libm: Add several new functions and symbol versioning
[dragonfly.git] / lib / libm / ld80 / s_logl.c
1 /*-
2  * Copyright (c) 2007-2013 Bruce D. Evans
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/lib/msun/ld80/s_logl.c 251292 2013-06-03 09:14:31Z das $
27  */
28
29 /**
30  * Implementation of the natural logarithm of x for Intel 80-bit format.
31  *
32  * First decompose x into its base 2 representation:
33  *
34  *    log(x) = log(X * 2**k), where X is in [1, 2)
35  *           = log(X) + k * log(2).
36  *
37  * Let X = X_i + e, where X_i is the center of one of the intervals
38  * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
39  * and X is in this interval.  Then
40  *
41  *    log(X) = log(X_i + e)
42  *           = log(X_i * (1 + e / X_i))
43  *           = log(X_i) + log(1 + e / X_i).
44  *
45  * The values log(X_i) are tabulated below.  Let d = e / X_i and use
46  *
47  *    log(1 + d) = p(d)
48  *
49  * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
50  * suitably high degree.
51  *
52  * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
53  * sometimes (if |k| is not large) the first term in p(d) must be evaluated
54  * and added up in extra precision.  Extra precision is not needed for the
55  * rest of p(d).  In the worst case when k = 0 and log(X_i) is 0, the final
56  * error is controlled mainly by the error in the second term in p(d).  The
57  * error in this term itself is at most 0.5 ulps from the d*d operation in
58  * it.  The error in this term relative to the first term is thus at most
59  * 0.5 * |-0.5| * |d| < 1.0/1024 ulps.  We aim for an accumulated error of
60  * at most twice this at the point of the final rounding step.  Thus the
61  * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps.  Exhaustive
62  * testing of a float variant of this function showed a maximum final error
63  * of 0.5008 ulps.  Non-exhaustive testing of a double variant of this
64  * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
65  *
66  * We made the maximum of |d| (and thus the total relative error and the
67  * degree of p(d)) small by using a large number of intervals.  Using
68  * centers of intervals instead of endpoints reduces this maximum by a
69  * factor of 2 for a given number of intervals.  p(d) is special only
70  * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
71  * naturally.  The most accurate minimax polynomial of a given degree might
72  * be different, but then we wouldn't want it since we would have to do
73  * extra work to avoid roundoff error (especially for P0*d instead of d).
74  */
75
76 #ifdef DEBUG
77 #include <assert.h>
78 #include <fenv.h>
79 #endif
80
81 #ifdef __i386__
82 #include <ieeefp.h>
83 #endif
84
85 #include "fpmath.h"
86 #include "math.h"
87 #define i386_SSE_GOOD
88 #ifndef NO_STRUCT_RETURN
89 #define STRUCT_RETURN
90 #endif
91 #include "math_private.h"
92
93 #if !defined(NO_UTAB) && !defined(NO_UTABL)
94 #define USE_UTAB
95 #endif
96
97 /*
98  * Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]:
99  * |log(1 + d)/d - p(d)| < 2**-70.7
100  */
101 static const double
102 P2 = -0.5,
103 P3 =  3.3333333333333359e-1,            /*  0x1555555555555a.0p-54 */
104 P4 = -2.5000000000004424e-1,            /* -0x1000000000031d.0p-54 */
105 P5 =  1.9999999992970016e-1,            /*  0x1999999972f3c7.0p-55 */
106 P6 = -1.6666666072191585e-1,            /* -0x15555548912c09.0p-55 */
107 P7 =  1.4286227413310518e-1,            /*  0x12494f9d9def91.0p-55 */
108 P8 = -1.2518388626763144e-1;            /* -0x1006068cc0b97c.0p-55 */
109
110 static volatile const double zero = 0;
111
112 #define INTERVALS       128
113 #define LOG2_INTERVALS  7
114 #define TSIZE           (INTERVALS + 1)
115 #define G(i)            (T[(i)].G)
116 #define F_hi(i)         (T[(i)].F_hi)
117 #define F_lo(i)         (T[(i)].F_lo)
118 #define ln2_hi          F_hi(TSIZE - 1)
119 #define ln2_lo          F_lo(TSIZE - 1)
120 #define E(i)            (U[(i)].E)
121 #define H(i)            (U[(i)].H)
122
123 static const struct {
124         float   G;                      /* 1/(1 + i/128) rounded to 8/9 bits */
125         float   F_hi;                   /* log(1 / G_i) rounded (see below) */
126         double  F_lo;                   /* next 53 bits for log(1 / G_i) */
127 } T[TSIZE] = {
128         /*
129          * ln2_hi and each F_hi(i) are rounded to a number of bits that
130          * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
131          *
132          * The last entry (for X just below 2) is used to define ln2_hi
133          * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
134          * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
135          * This is needed for accuracy when x is just below 1.  (To avoid
136          * special cases, such x are "reduced" strangely to X just below
137          * 2 and dk = -1, and then the exact cancellation is needed
138          * because any the error from any non-exactness would be too
139          * large).
