Initial import from FreeBSD RELENG_4:
[dragonfly.git] / sys / i386 / i386 / vm86.c
1 /*-
2  * Copyright (c) 1997 Jonathan Lemon
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/i386/i386/vm86.c,v 1.31.2.2 2001/10/05 06:18:55 peter Exp $
27  */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/proc.h>
32 #include <sys/lock.h>
33 #include <sys/malloc.h>
34
35 #include <vm/vm.h>
36 #include <vm/pmap.h>
37 #include <vm/vm_map.h>
38 #include <vm/vm_page.h>
39
40 #include <sys/user.h>
41
42 #include <machine/md_var.h>
43 #include <machine/pcb_ext.h>    /* pcb.h included via sys/user.h */
44 #include <machine/psl.h>
45 #include <machine/specialreg.h>
46 #include <machine/sysarch.h>
47
48 extern int i386_extend_pcb      __P((struct proc *));
49 extern int vm86pa;
50 extern struct pcb *vm86pcb;
51
52 extern int vm86_bioscall(struct vm86frame *);
53 extern void vm86_biosret(struct vm86frame *);
54
55 void vm86_prepcall(struct vm86frame);
56
57 struct system_map {
58         int             type;
59         vm_offset_t     start;
60         vm_offset_t     end;
61 };
62
63 #define HLT     0xf4
64 #define CLI     0xfa
65 #define STI     0xfb
66 #define PUSHF   0x9c
67 #define POPF    0x9d
68 #define INTn    0xcd
69 #define IRET    0xcf
70 #define CALLm   0xff
71 #define OPERAND_SIZE_PREFIX     0x66
72 #define ADDRESS_SIZE_PREFIX     0x67
73 #define PUSH_MASK       ~(PSL_VM | PSL_RF | PSL_I)
74 #define POP_MASK        ~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
75
76 static __inline caddr_t
77 MAKE_ADDR(u_short sel, u_short off)
78 {
79         return ((caddr_t)((sel << 4) + off));
80 }
81
82 static __inline void
83 GET_VEC(u_int vec, u_short *sel, u_short *off)
84 {
85         *sel = vec >> 16;
86         *off = vec & 0xffff;
87 }
88
89 static __inline u_int
90 MAKE_VEC(u_short sel, u_short off)
91 {
92         return ((sel << 16) | off);
93 }
94
95 static __inline void
96 PUSH(u_short x, struct vm86frame *vmf)
97 {
98         vmf->vmf_sp -= 2;
99         susword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
100 }
101
102 static __inline void
103 PUSHL(u_int x, struct vm86frame *vmf)
104 {
105         vmf->vmf_sp -= 4;
106         suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
107 }
108
109 static __inline u_short
110 POP(struct vm86frame *vmf)
111 {
112         u_short x = fusword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
113
114         vmf->vmf_sp += 2;
115         return (x);
116 }
117
118 static __inline u_int
119 POPL(struct vm86frame *vmf)
120 {
121         u_int x = fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
122
123         vmf->vmf_sp += 4;
124         return (x);
125 }
126
127 int
128 vm86_emulate(vmf)
129         struct vm86frame *vmf;
130 {
131         struct vm86_kernel *vm86;
132         caddr_t addr;
133         u_char i_byte;
134         u_int temp_flags;
135         int inc_ip = 1;
136         int retcode = 0;
137
138         /*
139          * pcb_ext contains the address of the extension area, or zero if
140          * the extension is not present.  (This check should not be needed,
141          * as we can't enter vm86 mode until we set up an extension area)
142          */
143         if (curpcb->pcb_ext == 0)
144                 return (SIGBUS);
145         vm86 = &curpcb->pcb_ext->ext_vm86;
146
147         if (vmf->vmf_eflags & PSL_T)
148                 retcode = SIGTRAP;
149
150         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
151         i_byte = fubyte(addr);
152         if (i_byte == ADDRESS_SIZE_PREFIX) {
153                 i_byte = fubyte(++addr);
154                 inc_ip++;
155         }
156
157         if (vm86->vm86_has_vme) {
158                 switch (i_byte) {
159                 case OPERAND_SIZE_PREFIX:
160                         i_byte = fubyte(++addr);
161                         inc_ip++;
162                         switch (i_byte) {
163                         case PUSHF:
164                                 if (vmf->vmf_eflags & PSL_VIF)
165                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
166                                             | PSL_IOPL | PSL_I, vmf);
167                                 else
168                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
169                                             | PSL_IOPL, vmf);
170                                 vmf->vmf_ip += inc_ip;
171                                 return (0);
172
173                         case POPF:
174                                 temp_flags = POPL(vmf) & POP_MASK;
175                                 vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
176                                     | temp_flags | PSL_VM | PSL_I;
177                                 vmf->vmf_ip += inc_ip;
178                                 if (temp_flags & PSL_I) {
179                                         vmf->vmf_eflags |= PSL_VIF;
180                                         if (vmf->vmf_eflags & PSL_VIP)
181                                                 break;
182                                 } else {
183                                         vmf->vmf_eflags &= ~PSL_VIF;
184                                 }
185                                 return (0);
186                         }
187                         break;
188
189                 /* VME faults here if VIP is set, but does not set VIF. */
190                 case STI:
191                         vmf->vmf_eflags |= PSL_VIF;
192                         vmf->vmf_ip += inc_ip;
193                         if ((vmf->vmf_eflags & PSL_VIP) == 0) {
194                                 uprintf("fatal sti\n");
195                                 return (SIGKILL);
196                         }
197                         break;
198
199                 /* VME if no redirection support */
200                 case INTn:
201                         break;
202
203                 /* VME if trying to set PSL_TF, or PSL_I when VIP is set */
204                 case POPF:
205                         temp_flags = POP(vmf) & POP_MASK;
206                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
207                             | temp_flags | PSL_VM | PSL_I;
208                         vmf->vmf_ip += inc_ip;
209                         if (temp_flags & PSL_I) {
210                                 vmf->vmf_eflags |= PSL_VIF;
211                                 if (vmf->vmf_eflags & PSL_VIP)
212                                         break;
213                         } else {
214                                 vmf->vmf_eflags &= ~PSL_VIF;
215                         }
216                         return (retcode);
217
218                 /* VME if trying to set PSL_TF, or PSL_I when VIP is set */
219                 case IRET:
220                         vmf->vmf_ip = POP(vmf);
221                         vmf->vmf_cs = POP(vmf);
222                         temp_flags = POP(vmf) & POP_MASK;
223                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
224                             | temp_flags | PSL_VM | PSL_I;
225                         if (temp_flags & PSL_I) {
226                                 vmf->vmf_eflags |= PSL_VIF;
227                                 if (vmf->vmf_eflags & PSL_VIP)
228                                         break;
229                         } else {
230                                 vmf->vmf_eflags &= ~PSL_VIF;
231                         }
232                         return (retcode);
233
234                 }
235                 return (SIGBUS);
236         }
237
238         switch (i_byte) {
239         case OPERAND_SIZE_PREFIX:
240                 i_byte = fubyte(++addr);
241                 inc_ip++;
242                 switch (i_byte) {
243                 case PUSHF:
244                         if (vm86->vm86_eflags & PSL_VIF)
245                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
246                                     | PSL_IOPL | PSL_I, vmf);
247                         else
248                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
249                                     | PSL_IOPL, vmf);
250                         vmf->vmf_ip += inc_ip;
251                         return (retcode);
252
253                 case POPF:
254                         temp_flags = POPL(vmf) & POP_MASK;
255                         vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
256                             | temp_flags | PSL_VM | PSL_I;
257                         vmf->vmf_ip += inc_ip;
258                         if (temp_flags & PSL_I) {
259                                 vm86->vm86_eflags |= PSL_VIF;
260                                 if (vm86->vm86_eflags & PSL_VIP)
261                                         break;
262                         } else {
263                                 vm86->vm86_eflags &= ~PSL_VIF;
264                         }
265                         return (retcode);
