 .Pp
813 Once the
814 .Nm
815 subsystem is loaded, individual node types may be loaded at any time
816 as KLD modules via
817 .Xr kldload 8 .
818 Moreover,
819 .Nm
820 knows how to automatically do this; when a request to create a new
821 node of unknown type
822 .Em type
823 is made,
824 .Nm
825 will attempt to load the KLD module
826 .Pa ng_type.ko .
827 .Pp
828 Types can also be installed at boot time, as certain device drivers
829 may want to export each instance of the device as a netgraph node.
830 .Pp
831 In general, new types can be installed at any time from within the
832 kernel by calling
833 .Fn ng_newtype ,
834 supplying a pointer to the type's
835 .Dv struct ng_type
836 structure.
837 .Pp
838 The
839 .Fn NETGRAPH_INIT
840 macro automates this process by using a linker set.
841 .Sh EXISTING NODE TYPES
842 Several node types currently exist. Each is fully documented
843 in its own man page:
844 .Bl -tag -width xxx
845 .It SOCKET
846 The socket type implements two new sockets in the new protocol domain
847 .Dv PF_NETGRAPH .
848 The new sockets protocols are
849 .Dv NG_DATA
850 and
851 .Dv NG_CONTROL ,
852 both of type
853 .Dv SOCK_DGRAM .
854 Typically one of each is associated with a socket node.
855 When both sockets have closed, the node will shut down. The
856 .Dv NG_DATA
857 socket is used for sending and receiving data, while the
858 .Dv NG_CONTROL
859 socket is used for sending and receiving control messages.
860 Data and control messages are passed using the
861 .Xr sendto 2
862 and
863 .Xr recvfrom 2
864 calls, using a
865 .Dv struct sockaddr_ng
866 socket address.
867 .Pp
868 .It HOLE
869 Responds only to generic messages and is a
870 .Dq black hole
871 for data, Useful for testing. Always accepts new hooks.
872 .Pp
873 .It ECHO
874 Responds only to generic messages and always echoes data back through the
875 hook from which it arrived. Returns any non generic messages as their
876 own response. Useful for testing.  Always accepts new hooks.
877 .Pp
878 .It TEE
879 This node is useful for
880 .Dq snooping .
881 It has 4 hooks:
882 .Dv left ,
883 .Dv right ,
884 .Dv left2right ,
885 and
886 .Dv right2left .
887 Data entering from the right is passed to the left and duplicated on
888 .Dv right2left ,
889 and data entering from the left is passed to the right and
890 duplicated on
891 .Dv left2right .
892 Data entering from
893 .Dv left2right
894 is sent to the right and data from
895 .Dv right2left
896 to left.
897 .Pp
898 .It RFC1490 MUX
899 Encapsulates/de-encapsulates frames encoded according to RFC 1490.
900 Has a hook for the encapsulated packets
901 .Pq Dq downstream
902 and one hook
903 for each protocol (i.e., IP, PPP, etc.).
904 .Pp
905 .It FRAME RELAY MUX
906 Encapsulates/de-encapsulates Frame Relay frames.
907 Has a hook for the encapsulated packets
908 .Pq Dq downstream
909 and one hook
910 for each DLCI.
911 .Pp
912 .It FRAME RELAY LMI
913 Automatically handles frame relay
914 .Dq LMI
915 (link management interface) operations and packets.
916 Automatically probes and detects which of several LMI standards
917 is in use at the exchange.
918 .Pp
919 .It TTY
920 This node is also a line discipline. It simply converts between mbuf
921 frames and sequential serial data, allowing a tty to appear as a netgraph
922 node. It has a programmable
923 .Dq hotkey
924 character.
925 .Pp
926 .It ASYNC
927 This node encapsulates and de-encapsulates asynchronous frames
928 according to RFC 1662. This is used in conjunction with the TTY node
929 type for supporting PPP links over asynchronous serial lines.
930 .Pp
931 .It INTERFACE
932 This node is also a system networking interface. It has hooks representing
933 each protocol family (IP, AppleTalk, IPX, etc.) and appears in the output of
934 .Xr ifconfig 8 .
935 The interfaces are named
936 .Em ng0 ,
937 .Em ng1 ,
938 etc.
939 .El
940 .Sh NOTES
941 Whether a named node exists can be checked by trying to send a control message
942 to it (e.g.,
943 .Dv NGM_NODEINFO ) .