140          *
141          * We want to share this table between double precision and ld80,
142          * so the relevant range of dk is the larger one of ld80
143          * ([-16445, 16383]) and the relevant exactness requirement is
144          * the stricter one of double precision.  The maximum number of
145          * bits in F_hi(i) that works is very dependent on i but has
146          * a minimum of 33.  We only need about 12 bits in F_hi(i) for
147          * it to provide enough extra precision in double precision (11
148          * more than that are required for ld80).
149          *
150          * We round F_hi(i) to 24 bits so that it can have type float,
151          * mainly to minimize the size of the table.  Using all 24 bits
152          * in a float for it automatically satisfies the above constraints.
153          */
154          0x800000.0p-23,  0,               0,
155          0xfe0000.0p-24,  0x8080ac.0p-30, -0x14ee431dae6675.0p-84,
156          0xfc0000.0p-24,  0x8102b3.0p-29, -0x1db29ee2d83718.0p-84,
157          0xfa0000.0p-24,  0xc24929.0p-29,  0x1191957d173698.0p-83,
158          0xf80000.0p-24,  0x820aec.0p-28,  0x13ce8888e02e79.0p-82,
159          0xf60000.0p-24,  0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82,
160          0xf48000.0p-24,  0xbc42cb.0p-28, -0x172a21161a1076.0p-83,
161          0xf30000.0p-24,  0xd57797.0p-28, -0x1e09de07cb9589.0p-82,
162          0xf10000.0p-24,  0xf7518e.0p-28,  0x1ae1eec1b036c5.0p-91,
163          0xef0000.0p-24,  0x8cb9df.0p-27, -0x1d7355325d560e.0p-81,
164          0xed8000.0p-24,  0x999ec0.0p-27, -0x1f9f02d256d503.0p-82,
165          0xec0000.0p-24,  0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83,
166          0xea0000.0p-24,  0xb80698.0p-27,  0x15d581c1e8da9a.0p-81,
167          0xe80000.0p-24,  0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83,
168          0xe70000.0p-24,  0xd273b2.0p-27,  0x163786f5251af0.0p-85,
169          0xe50000.0p-24,  0xe442c0.0p-27,  0x1bc4b2368e32d5.0p-84,
170          0xe38000.0p-24,  0xf1b83f.0p-27,  0x1c6090f684e676.0p-81,
171          0xe20000.0p-24,  0xff448a.0p-27, -0x1890aa69ac9f42.0p-82,
172          0xe08000.0p-24,  0x8673f6.0p-26,  0x1b9985194b6b00.0p-80,
173          0xdf0000.0p-24,  0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83,
174          0xdd8000.0p-24,  0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82,
175          0xdc0000.0p-24,  0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80,
176          0xda8000.0p-24,  0xa2315d.0p-26, -0x11b26121629c47.0p-82,
177          0xd90000.0p-24,  0xa93f2f.0p-26,  0x1286d633e8e569.0p-81,
178          0xd78000.0p-24,  0xb05988.0p-26,  0x16128eba936770.0p-84,
179          0xd60000.0p-24,  0xb78094.0p-26,  0x16ead577390d32.0p-80,
180          0xd50000.0p-24,  0xbc4c6c.0p-26,  0x151131ccf7c7b7.0p-81,
181          0xd38000.0p-24,  0xc3890a.0p-26, -0x115e2cd714bd06.0p-80,
182          0xd20000.0p-24,  0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82,
183          0xd10000.0p-24,  0xcfb620.0p-26,  0x1c2259904d6866.0p-81,
184          0xcf8000.0p-24,  0xd71653.0p-26,  0x1ece57a8d5ae55.0p-80,
185          0xce0000.0p-24,  0xde843a.0p-26, -0x1f109d4bc45954.0p-81,
186          0xcd0000.0p-24,  0xe37fde.0p-26,  0x1bc03dc271a74d.0p-81,
187          0xcb8000.0p-24,  0xeb050c.0p-26, -0x1bf2badc0df842.0p-85,
188          0xca0000.0p-24,  0xf29878.0p-26, -0x18efededd89fbe.0p-87,
189          0xc90000.0p-24,  0xf7ad6f.0p-26,  0x1373ff977baa69.0p-81,
190          0xc80000.0p-24,  0xfcc8e3.0p-26,  0x196766f2fb3283.0p-80,
191          0xc68000.0p-24,  0x823f30.0p-25,  0x19bd076f7c434e.0p-79,
192          0xc58000.0p-24,  0x84d52c.0p-25, -0x1a327257af0f46.0p-79,
193          0xc40000.0p-24,  0x88bc74.0p-25,  0x113f23def19c5a.0p-81,
194          0xc30000.0p-24,  0x8b5ae6.0p-25,  0x1759f6e6b37de9.0p-79,
195          0xc20000.0p-24,  0x8dfccb.0p-25,  0x1ad35ca6ed5148.0p-81,
196          0xc10000.0p-24,  0x90a22b.0p-25,  0x1a1d71a87deba4.0p-79,
197          0xbf8000.0p-24,  0x94a0d8.0p-25, -0x139e5210c2b731.0p-80,
