Merge branch 'vendor/OPENSSH'
[dragonfly.git] / contrib / binutils-2.20 / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections.  This is intended to be largely compatible
47 // with the GNU linker.  The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement.  We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54  private:
55   typedef Script_sections::Elements_iterator Elements_iterator;
56
57  public:
58   Orphan_section_placement();
59
60   // Handle an output section during initialization of this mapping.
61   void
62   output_section_init(const std::string& name, Output_section*,
63                       Elements_iterator location);
64
65   // Initialize the last location.
66   void
67   last_init(Elements_iterator location);
68
69   // Set *PWHERE to the address of an iterator pointing to the
70   // location to use for an orphan section.  Return true if the
71   // iterator has a value, false otherwise.
72   bool
73   find_place(Output_section*, Elements_iterator** pwhere);
74
75   // Return the iterator being used for sections at the very end of
76   // the linker script.
77   Elements_iterator
78   last_place() const;
79
80  private:
81   // The places that we specifically recognize.  This list is copied
82   // from the GNU linker.
83   enum Place_index
84   {
85     PLACE_TEXT,
86     PLACE_RODATA,
87     PLACE_DATA,
88     PLACE_BSS,
89     PLACE_REL,
90     PLACE_INTERP,
91     PLACE_NONALLOC,
92     PLACE_LAST,
93     PLACE_MAX
94   };
95
96   // The information we keep for a specific place.
97   struct Place
98   {
99     // The name of sections for this place.
100     const char* name;
101     // Whether we have a location for this place.
102     bool have_location;
103     // The iterator for this place.
104     Elements_iterator location;
105   };
106
107   // Initialize one place element.
108   void
109   initialize_place(Place_index, const char*);
110
111   // The places.
112   Place places_[PLACE_MAX];
113   // True if this is the first call to output_section_init.
114   bool first_init_;
115 };
116
117 // Initialize Orphan_section_placement.
118
119 Orphan_section_placement::Orphan_section_placement()
120   : first_init_(true)
121 {
122   this->initialize_place(PLACE_TEXT, ".text");
123   this->initialize_place(PLACE_RODATA, ".rodata");
124   this->initialize_place(PLACE_DATA, ".data");
125   this->initialize_place(PLACE_BSS, ".bss");
126   this->initialize_place(PLACE_REL, NULL);
127   this->initialize_place(PLACE_INTERP, ".interp");
128   this->initialize_place(PLACE_NONALLOC, NULL);
129   this->initialize_place(PLACE_LAST, NULL);
130 }
131
132 // Initialize one place element.
133
134 void
135 Orphan_section_placement::initialize_place(Place_index index, const char* name)
136 {
137   this->places_[index].name = name;
138   this->places_[index].have_location = false;
139 }
140
141 // While initializing the Orphan_section_placement information, this
142 // is called once for each output section named in the linker script.
143 // If we found an output section during the link, it will be passed in
144 // OS.
145
146 void
147 Orphan_section_placement::output_section_init(const std::string& name,
148                                               Output_section* os,
149                                               Elements_iterator location)
150 {
151   bool first_init = this->first_init_;
152   this->first_init_ = false;
153
154   for (int i = 0; i < PLACE_MAX; ++i)
155     {
156       if (this->places_[i].name != NULL && this->places_[i].name == name)
157         {
158           if (this->places_[i].have_location)
159             {
160               // We have already seen a section with this name.
161               return;
162             }
163
164           this->places_[i].location = location;
165           this->places_[i].have_location = true;
166
167           // If we just found the .bss section, restart the search for
168           // an unallocated section.  This follows the GNU linker's
169           // behaviour.
170           if (i == PLACE_BSS)
171             this->places_[PLACE_NONALLOC].have_location = false;
172
173           return;
174         }
175     }
176
177   // Relocation sections.
178   if (!this->places_[PLACE_REL].have_location
179       && os != NULL
180       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
181       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
182     {
183       this->places_[PLACE_REL].location = location;
184       this->places_[PLACE_REL].have_location = true;
185     }
186
187   // We find the location for unallocated sections by finding the
188   // first debugging or comment section after the BSS section (if
189   // there is one).
190   if (!this->places_[PLACE_NONALLOC].have_location
191       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
192     {
193       // We add orphan sections after the location in PLACES_.  We
194       // want to store unallocated sections before LOCATION.  If this
195       // is the very first section, we can't use it.
196       if (!first_init)
197         {
198           --location;
199           this->places_[PLACE_NONALLOC].location = location;
200           this->places_[PLACE_NONALLOC].have_location = true;
201         }
202     }
203 }
204
205 // Initialize the last location.
206
207 void
208 Orphan_section_placement::last_init(Elements_iterator location)
209 {
210   this->places_[PLACE_LAST].location = location;
211   this->places_[PLACE_LAST].have_location = true;
212 }
213
214 // Set *PWHERE to the address of an iterator pointing to the location
215 // to use for an orphan section.  Return true if the iterator has a
216 // value, false otherwise.
217
218 bool
219 Orphan_section_placement::find_place(Output_section* os,
220                                      Elements_iterator** pwhere)
221 {
222   // Figure out where OS should go.  This is based on the GNU linker
223   // code.  FIXME: The GNU linker handles small data sections
224   // specially, but we don't.
225   elfcpp::Elf_Word type = os->type();
226   elfcpp::Elf_Xword flags = os->flags();
227   Place_index index;
228   if ((flags & elfcpp::SHF_ALLOC) == 0
229       && !Layout::is_debug_info_section(os->name()))
230     index = PLACE_NONALLOC;
231   else if ((flags & elfcpp::SHF_ALLOC) == 0)
232     index = PLACE_LAST;
233   else if (type == elfcpp::SHT_NOTE)
234     index = PLACE_INTERP;
235   else if (type == elfcpp::SHT_NOBITS)
236     index = PLACE_BSS;
237   else if ((flags & elfcpp::SHF_WRITE) != 0)
238     index = PLACE_DATA;
239   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
240     index = PLACE_REL;
241   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
242     index = PLACE_RODATA;
243   else
244     index = PLACE_TEXT;
245
246   // If we don't have a location yet, try to find one based on a
247   // plausible ordering of sections.
248   if (!this->places_[index].have_location)
249     {
250       Place_index follow;
251       switch (index)
252         {
253         default:
254           follow = PLACE_MAX;
255           break;
256         case PLACE_RODATA:
257           follow = PLACE_TEXT;
258           break;
259         case PLACE_BSS:
260           follow = PLACE_DATA;
261           break;
262         case PLACE_REL:
263           follow = PLACE_TEXT;
264           break;
265         case PLACE_INTERP:
266           follow = PLACE_TEXT;
267           break;
268         }
269       if (follow != PLACE_MAX && this->places_[follow].have_location)
270         {
271           // Set the location of INDEX to the location of FOLLOW.  The
272           // location of INDEX will then be incremented by the caller,
273           // so anything in INDEX will continue to be after anything
274           // in FOLLOW.
275           this->places_[index].location = this->places_[follow].location;
276           this->places_[index].have_location = true;
277         }
278     }
279
280   *pwhere = &this->places_[index].location;
281   bool ret = this->places_[index].have_location;
282
283   // The caller will set the location.
284   this->places_[index].have_location = true;
285
286   return ret;
287 }
288
289 // Return the iterator being used for sections at the very end of the
290 // linker script.
291
292 Orphan_section_placement::Elements_iterator
293 Orphan_section_placement::last_place() const
294 {
295   gold_assert(this->places_[PLACE_LAST].have_location);
296   return this->places_[PLACE_LAST].location;
297 }
298
299 // An element in a SECTIONS clause.
300
301 class Sections_element
302 {
303  public:
304   Sections_element()
305   { }
306
307   virtual ~Sections_element()
308   { }
309
310   // Return whether an output section is relro.
311   virtual bool
312   is_relro() const
313   { return false; }
314
315   // Record that an output section is relro.
316   virtual void
317   set_is_relro()
318   { }
319
320   // Create any required output sections.  The only real
321   // implementation is in Output_section_definition.
322   virtual void
323   create_sections(Layout*)
324   { }
325
326   // Add any symbol being defined to the symbol table.
327   virtual void
328   add_symbols_to_table(Symbol_table*)
329   { }
330
331   // Finalize symbols and check assertions.
332   virtual void
333   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
334   { }
335
336   // Return the output section name to use for an input file name and
337   // section name.  This only real implementation is in
338   // Output_section_definition.
339   virtual const char*
340   output_section_name(const char*, const char*, Output_section***)
341   { return NULL; }
342
343   // Initialize OSP with an output section.
344   virtual void
345   orphan_section_init(Orphan_section_placement*,
346                       Script_sections::Elements_iterator)
347   { }
348
349   // Set section addresses.  This includes applying assignments if the
350   // the expression is an absolute value.
351   virtual void
352   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
353   { }
354
355   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
356   // this section is constrained, and the input sections do not match,
357   // return the constraint, and set *POSD.
358   virtual Section_constraint
359   check_constraint(Output_section_definition**)
360   { return CONSTRAINT_NONE; }
361
362   // See if this is the alternate output section for a constrained
363   // output section.  If it is, transfer the Output_section and return
364   // true.  Otherwise return false.
365   virtual bool
366   alternate_constraint(Output_section_definition*, Section_constraint)
367   { return false; }
368
369   // Get the list of segments to use for an allocated section when
370   // using a PHDRS clause.  If this is an allocated section, return
371   // the Output_section, and set *PHDRS_LIST (the first parameter) to
372   // the list of PHDRS to which it should be attached.  If the PHDRS
373   // were not specified, don't change *PHDRS_LIST.  When not returning
374   // NULL, set *ORPHAN (the second parameter) according to whether
375   // this is an orphan section--one that is not mentioned in the
376   // linker script.
377   virtual Output_section*
378   allocate_to_segment(String_list**, bool*)
379   { return NULL; }
380
381   // Look for an output section by name and return the address, the
382   // load address, the alignment, and the size.  This is used when an
383   // expression refers to an output section which was not actually
384   // created.  This returns true if the section was found, false
385   // otherwise.  The only real definition is for
386   // Output_section_definition.
387   virtual bool
388   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
389                           uint64_t*) const
390   { return false; }
391
392   // Return the associated Output_section if there is one.
393   virtual Output_section*
394   get_output_section() const
395   { return NULL; }
396
397   // Print the element for debugging purposes.
398   virtual void
399   print(FILE* f) const = 0;
400 };
401
402 // An assignment in a SECTIONS clause outside of an output section.
403
404 class Sections_element_assignment : public Sections_element
405 {
406  public:
407   Sections_element_assignment(const char* name, size_t namelen,
408                               Expression* val, bool provide, bool hidden)
409     : assignment_(name, namelen, val, provide, hidden)
410   { }
411
412   // Add the symbol to the symbol table.
413   void
414   add_symbols_to_table(Symbol_table* symtab)
415   { this->assignment_.add_to_table(symtab); }
416
417   // Finalize the symbol.
418   void
419   finalize_symbols(Symbol_table* symtab, const Layout* layout,
420                    uint64_t* dot_value)
421   {
422     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
423   }
424
425   // Set the section address.  There is no section here, but if the
426   // value is absolute, we set the symbol.  This permits us to use
427   // absolute symbols when setting dot.
428   void
429   set_section_addresses(Symbol_table* symtab, Layout* layout,
430                         uint64_t* dot_value, uint64_t*)
431   {
432     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
433   }
434
435   // Print for debugging.
436   void
437   print(FILE* f) const
438   {
439     fprintf(f, "  ");
440     this->assignment_.print(f);
441   }
442
443  private:
444   Symbol_assignment assignment_;
445 };
446
447 // An assignment to the dot symbol in a SECTIONS clause outside of an
448 // output section.
449
450 class Sections_element_dot_assignment : public Sections_element
451 {
452  public:
453   Sections_element_dot_assignment(Expression* val)
454     : val_(val)
455   { }
456
457   // Finalize the symbol.
458   void
459   finalize_symbols(Symbol_table* symtab, const Layout* layout,
460                    uint64_t* dot_value)
461   {
462     // We ignore the section of the result because outside of an
463     // output section definition the dot symbol is always considered
464     // to be absolute.
465     Output_section* dummy;
466     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
467                                            NULL, &dummy);
468   }
469
470   // Update the dot symbol while setting section addresses.
471   void
472   set_section_addresses(Symbol_table* symtab, Layout* layout,
473                         uint64_t* dot_value, uint64_t* load_address)
474   {
475     Output_section* dummy;
476     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
477                                            NULL, &dummy);
478     *load_address = *dot_value;
479   }
480
481   // Print for debugging.
