AMD64 - Fix format conversions and other warnings.
[dragonfly.git] / sys / kern / kern_intr.c
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
28  *
29  */
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 #include <sys/machintr.h>
44
45 #include <machine/frame.h>
46
47 #include <sys/interrupt.h>
48
49 struct info_info;
50
51 typedef struct intrec {
52     struct intrec *next;
53     struct intr_info *info;
54     inthand2_t  *handler;
55     void        *argument;
56     char        *name;
57     int         intr;
58     int         intr_flags;
59     struct lwkt_serialize *serializer;
60 } *intrec_t;
61
62 struct intr_info {
63         intrec_t        i_reclist;
64         struct thread   i_thread;
65         struct random_softc i_random;
66         int             i_running;
67         long            i_count;        /* interrupts dispatched */
68         int             i_mplock_required;
69         int             i_fast;
70         int             i_slow;
71         int             i_state;
72         int             i_errorticks;
73         unsigned long   i_straycount;
74 } intr_info_ary[MAX_INTS];
75
76 int max_installed_hard_intr;
77 int max_installed_soft_intr;
78
79 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
80
81 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
82 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
83 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
84 static void ithread_handler(void *arg);
85 static void ithread_emergency(void *arg);
86 static void report_stray_interrupt(int intr, struct intr_info *info);
87 static void int_moveto_destcpu(int *, int *, int);
88 static void int_moveto_origcpu(int, int);
89 #ifdef SMP
90 static void intr_get_mplock(void);
91 #endif
92
93 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
94
95 static struct systimer emergency_intr_timer;
96 static struct thread emergency_intr_thread;
97
98 #define ISTATE_NOTHREAD         0
99 #define ISTATE_NORMAL           1
100 #define ISTATE_LIVELOCKED       2
101
102 #ifdef SMP
103 static int intr_mpsafe = 1;
104 static int intr_migrate = 0;
105 static int intr_migrate_count;
106 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
107 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
108         CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
109 SYSCTL_INT(_kern, OID_AUTO, intr_migrate,
110         CTLFLAG_RW, &intr_migrate, 0, "Migrate to cpu holding BGL");
111 SYSCTL_INT(_kern, OID_AUTO, intr_migrate_count,
112         CTLFLAG_RW, &intr_migrate_count, 0, "");
113 #endif
114 static int livelock_limit = 40000;
115 static int livelock_lowater = 20000;
116 static int livelock_debug = -1;
117 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
118         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
119 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
120         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
121 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
122         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
123
124 static int emergency_intr_enable = 0;   /* emergency interrupt polling */
125 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
126 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
127         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
128
129 static int emergency_intr_freq = 10;    /* emergency polling frequency */
130 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
131 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
132         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
133
134 /*
135  * Sysctl support routines
136  */
137 static int
138 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
139 {
140         int error, enabled;
141
142         enabled = emergency_intr_enable;
143         error = sysctl_handle_int(oidp, &enabled, 0, req);
144         if (error || req->newptr == NULL)
145                 return error;
146         emergency_intr_enable = enabled;
147         if (emergency_intr_enable) {
148                 systimer_adjust_periodic(&emergency_intr_timer,
149                                          emergency_intr_freq);
150         } else {
151                 systimer_adjust_periodic(&emergency_intr_timer, 1);
152         }
153         return 0;
154 }
155
156 static int
157 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
158 {
159         int error, phz;
160
161         phz = emergency_intr_freq;
162         error = sysctl_handle_int(oidp, &phz, 0, req);
163         if (error || req->newptr == NULL)
164                 return error;
165         if (phz <= 0)
166                 return EINVAL;
167         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
168                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
169
170         emergency_intr_freq = phz;
171         if (emergency_intr_enable) {
172                 systimer_adjust_periodic(&emergency_intr_timer,
173                                          emergency_intr_freq);
174         } else {
175                 systimer_adjust_periodic(&emergency_intr_timer, 1);
176         }
177         return 0;
178 }
179
180 /*
181  * Register an SWI or INTerrupt handler.