198          0xbe8000.0p-24,  0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81,
199          0xbd8000.0p-24,  0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79,
200          0xbc8000.0p-24,  0x9cb672.0p-25, -0x14c8815839c566.0p-79,
201          0xbb0000.0p-24,  0xa0cda1.0p-25,  0x1eaf46390dbb24.0p-81,
202          0xba0000.0p-24,  0xa38c6e.0p-25,  0x138e20d831f698.0p-81,
203          0xb90000.0p-24,  0xa64f05.0p-25, -0x1e8d3c41123616.0p-82,
204          0xb80000.0p-24,  0xa91570.0p-25,  0x1ce28f5f3840b2.0p-80,
205          0xb70000.0p-24,  0xabdfbb.0p-25, -0x186e5c0a424234.0p-79,
206          0xb60000.0p-24,  0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83,
207          0xb50000.0p-24,  0xb18018.0p-25,  0x16755892770634.0p-79,
208          0xb40000.0p-24,  0xb45642.0p-25, -0x16395ebe59b152.0p-82,
209          0xb30000.0p-24,  0xb73077.0p-25,  0x1abc65c8595f09.0p-80,
210          0xb20000.0p-24,  0xba0ec4.0p-25, -0x1273089d3dad89.0p-79,
211          0xb10000.0p-24,  0xbcf133.0p-25,  0x10f9f67b1f4bbf.0p-79,
212          0xb00000.0p-24,  0xbfd7d2.0p-25, -0x109fab90486409.0p-80,
213          0xaf0000.0p-24,  0xc2c2ac.0p-25, -0x1124680aa43333.0p-79,
214          0xae8000.0p-24,  0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80,
215          0xad8000.0p-24,  0xc72afd.0p-25, -0x132d91f21d89c9.0p-80,
216          0xac8000.0p-24,  0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79,
217          0xab8000.0p-24,  0xcd1aae.0p-25,  0x19deb5ce6a6a87.0p-81,
218          0xaa8000.0p-24,  0xd0192f.0p-25,  0x1a29fb48f7d3cb.0p-79,
219          0xaa0000.0p-24,  0xd19a20.0p-25,  0x1127d3c6457f9d.0p-81,
220          0xa90000.0p-24,  0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81,
221          0xa80000.0p-24,  0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79,
222          0xa70000.0p-24,  0xdab7d0.0p-25,  0x1118a425494b61.0p-80,
223          0xa68000.0p-24,  0xdc40d5.0p-25,  0x1966f24d29d3a3.0p-80,
224          0xa58000.0p-24,  0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82,
225          0xa48000.0p-24,  0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80,
226          0xa40000.0p-24,  0xe3ffce.0p-25,  0x1d155324911f57.0p-80,
227          0xa30000.0p-24,  0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80,
228          0xa20000.0p-24,  0xea4812.0p-25,  0x1b7be9add7f4d4.0p-80,
229          0xa18000.0p-24,  0xebdd3d.0p-25,  0x1b3cfb3f7511dd.0p-79,
230          0xa08000.0p-24,  0xef0b5b.0p-25, -0x1220de1f730190.0p-79,
231          0xa00000.0p-24,  0xf0a451.0p-25, -0x176364c9ac81cd.0p-80,
232          0x9f0000.0p-24,  0xf3da16.0p-25,  0x1eed6b9aafac8d.0p-81,
233          0x9e8000.0p-24,  0xf576e9.0p-25,  0x1d593218675af2.0p-79,
234          0x9d8000.0p-24,  0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84,
235          0x9d0000.0p-24,  0xfa553f.0p-25,  0x1c063259bcade0.0p-79,
236          0x9c0000.0p-24,  0xfd9ac5.0p-25,  0x1ef491085fa3c1.0p-79,
237          0x9b8000.0p-24,  0xff3f8c.0p-25,  0x1d607a7c2b8c53.0p-79,
238          0x9a8000.0p-24,  0x814697.0p-24, -0x12ad3817004f3f.0p-78,
239          0x9a0000.0p-24,  0x821b06.0p-24, -0x189fc53117f9e5.0p-81,
240          0x990000.0p-24,  0x83c5f8.0p-24,  0x14cf15a048907b.0p-79,
241          0x988000.0p-24,  0x849c7d.0p-24,  0x1cbb1d35fb8287.0p-78,
242          0x978000.0p-24,  0x864ba6.0p-24,  0x1128639b814f9c.0p-78,
243          0x970000.0p-24,  0x87244c.0p-24,  0x184733853300f0.0p-79,
244          0x968000.0p-24,  0x87fdaa.0p-24,  0x109d23aef77dd6.0p-80,
245          0x958000.0p-24,  0x89b293.0p-24, -0x1a81ef367a59de.0p-78,
246          0x950000.0p-24,  0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78,
247          0x948000.0p-24,  0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79,
248          0x938000.0p-24,  0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79,
249          0x930000.0p-24,  0x8e03c2.0p-24,  0x135cc00e566f77.0p-78,
250          0x928000.0p-24,  0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80,