482   void
483   print(FILE* f) const
484   {
485     fprintf(f, "  . = ");
486     this->val_->print(f);
487     fprintf(f, "\n");
488   }
489
490  private:
491   Expression* val_;
492 };
493
494 // An assertion in a SECTIONS clause outside of an output section.
495
496 class Sections_element_assertion : public Sections_element
497 {
498  public:
499   Sections_element_assertion(Expression* check, const char* message,
500                              size_t messagelen)
501     : assertion_(check, message, messagelen)
502   { }
503
504   // Check the assertion.
505   void
506   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
507   { this->assertion_.check(symtab, layout); }
508
509   // Print for debugging.
510   void
511   print(FILE* f) const
512   {
513     fprintf(f, "  ");
514     this->assertion_.print(f);
515   }
516
517  private:
518   Script_assertion assertion_;
519 };
520
521 // An element in an output section in a SECTIONS clause.
522
523 class Output_section_element
524 {
525  public:
526   // A list of input sections.
527   typedef std::list<Output_section::Simple_input_section> Input_section_list;
528
529   Output_section_element()
530   { }
531
532   virtual ~Output_section_element()
533   { }
534
535   // Return whether this element requires an output section to exist.
536   virtual bool
537   needs_output_section() const
538   { return false; }
539
540   // Add any symbol being defined to the symbol table.
541   virtual void
542   add_symbols_to_table(Symbol_table*)
543   { }
544
545   // Finalize symbols and check assertions.
546   virtual void
547   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
548   { }
549
550   // Return whether this element matches FILE_NAME and SECTION_NAME.
551   // The only real implementation is in Output_section_element_input.
552   virtual bool
553   match_name(const char*, const char*) const
554   { return false; }
555
556   // Set section addresses.  This includes applying assignments if the
557   // the expression is an absolute value.
558   virtual void
559   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
560                         uint64_t*, Output_section**, std::string*,
561                         Input_section_list*)
562   { }
563
564   // Print the element for debugging purposes.
565   virtual void
566   print(FILE* f) const = 0;
567
568  protected:
569   // Return a fill string that is LENGTH bytes long, filling it with
570   // FILL.
571   std::string
572   get_fill_string(const std::string* fill, section_size_type length) const;
573 };
574
575 std::string
576 Output_section_element::get_fill_string(const std::string* fill,
577                                         section_size_type length) const
578 {
579   std::string this_fill;
580   this_fill.reserve(length);
581   while (this_fill.length() + fill->length() <= length)
582     this_fill += *fill;
583   if (this_fill.length() < length)
584     this_fill.append(*fill, 0, length - this_fill.length());
585   return this_fill;
586 }
587
588 // A symbol assignment in an output section.
589
590 class Output_section_element_assignment : public Output_section_element
591 {
592  public:
593   Output_section_element_assignment(const char* name, size_t namelen,
594                                     Expression* val, bool provide,
595                                     bool hidden)
596     : assignment_(name, namelen, val, provide, hidden)
597   { }
598
599   // Add the symbol to the symbol table.
600   void
601   add_symbols_to_table(Symbol_table* symtab)
602   { this->assignment_.add_to_table(symtab); }
603
604   // Finalize the symbol.
605   void
606   finalize_symbols(Symbol_table* symtab, const Layout* layout,
607                    uint64_t* dot_value, Output_section** dot_section)
608   {
609     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
610                                         *dot_section);
611   }
612
613   // Set the section address.  There is no section here, but if the
614   // value is absolute, we set the symbol.  This permits us to use
615   // absolute symbols when setting dot.
616   void
617   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
618                         uint64_t, uint64_t* dot_value, Output_section**,
619                         std::string*, Input_section_list*)
620   {
621     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
622   }
623
624   // Print for debugging.
625   void
626   print(FILE* f) const
627   {
628     fprintf(f, "    ");
629     this->assignment_.print(f);
630   }
631
632  private:
633   Symbol_assignment assignment_;
634 };
635
636 // An assignment to the dot symbol in an output section.
637
638 class Output_section_element_dot_assignment : public Output_section_element
639 {
640  public:
641   Output_section_element_dot_assignment(Expression* val)
642     : val_(val)
643   { }
644
645   // Finalize the symbol.
646   void
647   finalize_symbols(Symbol_table* symtab, const Layout* layout,
648                    uint64_t* dot_value, Output_section** dot_section)
649   {
650     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
651                                            *dot_section, dot_section);
652   }
653
654   // Update the dot symbol while setting section addresses.
655   void
656   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
657                         uint64_t, uint64_t* dot_value, Output_section**,
658                         std::string*, Input_section_list*);
659
660   // Print for debugging.
661   void
662   print(FILE* f) const
663   {
664     fprintf(f, "    . = ");
665     this->val_->print(f);
666     fprintf(f, "\n");
667   }
668
669  private:
670   Expression* val_;
671 };
672
673 // Update the dot symbol while setting section addresses.
674
675 void
676 Output_section_element_dot_assignment::set_section_addresses(
677     Symbol_table* symtab,
678     Layout* layout,
679     Output_section* output_section,
680     uint64_t,
681     uint64_t* dot_value,
682     Output_section** dot_section,
683     std::string* fill,
684     Input_section_list*)
685 {
686   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
687                                                 *dot_value, *dot_section,
688                                                 dot_section);
689   if (next_dot < *dot_value)
690     gold_error(_("dot may not move backward"));
691   if (next_dot > *dot_value && output_section != NULL)
692     {
693       section_size_type length = convert_to_section_size_type(next_dot
694                                                               - *dot_value);
695       Output_section_data* posd;
696       if (fill->empty())
697         posd = new Output_data_zero_fill(length, 0);
698       else
699         {
700           std::string this_fill = this->get_fill_string(fill, length);
701           posd = new Output_data_const(this_fill, 0);
702         }
703       output_section->add_output_section_data(posd);
704       layout->new_output_section_data_from_script(posd);
705     }
706   *dot_value = next_dot;
707 }
708
709 // An assertion in an output section.
710
711 class Output_section_element_assertion : public Output_section_element
712 {
713  public:
714   Output_section_element_assertion(Expression* check, const char* message,
715                                    size_t messagelen)
716     : assertion_(check, message, messagelen)
717   { }
718
719   void
720   print(FILE* f) const
721   {
722     fprintf(f, "    ");
723     this->assertion_.print(f);
724   }
725
726  private:
727   Script_assertion assertion_;
728 };
729
730 // We use a special instance of Output_section_data to handle BYTE,
731 // SHORT, etc.  This permits forward references to symbols in the
732 // expressions.
733
734 class Output_data_expression : public Output_section_data
735 {
736  public:
737   Output_data_expression(int size, bool is_signed, Expression* val,
738                          const Symbol_table* symtab, const Layout* layout,
739                          uint64_t dot_value, Output_section* dot_section)
740     : Output_section_data(size, 0, true),
741       is_signed_(is_signed), val_(val), symtab_(symtab),
742       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
743   { }
744
745  protected:
746   // Write the data to the output file.
747   void
748   do_write(Output_file*);
749
750   // Write the data to a buffer.
751   void
752   do_write_to_buffer(unsigned char*);
753
754   // Write to a map file.
755   void
756   do_print_to_mapfile(Mapfile* mapfile) const
757   { mapfile->print_output_data(this, _("** expression")); }
758
759  private:
760   template<bool big_endian>
761   void
762   endian_write_to_buffer(uint64_t, unsigned char*);
763
764   bool is_signed_;
765   Expression* val_;
766   const Symbol_table* symtab_;
767   const Layout* layout_;
768   uint64_t dot_value_;
769   Output_section* dot_section_;
770 };
771
772 // Write the data element to the output file.
773
774 void
775 Output_data_expression::do_write(Output_file* of)
776 {
777   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
778   this->write_to_buffer(view);
779   of->write_output_view(this->offset(), this->data_size(), view);
780 }
781
782 // Write the data element to a buffer.
783
784 void
785 Output_data_expression::do_write_to_buffer(unsigned char* buf)
786 {
787   Output_section* dummy;
788   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
789                                            true, this->dot_value_,
790                                            this->dot_section_, &dummy);
791
792   if (parameters->target().is_big_endian())
793     this->endian_write_to_buffer<true>(val, buf);
794   else
795     this->endian_write_to_buffer<false>(val, buf);
796 }
797
798 template<bool big_endian>
799 void
800 Output_data_expression::endian_write_to_buffer(uint64_t val,
801                                                unsigned char* buf)
802 {
803   switch (this->data_size())
804     {
805     case 1:
806       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
807       break;
808     case 2:
809       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
810       break;
811     case 4:
812       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
813       break;
814     case 8:
815       if (parameters->target().get_size() == 32)
816         {
817           val &= 0xffffffff;
818           if (this->is_signed_ && (val & 0x80000000) != 0)
819             val |= 0xffffffff00000000LL;
820         }
821       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
822       break;
823     default:
824       gold_unreachable();
825     }
826 }
827
828 // A data item in an output section.
829
830 class Output_section_element_data : public Output_section_element
831 {
832  public:
833   Output_section_element_data(int size, bool is_signed, Expression* val)
834     : size_(size), is_signed_(is_signed), val_(val)
835   { }
836
837   // If there is a data item, then we must create an output section.
838   bool
839   needs_output_section() const
840   { return true; }
841
842   // Finalize symbols--we just need to update dot.
843   void
844   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
845                    Output_section**)
846   { *dot_value += this->size_; }
847
848   // Store the value in the section.
849   void
850   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
851                         uint64_t* dot_value, Output_section**, std::string*,
852                         Input_section_list*);
853
854   // Print for debugging.
855   void
856   print(FILE*) const;
857
858  private:
859   // The size in bytes.
860   int size_;
861   // Whether the value is signed.
862   bool is_signed_;
863   // The value.
864   Expression* val_;
865 };
866
867 // Store the value in the section.
868
869 void
870 Output_section_element_data::set_section_addresses(
871     Symbol_table* symtab,
872     Layout* layout,
873     Output_section* os,
874     uint64_t,
875     uint64_t* dot_value,
876     Output_section** dot_section,
877     std::string*,
878     Input_section_list*)
879 {
880   gold_assert(os != NULL);
881   Output_data_expression* expression =
882     new Output_data_expression(this->size_, this->is_signed_, this->val_,
883                                symtab, layout, *dot_value, *dot_section);
884   os->add_output_section_data(expression);
885   layout->new_output_section_data_from_script(expression);
886   *dot_value += this->size_;
887 }
888
889 // Print for debugging.
890
891 void
892 Output_section_element_data::print(FILE* f) const
893 {
894   const char* s;
895   switch (this->size_)
896     {
897     case 1:
898       s = "BYTE";
899       break;
900     case 2:
901       s = "SHORT";
902       break;
903     case 4:
904       s = "LONG";
905       break;
906     case 8:
907       if (this->is_signed_)
908         s = "SQUAD";
909       else
910         s = "QUAD";
911       break;
912     default:
913       gold_unreachable();
914     }
915   fprintf(f, "    %s(", s);
916   this->val_->print(f);
917   fprintf(f, ")\n");
918 }
919
920 // A fill value setting in an output section.
921
922 class Output_section_element_fill : public Output_section_element
923 {
924  public:
925   Output_section_element_fill(Expression* val)
926     : val_(val)
927   { }
928
929   // Update the fill value while setting section addresses.
930   void
931   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932                         uint64_t, uint64_t* dot_value,
933                         Output_section** dot_section,
934                         std::string* fill, Input_section_list*)
935   {
936     Output_section* fill_section;
937     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
938                                                   *dot_value, *dot_section,
939                                                   &fill_section);
940     if (fill_section != NULL)
941       gold_warning(_("fill value is not absolute"));
942     // FIXME: The GNU linker supports fill values of arbitrary length.
943     unsigned char fill_buff[4];
944     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
945     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
946   }
947
948   // Print for debugging.
949   void
950   print(FILE* f) const
951   {
952     fprintf(f, "    FILL(");
953     this->val_->print(f);
954     fprintf(f, ")\n");
955   }
956
957  private:
958   // The new fill value.
959   Expression* val_;
960 };
961
962 // Return whether STRING contains a wildcard character.  This is used
963 // to speed up matching.
964
965 static inline bool
966 is_wildcard_string(const std::string& s)
967 {
968   return strpbrk(s.c_str(), "?*[") != NULL;
969 }
970
971 // An input section specification in an output section
972
973 class Output_section_element_input : public Output_section_element
974 {
975  public:
976   Output_section_element_input(const Input_section_spec* spec, bool keep);
977
978   // Finalize symbols--just update the value of the dot symbol.