182  */
183 void *
184 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
185                 struct lwkt_serialize *serializer)
186 {
187     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
188         panic("register_swi: bad intr %d", intr);
189     return(register_int(intr, handler, arg, name, serializer, 0));
190 }
191
192 void *
193 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
194                 struct lwkt_serialize *serializer, int intr_flags)
195 {
196     struct intr_info *info;
197     struct intrec **list;
198     intrec_t rec;
199     int orig_cpuid, cpuid;
200
201     if (intr < 0 || intr >= MAX_INTS)
202         panic("register_int: bad intr %d", intr);
203     if (name == NULL)
204         name = "???";
205     info = &intr_info_ary[intr];
206
207     /*
208      * Construct an interrupt handler record
209      */
210     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
211     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
212     strcpy(rec->name, name);
213
214     rec->info = info;
215     rec->handler = handler;
216     rec->argument = arg;
217     rec->intr = intr;
218     rec->intr_flags = intr_flags;
219     rec->next = NULL;
220     rec->serializer = serializer;
221
222     /*
223      * Create an emergency polling thread and set up a systimer to wake
224      * it up.
225      */
226     if (emergency_intr_thread.td_kstack == NULL) {
227         lwkt_create(ithread_emergency, NULL, NULL,
228                     &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
229                     "ithread emerg");
230         systimer_init_periodic_nq(&emergency_intr_timer,
231                     emergency_intr_timer_callback, &emergency_intr_thread, 
232                     (emergency_intr_enable ? emergency_intr_freq : 1));
233     }
234
235     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
236
237     /*
238      * Create an interrupt thread if necessary, leave it in an unscheduled
239      * state.
240      */
241     if (info->i_state == ISTATE_NOTHREAD) {
242         info->i_state = ISTATE_NORMAL;
243         lwkt_create((void *)ithread_handler, (void *)(intptr_t)intr, NULL,
244             &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1, 
245             "ithread %d", intr);
246         if (intr >= FIRST_SOFTINT)
247             lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
248         else
249             lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
250         info->i_thread.td_preemptable = lwkt_preempt;
251     }
252
253     list = &info->i_reclist;
254
255     /*
256      * Keep track of how many fast and slow interrupts we have.
257      * Set i_mplock_required if any handler in the chain requires
258      * the MP lock to operate.
259      */
260     if ((intr_flags & INTR_MPSAFE) == 0)
261         info->i_mplock_required = 1;
262     if (intr_flags & INTR_FAST)
263         ++info->i_fast;
264     else
265         ++info->i_slow;
266
267     /*
268      * Enable random number generation keying off of this interrupt.
269      */
270     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
271         info->i_random.sc_enabled = 1;
272         info->i_random.sc_intr = intr;
273     }
274
275     /*
276      * Add the record to the interrupt list.
277      */
278     crit_enter();
279     while (*list != NULL)
280         list = &(*list)->next;
281     *list = rec;
282     crit_exit();
283
284     /*
285      * Update max_installed_hard_intr to make the emergency intr poll
286      * a bit more efficient.
287      */
288     if (intr < FIRST_SOFTINT) {
289         if (max_installed_hard_intr <= intr)
290             max_installed_hard_intr = intr + 1;
291     } else {
292         if (max_installed_soft_intr <= intr)
293             max_installed_soft_intr = intr + 1;
294     }
295
296     /*
297      * Setup the machine level interrupt vector
298      */
299     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) {
300         if (machintr_vector_setup(intr, intr_flags))
301             kprintf("machintr_vector_setup: failed on irq %d\n", intr);
302     }
303
304     int_moveto_origcpu(orig_cpuid, cpuid);
305
306     return(rec);
307 }
308
309 void
310 unregister_swi(void *id)
311 {
312     unregister_int(id);
313 }
314
315 void
316 unregister_int(void *id)
317 {
318     struct intr_info *info;
319     struct intrec **list;
320     intrec_t rec;
321     int intr, orig_cpuid, cpuid;
322
323     intr = ((intrec_t)id)->intr;
324
325     if (intr < 0 || intr >= MAX_INTS)
326         panic("register_int: bad intr %d", intr);
327
328     info = &intr_info_ary[intr];
329
330     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
331
332     /*
333      * Remove the interrupt descriptor, adjust the descriptor count,
334      * and teardown the machine level vector if this was the last interrupt.