251          0x918000.0p-24,  0x90a3ee.0p-24, -0x16e171b15433d7.0p-79,
252          0x910000.0p-24,  0x918587.0p-24, -0x1d050da07f3237.0p-79,
253          0x908000.0p-24,  0x9267e7.0p-24,  0x1be03669a5268d.0p-79,
254          0x8f8000.0p-24,  0x942f04.0p-24,  0x10b28e0e26c337.0p-79,
255          0x8f0000.0p-24,  0x9513c3.0p-24,  0x1a1d820da57cf3.0p-78,
256          0x8e8000.0p-24,  0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79,
257          0x8e0000.0p-24,  0x96dfab.0p-24, -0x109e417a6e507c.0p-78,
258          0x8d0000.0p-24,  0x98aed2.0p-24,  0x10d01a2c5b0e98.0p-79,
259          0x8c8000.0p-24,  0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78,
260          0x8c0000.0p-24,  0x9a8145.0p-24,  0x1b3b190b83f952.0p-78,
261          0x8b8000.0p-24,  0x9b6bbf.0p-24,  0x13a69fad7e7abe.0p-78,
262          0x8b0000.0p-24,  0x9c5711.0p-24, -0x11cd12316f576b.0p-78,
263          0x8a8000.0p-24,  0x9d433b.0p-24,  0x1c95c444b807a2.0p-79,
264          0x898000.0p-24,  0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79,
265          0x890000.0p-24,  0xa00ce1.0p-24,  0x125ca93186cf0f.0p-81,
266          0x888000.0p-24,  0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79,
267          0x880000.0p-24,  0xa1ed00.0p-24, -0x1a0db876613d20.0p-78,
268          0x878000.0p-24,  0xa2de62.0p-24,  0x193224e8516c01.0p-79,
269          0x870000.0p-24,  0xa3d0a9.0p-24,  0x1fa28b4d2541ad.0p-79,
270          0x868000.0p-24,  0xa4c3d6.0p-24,  0x1c1b5760fb4572.0p-78,
271          0x858000.0p-24,  0xa6acea.0p-24,  0x1fed5d0f65949c.0p-80,
272          0x850000.0p-24,  0xa7a2d4.0p-24,  0x1ad270c9d74936.0p-80,
273          0x848000.0p-24,  0xa899ab.0p-24,  0x199ff15ce53266.0p-79,
274          0x840000.0p-24,  0xa99171.0p-24,  0x1a19e15ccc45d2.0p-79,
275          0x838000.0p-24,  0xaa8a28.0p-24, -0x121a14ec532b36.0p-80,
276          0x830000.0p-24,  0xab83d1.0p-24,  0x1aee319980bff3.0p-79,
277          0x828000.0p-24,  0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80,
278          0x820000.0p-24,  0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80,
279          0x818000.0p-24,  0xae768f.0p-24,  0x17c35c55a04a83.0p-81,
280          0x810000.0p-24,  0xaf7415.0p-24,  0x1448324047019b.0p-78,
281          0x808000.0p-24,  0xb07298.0p-24, -0x1750ee3915a198.0p-78,
282          0x800000.0p-24,  0xb17218.0p-24, -0x105c610ca86c39.0p-81,
283 };
284
285 #ifdef USE_UTAB
286 static const struct {
287         float   H;                      /* 1 + i/INTERVALS (exact) */
288         float   E;                      /* H(i) * G(i) - 1 (exact) */
289 } U[TSIZE] = {
290          0x800000.0p-23,  0,
291          0x810000.0p-23, -0x800000.0p-37,
292          0x820000.0p-23, -0x800000.0p-35,
293          0x830000.0p-23, -0x900000.0p-34,
294          0x840000.0p-23, -0x800000.0p-33,
295          0x850000.0p-23, -0xc80000.0p-33,
296          0x860000.0p-23, -0xa00000.0p-36,
297          0x870000.0p-23,  0x940000.0p-33,
298          0x880000.0p-23,  0x800000.0p-35,
299          0x890000.0p-23, -0xc80000.0p-34,
300          0x8a0000.0p-23,  0xe00000.0p-36,
301          0x8b0000.0p-23,  0x900000.0p-33,
302          0x8c0000.0p-23, -0x800000.0p-35,
303          0x8d0000.0p-23, -0xe00000.0p-33,
304          0x8e0000.0p-23,  0x880000.0p-33,
305          0x8f0000.0p-23, -0xa80000.0p-34,
306          0x900000.0p-23, -0x800000.0p-35,
307          0x910000.0p-23,  0x800000.0p-37,
308          0x920000.0p-23,  0x900000.0p-35,
309          0x930000.0p-23,  0xd00000.0p-35,
310          0x940000.0p-23,  0xe00000.0p-35,
311          0x950000.0p-23,  0xc00000.0p-35,
312          0x960000.0p-23,  0xe00000.0p-36,
313          0x970000.0p-23, -0x800000.0p-38,
314          0x980000.0p-23, -0xc00000.0p-35,
315          0x990000.0p-23, -0xd00000.0p-34,
316          0x9a0000.0p-23,  0x880000.0p-33,
317          0x9b0000.0p-23,  0xe80000.0p-35,
318          0x9c0000.0p-23, -0x800000.0p-35,
319          0x9d0000.0p-23,  0xb40000.0p-33,
320          0x9e0000.0p-23,  0x880000.0p-34,