979   void
980   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
981                    Output_section** dot_section)
982   {
983     *dot_value = this->final_dot_value_;
984     *dot_section = this->final_dot_section_;
985   }
986
987   // See whether we match FILE_NAME and SECTION_NAME as an input
988   // section.
989   bool
990   match_name(const char* file_name, const char* section_name) const;
991
992   // Set the section address.
993   void
994   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
995                         uint64_t subalign, uint64_t* dot_value,
996                         Output_section**, std::string* fill,
997                         Input_section_list*);
998
999   // Print for debugging.
1000   void
1001   print(FILE* f) const;
1002
1003  private:
1004   // An input section pattern.
1005   struct Input_section_pattern
1006   {
1007     std::string pattern;
1008     bool pattern_is_wildcard;
1009     Sort_wildcard sort;
1010
1011     Input_section_pattern(const char* patterna, size_t patternlena,
1012                           Sort_wildcard sorta)
1013       : pattern(patterna, patternlena),
1014         pattern_is_wildcard(is_wildcard_string(this->pattern)),
1015         sort(sorta)
1016     { }
1017   };
1018
1019   typedef std::vector<Input_section_pattern> Input_section_patterns;
1020
1021   // Filename_exclusions is a pair of filename pattern and a bool
1022   // indicating whether the filename is a wildcard.
1023   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1024
1025   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1026   // indicates whether this is a wildcard pattern.
1027   static inline bool
1028   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1029   {
1030     return (is_wildcard_pattern
1031             ? fnmatch(pattern, string, 0) == 0
1032             : strcmp(string, pattern) == 0);
1033   }
1034
1035   // See if we match a file name.
1036   bool
1037   match_file_name(const char* file_name) const;
1038
1039   // The file name pattern.  If this is the empty string, we match all
1040   // files.
1041   std::string filename_pattern_;
1042   // Whether the file name pattern is a wildcard.
1043   bool filename_is_wildcard_;
1044   // How the file names should be sorted.  This may only be
1045   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1046   Sort_wildcard filename_sort_;
1047   // The list of file names to exclude.
1048   Filename_exclusions filename_exclusions_;
1049   // The list of input section patterns.
1050   Input_section_patterns input_section_patterns_;
1051   // Whether to keep this section when garbage collecting.
1052   bool keep_;
1053   // The value of dot after including all matching sections.
1054   uint64_t final_dot_value_;
1055   // The section where dot is defined after including all matching
1056   // sections.
1057   Output_section* final_dot_section_;
1058 };
1059
1060 // Construct Output_section_element_input.  The parser records strings
1061 // as pointers into a copy of the script file, which will go away when
1062 // parsing is complete.  We make sure they are in std::string objects.
1063
1064 Output_section_element_input::Output_section_element_input(
1065     const Input_section_spec* spec,
1066     bool keep)
1067   : filename_pattern_(),
1068     filename_is_wildcard_(false),
1069     filename_sort_(spec->file.sort),
1070     filename_exclusions_(),
1071     input_section_patterns_(),
1072     keep_(keep),
1073     final_dot_value_(0),
1074     final_dot_section_(NULL)
1075 {
1076   // The filename pattern "*" is common, and matches all files.  Turn
1077   // it into the empty string.
1078   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1079     this->filename_pattern_.assign(spec->file.name.value,
1080                                    spec->file.name.length);
1081   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1082
1083   if (spec->input_sections.exclude != NULL)
1084     {
1085       for (String_list::const_iterator p =
1086              spec->input_sections.exclude->begin();
1087            p != spec->input_sections.exclude->end();
1088            ++p)
1089         {
1090           bool is_wildcard = is_wildcard_string(*p);
1091           this->filename_exclusions_.push_back(std::make_pair(*p,
1092                                                               is_wildcard));
1093         }
1094     }
1095
1096   if (spec->input_sections.sections != NULL)
1097     {
1098       Input_section_patterns& isp(this->input_section_patterns_);
1099       for (String_sort_list::const_iterator p =
1100              spec->input_sections.sections->begin();
1101            p != spec->input_sections.sections->end();
1102            ++p)
1103         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1104                                             p->sort));
1105     }
1106 }
1107
1108 // See whether we match FILE_NAME.
1109
1110 bool
1111 Output_section_element_input::match_file_name(const char* file_name) const
1112 {
1113   if (!this->filename_pattern_.empty())
1114     {
1115       // If we were called with no filename, we refuse to match a
1116       // pattern which requires a file name.
1117       if (file_name == NULL)
1118         return false;
1119
1120       if (!match(file_name, this->filename_pattern_.c_str(),
1121                  this->filename_is_wildcard_))
1122         return false;
1123     }
1124
1125   if (file_name != NULL)
1126     {
1127       // Now we have to see whether FILE_NAME matches one of the
1128       // exclusion patterns, if any.
1129       for (Filename_exclusions::const_iterator p =
1130              this->filename_exclusions_.begin();
1131            p != this->filename_exclusions_.end();
1132            ++p)
1133         {
1134           if (match(file_name, p->first.c_str(), p->second))
1135             return false;
1136         }
1137     }
1138
1139   return true;
1140 }
1141
1142 // See whether we match FILE_NAME and SECTION_NAME.
1143
1144 bool
1145 Output_section_element_input::match_name(const char* file_name,
1146                                          const char* section_name) const
1147 {
1148   if (!this->match_file_name(file_name))
1149     return false;
1150
1151   // If there are no section name patterns, then we match.
1152   if (this->input_section_patterns_.empty())
1153     return true;
1154
1155   // See whether we match the section name patterns.
1156   for (Input_section_patterns::const_iterator p =
1157          this->input_section_patterns_.begin();
1158        p != this->input_section_patterns_.end();
1159        ++p)
1160     {
1161       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1162         return true;
1163     }
1164
1165   // We didn't match any section names, so we didn't match.
1166   return false;
1167 }
1168
1169 // Information we use to sort the input sections.
1170
1171 class Input_section_info
1172 {
1173  public:
1174   Input_section_info(const Output_section::Simple_input_section& input_section)
1175     : input_section_(input_section), section_name_(),
1176       size_(0), addralign_(1)
1177   { }
1178
1179   // Return the simple input section.
1180   const Output_section::Simple_input_section&
1181   input_section() const
1182   { return this->input_section_; }
1183
1184   // Return the object.
1185   Relobj*
1186   relobj() const
1187   { return this->input_section_.relobj(); }
1188
1189   // Return the section index.
1190   unsigned int
1191   shndx()
1192   { return this->input_section_.shndx(); }
1193
1194   // Return the section name.
1195   const std::string&
1196   section_name() const
1197   { return this->section_name_; }
1198
1199   // Set the section name.
1200   void
1201   set_section_name(const std::string name)
1202   { this->section_name_ = name; }
1203
1204   // Return the section size.
1205   uint64_t
1206   size() const
1207   { return this->size_; }
1208
1209   // Set the section size.
1210   void
1211   set_size(uint64_t size)
1212   { this->size_ = size; }
1213
1214   // Return the address alignment.
1215   uint64_t
1216   addralign() const
1217   { return this->addralign_; }
1218
1219   // Set the address alignment.
1220   void
1221   set_addralign(uint64_t addralign)
1222   { this->addralign_ = addralign; }
1223
1224  private:
1225   // Input section, can be a relaxed section.
1226   Output_section::Simple_input_section input_section_;
1227   // Name of the section. 
1228   std::string section_name_;
1229   // Section size.
1230   uint64_t size_;
1231   // Address alignment.
1232   uint64_t addralign_;
1233 };
1234
1235 // A class to sort the input sections.
1236
1237 class Input_section_sorter
1238 {
1239  public:
1240   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1241     : filename_sort_(filename_sort), section_sort_(section_sort)
1242   { }
1243
1244   bool
1245   operator()(const Input_section_info&, const Input_section_info&) const;
1246
1247  private:
1248   Sort_wildcard filename_sort_;
1249   Sort_wildcard section_sort_;
1250 };
1251
1252 bool
1253 Input_section_sorter::operator()(const Input_section_info& isi1,
1254                                  const Input_section_info& isi2) const
1255 {
1256   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1257       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1258       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1259           && isi1.addralign() == isi2.addralign()))
1260     {
1261       if (isi1.section_name() != isi2.section_name())
1262         return isi1.section_name() < isi2.section_name();
1263     }
1264   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1265       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1266       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1267     {
1268       if (isi1.addralign() != isi2.addralign())
1269         return isi1.addralign() < isi2.addralign();
1270     }
1271   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1272     {
1273       if (isi1.relobj()->name() != isi2.relobj()->name())
1274         return (isi1.relobj()->name() < isi2.relobj()->name());
1275     }
1276
1277   // Otherwise we leave them in the same order.
1278   return false;
1279 }
1280
1281 // Set the section address.  Look in INPUT_SECTIONS for sections which
1282 // match this spec, sort them as specified, and add them to the output
1283 // section.
1284
1285 void
1286 Output_section_element_input::set_section_addresses(
1287     Symbol_table*,
1288     Layout* layout,
1289     Output_section* output_section,
1290     uint64_t subalign,
1291     uint64_t* dot_value,
1292     Output_section** dot_section,
1293     std::string* fill,
1294     Input_section_list* input_sections)
1295 {
1296   // We build a list of sections which match each
1297   // Input_section_pattern.
1298
1299   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1300   size_t input_pattern_count = this->input_section_patterns_.size();
1301   if (input_pattern_count == 0)
1302     input_pattern_count = 1;
1303   Matching_sections matching_sections(input_pattern_count);
1304
1305   // Look through the list of sections for this output section.  Add
1306   // each one which matches to one of the elements of
1307   // MATCHING_SECTIONS.
1308
1309   Input_section_list::iterator p = input_sections->begin();
1310   while (p != input_sections->end())
1311     {
1312       Relobj* relobj = p->relobj();
1313       unsigned int shndx = p->shndx();      
1314       Input_section_info isi(*p);
1315
1316       // Calling section_name and section_addralign is not very
1317       // efficient.
1318
1319       // Lock the object so that we can get information about the
1320       // section.  This is OK since we know we are single-threaded
1321       // here.
1322       {
1323         const Task* task = reinterpret_cast<const Task*>(-1);
1324         Task_lock_obj<Object> tl(task, relobj);
1325
1326         isi.set_section_name(relobj->section_name(shndx));
1327         if (p->is_relaxed_input_section())
1328           {
1329             // We use current data size because relxed section sizes may not
1330             // have finalized yet.
1331             isi.set_size(p->relaxed_input_section()->current_data_size());
1332             isi.set_addralign(p->relaxed_input_section()->addralign());
1333           }
1334         else
1335           {
1336             isi.set_size(relobj->section_size(shndx));
1337             isi.set_addralign(relobj->section_addralign(shndx));
1338           }
1339       }
1340
1341       if (!this->match_file_name(relobj->name().c_str()))
1342         ++p;
1343       else if (this->input_section_patterns_.empty())
1344         {
1345           matching_sections[0].push_back(isi);
1346           p = input_sections->erase(p);
1347         }
1348       else
1349         {
1350           size_t i;
1351           for (i = 0; i < input_pattern_count; ++i)
1352             {
1353               const Input_section_pattern&
1354                 isp(this->input_section_patterns_[i]);
1355               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1356                         isp.pattern_is_wildcard))
1357                 break;
1358             }
1359
1360           if (i >= this->input_section_patterns_.size())
1361             ++p;
1362           else
1363             {
1364               matching_sections[i].push_back(isi);
1365               p = input_sections->erase(p);
1366             }
1367         }
1368     }
1369
1370   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1371   // using a stable sort so that we get the default order when
1372   // sections are otherwise equal.  Add each input section to the
1373   // output section.