335      */
336     crit_enter();
337     list = &info->i_reclist;
338     while ((rec = *list) != NULL) {
339         if (rec == id)
340             break;
341         list = &rec->next;
342     }
343     if (rec) {
344         intrec_t rec0;
345
346         *list = rec->next;
347         if (rec->intr_flags & INTR_FAST)
348             --info->i_fast;
349         else
350             --info->i_slow;
351         if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
352             machintr_vector_teardown(intr);
353
354         /*
355          * Clear i_mplock_required if no handlers in the chain require the
356          * MP lock.
357          */
358         for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
359             if ((rec0->intr_flags & INTR_MPSAFE) == 0)
360                 break;
361         }
362         if (rec0 == NULL)
363             info->i_mplock_required = 0;
364     }
365
366     crit_exit();
367
368     int_moveto_origcpu(orig_cpuid, cpuid);
369
370     /*
371      * Free the record.
372      */
373     if (rec != NULL) {
374         kfree(rec->name, M_DEVBUF);
375         kfree(rec, M_DEVBUF);
376     } else {
377         kprintf("warning: unregister_int: int %d handler for %s not found\n",
378                 intr, ((intrec_t)id)->name);
379     }
380 }
381
382 const char *
383 get_registered_name(int intr)
384 {
385     intrec_t rec;
386
387     if (intr < 0 || intr >= MAX_INTS)
388         panic("register_int: bad intr %d", intr);
389
390     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
391         return(NULL);
392     else if (rec->next)
393         return("mux");
394     else
395         return(rec->name);
396 }
397
398 int
399 count_registered_ints(int intr)
400 {
401     struct intr_info *info;
402
403     if (intr < 0 || intr >= MAX_INTS)
404         panic("register_int: bad intr %d", intr);
405     info = &intr_info_ary[intr];
406     return(info->i_fast + info->i_slow);
407 }
408
409 long
410 get_interrupt_counter(int intr)
411 {
412     struct intr_info *info;
413
414     if (intr < 0 || intr >= MAX_INTS)
415         panic("register_int: bad intr %d", intr);
416     info = &intr_info_ary[intr];
417     return(info->i_count);
418 }
419
420
421 void
422 swi_setpriority(int intr, int pri)
423 {
424     struct intr_info *info;
425
426     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
427         panic("register_swi: bad intr %d", intr);
428     info = &intr_info_ary[intr];
429     if (info->i_state != ISTATE_NOTHREAD)
430         lwkt_setpri(&info->i_thread, pri);
431 }
432
433 void
434 register_randintr(int intr)
435 {
436     struct intr_info *info;
437
438     if (intr < 0 || intr >= MAX_INTS)
439         panic("register_randintr: bad intr %d", intr);
440     info = &intr_info_ary[intr];
441     info->i_random.sc_intr = intr;
442     info->i_random.sc_enabled = 1;
443 }
444
445 void
446 unregister_randintr(int intr)
447 {
448     struct intr_info *info;
449
450     if (intr < 0 || intr >= MAX_INTS)
451         panic("register_swi: bad intr %d", intr);
452     info = &intr_info_ary[intr];
453     info->i_random.sc_enabled = -1;
454 }
455
456 int
457 next_registered_randintr(int intr)
458 {
459     struct intr_info *info;
460
461     if (intr < 0 || intr >= MAX_INTS)
462         panic("register_swi: bad intr %d", intr);
463     while (intr < MAX_INTS) {
464         info = &intr_info_ary[intr];
465         if (info->i_random.sc_enabled > 0)
466             break;
467         ++intr;
468     }
469     return(intr);
470 }
471
472 /*
473  * Dispatch an interrupt.  If there's nothing to do we have a stray
474  * interrupt and can just return, leaving the interrupt masked.