321          0x9f0000.0p-23, -0xe00000.0p-35,
322          0xa00000.0p-23,  0x800000.0p-33,
323          0xa10000.0p-23, -0x900000.0p-36,
324          0xa20000.0p-23, -0xb00000.0p-33,
325          0xa30000.0p-23, -0xa00000.0p-36,
326          0xa40000.0p-23,  0x800000.0p-33,
327          0xa50000.0p-23, -0xf80000.0p-35,
328          0xa60000.0p-23,  0x880000.0p-34,
329          0xa70000.0p-23, -0x900000.0p-33,
330          0xa80000.0p-23, -0x800000.0p-35,
331          0xa90000.0p-23,  0x900000.0p-34,
332          0xaa0000.0p-23,  0xa80000.0p-33,
333          0xab0000.0p-23, -0xac0000.0p-34,
334          0xac0000.0p-23, -0x800000.0p-37,
335          0xad0000.0p-23,  0xf80000.0p-35,
336          0xae0000.0p-23,  0xf80000.0p-34,
337          0xaf0000.0p-23, -0xac0000.0p-33,
338          0xb00000.0p-23, -0x800000.0p-33,
339          0xb10000.0p-23, -0xb80000.0p-34,
340          0xb20000.0p-23, -0x800000.0p-34,
341          0xb30000.0p-23, -0xb00000.0p-35,
342          0xb40000.0p-23, -0x800000.0p-35,
343          0xb50000.0p-23, -0xe00000.0p-36,
344          0xb60000.0p-23, -0x800000.0p-35,
345          0xb70000.0p-23, -0xb00000.0p-35,
346          0xb80000.0p-23, -0x800000.0p-34,
347          0xb90000.0p-23, -0xb80000.0p-34,
348          0xba0000.0p-23, -0x800000.0p-33,
349          0xbb0000.0p-23, -0xac0000.0p-33,
350          0xbc0000.0p-23,  0x980000.0p-33,
351          0xbd0000.0p-23,  0xbc0000.0p-34,
352          0xbe0000.0p-23,  0xe00000.0p-36,
353          0xbf0000.0p-23, -0xb80000.0p-35,
354          0xc00000.0p-23, -0x800000.0p-33,
355          0xc10000.0p-23,  0xa80000.0p-33,
356          0xc20000.0p-23,  0x900000.0p-34,
357          0xc30000.0p-23, -0x800000.0p-35,
358          0xc40000.0p-23, -0x900000.0p-33,
359          0xc50000.0p-23,  0x820000.0p-33,
360          0xc60000.0p-23,  0x800000.0p-38,
361          0xc70000.0p-23, -0x820000.0p-33,
362          0xc80000.0p-23,  0x800000.0p-33,
363          0xc90000.0p-23, -0xa00000.0p-36,
364          0xca0000.0p-23, -0xb00000.0p-33,
365          0xcb0000.0p-23,  0x840000.0p-34,
366          0xcc0000.0p-23, -0xd00000.0p-34,
367          0xcd0000.0p-23,  0x800000.0p-33,
368          0xce0000.0p-23, -0xe00000.0p-35,
369          0xcf0000.0p-23,  0xa60000.0p-33,
370          0xd00000.0p-23, -0x800000.0p-35,
371          0xd10000.0p-23,  0xb40000.0p-33,
372          0xd20000.0p-23, -0x800000.0p-35,
373          0xd30000.0p-23,  0xaa0000.0p-33,
374          0xd40000.0p-23, -0xe00000.0p-35,
375          0xd50000.0p-23,  0x880000.0p-33,
376          0xd60000.0p-23, -0xd00000.0p-34,
377          0xd70000.0p-23,  0x9c0000.0p-34,
378          0xd80000.0p-23, -0xb00000.0p-33,
379          0xd90000.0p-23, -0x800000.0p-38,
380          0xda0000.0p-23,  0xa40000.0p-33,
381          0xdb0000.0p-23, -0xdc0000.0p-34,
382          0xdc0000.0p-23,  0xc00000.0p-35,
383          0xdd0000.0p-23,  0xca0000.0p-33,
384          0xde0000.0p-23, -0xb80000.0p-34,
385          0xdf0000.0p-23,  0xd00000.0p-35,
386          0xe00000.0p-23,  0xc00000.0p-33,
387          0xe10000.0p-23, -0xf40000.0p-34,
388          0xe20000.0p-23,  0x800000.0p-37,
389          0xe30000.0p-23,  0x860000.0p-33,
390          0xe40000.0p-23, -0xc80000.0p-33,
391          0xe50000.0p-23, -0xa80000.0p-34,
392          0xe60000.0p-23,  0xe00000.0p-36,
393          0xe70000.0p-23,  0x880000.0p-33,
394          0xe80000.0p-23, -0xe00000.0p-33,
395          0xe90000.0p-23, -0xfc0000.0p-34,
396          0xea0000.0p-23, -0x800000.0p-35,
397          0xeb0000.0p-23,  0xe80000.0p-35,
398          0xec0000.0p-23,  0x900000.0p-33,
399          0xed0000.0p-23,  0xe20000.0p-33,
400          0xee0000.0p-23, -0xac0000.0p-33,
401          0xef0000.0p-23, -0xc80000.0p-34,
402          0xf00000.0p-23, -0x800000.0p-35,
403          0xf10000.0p-23,  0x800000.0p-35,
404          0xf20000.0p-23,  0xb80000.0p-34,
405          0xf30000.0p-23,  0x940000.0p-33,
406          0xf40000.0p-23,  0xc80000.0p-33,
407          0xf50000.0p-23, -0xf20000.0p-33,
408          0xf60000.0p-23, -0xc80000.0p-33,