266                 }
267                 return (SIGBUS);
268
269         case CLI:
270                 vm86->vm86_eflags &= ~PSL_VIF;
271                 vmf->vmf_ip += inc_ip;
272                 return (retcode);
273
274         case STI:
275                 /* if there is a pending interrupt, go to the emulator */
276                 vm86->vm86_eflags |= PSL_VIF;
277                 vmf->vmf_ip += inc_ip;
278                 if (vm86->vm86_eflags & PSL_VIP)
279                         break;
280                 return (retcode);
281
282         case PUSHF:
283                 if (vm86->vm86_eflags & PSL_VIF)
284                         PUSH((vmf->vmf_flags & PUSH_MASK)
285                             | PSL_IOPL | PSL_I, vmf);
286                 else
287                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
288                 vmf->vmf_ip += inc_ip;
289                 return (retcode);
290
291         case INTn:
292                 i_byte = fubyte(addr + 1);
293                 if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
294                         break;
295                 if (vm86->vm86_eflags & PSL_VIF)
296                         PUSH((vmf->vmf_flags & PUSH_MASK)
297                             | PSL_IOPL | PSL_I, vmf);
298                 else
299                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
300                 PUSH(vmf->vmf_cs, vmf);
301                 PUSH(vmf->vmf_ip + inc_ip + 1, vmf);    /* increment IP */
302                 GET_VEC(fuword((caddr_t)(i_byte * 4)),
303                      &vmf->vmf_cs, &vmf->vmf_ip);
304                 vmf->vmf_flags &= ~PSL_T;
305                 vm86->vm86_eflags &= ~PSL_VIF;
306                 return (retcode);
307
308         case IRET:
309                 vmf->vmf_ip = POP(vmf);
310                 vmf->vmf_cs = POP(vmf);
311                 temp_flags = POP(vmf) & POP_MASK;
312                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
313                     | temp_flags | PSL_VM | PSL_I;
314                 if (temp_flags & PSL_I) {
315                         vm86->vm86_eflags |= PSL_VIF;
316                         if (vm86->vm86_eflags & PSL_VIP)
317                                 break;
318                 } else {
319                         vm86->vm86_eflags &= ~PSL_VIF;
320                 }
321                 return (retcode);
322
323         case POPF:
324                 temp_flags = POP(vmf) & POP_MASK;
325                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
326                     | temp_flags | PSL_VM | PSL_I;
327                 vmf->vmf_ip += inc_ip;
328                 if (temp_flags & PSL_I) {
329                         vm86->vm86_eflags |= PSL_VIF;
330                         if (vm86->vm86_eflags & PSL_VIP)
331                                 break;
332                 } else {
333                         vm86->vm86_eflags &= ~PSL_VIF;
334                 }
335                 return (retcode);
336         }
337         return (SIGBUS);
338 }
339
340 #define PGTABLE_SIZE    ((1024 + 64) * 1024 / PAGE_SIZE)
341 #define INTMAP_SIZE     32
342 #define IOMAP_SIZE      ctob(IOPAGES)
343 #define TSS_SIZE \
344         (sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
345          INTMAP_SIZE + IOMAP_SIZE + 1)
346
347 struct vm86_layout {
348         pt_entry_t      vml_pgtbl[PGTABLE_SIZE];
349         struct  pcb vml_pcb;
350         struct  pcb_ext vml_ext;
351         char    vml_intmap[INTMAP_SIZE];
352         char    vml_iomap[IOMAP_SIZE];
353         char    vml_iomap_trailer;
354 };
355
356 void
357 vm86_initialize(void)
358 {
359         int i;
360         u_int *addr;
361         struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
362         struct pcb *pcb;
363         struct pcb_ext *ext;
364         struct soft_segment_descriptor ssd = {
365                 0,                      /* segment base address (overwritten) */
366                 0,                      /* length (overwritten) */
367                 SDT_SYS386TSS,          /* segment type */
368                 0,                      /* priority level */
369                 1,                      /* descriptor present */
370                 0, 0,
371                 0,                      /* default 16 size */
372                 0                       /* granularity */
373         };
374
375         /*
376          * this should be a compile time error, but cpp doesn't grok sizeof().