475  *
476  * We need to schedule the interrupt and set its i_running bit.  If
477  * we are not on the interrupt thread's cpu we have to send a message
478  * to the correct cpu that will issue the desired action (interlocking
479  * with the interrupt thread's critical section).  We do NOT attempt to
480  * reschedule interrupts whos i_running bit is already set because
481  * this would prematurely wakeup a livelock-limited interrupt thread.
482  *
483  * i_running is only tested/set on the same cpu as the interrupt thread.
484  *
485  * We are NOT in a critical section, which will allow the scheduled
486  * interrupt to preempt us.  The MP lock might *NOT* be held here.
487  */
488 #ifdef SMP
489
490 static void
491 sched_ithd_remote(void *arg)
492 {
493     sched_ithd((int)(intptr_t)arg);
494 }
495
496 #endif
497
498 void
499 sched_ithd(int intr)
500 {
501     struct intr_info *info;
502
503     info = &intr_info_ary[intr];
504
505     ++info->i_count;
506     if (info->i_state != ISTATE_NOTHREAD) {
507         if (info->i_reclist == NULL) {
508             report_stray_interrupt(intr, info);
509         } else {
510 #ifdef SMP
511             if (info->i_thread.td_gd == mycpu) {
512                 if (info->i_running == 0) {
513                     info->i_running = 1;
514                     if (info->i_state != ISTATE_LIVELOCKED)
515                         lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
516                 }
517             } else {
518                 lwkt_send_ipiq(info->i_thread.td_gd, 
519                                 sched_ithd_remote, (void *)(intptr_t)intr);
520             }
521 #else
522             if (info->i_running == 0) {
523                 info->i_running = 1;
524                 if (info->i_state != ISTATE_LIVELOCKED)
525                     lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
526             }
527 #endif
528         }
529     } else {
530         report_stray_interrupt(intr, info);
531     }
532 }
533
534 static void
535 report_stray_interrupt(int intr, struct intr_info *info)
536 {
537         ++info->i_straycount;
538         if (info->i_straycount < 10) {
539                 if (info->i_errorticks == ticks)
540                         return;
541                 info->i_errorticks = ticks;
542                 kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
543                         intr, mycpuid);
544         } else if (info->i_straycount == 10) {
545                 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
546                         "there will be no further reports\n",
547                         info->i_straycount, intr, mycpuid);
548         }
549 }
550
551 /*
552  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
553  * might not be held).
554  */
555 static void
556 ithread_livelock_wakeup(systimer_t st)
557 {
558     struct intr_info *info;
559
560     info = &intr_info_ary[(int)(intptr_t)st->data];
561     if (info->i_state != ISTATE_NOTHREAD)
562         lwkt_schedule(&info->i_thread);
563 }
564
565 /*
566  * Schedule ithread within fast intr handler
567  *
568  * XXX Protect sched_ithd() call with gd_intr_nesting_level?
569  * Interrupts aren't enabled, but still...
570  */
571 static __inline void
572 ithread_fast_sched(int intr, thread_t td)
573 {
574     ++td->td_nest_count;
575
576     /*
577      * We are already in critical section, exit it now to
578      * allow preemption.
579      */
580     crit_exit_quick(td);
581     sched_ithd(intr);
582     crit_enter_quick(td);
583
584     --td->td_nest_count;
585 }
586
587 /*
588  * This function is called directly from the ICU or APIC vector code assembly
589  * to process an interrupt.  The critical section and interrupt deferral
590  * checks have already been done but the function is entered WITHOUT
591  * a critical section held.  The BGL may or may not be held.