944 If it does not exist,
945 .Er ENOENT
946 will be returned.
947 .Pp
948 All data messages are mbuf chains with the M_PKTHDR flag set.
949 .Pp
950 Nodes are responsible for freeing what they allocate.
951 There are three exceptions:
952 .Bl -tag -width xxxx
953 .It 1
954 Mbufs sent across a data link are never to be freed by the sender.
955 .It 2
956 Any meta-data information traveling with the data has the same restriction.
957 It might be freed by any node the data passes through, and a
958 .Dv NULL
959 passed onwards, but the caller will never free it.
960 Two macros
961 .Fn NG_FREE_META "meta"
962 and
963 .Fn NG_FREE_DATA "m" "meta"
964 should be used if possible to free data and meta data (see
965 .Pa netgraph.h ) .
966 .It 3
967 Messages sent using
968 .Fn ng_send_message
969 are freed by the callee. As in the case above, the addresses
970 associated with the message are freed by whatever allocated them so the
971 recipient should copy them if it wants to keep that information.
972 .El
973 .Sh FILES
974 .Bl -tag -width xxxxx -compact
975 .It Pa /sys/netgraph/netgraph.h
976 Definitions for use solely within the kernel by
977 .Nm
978 nodes.
979 .It Pa /sys/netgraph/ng_message.h
980 Definitions needed by any file that needs to deal with
981 .Nm
982 messages.
983 .It Pa /sys/netgraph/ng_socket.h
984 Definitions needed to use
985 .Nm
986 socket type nodes.
987 .It Pa /sys/netgraph/ng_{type}.h
988 Definitions needed to use
989 .Nm
990 {type}
991 nodes, including the type cookie definition.
992 .It Pa /modules/netgraph.ko
993 Netgraph subsystem loadable KLD module.
994 .It Pa /modules/ng_{type}.ko
995 Loadable KLD module for node type {type}.
996 .El
997 .Sh USER MODE SUPPORT
998 There is a library for supporting user-mode programs that wish
999 to interact with the netgraph system. See
1000 .Xr netgraph 3
1001 for details.
1002 .Pp
1003 Two user-mode support programs,
1004 .Xr ngctl 8
1005 and
1006 .Xr nghook 8 ,
1007 are available to assist manual configuration and debugging.
1008 .Pp
1009 There are a few useful techniques for debugging new node types.
1010 First, implementing new node types in user-mode first
1011 makes debugging easier.
1012 The
1013 .Em tee
1014 node type is also useful for debugging, especially in conjunction with
1015 .Xr ngctl 8
1016 and
1017 .Xr nghook 8 .
1018 .Sh SEE ALSO
1019 .Xr socket 2 ,
1020 .Xr netgraph 3 ,
1021 .Xr ng_async 4 ,
1022 .Xr ng_bpf 4 ,
1023 .Xr ng_cisco 4 ,
1024 .Xr ng_echo 4 ,
1025 .Xr ng_ether 4 ,
1026 .Xr ng_frame_relay 4 ,
1027 .Xr ng_hole 4 ,
1028 .Xr ng_iface 4 ,
1029 .Xr ng_ksocket 4 ,
1030 .Xr ng_lmi 4 ,
1031 .Xr ng_mppc 4 ,
1032 .Xr ng_ppp 4 ,
1033 .Xr ng_pppoe 4 ,
1034 .Xr ng_rfc1490 4 ,
1035 .Xr ng_socket 4 ,
1036 .Xr ng_tee 4 ,
1037 .Xr ng_tty 4 ,
1038 .Xr ng_UI 4 ,
1039 .Xr ng_vjc 4 ,
1040 .Xr ngctl 8 ,
1041 .Xr nghook 8
1042 .Sh HISTORY
1043 The
1044 .Nm
1045 system was designed and first implemented at Whistle Communications, Inc.\&
1046 in a version of
1047 .Fx 2.2
1048 customized for the Whistle InterJet.
1049 It first made its debut in the main tree in
1050 .Fx 3.4 .
1051 .Sh AUTHORS
1052 .An -nosplit
1053 .An Julian Elischer Aq julian@FreeBSD.org ,
1054 with contributions by
1055 .An Archie Cobbs Aq archie@FreeBSD.org .