1374
1375   uint64_t dot = *dot_value;
1376   for (size_t i = 0; i < input_pattern_count; ++i)
1377     {
1378       if (matching_sections[i].empty())
1379         continue;
1380
1381       gold_assert(output_section != NULL);
1382
1383       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1384       if (isp.sort != SORT_WILDCARD_NONE
1385           || this->filename_sort_ != SORT_WILDCARD_NONE)
1386         std::stable_sort(matching_sections[i].begin(),
1387                          matching_sections[i].end(),
1388                          Input_section_sorter(this->filename_sort_,
1389                                               isp.sort));
1390
1391       for (std::vector<Input_section_info>::const_iterator p =
1392              matching_sections[i].begin();
1393            p != matching_sections[i].end();
1394            ++p)
1395         {
1396           uint64_t this_subalign = p->addralign();
1397           if (this_subalign < subalign)
1398             this_subalign = subalign;
1399
1400           uint64_t address = align_address(dot, this_subalign);
1401
1402           if (address > dot && !fill->empty())
1403             {
1404               section_size_type length =
1405                 convert_to_section_size_type(address - dot);
1406               std::string this_fill = this->get_fill_string(fill, length);
1407               Output_section_data* posd = new Output_data_const(this_fill, 0);
1408               output_section->add_output_section_data(posd);
1409               layout->new_output_section_data_from_script(posd);
1410             }
1411
1412           output_section->add_input_section_for_script(p->input_section(),
1413                                                        p->size(),
1414                                                        this_subalign);
1415
1416           dot = address + p->size();
1417         }
1418     }
1419
1420   // An SHF_TLS/SHT_NOBITS section does not take up any
1421   // address space.
1422   if (output_section == NULL
1423       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1424       || output_section->type() != elfcpp::SHT_NOBITS)
1425     *dot_value = dot;
1426
1427   this->final_dot_value_ = *dot_value;
1428   this->final_dot_section_ = *dot_section;
1429 }
1430
1431 // Print for debugging.
1432
1433 void
1434 Output_section_element_input::print(FILE* f) const
1435 {
1436   fprintf(f, "    ");
1437
1438   if (this->keep_)
1439     fprintf(f, "KEEP(");
1440
1441   if (!this->filename_pattern_.empty())
1442     {
1443       bool need_close_paren = false;
1444       switch (this->filename_sort_)
1445         {
1446         case SORT_WILDCARD_NONE:
1447           break;
1448         case SORT_WILDCARD_BY_NAME:
1449           fprintf(f, "SORT_BY_NAME(");
1450           need_close_paren = true;
1451           break;
1452         default:
1453           gold_unreachable();
1454         }
1455
1456       fprintf(f, "%s", this->filename_pattern_.c_str());
1457
1458       if (need_close_paren)
1459         fprintf(f, ")");
1460     }
1461
1462   if (!this->input_section_patterns_.empty()
1463       || !this->filename_exclusions_.empty())
1464     {
1465       fprintf(f, "(");
1466
1467       bool need_space = false;
1468       if (!this->filename_exclusions_.empty())
1469         {
1470           fprintf(f, "EXCLUDE_FILE(");
1471           bool need_comma = false;
1472           for (Filename_exclusions::const_iterator p =
1473                  this->filename_exclusions_.begin();
1474                p != this->filename_exclusions_.end();
1475                ++p)
1476             {
1477               if (need_comma)
1478                 fprintf(f, ", ");
1479               fprintf(f, "%s", p->first.c_str());
1480               need_comma = true;
1481             }
1482           fprintf(f, ")");
1483           need_space = true;
1484         }
1485
1486       for (Input_section_patterns::const_iterator p =
1487              this->input_section_patterns_.begin();
1488            p != this->input_section_patterns_.end();
1489            ++p)
1490         {
1491           if (need_space)
1492             fprintf(f, " ");
1493
1494           int close_parens = 0;
1495           switch (p->sort)
1496             {
1497             case SORT_WILDCARD_NONE:
1498               break;
1499             case SORT_WILDCARD_BY_NAME:
1500               fprintf(f, "SORT_BY_NAME(");
1501               close_parens = 1;
1502               break;
1503             case SORT_WILDCARD_BY_ALIGNMENT:
1504               fprintf(f, "SORT_BY_ALIGNMENT(");
1505               close_parens = 1;
1506               break;
1507             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1508               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1509               close_parens = 2;
1510               break;
1511             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1512               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1513               close_parens = 2;
1514               break;
1515             default:
1516               gold_unreachable();
1517             }
1518
1519           fprintf(f, "%s", p->pattern.c_str());
1520
1521           for (int i = 0; i < close_parens; ++i)
1522             fprintf(f, ")");
1523
1524           need_space = true;
1525         }
1526
1527       fprintf(f, ")");
1528     }
1529
1530   if (this->keep_)
1531     fprintf(f, ")");
1532
1533   fprintf(f, "\n");
1534 }
1535
1536 // An output section.
1537
1538 class Output_section_definition : public Sections_element
1539 {
1540  public:
1541   typedef Output_section_element::Input_section_list Input_section_list;
1542
1543   Output_section_definition(const char* name, size_t namelen,
1544                             const Parser_output_section_header* header);
1545
1546   // Finish the output section with the information in the trailer.
1547   void
1548   finish(const Parser_output_section_trailer* trailer);
1549
1550   // Add a symbol to be defined.
1551   void
1552   add_symbol_assignment(const char* name, size_t length, Expression* value,
1553                         bool provide, bool hidden);
1554
1555   // Add an assignment to the special dot symbol.
1556   void
1557   add_dot_assignment(Expression* value);
1558
1559   // Add an assertion.
1560   void
1561   add_assertion(Expression* check, const char* message, size_t messagelen);
1562
1563   // Add a data item to the current output section.
1564   void
1565   add_data(int size, bool is_signed, Expression* val);
1566
1567   // Add a setting for the fill value.
1568   void
1569   add_fill(Expression* val);
1570
1571   // Add an input section specification.
1572   void
1573   add_input_section(const Input_section_spec* spec, bool keep);
1574
1575   // Return whether the output section is relro.
1576   bool
1577   is_relro() const
1578   { return this->is_relro_; }
1579
1580   // Record that the output section is relro.
1581   void
1582   set_is_relro()
1583   { this->is_relro_ = true; }
1584
1585   // Create any required output sections.
1586   void
1587   create_sections(Layout*);
1588
1589   // Add any symbols being defined to the symbol table.
1590   void
1591   add_symbols_to_table(Symbol_table* symtab);
1592
1593   // Finalize symbols and check assertions.
1594   void
1595   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1596
1597   // Return the output section name to use for an input file name and
1598   // section name.
1599   const char*
1600   output_section_name(const char* file_name, const char* section_name,
1601                       Output_section***);
1602
1603   // Initialize OSP with an output section.
1604   void
1605   orphan_section_init(Orphan_section_placement* osp,
1606                       Script_sections::Elements_iterator p)
1607   { osp->output_section_init(this->name_, this->output_section_, p); }
1608
1609   // Set the section address.
1610   void
1611   set_section_addresses(Symbol_table* symtab, Layout* layout,
1612                         uint64_t* dot_value, uint64_t* load_address);
1613
1614   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1615   // this section is constrained, and the input sections do not match,
1616   // return the constraint, and set *POSD.
1617   Section_constraint
1618   check_constraint(Output_section_definition** posd);
1619
1620   // See if this is the alternate output section for a constrained
1621   // output section.  If it is, transfer the Output_section and return
1622   // true.  Otherwise return false.
1623   bool
1624   alternate_constraint(Output_section_definition*, Section_constraint);
1625
1626   // Get the list of segments to use for an allocated section when
1627   // using a PHDRS clause.
1628   Output_section*
1629   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1630
1631   // Look for an output section by name and return the address, the
1632   // load address, the alignment, and the size.  This is used when an
1633   // expression refers to an output section which was not actually
1634   // created.  This returns true if the section was found, false
1635   // otherwise.
1636   bool
1637   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1638                           uint64_t*) const;
1639
1640   // Return the associated Output_section if there is one.
1641   Output_section*
1642   get_output_section() const
1643   { return this->output_section_; }
1644
1645   // Print the contents to the FILE.  This is for debugging.
1646   void
1647   print(FILE*) const;
1648
1649  private:
1650   typedef std::vector<Output_section_element*> Output_section_elements;
1651
1652   // The output section name.
1653   std::string name_;
1654   // The address.  This may be NULL.
1655   Expression* address_;
1656   // The load address.  This may be NULL.
1657   Expression* load_address_;
1658   // The alignment.  This may be NULL.
1659   Expression* align_;
1660   // The input section alignment.  This may be NULL.
1661   Expression* subalign_;
1662   // The constraint, if any.
1663   Section_constraint constraint_;
1664   // The fill value.  This may be NULL.
1665   Expression* fill_;
1666   // The list of segments this section should go into.  This may be
1667   // NULL.
1668   String_list* phdrs_;
1669   // The list of elements defining the section.
1670   Output_section_elements elements_;
1671   // The Output_section created for this definition.  This will be
1672   // NULL if none was created.
1673   Output_section* output_section_;
1674   // The address after it has been evaluated.
1675   uint64_t evaluated_address_;
1676   // The load address after it has been evaluated.
1677   uint64_t evaluated_load_address_;
1678   // The alignment after it has been evaluated.
1679   uint64_t evaluated_addralign_;
1680   // The output section is relro.
1681   bool is_relro_;
1682 };
1683
1684 // Constructor.
1685
1686 Output_section_definition::Output_section_definition(
1687     const char* name,
1688     size_t namelen,
1689     const Parser_output_section_header* header)
1690   : name_(name, namelen),
1691     address_(header->address),
1692     load_address_(header->load_address),
1693     align_(header->align),
1694     subalign_(header->subalign),
1695     constraint_(header->constraint),
1696     fill_(NULL),
1697     phdrs_(NULL),
1698     elements_(),
1699     output_section_(NULL),
1700     evaluated_address_(0),
1701     evaluated_load_address_(0),
1702     evaluated_addralign_(0),
1703     is_relro_(false)
1704 {
1705 }
1706
1707 // Finish an output section.
1708
1709 void
1710 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1711 {
1712   this->fill_ = trailer->fill;
1713   this->phdrs_ = trailer->phdrs;
1714 }
1715
1716 // Add a symbol to be defined.
1717
1718 void
1719 Output_section_definition::add_symbol_assignment(const char* name,
1720                                                  size_t length,
1721                                                  Expression* value,
1722                                                  bool provide,
1723                                                  bool hidden)
1724 {
1725   Output_section_element* p = new Output_section_element_assignment(name,
1726                                                                     length,
1727                                                                     value,
1728                                                                     provide,
1729                                                                     hidden);
1730   this->elements_.push_back(p);
1731 }
1732
1733 // Add an assignment to the special dot symbol.
1734
1735 void
1736 Output_section_definition::add_dot_assignment(Expression* value)
1737 {
1738   Output_section_element* p = new Output_section_element_dot_assignment(value);
1739   this->elements_.push_back(p);
1740 }
1741
1742 // Add an assertion.
1743
1744 void
1745 Output_section_definition::add_assertion(Expression* check,
1746                                          const char* message,
1747                                          size_t messagelen)
1748 {
1749   Output_section_element* p = new Output_section_element_assertion(check,
1750                                                                    message,
1751                                                                    messagelen);
1752   this->elements_.push_back(p);
1753 }
1754
1755 // Add a data item to the current output section.
1756
1757 void
1758 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1759 {
1760   Output_section_element* p = new Output_section_element_data(size, is_signed,
1761                                                               val);
1762   this->elements_.push_back(p);
1763 }
1764
1765 // Add a setting for the fill value.
1766
1767 void
1768 Output_section_definition::add_fill(Expression* val)
1769 {
1770   Output_section_element* p = new Output_section_element_fill(val);
1771   this->elements_.push_back(p);
1772 }
1773
1774 // Add an input section specification.
1775
1776 void
1777 Output_section_definition::add_input_section(const Input_section_spec* spec,
1778                                              bool keep)
1779 {
1780   Output_section_element* p = new Output_section_element_input(spec, keep);
1781   this->elements_.push_back(p);
1782 }
1783
1784 // Create any required output sections.  We need an output section if
1785 // there is a data statement here.
1786
1787 void
1788 Output_section_definition::create_sections(Layout* layout)
1789 {
1790   if (this->output_section_ != NULL)
1791     return;
1792   for (Output_section_elements::const_iterator p = this->elements_.begin();
1793        p != this->elements_.end();
1794        ++p)
1795     {
1796       if ((*p)->needs_output_section())
1797         {
1798           const char* name = this->name_.c_str();
1799           this->output_section_ = layout->make_output_section_for_script(name);
1800           return;
1801         }
1802     }
1803 }
1804
1805 // Add any symbols being defined to the symbol table.
1806
1807 void
1808 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1809 {
1810   for (Output_section_elements::iterator p = this->elements_.begin();
1811        p != this->elements_.end();
1812        ++p)
1813     (*p)->add_symbols_to_table(symtab);
1814 }
1815
1816 // Finalize symbols and check assertions.