592  *
593  * Must return non-zero if we do not want the vector code to re-enable
594  * the interrupt (which we don't if we have to schedule the interrupt)
595  */
596 int ithread_fast_handler(struct intrframe *frame);
597
598 int
599 ithread_fast_handler(struct intrframe *frame)
600 {
601     int intr;
602     struct intr_info *info;
603     struct intrec **list;
604     int must_schedule;
605 #ifdef SMP
606     int got_mplock;
607 #endif
608     intrec_t rec, next_rec;
609     globaldata_t gd;
610     thread_t td;
611
612     intr = frame->if_vec;
613     gd = mycpu;
614     td = curthread;
615
616     /* We must be in critical section. */
617     KKASSERT(td->td_pri >= TDPRI_CRIT);
618
619     info = &intr_info_ary[intr];
620
621     /*
622      * If we are not processing any FAST interrupts, just schedule the thing.
623      */
624     if (info->i_fast == 0) {
625         ++gd->gd_cnt.v_intr;
626         ithread_fast_sched(intr, td);
627         return(1);
628     }
629
630     /*
631      * This should not normally occur since interrupts ought to be 
632      * masked if the ithread has been scheduled or is running.
633      */
634     if (info->i_running)
635         return(1);
636
637     /*
638      * Bump the interrupt nesting level to process any FAST interrupts.
639      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
640      * schedule the interrupt thread to deal with the issue instead.
641      *
642      * To reduce overhead, just leave the MP lock held once it has been
643      * obtained.
644      */
645     ++gd->gd_intr_nesting_level;
646     ++gd->gd_cnt.v_intr;
647     must_schedule = info->i_slow;
648 #ifdef SMP
649     got_mplock = 0;
650 #endif
651
652     list = &info->i_reclist;
653     for (rec = *list; rec; rec = next_rec) {
654         next_rec = rec->next;   /* rec may be invalid after call */
655
656         if (rec->intr_flags & INTR_FAST) {
657 #ifdef SMP
658             if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
659                 if (try_mplock() == 0) {
660                     /* Couldn't get the MP lock; just schedule it. */
661                     must_schedule = 1;
662                     break;
663                 }
664                 got_mplock = 1;
665             }
666 #endif
667             if (rec->serializer) {
668                 must_schedule += lwkt_serialize_handler_try(
669                                         rec->serializer, rec->handler,
670                                         rec->argument, frame);
671             } else {
672                 rec->handler(rec->argument, frame);
673             }
674         }
675     }
676
677     /*
678      * Cleanup
679      */
680     --gd->gd_intr_nesting_level;
681 #ifdef SMP
682     if (got_mplock)
683         rel_mplock();
684 #endif
685
686     /*
687      * If we had a problem, or mixed fast and slow interrupt handlers are
688      * registered, schedule the ithread to catch the missed records (it
689      * will just re-run all of them).  A return value of 0 indicates that
690      * all handlers have been run and the interrupt can be re-enabled, and
691      * a non-zero return indicates that the interrupt thread controls
692      * re-enablement.
693      */
694     if (must_schedule > 0)
695         ithread_fast_sched(intr, td);
696     else if (must_schedule == 0)
697         ++info->i_count;
698     return(must_schedule);
699 }
700
701 /*
702  * Interrupt threads run this as their main loop.
703  *
704  * The handler begins execution outside a critical section and with the BGL
705  * held.
706  *
707  * The i_running state starts at 0.  When an interrupt occurs, the hardware
708  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
709  * until all routines have run.  We then call ithread_done() to reenable 
710  * the HW interrupt and deschedule us until the next interrupt. 