409          0xf70000.0p-23, -0xa20000.0p-33,
410          0xf80000.0p-23, -0x800000.0p-33,
411          0xf90000.0p-23, -0xc40000.0p-34,
412          0xfa0000.0p-23, -0x900000.0p-34,
413          0xfb0000.0p-23, -0xc80000.0p-35,
414          0xfc0000.0p-23, -0x800000.0p-35,
415          0xfd0000.0p-23, -0x900000.0p-36,
416          0xfe0000.0p-23, -0x800000.0p-37,
417          0xff0000.0p-23, -0x800000.0p-39,
418          0x800000.0p-22,  0,
419 };
420 #endif /* USE_UTAB */
421
422 #ifdef STRUCT_RETURN
423 #define RETURN1(rp, v) do {     \
424         (rp)->hi = (v);         \
425         (rp)->lo_set = 0;       \
426         return;                 \
427 } while (0)
428
429 #define RETURN2(rp, h, l) do {  \
430         (rp)->hi = (h);         \
431         (rp)->lo = (l);         \
432         (rp)->lo_set = 1;       \
433         return;                 \
434 } while (0)
435
436 struct ld {
437         long double hi;
438         long double lo;
439         int     lo_set;
440 };
441 #else
442 #define RETURN1(rp, v)  RETURNF(v)
443 #define RETURN2(rp, h, l)       RETURNI((h) + (l))
444 #endif
445
446 #ifdef STRUCT_RETURN
447 static inline __always_inline void
448 k_logl(long double x, struct ld *rp)
449 #else
450 long double
451 logl(long double x)
452 #endif
453 {
454         long double d, dk, val_hi, val_lo, z;
455         uint64_t ix, lx;
456         int i, k;
457         uint16_t hx;
458
459         EXTRACT_LDBL80_WORDS(hx, lx, x);
460         k = -16383;
461 #if 0 /* Hard to do efficiently.  Don't do it until we support all modes. */
462         if (x == 1)
463                 RETURN1(rp, 0);         /* log(1) = +0 in all rounding modes */
464 #endif
465         if (hx == 0 || hx >= 0x8000) {  /* zero, negative or subnormal? */
466                 if (((hx & 0x7fff) | lx) == 0)
467                         RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
468                 if (hx != 0)
469                         /* log(neg or [pseudo-]NaN) = qNaN: */
470                         RETURN1(rp, (x - x) / zero);
471                 x *= 0x1.0p65;          /* subnormal; scale up x */
472                                         /* including pseudo-subnormals */
473                 EXTRACT_LDBL80_WORDS(hx, lx, x);
474                 k = -16383 - 65;
475         } else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0)
476                 RETURN1(rp, x + x);     /* log(Inf or NaN) = Inf or qNaN */
477                                         /* log(pseudo-Inf) = qNaN */
478                                         /* log(pseudo-NaN) = qNaN */
479                                         /* log(unnormal) = qNaN */
480 #ifndef STRUCT_RETURN
481         ENTERI();
482 #endif
483         k += hx;
484         ix = lx & 0x7fffffffffffffffULL;
485         dk = k;
486
487         /* Scale x to be in [1, 2). */
488         SET_LDBL_EXPSIGN(x, 0x3fff);
489
490         /* 0 <= i <= INTERVALS: */
491 #define L2I     (64 - LOG2_INTERVALS)
492         i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
493
494         /*
495          * -0.005280 < d < 0.004838.  In particular, the infinite-
496          * precision |d| is <= 2**-7.  Rounding of G(i) to 8 bits
497          * ensures that d is representable without extra precision for
498          * this bound on |d| (since when this calculation is expressed
499          * as x*G(i)-1, the multiplication needs as many extra bits as
500          * G(i) has and the subtraction cancels 8 bits).  But for
501          * most i (107 cases out of 129), the infinite-precision |d|
502          * is <= 2**-8.  G(i) is rounded to 9 bits for such i to give
503          * better accuracy (this works by improving the bound on |d|,
504          * which in turn allows rounding to 9 bits in more cases).
505          * This is only important when the original x is near 1 -- it
506          * lets us avoid using a special method to give the desired
507          * accuracy for such x.
508          */
509         if (0)
510                 d = x * G(i) - 1;