377          */
378         if (sizeof(struct vm86_layout) > ctob(3))
379                 panic("struct vm86_layout exceeds space allocated in locore.s");
380
381         /*
382          * Below is the memory layout that we use for the vm86 region.
383          *
384          * +--------+
385          * |        | 
386          * |        |
387          * | page 0 |       
388          * |        | +--------+
389          * |        | | stack  |
390          * +--------+ +--------+ <--------- vm86paddr
391          * |        | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
392          * |        | +--------+
393          * |        | |  PCB   | size: ~240 bytes
394          * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
395          * |        | +--------+
396          * |        | |int map |
397          * |        | +--------+
398          * +--------+ |        |
399          * | page 2 | |  I/O   |
400          * +--------+ | bitmap |
401          * | page 3 | |        |
402          * |        | +--------+
403          * +--------+ 
404          */
405
406         /*
407          * A rudimentary PCB must be installed, in order to get to the
408          * PCB extension area.  We use the PCB area as a scratchpad for
409          * data storage, the layout of which is shown below.
410          *
411          * pcb_esi      = new PTD entry 0
412          * pcb_ebp      = pointer to frame on vm86 stack
413          * pcb_esp      =    stack frame pointer at time of switch
414          * pcb_ebx      = va of vm86 page table
415          * pcb_eip      =    argument pointer to initial call
416          * pcb_spare[0] =    saved TSS descriptor, word 0
417          * pcb_space[1] =    saved TSS descriptor, word 1
418          */
419 #define new_ptd         pcb_esi
420 #define vm86_frame      pcb_ebp
421 #define pgtable_va      pcb_ebx
422
423         pcb = &vml->vml_pcb;
424         ext = &vml->vml_ext;
425
426         bzero(pcb, sizeof(struct pcb));
427         pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
428         pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
429         pcb->pgtable_va = vm86paddr;
430         pcb->pcb_ext = ext;
431
432         bzero(ext, sizeof(struct pcb_ext)); 
433         ext->ext_tss.tss_esp0 = vm86paddr;
434         ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
435         ext->ext_tss.tss_ioopt = 
436                 ((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
437         ext->ext_iomap = vml->vml_iomap;
438         ext->ext_vm86.vm86_intmap = vml->vml_intmap;
439
440         if (cpu_feature & CPUID_VME)
441                 ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
442
443         addr = (u_int *)ext->ext_vm86.vm86_intmap;
444         for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
445                 *addr++ = 0;
446         vml->vml_iomap_trailer = 0xff;
447
448         ssd.ssd_base = (u_int)&ext->ext_tss;
449         ssd.ssd_limit = TSS_SIZE - 1; 
450         ssdtosd(&ssd, &ext->ext_tssd);
451
452         vm86pcb = pcb;
453
454 #if 0
455         /*
456          * use whatever is leftover of the vm86 page layout as a
457          * message buffer so we can capture early output.