711  *
712  * We are responsible for atomically checking i_running and ithread_done()
713  * is responsible for atomically checking for platform-specific delayed
714  * interrupts.  i_running for our irq is only set in the context of our cpu,
715  * so a critical section is a sufficient interlock.
716  */
717 #define LIVELOCK_TIMEFRAME(freq)        ((freq) >> 2)   /* 1/4 second */
718
719 static void
720 ithread_handler(void *arg)
721 {
722     struct intr_info *info;
723     int use_limit;
724     __uint32_t lseconds;
725     int intr;
726     int mpheld;
727     struct intrec **list;
728     intrec_t rec, nrec;
729     globaldata_t gd;
730     struct systimer ill_timer;  /* enforced freq. timer */
731     u_int ill_count;            /* interrupt livelock counter */
732
733     ill_count = 0;
734     intr = (int)(intptr_t)arg;
735     info = &intr_info_ary[intr];
736     list = &info->i_reclist;
737
738     /*
739      * The loop must be entered with one critical section held.  The thread
740      * is created with TDF_MPSAFE so the MP lock is not held on start.
741      */
742     gd = mycpu;
743     lseconds = gd->gd_time_seconds;
744     crit_enter_gd(gd);
745     mpheld = 0;
746
747     for (;;) {
748         /*
749          * The chain is only considered MPSAFE if all its interrupt handlers
750          * are MPSAFE.  However, if intr_mpsafe has been turned off we
751          * always operate with the BGL.
752          */
753 #ifdef SMP
754         if (intr_mpsafe == 0) {
755             if (mpheld == 0) {
756                 intr_get_mplock();
757                 mpheld = 1;
758             }
759         } else if (info->i_mplock_required != mpheld) {
760             if (info->i_mplock_required) {
761                 KKASSERT(mpheld == 0);
762                 intr_get_mplock();
763                 mpheld = 1;
764             } else {
765                 KKASSERT(mpheld != 0);
766                 rel_mplock();
767                 mpheld = 0;
768             }
769         }
770
771         /*
772          * scheduled cpu may have changed, see intr_get_mplock()
773          */
774         gd = mycpu;
775 #endif
776
777         /*
778          * If an interrupt is pending, clear i_running and execute the
779          * handlers.  Note that certain types of interrupts can re-trigger
780          * and set i_running again.
781          *
782          * Each handler is run in a critical section.  Note that we run both
783          * FAST and SLOW designated service routines.
784          */
785         if (info->i_running) {
786             ++ill_count;
787             info->i_running = 0;
788
789             if (*list == NULL)
790                 report_stray_interrupt(intr, info);
791
792             for (rec = *list; rec; rec = nrec) {
793                 nrec = rec->next;
794                 if (rec->serializer) {
795                     lwkt_serialize_handler_call(rec->serializer, rec->handler,
796                                                 rec->argument, NULL);
797                 } else {
798                     rec->handler(rec->argument, NULL);
799                 }
800             }
801         }
802
803         /*
804          * This is our interrupt hook to add rate randomness to the random
805          * number generator.
806          */
807         if (info->i_random.sc_enabled > 0)
808             add_interrupt_randomness(intr);
809
810         /*
811          * Unmask the interrupt to allow it to trigger again.  This only
812          * applies to certain types of interrupts (typ level interrupts).
813          * This can result in the interrupt retriggering, but the retrigger
814          * will not be processed until we cycle our critical section.
815          *
816          * Only unmask interrupts while handlers are installed.  It is
817          * possible to hit a situation where no handlers are installed
818          * due to a device driver livelocking and then tearing down its
819          * interrupt on close (the parallel bus being a good example).
820          */
821         if (*list)
822             machintr_intren(intr);
823
824         /*
825          * Do a quick exit/enter to catch any higher-priority interrupt
826          * sources, such as the statclock, so thread time accounting
827          * will still work.  This may also cause an interrupt to re-trigger.