1817
1818 void
1819 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1820                                             const Layout* layout,
1821                                             uint64_t* dot_value)
1822 {
1823   if (this->output_section_ != NULL)
1824     *dot_value = this->output_section_->address();
1825   else
1826     {
1827       uint64_t address = *dot_value;
1828       if (this->address_ != NULL)
1829         {
1830           Output_section* dummy;
1831           address = this->address_->eval_with_dot(symtab, layout, true,
1832                                                   *dot_value, NULL,
1833                                                   &dummy);
1834         }
1835       if (this->align_ != NULL)
1836         {
1837           Output_section* dummy;
1838           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1839                                                        *dot_value,
1840                                                        NULL,
1841                                                        &dummy);
1842           address = align_address(address, align);
1843         }
1844       *dot_value = address;
1845     }
1846
1847   Output_section* dot_section = this->output_section_;
1848   for (Output_section_elements::iterator p = this->elements_.begin();
1849        p != this->elements_.end();
1850        ++p)
1851     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1852 }
1853
1854 // Return the output section name to use for an input section name.
1855
1856 const char*
1857 Output_section_definition::output_section_name(const char* file_name,
1858                                                const char* section_name,
1859                                                Output_section*** slot)
1860 {
1861   // Ask each element whether it matches NAME.
1862   for (Output_section_elements::const_iterator p = this->elements_.begin();
1863        p != this->elements_.end();
1864        ++p)
1865     {
1866       if ((*p)->match_name(file_name, section_name))
1867         {
1868           // We found a match for NAME, which means that it should go
1869           // into this output section.
1870           *slot = &this->output_section_;
1871           return this->name_.c_str();
1872         }
1873     }
1874
1875   // We don't know about this section name.
1876   return NULL;
1877 }
1878
1879 // Set the section address.  Note that the OUTPUT_SECTION_ field will
1880 // be NULL if no input sections were mapped to this output section.
1881 // We still have to adjust dot and process symbol assignments.
1882
1883 void
1884 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1885                                                  Layout* layout,
1886                                                  uint64_t* dot_value,
1887                                                  uint64_t* load_address)
1888 {
1889   uint64_t address;
1890   if (this->address_ == NULL)
1891     address = *dot_value;
1892   else
1893     {
1894       Output_section* dummy;
1895       address = this->address_->eval_with_dot(symtab, layout, true,
1896                                               *dot_value, NULL, &dummy);
1897     }
1898
1899   uint64_t align;
1900   if (this->align_ == NULL)
1901     {
1902       if (this->output_section_ == NULL)
1903         align = 0;
1904       else
1905         align = this->output_section_->addralign();
1906     }
1907   else
1908     {
1909       Output_section* align_section;
1910       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1911                                           NULL, &align_section);
1912       if (align_section != NULL)
1913         gold_warning(_("alignment of section %s is not absolute"),
1914                      this->name_.c_str());
1915       if (this->output_section_ != NULL)
1916         this->output_section_->set_addralign(align);
1917     }
1918
1919   address = align_address(address, align);
1920
1921   uint64_t start_address = address;
1922
1923   *dot_value = address;
1924
1925   // The address of non-SHF_ALLOC sections is forced to zero,
1926   // regardless of what the linker script wants.
1927   if (this->output_section_ != NULL
1928       && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1929     this->output_section_->set_address(address);
1930
1931   this->evaluated_address_ = address;
1932   this->evaluated_addralign_ = align;
1933
1934   if (this->load_address_ == NULL)
1935     this->evaluated_load_address_ = address;
1936   else
1937     {
1938       Output_section* dummy;
1939       uint64_t laddr =
1940         this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1941                                            this->output_section_, &dummy);
1942       if (this->output_section_ != NULL)
1943         this->output_section_->set_load_address(laddr);
1944       this->evaluated_load_address_ = laddr;
1945     }
1946
1947   uint64_t subalign;
1948   if (this->subalign_ == NULL)
1949     subalign = 0;
1950   else
1951     {
1952       Output_section* subalign_section;
1953       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1954                                                 *dot_value, NULL,
1955                                                 &subalign_section);
1956       if (subalign_section != NULL)
1957         gold_warning(_("subalign of section %s is not absolute"),
1958                      this->name_.c_str());
1959     }
1960
1961   std::string fill;
1962   if (this->fill_ != NULL)
1963     {
1964       // FIXME: The GNU linker supports fill values of arbitrary
1965       // length.
1966       Output_section* fill_section;
1967       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1968                                                      *dot_value,
1969                                                      NULL,
1970                                                      &fill_section);
1971       if (fill_section != NULL)
1972         gold_warning(_("fill of section %s is not absolute"),
1973                      this->name_.c_str());
1974       unsigned char fill_buff[4];
1975       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1976       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1977     }
1978
1979   Input_section_list input_sections;
1980   if (this->output_section_ != NULL)
1981     {
1982       // Get the list of input sections attached to this output
1983       // section.  This will leave the output section with only
1984       // Output_section_data entries.
1985       address += this->output_section_->get_input_sections(address,
1986                                                            fill,
1987                                                            &input_sections);
1988       *dot_value = address;
1989     }
1990
1991   Output_section* dot_section = this->output_section_;
1992   for (Output_section_elements::iterator p = this->elements_.begin();
1993        p != this->elements_.end();
1994        ++p)
1995     (*p)->set_section_addresses(symtab, layout, this->output_section_,
1996                                 subalign, dot_value, &dot_section, &fill,
1997                                 &input_sections);
1998
1999   gold_assert(input_sections.empty());
2000
2001   if (this->load_address_ == NULL || this->output_section_ == NULL)
2002     *load_address = *dot_value;
2003   else
2004     *load_address = (this->output_section_->load_address()
2005                      + (*dot_value - start_address));
2006
2007   if (this->output_section_ != NULL)
2008     {
2009       if (this->is_relro_)
2010         this->output_section_->set_is_relro();
2011       else
2012         this->output_section_->clear_is_relro();
2013     }
2014 }
2015
2016 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2017 // this section is constrained, and the input sections do not match,
2018 // return the constraint, and set *POSD.
2019
2020 Section_constraint
2021 Output_section_definition::check_constraint(Output_section_definition** posd)
2022 {
2023   switch (this->constraint_)
2024     {
2025     case CONSTRAINT_NONE:
2026       return CONSTRAINT_NONE;
2027
2028     case CONSTRAINT_ONLY_IF_RO:
2029       if (this->output_section_ != NULL
2030           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2031         {
2032           *posd = this;
2033           return CONSTRAINT_ONLY_IF_RO;
2034         }
2035       return CONSTRAINT_NONE;
2036
2037     case CONSTRAINT_ONLY_IF_RW:
2038       if (this->output_section_ != NULL
2039           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2040         {
2041           *posd = this;
2042           return CONSTRAINT_ONLY_IF_RW;
2043         }
2044       return CONSTRAINT_NONE;
2045
2046     case CONSTRAINT_SPECIAL:
2047       if (this->output_section_ != NULL)
2048         gold_error(_("SPECIAL constraints are not implemented"));
2049       return CONSTRAINT_NONE;
2050
2051     default:
2052       gold_unreachable();
2053     }
2054 }
2055
2056 // See if this is the alternate output section for a constrained
2057 // output section.  If it is, transfer the Output_section and return
2058 // true.  Otherwise return false.
2059
2060 bool
2061 Output_section_definition::alternate_constraint(
2062     Output_section_definition* posd,
2063     Section_constraint constraint)
2064 {
2065   if (this->name_ != posd->name_)
2066     return false;
2067
2068   switch (constraint)
2069     {
2070     case CONSTRAINT_ONLY_IF_RO:
2071       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2072         return false;
2073       break;
2074
2075     case CONSTRAINT_ONLY_IF_RW:
2076       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2077         return false;
2078       break;
2079
2080     default:
2081       gold_unreachable();
2082     }
2083
2084   // We have found the alternate constraint.  We just need to move
2085   // over the Output_section.  When constraints are used properly,
2086   // THIS should not have an output_section pointer, as all the input
2087   // sections should have matched the other definition.
2088
2089   if (this->output_section_ != NULL)
2090     gold_error(_("mismatched definition for constrained sections"));
2091
2092   this->output_section_ = posd->output_section_;
2093   posd->output_section_ = NULL;
2094
2095   if (this->is_relro_)
2096     this->output_section_->set_is_relro();
2097   else
2098     this->output_section_->clear_is_relro();
2099
2100   return true;
2101 }
2102
2103 // Get the list of segments to use for an allocated section when using
2104 // a PHDRS clause.
2105
2106 Output_section*
2107 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2108                                                bool* orphan)
2109 {
2110   if (this->output_section_ == NULL)
2111     return NULL;
2112   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2113     return NULL;
2114   *orphan = false;
2115   if (this->phdrs_ != NULL)
2116     *phdrs_list = this->phdrs_;
2117   return this->output_section_;
2118 }
2119
2120 // Look for an output section by name and return the address, the load
2121 // address, the alignment, and the size.  This is used when an
2122 // expression refers to an output section which was not actually
2123 // created.  This returns true if the section was found, false
2124 // otherwise.
2125
2126 bool
2127 Output_section_definition::get_output_section_info(const char* name,
2128                                                    uint64_t* address,
2129                                                    uint64_t* load_address,
2130                                                    uint64_t* addralign,
2131                                                    uint64_t* size) const
2132 {
2133   if (this->name_ != name)
2134     return false;
2135
2136   if (this->output_section_ != NULL)
2137     {
2138       *address = this->output_section_->address();
2139       if (this->output_section_->has_load_address())
2140         *load_address = this->output_section_->load_address();
2141       else
2142         *load_address = *address;
2143       *addralign = this->output_section_->addralign();
2144       *size = this->output_section_->current_data_size();
2145     }
2146   else
2147     {
2148       *address = this->evaluated_address_;
2149       *load_address = this->evaluated_load_address_;
2150       *addralign = this->evaluated_addralign_;
2151       *size = 0;
2152     }
2153
2154   return true;
2155 }
2156
2157 // Print for debugging.
2158
2159 void
2160 Output_section_definition::print(FILE* f) const
2161 {
2162   fprintf(f, "  %s ", this->name_.c_str());
2163
2164   if (this->address_ != NULL)
2165     {
2166       this->address_->print(f);
2167       fprintf(f, " ");
2168     }
2169
2170   fprintf(f, ": ");
2171
2172   if (this->load_address_ != NULL)
2173     {
2174       fprintf(f, "AT(");
2175       this->load_address_->print(f);
2176       fprintf(f, ") ");
2177     }
2178
2179   if (this->align_ != NULL)
2180     {
2181       fprintf(f, "ALIGN(");
2182       this->align_->print(f);
2183       fprintf(f, ") ");
2184     }
2185
2186   if (this->subalign_ != NULL)
2187     {
2188       fprintf(f, "SUBALIGN(");
2189       this->subalign_->print(f);
2190       fprintf(f, ") ");
2191     }
2192
2193   fprintf(f, "{\n");
2194
2195   for (Output_section_elements::const_iterator p = this->elements_.begin();
2196        p != this->elements_.end();
2197        ++p)
2198     (*p)->print(f);
2199
2200   fprintf(f, "  }");
2201
2202   if (this->fill_ != NULL)
2203     {
2204       fprintf(f, " = ");
2205       this->fill_->print(f);
2206     }
2207
2208   if (this->phdrs_ != NULL)
2209     {
2210       for (String_list::const_iterator p = this->phdrs_->begin();
2211            p != this->phdrs_->end();
2212            ++p)
2213         fprintf(f, " :%s", p->c_str());
2214     }
2215
2216   fprintf(f, "\n");
2217 }
2218
2219 // An output section created to hold orphaned input sections.  These
2220 // do not actually appear in linker scripts.  However, for convenience
2221 // when setting the output section addresses, we put a marker to these
2222 // sections in the appropriate place in the list of SECTIONS elements.
2223
2224 class Orphan_output_section : public Sections_element
2225 {
2226  public:
2227   Orphan_output_section(Output_section* os)
2228     : os_(os)
2229   { }
2230
2231   // Return whether the orphan output section is relro.  We can just
2232   // check the output section because we always set the flag, if
2233   // needed, just after we create the Orphan_output_section.
2234   bool
2235   is_relro() const
2236   { return this->os_->is_relro(); }
2237
2238   // Initialize OSP with an output section.  This should have been
2239   // done already.
2240   void
2241   orphan_section_init(Orphan_section_placement*,
2242                       Script_sections::Elements_iterator)
2243   { gold_unreachable(); }
2244
2245   // Set section addresses.