458          */
459         msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
460             ctob(3) - sizeof(struct vm86_layout));
461 #endif
462 }
463
464 vm_offset_t
465 vm86_getpage(struct vm86context *vmc, int pagenum)
466 {
467         int i;
468
469         for (i = 0; i < vmc->npages; i++)
470                 if (vmc->pmap[i].pte_num == pagenum)
471                         return (vmc->pmap[i].kva);
472         return (0);
473 }
474
475 vm_offset_t
476 vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
477 {
478         int i, flags = 0;
479
480         for (i = 0; i < vmc->npages; i++)
481                 if (vmc->pmap[i].pte_num == pagenum)
482                         goto bad;
483
484         if (vmc->npages == VM86_PMAPSIZE)
485                 goto bad;                       /* XXX grow map? */
486
487         if (kva == 0) {
488                 kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
489                 flags = VMAP_MALLOC;
490         }
491
492         i = vmc->npages++;
493         vmc->pmap[i].flags = flags;
494         vmc->pmap[i].kva = kva;
495         vmc->pmap[i].pte_num = pagenum;
496         return (kva);
497 bad:
498         panic("vm86_addpage: not enough room, or overlap");
499 }
500
501 static void
502 vm86_initflags(struct vm86frame *vmf)
503 {
504         int eflags = vmf->vmf_eflags;
505         struct vm86_kernel *vm86 = &curpcb->pcb_ext->ext_vm86;
506
507         if (vm86->vm86_has_vme) {
508                 eflags = (vmf->vmf_eflags & ~VME_USERCHANGE) |
509                     (eflags & VME_USERCHANGE) | PSL_VM;
510         } else {
511                 vm86->vm86_eflags = eflags;     /* save VIF, VIP */
512                 eflags = (vmf->vmf_eflags & ~VM_USERCHANGE) |             
513                     (eflags & VM_USERCHANGE) | PSL_VM;
514         }
515         vmf->vmf_eflags = eflags | PSL_VM;
516 }
517
518 /*
519  * called from vm86_bioscall, while in vm86 address space, to finalize setup.
520  */
521 void
522 vm86_prepcall(struct vm86frame vmf)
523 {
524         uintptr_t addr[] = { 0xA00, 0x1000 };   /* code, stack */
525         u_char intcall[] = {
526                 CLI, INTn, 0x00, STI, HLT
527         };
528
529         if ((vmf.vmf_trapno & PAGE_MASK) <= 0xff) {
530                 /* interrupt call requested */
531                 intcall[2] = (u_char)(vmf.vmf_trapno & 0xff);
532                 memcpy((void *)addr[0], (void *)intcall, sizeof(intcall));
533                 vmf.vmf_ip = addr[0];
534                 vmf.vmf_cs = 0;
535         }
536         vmf.vmf_sp = addr[1] - 2;              /* keep aligned */
537         vmf.kernel_fs = vmf.kernel_es = vmf.kernel_ds = 0;
538         vmf.vmf_ss = 0;
539         vmf.vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
540         vm86_initflags(&vmf);
541 }
542
543 /*
544  * vm86 trap handler; determines whether routine succeeded or not.
545  * Called while in vm86 space, returns to calling process.
546  */
547 void
548 vm86_trap(struct vm86frame *vmf)
549 {
550         caddr_t addr;
551
552         /* "should not happen" */
553         if ((vmf->vmf_eflags & PSL_VM) == 0)
554                 panic("vm86_trap called, but not in vm86 mode");
555
556         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
557         if (*(u_char *)addr == HLT)
558                 vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
559         else
560                 vmf->vmf_trapno = vmf->vmf_trapno << 16;
561
562         vm86_biosret(vmf);
563 }
564
565 int
566 vm86_intcall(int intnum, struct vm86frame *vmf)
567 {
568         if (intnum < 0 || intnum > 0xff)
569                 return (EINVAL);
570
571         vmf->vmf_trapno = intnum;
572         return (vm86_bioscall(vmf));
573 }
574
575 /*
576  * struct vm86context contains the page table to use when making
577  * vm86 calls.  If intnum is a valid interrupt number (0-255), then
578  * the "interrupt trampoline" will be used, otherwise we use the
579  * caller's cs:ip routine.  