511         else {
512 #ifdef USE_UTAB
513                 d = (x - H(i)) * G(i) + E(i);
514 #else
515                 long double x_hi, x_lo;
516                 float fx_hi;
517
518                 /*
519                  * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
520                  * G(i) has at most 9 bits, so the splitting point is not
521                  * critical.
522                  */
523                 SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
524                 x_hi = fx_hi;
525                 x_lo = x - x_hi;
526                 d = x_hi * G(i) - 1 + x_lo * G(i);
527 #endif
528         }
529
530         /*
531          * Our algorithm depends on exact cancellation of F_lo(i) and
532          * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
533          * at the end of the table.  This and other technical complications
534          * make it difficult to avoid the double scaling in (dk*ln2) *
535          * log(base) for base != e without losing more accuracy and/or
536          * efficiency than is gained.
537          */
538         z = d * d;
539         val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
540             (F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2;
541         val_hi = d;
542 #ifdef DEBUG
543         if (fetestexcept(FE_UNDERFLOW))
544                 breakpoint();
545 #endif
546
547         _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
548         RETURN2(rp, val_hi, val_lo);
549 }
550
551 long double
552 log1pl(long double x)
553 {
554         long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z;
555         long double f_hi, twopminusk;
556         uint64_t ix, lx;
557         int i, k;
558         int16_t ax, hx;
559
560         DOPRINT_START(&x);
561         EXTRACT_LDBL80_WORDS(hx, lx, x);
562         if (hx < 0x3fff) {              /* x < 1, or x neg NaN */
563                 ax = hx & 0x7fff;
564                 if (ax >= 0x3fff) {     /* x <= -1, or x neg NaN */
565                         if (ax == 0x3fff && lx == 0x8000000000000000ULL)
566                                 RETURNP(-1 / zero);     /* log1p(-1) = -Inf */
567                         /* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */
568                         RETURNP((x - x) / (x - x));
569                 }
570                 if (ax <= 0x3fbe) {     /* |x| < 2**-64 */
571                         if ((int)x == 0)
572                                 RETURNP(x);     /* x with inexact if x != 0 */
573                 }
574                 f_hi = 1;
575                 f_lo = x;
576         } else if (hx >= 0x7fff) {      /* x +Inf or non-neg NaN */
577                 RETURNP(x + x);         /* log1p(Inf or NaN) = Inf or qNaN */
578                                         /* log1p(pseudo-Inf) = qNaN */
579                                         /* log1p(pseudo-NaN) = qNaN */
580                                         /* log1p(unnormal) = qNaN */
581         } else if (hx < 0x407f) {       /* 1 <= x < 2**128 */
582                 f_hi = x;
583                 f_lo = 1;
584         } else {                        /* 2**128 <= x < +Inf */
585                 f_hi = x;
586                 f_lo = 0;               /* avoid underflow of the P5 term */
587         }
588         ENTERI();
589         x = f_hi + f_lo;
590         f_lo = (f_hi - x) + f_lo;
591
592         EXTRACT_LDBL80_WORDS(hx, lx, x);
593         k = -16383;
594
595         k += hx;
596         ix = lx & 0x7fffffffffffffffULL;
597         dk = k;
598
599         SET_LDBL_EXPSIGN(x, 0x3fff);
600         twopminusk = 1;
601         SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
602         f_lo *= twopminusk;
603
604         i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
605
606         /*
607          * x*G(i)-1 (with a reduced x) can be represented exactly, as
608          * above, but now we need to evaluate the polynomial on d =
609          * (x+f_lo)*G(i)-1 and extra precision is needed for that.