2246   void
2247   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
2248
2249   // Get the list of segments to use for an allocated section when
2250   // using a PHDRS clause.
2251   Output_section*
2252   allocate_to_segment(String_list**, bool*);
2253
2254   // Return the associated Output_section.
2255   Output_section*
2256   get_output_section() const
2257   { return this->os_; }
2258
2259   // Print for debugging.
2260   void
2261   print(FILE* f) const
2262   {
2263     fprintf(f, "  marker for orphaned output section %s\n",
2264             this->os_->name());
2265   }
2266
2267  private:
2268   Output_section* os_;
2269 };
2270
2271 // Set section addresses.
2272
2273 void
2274 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2275                                              uint64_t* dot_value,
2276                                              uint64_t* load_address)
2277 {
2278   typedef std::list<Output_section::Simple_input_section> Input_section_list;
2279
2280   bool have_load_address = *load_address != *dot_value;
2281
2282   uint64_t address = *dot_value;
2283   address = align_address(address, this->os_->addralign());
2284
2285   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2286     {
2287       this->os_->set_address(address);
2288       if (have_load_address)
2289         this->os_->set_load_address(align_address(*load_address,
2290                                                   this->os_->addralign()));
2291     }
2292
2293   Input_section_list input_sections;
2294   address += this->os_->get_input_sections(address, "", &input_sections);
2295
2296   for (Input_section_list::iterator p = input_sections.begin();
2297        p != input_sections.end();
2298        ++p)
2299     {
2300       uint64_t addralign;
2301       uint64_t size;
2302
2303       // We know what are single-threaded, so it is OK to lock the
2304       // object.
2305       {
2306         const Task* task = reinterpret_cast<const Task*>(-1);
2307         Task_lock_obj<Object> tl(task, p->relobj());
2308         addralign = p->relobj()->section_addralign(p->shndx());
2309         if (p->is_relaxed_input_section())
2310           // We use current data size because relxed section sizes may not
2311           // have finalized yet.
2312           size = p->relaxed_input_section()->current_data_size();
2313         else
2314           size = p->relobj()->section_size(p->shndx());
2315       }
2316
2317       address = align_address(address, addralign);
2318       this->os_->add_input_section_for_script(*p, size, addralign);
2319       address += size;
2320     }
2321
2322   // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2323   if (this->os_ == NULL
2324       || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2325       || this->os_->type() != elfcpp::SHT_NOBITS)
2326     {
2327       if (!have_load_address)
2328         *load_address = address;
2329       else
2330         *load_address += address - *dot_value;
2331
2332       *dot_value = address;
2333     }
2334 }
2335
2336 // Get the list of segments to use for an allocated section when using
2337 // a PHDRS clause.  If this is an allocated section, return the
2338 // Output_section.  We don't change the list of segments.
2339
2340 Output_section*
2341 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2342 {
2343   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2344     return NULL;
2345   *orphan = true;
2346   return this->os_;
2347 }
2348
2349 // Class Phdrs_element.  A program header from a PHDRS clause.
2350
2351 class Phdrs_element
2352 {
2353  public:
2354   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2355                 bool includes_filehdr, bool includes_phdrs,
2356                 bool is_flags_valid, unsigned int flags,
2357                 Expression* load_address)
2358     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2359       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2360       flags_(flags), load_address_(load_address), load_address_value_(0),
2361       segment_(NULL)
2362   { }
2363
2364   // Return the name of this segment.
2365   const std::string&
2366   name() const
2367   { return this->name_; }
2368
2369   // Return the type of the segment.
2370   unsigned int
2371   type() const
2372   { return this->type_; }
2373
2374   // Whether to include the file header.
2375   bool
2376   includes_filehdr() const
2377   { return this->includes_filehdr_; }
2378
2379   // Whether to include the program headers.
2380   bool
2381   includes_phdrs() const
2382   { return this->includes_phdrs_; }
2383
2384   // Return whether there is a load address.
2385   bool
2386   has_load_address() const
2387   { return this->load_address_ != NULL; }
2388
2389   // Evaluate the load address expression if there is one.
2390   void
2391   eval_load_address(Symbol_table* symtab, Layout* layout)
2392   {
2393     if (this->load_address_ != NULL)
2394       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2395                                                             true);
2396   }
2397
2398   // Return the load address.
2399   uint64_t
2400   load_address() const
2401   {
2402     gold_assert(this->load_address_ != NULL);
2403     return this->load_address_value_;
2404   }
2405
2406   // Create the segment.
2407   Output_segment*
2408   create_segment(Layout* layout)
2409   {
2410     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2411     return this->segment_;
2412   }
2413
2414   // Return the segment.
2415   Output_segment*
2416   segment()
2417   { return this->segment_; }
2418
2419   // Release the segment.
2420   void
2421   release_segment()
2422   { this->segment_ = NULL; }
2423
2424   // Set the segment flags if appropriate.
2425   void
2426   set_flags_if_valid()
2427   {
2428     if (this->is_flags_valid_)
2429       this->segment_->set_flags(this->flags_);
2430   }
2431
2432   // Print for debugging.
2433   void
2434   print(FILE*) const;
2435
2436  private:
2437   // The name used in the script.
2438   std::string name_;
2439   // The type of the segment (PT_LOAD, etc.).
2440   unsigned int type_;
2441   // Whether this segment includes the file header.
2442   bool includes_filehdr_;
2443   // Whether this segment includes the section headers.
2444   bool includes_phdrs_;
2445   // Whether the flags were explicitly specified.
2446   bool is_flags_valid_;
2447   // The flags for this segment (PF_R, etc.) if specified.
2448   unsigned int flags_;
2449   // The expression for the load address for this segment.  This may
2450   // be NULL.
2451   Expression* load_address_;
2452   // The actual load address from evaluating the expression.
2453   uint64_t load_address_value_;
2454   // The segment itself.
2455   Output_segment* segment_;
2456 };
2457
2458 // Print for debugging.
2459
2460 void
2461 Phdrs_element::print(FILE* f) const
2462 {
2463   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
2464   if (this->includes_filehdr_)
2465     fprintf(f, " FILEHDR");
2466   if (this->includes_phdrs_)
2467     fprintf(f, " PHDRS");
2468   if (this->is_flags_valid_)
2469     fprintf(f, " FLAGS(%u)", this->flags_);
2470   if (this->load_address_ != NULL)
2471     {
2472       fprintf(f, " AT(");
2473       this->load_address_->print(f);
2474       fprintf(f, ")");
2475     }
2476   fprintf(f, ";\n");
2477 }
2478
2479 // Class Script_sections.
2480
2481 Script_sections::Script_sections()
2482   : saw_sections_clause_(false),
2483     in_sections_clause_(false),
2484     sections_elements_(NULL),
2485     output_section_(NULL),
2486     phdrs_elements_(NULL),
2487     orphan_section_placement_(NULL),
2488     data_segment_align_start_(),
2489     saw_data_segment_align_(false),
2490     saw_relro_end_(false)
2491 {
2492 }
2493
2494 // Start a SECTIONS clause.
2495
2496 void
2497 Script_sections::start_sections()
2498 {
2499   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2500   this->saw_sections_clause_ = true;
2501   this->in_sections_clause_ = true;
2502   if (this->sections_elements_ == NULL)
2503     this->sections_elements_ = new Sections_elements;
2504 }
2505
2506 // Finish a SECTIONS clause.
2507
2508 void
2509 Script_sections::finish_sections()
2510 {
2511   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2512   this->in_sections_clause_ = false;
2513 }
2514
2515 // Add a symbol to be defined.
2516
2517 void
2518 Script_sections::add_symbol_assignment(const char* name, size_t length,
2519                                        Expression* val, bool provide,
2520                                        bool hidden)
2521 {
2522   if (this->output_section_ != NULL)
2523     this->output_section_->add_symbol_assignment(name, length, val,
2524                                                  provide, hidden);
2525   else
2526     {
2527       Sections_element* p = new Sections_element_assignment(name, length,
2528                                                             val, provide,
2529                                                             hidden);
2530       this->sections_elements_->push_back(p);
2531     }
2532 }
2533
2534 // Add an assignment to the special dot symbol.
2535
2536 void
2537 Script_sections::add_dot_assignment(Expression* val)
2538 {
2539   if (this->output_section_ != NULL)
2540     this->output_section_->add_dot_assignment(val);
2541   else
2542     {
2543       // The GNU linker permits assignments to . to appears outside of
2544       // a SECTIONS clause, and treats it as appearing inside, so
2545       // sections_elements_ may be NULL here.
2546       if (this->sections_elements_ == NULL)
2547         {
2548           this->sections_elements_ = new Sections_elements;
2549           this->saw_sections_clause_ = true;
2550         }
2551
2552       Sections_element* p = new Sections_element_dot_assignment(val);
2553       this->sections_elements_->push_back(p);
2554     }
2555 }
2556
2557 // Add an assertion.
2558
2559 void
2560 Script_sections::add_assertion(Expression* check, const char* message,
2561                                size_t messagelen)
2562 {
2563   if (this->output_section_ != NULL)
2564     this->output_section_->add_assertion(check, message, messagelen);
2565   else
2566     {
2567       Sections_element* p = new Sections_element_assertion(check, message,
2568                                                            messagelen);
2569       this->sections_elements_->push_back(p);
2570     }
2571 }
2572
2573 // Start processing entries for an output section.
2574
2575 void
2576 Script_sections::start_output_section(
2577     const char* name,
2578     size_t namelen,
2579     const Parser_output_section_header *header)
2580 {
2581   Output_section_definition* posd = new Output_section_definition(name,
2582                                                                   namelen,
2583                                                                   header);
2584   this->sections_elements_->push_back(posd);
2585   gold_assert(this->output_section_ == NULL);
2586   this->output_section_ = posd;
2587 }
2588
2589 // Stop processing entries for an output section.
2590
2591 void
2592 Script_sections::finish_output_section(
2593     const Parser_output_section_trailer* trailer)
2594 {
2595   gold_assert(this->output_section_ != NULL);
2596   this->output_section_->finish(trailer);
2597   this->output_section_ = NULL;
2598 }
2599
2600 // Add a data item to the current output section.
2601
2602 void
2603 Script_sections::add_data(int size, bool is_signed, Expression* val)
2604 {
2605   gold_assert(this->output_section_ != NULL);
2606   this->output_section_->add_data(size, is_signed, val);
2607 }
2608
2609 // Add a fill value setting to the current output section.
2610
2611 void
2612 Script_sections::add_fill(Expression* val)
2613 {
2614   gold_assert(this->output_section_ != NULL);
2615   this->output_section_->add_fill(val);
2616 }
2617
2618 // Add an input section specification to the current output section.
2619
2620 void
2621 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2622 {
2623   gold_assert(this->output_section_ != NULL);
2624   this->output_section_->add_input_section(spec, keep);
2625 }
2626
2627 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
2628 // subsequent output sections may be relro.
2629
2630 void
2631 Script_sections::data_segment_align()
2632 {
2633   if (this->saw_data_segment_align_)
2634     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2635   gold_assert(!this->sections_elements_->empty());
2636   Sections_elements::iterator p = this->sections_elements_->end();
2637   --p;
2638   this->data_segment_align_start_ = p;
2639   this->saw_data_segment_align_ = true;
2640 }
2641
2642 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
2643 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2644
2645 void
2646 Script_sections::data_segment_relro_end()
2647 {
2648   if (this->saw_relro_end_)
2649     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2650                  "in a linker script"));
2651   this->saw_relro_end_ = true;
2652
2653   if (!this->saw_data_segment_align_)
2654     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2655   else
2656     {
2657       Sections_elements::iterator p = this->data_segment_align_start_;
2658       for (++p; p != this->sections_elements_->end(); ++p)
2659         (*p)->set_is_relro();
2660     }
2661 }
2662
2663 // Create any required sections.
2664
2665 void
2666 Script_sections::create_sections(Layout* layout)
2667 {
2668   if (!this->saw_sections_clause_)
2669     return;
2670   for (Sections_elements::iterator p = this->sections_elements_->begin();
2671        p != this->sections_elements_->end();
2672        ++p)
2673     (*p)->create_sections(layout);
2674 }
2675
2676 // Add any symbols we are defining to the symbol table.
2677
2678 void
2679 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2680 {
2681   if (!this->saw_sections_clause_)
2682     return;
2683   for (Sections_elements::iterator p = this->sections_elements_->begin();
2684        p != this->sections_elements_->end();
2685        ++p)
2686     (*p)->add_symbols_to_table(symtab);
2687 }
2688
2689 // Finalize symbols and check assertions.