828          */
829         crit_exit_gd(gd);
830         crit_enter_gd(gd);
831
832         /*
833          * LIVELOCK STATE MACHINE
834          */
835         switch(info->i_state) {
836         case ISTATE_NORMAL:
837             /*
838              * Reset the count each second.
839              */
840             if (lseconds != gd->gd_time_seconds) {
841                 lseconds = gd->gd_time_seconds;
842                 ill_count = 0;
843             }
844
845             /*
846              * If we did not exceed the frequency limit, we are done.  
847              * If the interrupt has not retriggered we deschedule ourselves.
848              */
849             if (ill_count <= livelock_limit) {
850                 if (info->i_running == 0) {
851 #ifdef SMP
852                     if (mpheld && intr_migrate) {
853                         rel_mplock();
854                         mpheld = 0;
855                     }
856 #endif
857                     lwkt_deschedule_self(gd->gd_curthread);
858                     lwkt_switch();
859                 }
860                 break;
861             }
862
863             /*
864              * Otherwise we are livelocked.  Set up a periodic systimer
865              * to wake the thread up at the limit frequency.
866              */
867             kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
868                    intr, ill_count, livelock_limit);
869             info->i_state = ISTATE_LIVELOCKED;
870             if ((use_limit = livelock_limit) < 100)
871                 use_limit = 100;
872             else if (use_limit > 500000)
873                 use_limit = 500000;
874             systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
875                                       (void *)(intptr_t)intr, use_limit);
876             /* fall through */
877         case ISTATE_LIVELOCKED:
878             /*
879              * Wait for our periodic timer to go off.  Since the interrupt
880              * has re-armed it can still set i_running, but it will not
881              * reschedule us while we are in a livelocked state.
882              */
883             lwkt_deschedule_self(gd->gd_curthread);
884             lwkt_switch();
885
886             /*
887              * Check once a second to see if the livelock condition no
888              * longer applies.
889              */
890             if (lseconds != gd->gd_time_seconds) {
891                 lseconds = gd->gd_time_seconds;
892                 if (ill_count < livelock_lowater) {
893                     info->i_state = ISTATE_NORMAL;
894                     systimer_del(&ill_timer);
895                     kprintf("intr %d at %d/%d hz, livelock removed\n",
896                            intr, ill_count, livelock_lowater);
897                 } else if (livelock_debug == intr ||
898                            (bootverbose && cold)) {
899                     kprintf("intr %d at %d/%d hz, in livelock\n",
900                            intr, ill_count, livelock_lowater);
901                 }
902                 ill_count = 0;
903             }
904             break;
905         }
906     }
907     /* not reached */
908 }
909
910 #ifdef SMP
911
912 /*
913  * An interrupt thread is trying to get the MP lock.  To avoid cpu-bound
914  * code in the kernel on cpu X from interfering we chase the MP lock.
915  */
916 static void
917 intr_get_mplock(void)
918 {
919     int owner;
920
921     if (intr_migrate == 0) {
922         get_mplock();
923         return;
924     }
925     while (try_mplock() == 0) {
926         owner = owner_mplock();
927         if (owner >= 0 && owner != mycpu->gd_cpuid) {
928                 lwkt_migratecpu(owner);
929                 ++intr_migrate_count;
930         } else {
931                 lwkt_switch();
932         }
933     }
934 }
935
936 #endif
937
938 /*
939  * Emergency interrupt polling thread.  The thread begins execution
940  * outside a critical section with the BGL held.
941  *
942  * If emergency interrupt polling is enabled, this thread will 
943  * execute all system interrupts not marked INTR_NOPOLL at the
944  * specified polling frequency.
945  *
946  * WARNING!  This thread runs *ALL* interrupt service routines that
947  * are not marked INTR_NOPOLL, which basically means everything except
948  * the 8254 clock interrupt and the ATA interrupt.  It has very high
949  * overhead and should only be used in situations where the machine
950  * cannot otherwise be made to work.  Due to the severe performance
951  * degredation, it should not be enabled on production machines.