580  */
581 int
582 vm86_datacall(intnum, vmf, vmc)
583         int intnum;
584         struct vm86frame *vmf;
585         struct vm86context *vmc;
586 {
587         pt_entry_t pte = (pt_entry_t)vm86paddr;
588         u_int page;
589         int i, entry, retval;
590
591         for (i = 0; i < vmc->npages; i++) {
592                 page = vtophys(vmc->pmap[i].kva & PG_FRAME);
593                 entry = vmc->pmap[i].pte_num; 
594                 vmc->pmap[i].old_pte = pte[entry];
595                 pte[entry] = page | PG_V | PG_RW | PG_U;
596         }
597
598         vmf->vmf_trapno = intnum;
599         retval = vm86_bioscall(vmf);
600
601         for (i = 0; i < vmc->npages; i++) {
602                 entry = vmc->pmap[i].pte_num;
603                 pte[entry] = vmc->pmap[i].old_pte;
604         }
605
606         return (retval);
607 }
608
609 vm_offset_t
610 vm86_getaddr(vmc, sel, off)
611         struct vm86context *vmc;
612         u_short sel;
613         u_short off;
614 {
615         int i, page;
616         vm_offset_t addr;
617
618         addr = (vm_offset_t)MAKE_ADDR(sel, off);
619         page = addr >> PAGE_SHIFT;
620         for (i = 0; i < vmc->npages; i++)
621                 if (page == vmc->pmap[i].pte_num)
622                         return (vmc->pmap[i].kva + (addr & PAGE_MASK));
623         return (0);
624 }
625
626 int
627 vm86_getptr(vmc, kva, sel, off)
628         struct vm86context *vmc;
629         vm_offset_t kva;
630         u_short *sel;
631         u_short *off;
632 {
633         int i;
634
635         for (i = 0; i < vmc->npages; i++)
636                 if (kva >= vmc->pmap[i].kva &&
637                     kva < vmc->pmap[i].kva + PAGE_SIZE) {
638                         *off = kva - vmc->pmap[i].kva;
639                         *sel = vmc->pmap[i].pte_num << 8;
640                         return (1);
641                 }
642         return (0);
643         panic("vm86_getptr: address not found");
644 }
645         
646 int
647 vm86_sysarch(p, args)
648         struct proc *p;
649         char *args;
650 {
651         int error = 0;
652         struct i386_vm86_args ua;
653         struct vm86_kernel *vm86;
654
655         if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
656                 return (error);
657
658         if (p->p_addr->u_pcb.pcb_ext == 0)
659                 if ((error = i386_extend_pcb(p)) != 0)
660                         return (error);
661         vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
662
663         switch (ua.sub_op) {
664         case VM86_INIT: {
665                 struct vm86_init_args sa;
666
667                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
668                         return (error);
669                 if (cpu_feature & CPUID_VME)
670                         vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
671                 else
672                         vm86->vm86_has_vme = 0;
673                 vm86->vm86_inited = 1;
674                 vm86->vm86_debug = sa.debug;
675                 bcopy(&sa.int_map, vm86->vm86_intmap, 32);
676                 }
677                 break;
678
679 #if 0
680         case VM86_SET_VME: {
681                 struct vm86_vme_args sa;
682         
683                 if ((cpu_feature & CPUID_VME) == 0)
684                         return (ENODEV);
685
686                 if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
687                         return (error);
688                 if (sa.state)
689                         load_cr4(rcr4() | CR4_VME);
690                 else
691                         load_cr4(rcr4() & ~CR4_VME);
692                 }
693                 break;
694 #endif
695
696         case VM86_GET_VME: {
697                 struct vm86_vme_args sa;
698
699                 sa.state = (rcr4() & CR4_VME ? 1 : 0);
700                 error = copyout(&sa, ua.sub_args, sizeof(sa));
701                 }
702                 break;
703
704         case VM86_INTCALL: {
705                 struct vm86_intcall_args sa;
706
707                 if ((error = suser(p)))
708                         return (error);
709                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
710                         return (error);
711                 if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
712                         return (error);
713                 error = copyout(&sa, ua.sub_args, sizeof(sa));
714                 }
715                 break;
716
717         default:
718                 error = EINVAL;
719         }
720         return (error);
721 }