2690
2691 void
2692 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2693 {
2694   if (!this->saw_sections_clause_)
2695     return;
2696   uint64_t dot_value = 0;
2697   for (Sections_elements::iterator p = this->sections_elements_->begin();
2698        p != this->sections_elements_->end();
2699        ++p)
2700     (*p)->finalize_symbols(symtab, layout, &dot_value);
2701 }
2702
2703 // Return the name of the output section to use for an input file name
2704 // and section name.
2705
2706 const char*
2707 Script_sections::output_section_name(const char* file_name,
2708                                      const char* section_name,
2709                                      Output_section*** output_section_slot)
2710 {
2711   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2712        p != this->sections_elements_->end();
2713        ++p)
2714     {
2715       const char* ret = (*p)->output_section_name(file_name, section_name,
2716                                                   output_section_slot);
2717
2718       if (ret != NULL)
2719         {
2720           // The special name /DISCARD/ means that the input section
2721           // should be discarded.
2722           if (strcmp(ret, "/DISCARD/") == 0)
2723             {
2724               *output_section_slot = NULL;
2725               return NULL;
2726             }
2727           return ret;
2728         }
2729     }
2730
2731   // If we couldn't find a mapping for the name, the output section
2732   // gets the name of the input section.
2733
2734   *output_section_slot = NULL;
2735
2736   return section_name;
2737 }
2738
2739 // Place a marker for an orphan output section into the SECTIONS
2740 // clause.
2741
2742 void
2743 Script_sections::place_orphan(Output_section* os)
2744 {
2745   Orphan_section_placement* osp = this->orphan_section_placement_;
2746   if (osp == NULL)
2747     {
2748       // Initialize the Orphan_section_placement structure.
2749       osp = new Orphan_section_placement();
2750       for (Sections_elements::iterator p = this->sections_elements_->begin();
2751            p != this->sections_elements_->end();
2752            ++p)
2753         (*p)->orphan_section_init(osp, p);
2754       gold_assert(!this->sections_elements_->empty());
2755       Sections_elements::iterator last = this->sections_elements_->end();
2756       --last;
2757       osp->last_init(last);
2758       this->orphan_section_placement_ = osp;
2759     }
2760
2761   Orphan_output_section* orphan = new Orphan_output_section(os);
2762
2763   // Look for where to put ORPHAN.
2764   Sections_elements::iterator* where;
2765   if (osp->find_place(os, &where))
2766     {
2767       if ((**where)->is_relro())
2768         os->set_is_relro();
2769       else
2770         os->clear_is_relro();
2771
2772       // We want to insert ORPHAN after *WHERE, and then update *WHERE
2773       // so that the next one goes after this one.
2774       Sections_elements::iterator p = *where;
2775       gold_assert(p != this->sections_elements_->end());
2776       ++p;
2777       *where = this->sections_elements_->insert(p, orphan);
2778     }
2779   else
2780     {
2781       os->clear_is_relro();
2782       // We don't have a place to put this orphan section.  Put it,
2783       // and all other sections like it, at the end, but before the
2784       // sections which always come at the end.
2785       Sections_elements::iterator last = osp->last_place();
2786       *where = this->sections_elements_->insert(last, orphan);
2787     }
2788 }
2789
2790 // Set the addresses of all the output sections.  Walk through all the
2791 // elements, tracking the dot symbol.  Apply assignments which set
2792 // absolute symbol values, in case they are used when setting dot.
2793 // Fill in data statement values.  As we find output sections, set the
2794 // address, set the address of all associated input sections, and
2795 // update dot.  Return the segment which should hold the file header
2796 // and segment headers, if any.
2797
2798 Output_segment*
2799 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2800 {
2801   gold_assert(this->saw_sections_clause_);
2802
2803   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
2804   // for our representation.
2805   for (Sections_elements::iterator p = this->sections_elements_->begin();
2806        p != this->sections_elements_->end();
2807        ++p)
2808     {
2809       Output_section_definition* posd;
2810       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2811       if (failed_constraint != CONSTRAINT_NONE)
2812         {
2813           Sections_elements::iterator q;
2814           for (q = this->sections_elements_->begin();
2815                q != this->sections_elements_->end();
2816                ++q)
2817             {
2818               if (q != p)
2819                 {
2820                   if ((*q)->alternate_constraint(posd, failed_constraint))
2821                     break;
2822                 }
2823             }
2824
2825           if (q == this->sections_elements_->end())
2826             gold_error(_("no matching section constraint"));
2827         }
2828     }
2829
2830   // Force the alignment of the first TLS section to be the maximum
2831   // alignment of all TLS sections.
2832   Output_section* first_tls = NULL;
2833   uint64_t tls_align = 0;
2834   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2835        p != this->sections_elements_->end();
2836        ++p)
2837     {
2838       Output_section *os = (*p)->get_output_section();
2839       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2840         {
2841           if (first_tls == NULL)
2842             first_tls = os;
2843           if (os->addralign() > tls_align)
2844             tls_align = os->addralign();
2845         }
2846     }
2847   if (first_tls != NULL)
2848     first_tls->set_addralign(tls_align);
2849
2850   // For a relocatable link, we implicitly set dot to zero.
2851   uint64_t dot_value = 0;
2852   uint64_t load_address = 0;
2853   for (Sections_elements::iterator p = this->sections_elements_->begin();
2854        p != this->sections_elements_->end();
2855        ++p)
2856     (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2857
2858   if (this->phdrs_elements_ != NULL)
2859     {
2860       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2861            p != this->phdrs_elements_->end();
2862            ++p)
2863         (*p)->eval_load_address(symtab, layout);
2864     }
2865
2866   return this->create_segments(layout);
2867 }
2868
2869 // Sort the sections in order to put them into segments.
2870
2871 class Sort_output_sections
2872 {
2873  public:
2874   bool
2875   operator()(const Output_section* os1, const Output_section* os2) const;
2876 };
2877
2878 bool
2879 Sort_output_sections::operator()(const Output_section* os1,
2880                                  const Output_section* os2) const
2881 {
2882   // Sort first by the load address.
2883   uint64_t lma1 = (os1->has_load_address()
2884                    ? os1->load_address()
2885                    : os1->address());
2886   uint64_t lma2 = (os2->has_load_address()
2887                    ? os2->load_address()
2888                    : os2->address());
2889   if (lma1 != lma2)
2890     return lma1 < lma2;
2891
2892   // Then sort by the virtual address.
2893   if (os1->address() != os2->address())
2894     return os1->address() < os2->address();
2895
2896   // Sort TLS sections to the end.
2897   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2898   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2899   if (tls1 != tls2)
2900     return tls2;
2901
2902   // Sort PROGBITS before NOBITS.
2903   if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2904     return true;
2905   if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2906     return false;
2907
2908   // Otherwise we don't care.
2909   return false;
2910 }
2911
2912 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
2913 // We treat a section with the SHF_TLS flag set as taking up space
2914 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2915 // space for them in the file.
2916
2917 bool
2918 Script_sections::is_bss_section(const Output_section* os)
2919 {
2920   return (os->type() == elfcpp::SHT_NOBITS
2921           && (os->flags() & elfcpp::SHF_TLS) == 0);
2922 }
2923
2924 // Return the size taken by the file header and the program headers.
2925
2926 size_t
2927 Script_sections::total_header_size(Layout* layout) const
2928 {
2929   size_t segment_count = layout->segment_count();
2930   size_t file_header_size;
2931   size_t segment_headers_size;
2932   if (parameters->target().get_size() == 32)
2933     {
2934       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2935       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2936     }
2937   else if (parameters->target().get_size() == 64)
2938     {
2939       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2940       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2941     }
2942   else
2943     gold_unreachable();
2944
2945   return file_header_size + segment_headers_size;
2946 }
2947
2948 // Return the amount we have to subtract from the LMA to accomodate
2949 // headers of the given size.  The complication is that the file
2950 // header have to be at the start of a page, as otherwise it will not
2951 // be at the start of the file.
2952
2953 uint64_t
2954 Script_sections::header_size_adjustment(uint64_t lma,
2955                                         size_t sizeof_headers) const
2956 {
2957   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2958   uint64_t hdr_lma = lma - sizeof_headers;
2959   hdr_lma &= ~(abi_pagesize - 1);
2960   return lma - hdr_lma;
2961 }
2962
2963 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
2964 // the segment which should hold the file header and segment headers,
2965 // if any.
2966
2967 Output_segment*
2968 Script_sections::create_segments(Layout* layout)
2969 {
2970   gold_assert(this->saw_sections_clause_);
2971
2972   if (parameters->options().relocatable())
2973     return NULL;
2974
2975   if (this->saw_phdrs_clause())
2976     return create_segments_from_phdrs_clause(layout);
2977
2978   Layout::Section_list sections;
2979   layout->get_allocated_sections(&sections);
2980
2981   // Sort the sections by address.
2982   std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2983
2984   this->create_note_and_tls_segments(layout, &sections);
2985
2986   // Walk through the sections adding them to PT_LOAD segments.
2987   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2988   Output_segment* first_seg = NULL;
2989   Output_segment* current_seg = NULL;
2990   bool is_current_seg_readonly = true;
2991   Layout::Section_list::iterator plast = sections.end();
2992   uint64_t last_vma = 0;
2993   uint64_t last_lma = 0;
2994   uint64_t last_size = 0;
2995   for (Layout::Section_list::iterator p = sections.begin();
2996        p != sections.end();
2997        ++p)
2998     {
2999       const uint64_t vma = (*p)->address();
3000       const uint64_t lma = ((*p)->has_load_address()
3001                             ? (*p)->load_address()
3002                             : vma);
3003       const uint64_t size = (*p)->current_data_size();
3004
3005       bool need_new_segment;
3006       if (current_seg == NULL)
3007         need_new_segment = true;
3008       else if (lma - vma != last_lma - last_vma)
3009         {
3010           // This section has a different LMA relationship than the
3011           // last one; we need a new segment.
3012           need_new_segment = true;
3013         }
3014       else if (align_address(last_lma + last_size, abi_pagesize)
3015                < align_address(lma, abi_pagesize))
3016         {
3017           // Putting this section in the segment would require
3018           // skipping a page.
3019           need_new_segment = true;
3020         }
3021       else if (is_bss_section(*plast) && !is_bss_section(*p))
3022         {
3023           // A non-BSS section can not follow a BSS section in the
3024           // same segment.
3025           need_new_segment = true;
3026         }
3027       else if (is_current_seg_readonly
3028                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3029                && !parameters->options().omagic())
3030         {
3031           // Don't put a writable section in the same segment as a
3032           // non-writable section.
3033           need_new_segment = true;
3034         }
3035       else
3036         {
3037           // Otherwise, reuse the existing segment.
3038           need_new_segment = false;
3039         }
3040
3041       elfcpp::Elf_Word seg_flags =
3042         Layout::section_flags_to_segment((*p)->flags());
3043
3044       if (need_new_segment)
3045         {
3046           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3047                                                     seg_flags);
3048           current_seg->set_addresses(vma, lma);
3049           if (first_seg == NULL)
3050             first_seg = current_seg;
3051           is_current_seg_readonly = true;
3052         }
3053
3054       current_seg->add_output_section(*p, seg_flags);
3055
3056       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3057         is_current_seg_readonly = false;
3058
3059       plast = p;
3060       last_vma = vma;
3061       last_lma = lma;
3062       last_size = size;
3063     }
3064
3065   // An ELF program should work even if the program headers are not in
3066   // a PT_LOAD segment.  However, it appears that the Linux kernel
3067   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3068   // the load address to p_vaddr - p_offset of the first PT_LOAD
3069   // segment.  It then sets AT_PHDR to the load address plus the
3070   // offset to the program headers, e_phoff in the file header.  This
3071   // fails when the program headers appear in the file before the
3072   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3073   // segment to hold the file header and the program headers.  This is
3074   // effectively what the GNU linker does, and it is slightly more
3075   // efficient in any case.  We try to use the first PT_LOAD segment
3076   // if we can, otherwise we make a new one.
3077
3078   if (first_seg == NULL)
3079     return NULL;
3080
3081   // -n or -N mean that the program is not demand paged and there is
3082   // no need to put the program headers in a PT_LOAD segment.
3083   if (parameters->options().nmagic() || parameters->options().omagic())
3084     return NULL;
3085
3086   size_t sizeof_headers = this->total_header_size(layout);
3087
3088   uint64_t vma = first_seg->vaddr();
3089   uint64_t lma = first_seg->paddr();
3090
3091   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3092
3093   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3094     {
3095       first_seg->set_addresses(vma - subtract, lma - subtract);
3096       return first_seg;
3097     }
3098
3099   // If there is no room to squeeze in the headers, then punt.  The
3100   // resulting executable probably won't run on GNU/Linux, but we
3101   // trust that the user knows what they are doing.