610          * Since x+x_lo is a hi+lo decomposition and subtracting 1
611          * doesn't lose too many bits, an inexact calculation for
612          * f_lo*G(i) is good enough.
613          */
614         if (0)
615                 d_hi = x * G(i) - 1;
616         else {
617 #ifdef USE_UTAB
618                 d_hi = (x - H(i)) * G(i) + E(i);
619 #else
620                 long double x_hi, x_lo;
621                 float fx_hi;
622
623                 SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
624                 x_hi = fx_hi;
625                 x_lo = x - x_hi;
626                 d_hi = x_hi * G(i) - 1 + x_lo * G(i);
627 #endif
628         }
629         d_lo = f_lo * G(i);
630
631         /*
632          * This is _2sumF(d_hi, d_lo) inlined.  The condition
633          * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
634          * always satisifed, so it is not clear that this works, but
635          * it works in practice.  It works even if it gives a wrong
636          * normalized d_lo, since |d_lo| > |d_hi| implies that i is
637          * nonzero and d is tiny, so the F(i) term dominates d_lo.
638          * In float precision:
639          * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
640          * And if d is only a little tinier than that, we would have
641          * another underflow problem for the P3 term; this is also ruled
642          * out by exhaustive testing.)
643          */
644         d = d_hi + d_lo;
645         d_lo = d_hi - d + d_lo;
646         d_hi = d;
647
648         z = d * d;
649         val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
650             (F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2;
651         val_hi = d_hi;
652 #ifdef DEBUG
653         if (fetestexcept(FE_UNDERFLOW))
654                 breakpoint();
655 #endif
656
657         _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
658         RETURN2PI(val_hi, val_lo);
659 }
660
661 #ifdef STRUCT_RETURN
662
663 long double
664 logl(long double x)
665 {
666         struct ld r;
667
668         ENTERI();
669         DOPRINT_START(&x);
670         k_logl(x, &r);
671         RETURNSPI(&r);
672 }
673
674 static const double
675 invln10_hi =  4.3429448190317999e-1,            /*  0x1bcb7b1526e000.0p-54 */
676 invln10_lo =  7.1842412889749798e-14,           /*  0x1438ca9aadd558.0p-96 */
677 invln2_hi =  1.4426950408887933e0,              /*  0x171547652b8000.0p-52 */
678 invln2_lo =  1.7010652264631490e-13;            /*  0x17f0bbbe87fed0.0p-95 */
679
680 long double
681 log10l(long double x)
682 {
683         struct ld r;
684         long double hi, lo;
685
686         ENTERI();
687         DOPRINT_START(&x);
688         k_logl(x, &r);
689         if (!r.lo_set)
690                 RETURNPI(r.hi);
691         _2sumF(r.hi, r.lo);
692         hi = (float)r.hi;
693         lo = r.lo + (r.hi - hi);
694         RETURN2PI(invln10_hi * hi,
695             (invln10_lo + invln10_hi) * lo + invln10_lo * hi);
696 }
697
698 long double
699 log2l(long double x)
700 {
701         struct ld r;
702         long double hi, lo;
703
704         ENTERI();
705         DOPRINT_START(&x);
706         k_logl(x, &r);
707         if (!r.lo_set)
708                 RETURNPI(r.hi);
709         _2sumF(r.hi, r.lo);
710         hi = (float)r.hi;
711         lo = r.lo + (r.hi - hi);
712         RETURN2PI(invln2_hi * hi,
713             (invln2_lo + invln2_hi) * lo + invln2_lo * hi);
714 }
715
716 #endif /* STRUCT_RETURN */