952  */
953 static void
954 ithread_emergency(void *arg __unused)
955 {
956     struct intr_info *info;
957     intrec_t rec, nrec;
958     int intr;
959
960     for (;;) {
961         for (intr = 0; intr < max_installed_hard_intr; ++intr) {
962             info = &intr_info_ary[intr];
963             for (rec = info->i_reclist; rec; rec = nrec) {
964                 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
965                     if (rec->serializer) {
966                         lwkt_serialize_handler_call(rec->serializer,
967                                                 rec->handler, rec->argument, NULL);
968                     } else {
969                         rec->handler(rec->argument, NULL);
970                     }
971                 }
972                 nrec = rec->next;
973             }
974         }
975         lwkt_deschedule_self(curthread);
976         lwkt_switch();
977     }
978 }
979
980 /*
981  * Systimer callback - schedule the emergency interrupt poll thread
982  *                     if emergency polling is enabled.
983  */
984 static
985 void
986 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
987 {
988     if (emergency_intr_enable)
989         lwkt_schedule(info->data);
990 }
991
992 int
993 ithread_cpuid(int intr)
994 {
995         const struct intr_info *info;
996
997         KKASSERT(intr >= 0 && intr < MAX_INTS);
998         info = &intr_info_ary[intr];
999
1000         if (info->i_state == ISTATE_NOTHREAD)
1001                 return -1;
1002         return info->i_thread.td_gd->gd_cpuid;
1003 }
1004
1005 /* 
1006  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1007  * The data for this machine dependent, and the declarations are in machine
1008  * dependent code.  The layout of intrnames and intrcnt however is machine
1009  * independent.
1010  *
1011  * We do not know the length of intrcnt and intrnames at compile time, so
1012  * calculate things at run time.
1013  */
1014
1015 static int
1016 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1017 {
1018     struct intr_info *info;
1019     intrec_t rec;
1020     int error = 0;
1021     int len;
1022     int intr;
1023     char buf[64];
1024
1025     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1026         info = &intr_info_ary[intr];
1027
1028         len = 0;
1029         buf[0] = 0;
1030         for (rec = info->i_reclist; rec; rec = rec->next) {
1031             ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 
1032                 (len ? "/" : ""), rec->name);
1033             len += strlen(buf + len);
1034         }
1035         if (len == 0) {
1036             ksnprintf(buf, sizeof(buf), "irq%d", intr);
1037             len = strlen(buf);
1038         }
1039         error = SYSCTL_OUT(req, buf, len + 1);
1040     }
1041     return (error);
1042 }
1043
1044
1045 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1046         NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1047
1048 static int
1049 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1050 {
1051     struct intr_info *info;
1052     int error = 0;
1053     int intr;
1054
1055     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1056         info = &intr_info_ary[intr];
1057
1058         error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1059         if (error)
1060                 goto failed;
1061     }
1062     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1063         info = &intr_info_ary[intr];
1064
1065         error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1066         if (error)
1067                 goto failed;
1068     }
1069 failed:
1070     return(error);
1071 }
1072
1073 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1074         NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1075
1076 static void
1077 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1078 {
1079     int orig_cpuid = mycpuid, cpuid;
1080     char envpath[32];
1081
1082     cpuid = orig_cpuid;
1083     ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1084     kgetenv_int(envpath, &cpuid);
1085     if (cpuid >= ncpus)
1086         cpuid = orig_cpuid;
1087
1088     if (cpuid != orig_cpuid)
1089         lwkt_migratecpu(cpuid);
1090
1091     *orig_cpuid0 = orig_cpuid;
1092     *cpuid0 = cpuid;
1093 }
1094
1095 static void
1096 int_moveto_origcpu(int orig_cpuid, int cpuid)
1097 {
1098     if (cpuid != orig_cpuid)
1099         lwkt_migratecpu(orig_cpuid);
1100 }