3102   if (lma < subtract || vma < subtract)
3103     return NULL;
3104
3105   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3106                                                          elfcpp::PF_R);
3107   load_seg->set_addresses(vma - subtract, lma - subtract);
3108
3109   return load_seg;
3110 }
3111
3112 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3113 // segment if there are any SHT_TLS sections.
3114
3115 void
3116 Script_sections::create_note_and_tls_segments(
3117     Layout* layout,
3118     const Layout::Section_list* sections)
3119 {
3120   gold_assert(!this->saw_phdrs_clause());
3121
3122   bool saw_tls = false;
3123   for (Layout::Section_list::const_iterator p = sections->begin();
3124        p != sections->end();
3125        ++p)
3126     {
3127       if ((*p)->type() == elfcpp::SHT_NOTE)
3128         {
3129           elfcpp::Elf_Word seg_flags =
3130             Layout::section_flags_to_segment((*p)->flags());
3131           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3132                                                              seg_flags);
3133           oseg->add_output_section(*p, seg_flags);
3134
3135           // Incorporate any subsequent SHT_NOTE sections, in the
3136           // hopes that the script is sensible.
3137           Layout::Section_list::const_iterator pnext = p + 1;
3138           while (pnext != sections->end()
3139                  && (*pnext)->type() == elfcpp::SHT_NOTE)
3140             {
3141               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3142               oseg->add_output_section(*pnext, seg_flags);
3143               p = pnext;
3144               ++pnext;
3145             }
3146         }
3147
3148       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3149         {
3150           if (saw_tls)
3151             gold_error(_("TLS sections are not adjacent"));
3152
3153           elfcpp::Elf_Word seg_flags =
3154             Layout::section_flags_to_segment((*p)->flags());
3155           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3156                                                              seg_flags);
3157           oseg->add_output_section(*p, seg_flags);
3158
3159           Layout::Section_list::const_iterator pnext = p + 1;
3160           while (pnext != sections->end()
3161                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3162             {
3163               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3164               oseg->add_output_section(*pnext, seg_flags);
3165               p = pnext;
3166               ++pnext;
3167             }
3168
3169           saw_tls = true;
3170         }
3171     }
3172 }
3173
3174 // Add a program header.  The PHDRS clause is syntactically distinct
3175 // from the SECTIONS clause, but we implement it with the SECTIONS
3176 // support because PHDRS is useless if there is no SECTIONS clause.
3177
3178 void
3179 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3180                           bool includes_filehdr, bool includes_phdrs,
3181                           bool is_flags_valid, unsigned int flags,
3182                           Expression* load_address)
3183 {
3184   if (this->phdrs_elements_ == NULL)
3185     this->phdrs_elements_ = new Phdrs_elements();
3186   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3187                                                      includes_filehdr,
3188                                                      includes_phdrs,
3189                                                      is_flags_valid, flags,
3190                                                      load_address));
3191 }
3192
3193 // Return the number of segments we expect to create based on the
3194 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
3195
3196 size_t
3197 Script_sections::expected_segment_count(const Layout* layout) const
3198 {
3199   if (this->saw_phdrs_clause())
3200     return this->phdrs_elements_->size();
3201
3202   Layout::Section_list sections;
3203   layout->get_allocated_sections(&sections);
3204
3205   // We assume that we will need two PT_LOAD segments.
3206   size_t ret = 2;
3207
3208   bool saw_note = false;
3209   bool saw_tls = false;
3210   for (Layout::Section_list::const_iterator p = sections.begin();
3211        p != sections.end();
3212        ++p)
3213     {
3214       if ((*p)->type() == elfcpp::SHT_NOTE)
3215         {
3216           // Assume that all note sections will fit into a single
3217           // PT_NOTE segment.
3218           if (!saw_note)
3219             {
3220               ++ret;
3221               saw_note = true;
3222             }
3223         }
3224       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3225         {
3226           // There can only be one PT_TLS segment.
3227           if (!saw_tls)
3228             {
3229               ++ret;
3230               saw_tls = true;
3231             }
3232         }
3233     }
3234
3235   return ret;
3236 }
3237
3238 // Create the segments from a PHDRS clause.  Return the segment which
3239 // should hold the file header and program headers, if any.
3240
3241 Output_segment*
3242 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
3243 {
3244   this->attach_sections_using_phdrs_clause(layout);
3245   return this->set_phdrs_clause_addresses(layout);
3246 }
3247
3248 // Create the segments from the PHDRS clause, and put the output
3249 // sections in them.
3250
3251 void
3252 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3253 {
3254   typedef std::map<std::string, Output_segment*> Name_to_segment;
3255   Name_to_segment name_to_segment;
3256   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3257        p != this->phdrs_elements_->end();
3258        ++p)
3259     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3260
3261   // Walk through the output sections and attach them to segments.
3262   // Output sections in the script which do not list segments are
3263   // attached to the same set of segments as the immediately preceding
3264   // output section.
3265   
3266   String_list* phdr_names = NULL;
3267   bool load_segments_only = false;
3268   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3269        p != this->sections_elements_->end();
3270        ++p)
3271     {
3272       bool orphan;
3273       String_list* old_phdr_names = phdr_names;
3274       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3275       if (os == NULL)
3276         continue;
3277
3278       if (phdr_names == NULL)
3279         {
3280           gold_error(_("allocated section not in any segment"));
3281           continue;
3282         }
3283
3284       // We see a list of segments names.  Disable PT_LOAD segment only
3285       // filtering.
3286       if (old_phdr_names != phdr_names)
3287         load_segments_only = false;
3288                 
3289       // If this is an orphan section--one that was not explicitly
3290       // mentioned in the linker script--then it should not inherit
3291       // any segment type other than PT_LOAD.  Otherwise, e.g., the
3292       // PT_INTERP segment will pick up following orphan sections,
3293       // which does not make sense.  If this is not an orphan section,
3294       // we trust the linker script.
3295       if (orphan)
3296         {
3297           // Enable PT_LOAD segments only filtering until we see another
3298           // list of segment names.
3299           load_segments_only = true;
3300         }
3301
3302       bool in_load_segment = false;
3303       for (String_list::const_iterator q = phdr_names->begin();
3304            q != phdr_names->end();
3305            ++q)
3306         {
3307           Name_to_segment::const_iterator r = name_to_segment.find(*q);
3308           if (r == name_to_segment.end())
3309             gold_error(_("no segment %s"), q->c_str());
3310           else
3311             {
3312               if (load_segments_only
3313                   && r->second->type() != elfcpp::PT_LOAD)
3314                 continue;
3315
3316               elfcpp::Elf_Word seg_flags =
3317                 Layout::section_flags_to_segment(os->flags());
3318               r->second->add_output_section(os, seg_flags);
3319
3320               if (r->second->type() == elfcpp::PT_LOAD)
3321                 {
3322                   if (in_load_segment)
3323                     gold_error(_("section in two PT_LOAD segments"));
3324                   in_load_segment = true;
3325                 }
3326             }
3327         }
3328
3329       if (!in_load_segment)
3330         gold_error(_("allocated section not in any PT_LOAD segment"));
3331     }
3332 }
3333
3334 // Set the addresses for segments created from a PHDRS clause.  Return
3335 // the segment which should hold the file header and program headers,
3336 // if any.
3337
3338 Output_segment*
3339 Script_sections::set_phdrs_clause_addresses(Layout* layout)
3340 {
3341   Output_segment* load_seg = NULL;
3342   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3343        p != this->phdrs_elements_->end();
3344        ++p)
3345     {
3346       // Note that we have to set the flags after adding the output
3347       // sections to the segment, as adding an output segment can
3348       // change the flags.
3349       (*p)->set_flags_if_valid();
3350
3351       Output_segment* oseg = (*p)->segment();
3352
3353       if (oseg->type() != elfcpp::PT_LOAD)
3354         {
3355           // The addresses of non-PT_LOAD segments are set from the
3356           // PT_LOAD segments.
3357           if ((*p)->has_load_address())
3358             gold_error(_("may only specify load address for PT_LOAD segment"));
3359           continue;
3360         }
3361
3362       // The output sections should have addresses from the SECTIONS
3363       // clause.  The addresses don't have to be in order, so find the
3364       // one with the lowest load address.  Use that to set the
3365       // address of the segment.
3366
3367       Output_section* osec = oseg->section_with_lowest_load_address();
3368       if (osec == NULL)
3369         {
3370           oseg->set_addresses(0, 0);
3371           continue;
3372         }
3373
3374       uint64_t vma = osec->address();
3375       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3376
3377       // Override the load address of the section with the load
3378       // address specified for the segment.
3379       if ((*p)->has_load_address())
3380         {
3381           if (osec->has_load_address())
3382             gold_warning(_("PHDRS load address overrides "
3383                            "section %s load address"),
3384                          osec->name());
3385
3386           lma = (*p)->load_address();
3387         }
3388
3389       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3390       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3391         {
3392           // We could support this if we wanted to.
3393           gold_error(_("using only one of FILEHDR and PHDRS is "
3394                        "not currently supported"));
3395         }
3396       if (headers)
3397         {
3398           size_t sizeof_headers = this->total_header_size(layout);
3399           uint64_t subtract = this->header_size_adjustment(lma,
3400                                                            sizeof_headers);
3401           if (lma >= subtract && vma >= subtract)
3402             {
3403               lma -= subtract;
3404               vma -= subtract;
3405             }
3406           else
3407             {
3408               gold_error(_("sections loaded on first page without room "
3409                            "for file and program headers "
3410                            "are not supported"));
3411             }
3412
3413           if (load_seg != NULL)
3414             gold_error(_("using FILEHDR and PHDRS on more than one "
3415                          "PT_LOAD segment is not currently supported"));
3416           load_seg = oseg;
3417         }
3418
3419       oseg->set_addresses(vma, lma);
3420     }
3421
3422   return load_seg;
3423 }
3424
3425 // Add the file header and segment headers to non-load segments
3426 // specified in the PHDRS clause.
3427
3428 void
3429 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3430                                       Output_data* segment_headers)
3431 {
3432   gold_assert(this->saw_phdrs_clause());
3433   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3434        p != this->phdrs_elements_->end();
3435        ++p)
3436     {
3437       if ((*p)->type() != elfcpp::PT_LOAD)
3438         {
3439           if ((*p)->includes_phdrs())
3440             (*p)->segment()->add_initial_output_data(segment_headers);
3441           if ((*p)->includes_filehdr())
3442             (*p)->segment()->add_initial_output_data(file_header);
3443         }
3444     }
3445 }
3446
3447 // Look for an output section by name and return the address, the load
3448 // address, the alignment, and the size.  This is used when an
3449 // expression refers to an output section which was not actually
3450 // created.  This returns true if the section was found, false
3451 // otherwise.
3452
3453 bool
3454 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3455                                          uint64_t* load_address,
3456                                          uint64_t* addralign,
3457                                          uint64_t* size) const
3458 {
3459   if (!this->saw_sections_clause_)
3460     return false;
3461   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3462        p != this->sections_elements_->end();
3463        ++p)
3464     if ((*p)->get_output_section_info(name, address, load_address, addralign,
3465                                       size))
3466       return true;
3467   return false;
3468 }
3469
3470 // Release all Output_segments.  This remove all pointers to all
3471 // Output_segments.
3472
3473 void
3474 Script_sections::release_segments()
3475 {
3476   if (this->saw_phdrs_clause())
3477     {
3478       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3479            p != this->phdrs_elements_->end();
3480            ++p)
3481         (*p)->release_segment();
3482     }
3483 }
3484
3485 // Print the SECTIONS clause to F for debugging.
3486
3487 void
3488 Script_sections::print(FILE* f) const
3489 {
3490   if (!this->saw_sections_clause_)
3491     return;
3492
3493   fprintf(f, "SECTIONS {\n");
3494
3495   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3496        p != this->sections_elements_->end();
3497        ++p)
3498     (*p)->print(f);
3499
3500   fprintf(f, "}\n");
3501
3502   if (this->phdrs_elements_ != NULL)
3503     {
3504       fprintf(f, "PHDRS {\n");
3505       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3506            p != this->phdrs_elements_->end();
3507            ++p)
3508         (*p)->print(f);
3509       fprintf(f, "}\n");
3510     }
3511 }
3512
3513 } // End namespace gold.