ca5152357e7d9f527b132d289ad8ad11a9a30b10
[dragonfly.git] / contrib / xz / src / liblzma / common / block_encoder.c
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       block_encoder.c
4 /// \brief      Encodes .xz Blocks
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12
13 #include "block_encoder.h"
14 #include "filter_encoder.h"
15 #include "check.h"
16
17
18 struct lzma_coder_s {
19         /// The filters in the chain; initialized with lzma_raw_decoder_init().
20         lzma_next_coder next;
21
22         /// Encoding options; we also write Unpadded Size, Compressed Size,
23         /// and Uncompressed Size back to this structure when the encoding
24         /// has been finished.
25         lzma_block *block;
26
27         enum {
28                 SEQ_CODE,
29                 SEQ_PADDING,
30                 SEQ_CHECK,
31         } sequence;
32
33         /// Compressed Size calculated while encoding
34         lzma_vli compressed_size;
35
36         /// Uncompressed Size calculated while encoding
37         lzma_vli uncompressed_size;
38
39         /// Position in the Check field
40         size_t pos;
41
42         /// Check of the uncompressed data
43         lzma_check_state check;
44 };
45
46
47 static lzma_ret
48 block_encode(lzma_coder *coder, lzma_allocator *allocator,
49                 const uint8_t *restrict in, size_t *restrict in_pos,
50                 size_t in_size, uint8_t *restrict out,
51                 size_t *restrict out_pos, size_t out_size, lzma_action action)
52 {
53         // Check that our amount of input stays in proper limits.
54         if (LZMA_VLI_MAX - coder->uncompressed_size < in_size - *in_pos)
55                 return LZMA_DATA_ERROR;
56
57         switch (coder->sequence) {
58         case SEQ_CODE: {
59                 const size_t in_start = *in_pos;
60                 const size_t out_start = *out_pos;
61
62                 const lzma_ret ret = coder->next.code(coder->next.coder,
63                                 allocator, in, in_pos, in_size,
64                                 out, out_pos, out_size, action);
65
66                 const size_t in_used = *in_pos - in_start;
67                 const size_t out_used = *out_pos - out_start;
68
69                 if (COMPRESSED_SIZE_MAX - coder->compressed_size < out_used)
70                         return LZMA_DATA_ERROR;
71
72                 coder->compressed_size += out_used;
73
74                 // No need to check for overflow because we have already
75                 // checked it at the beginning of this function.
76                 coder->uncompressed_size += in_used;
77
78                 lzma_check_update(&coder->check, coder->block->check,
79                                 in + in_start, in_used);
80
81                 if (ret != LZMA_STREAM_END || action == LZMA_SYNC_FLUSH)
82                         return ret;
83
84                 assert(*in_pos == in_size);
85                 assert(action == LZMA_FINISH);
86
87                 // Copy the values into coder->block. The caller
88                 // may use this information to construct Index.
89                 coder->block->compressed_size = coder->compressed_size;
90                 coder->block->uncompressed_size = coder->uncompressed_size;
91
92                 coder->sequence = SEQ_PADDING;
93         }
94
95         // Fall through
96
97         case SEQ_PADDING:
98                 // Pad Compressed Data to a multiple of four bytes. We can
99                 // use coder->compressed_size for this since we don't need
100                 // it for anything else anymore.
101                 while (coder->compressed_size & 3) {
102                         if (*out_pos >= out_size)
103                                 return LZMA_OK;
104
105                         out[*out_pos] = 0x00;
106                         ++*out_pos;
107                         ++coder->compressed_size;
108                 }
109
110                 if (coder->block->check == LZMA_CHECK_NONE)
111                         return LZMA_STREAM_END;
112
113                 lzma_check_finish(&coder->check, coder->block->check);
114
115                 coder->sequence = SEQ_CHECK;
116
117         // Fall through
118
119         case SEQ_CHECK: {
120                 const size_t check_size = lzma_check_size(coder->block->check);
121                 lzma_bufcpy(coder->check.buffer.u8, &coder->pos, check_size,
122                                 out, out_pos, out_size);
123                 if (coder->pos < check_size)
124                         return LZMA_OK;
125
126                 memcpy(coder->block->raw_check, coder->check.buffer.u8,
127                                 check_size);
128                 return LZMA_STREAM_END;
129         }
130         }
131
132         return LZMA_PROG_ERROR;
133 }
134
135
136 static void
137 block_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
138 {
139         lzma_next_end(&coder->next, allocator);
140         lzma_free(coder, allocator);
141         return;
142 }
143
144
145 static lzma_ret
146 block_encoder_update(lzma_coder *coder, lzma_allocator *allocator,
147                 const lzma_filter *filters lzma_attribute((unused)),
148                 const lzma_filter *reversed_filters)
149 {
150         if (coder->sequence != SEQ_CODE)
151                 return LZMA_PROG_ERROR;
152
153         return lzma_next_filter_update(
154                         &coder->next, allocator, reversed_filters);
155 }
156
157
158 extern lzma_ret
159 lzma_block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
160                 lzma_block *block)
161 {
162         lzma_next_coder_init(&lzma_block_encoder_init, next, allocator);
163
164         if (block->version != 0)
165                 return LZMA_OPTIONS_ERROR;
166
167         // If the Check ID is not supported, we cannot calculate the check and
168         // thus not create a proper Block.
169         if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX)
170                 return LZMA_PROG_ERROR;
171
172         if (!lzma_check_is_supported(block->check))
173                 return LZMA_UNSUPPORTED_CHECK;
174
175         // Allocate and initialize *next->coder if needed.
176         if (next->coder == NULL) {
177                 next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
178                 if (next->coder == NULL)
179                         return LZMA_MEM_ERROR;
180
181                 next->code = &block_encode;
182                 next->end = &block_encoder_end;
183                 next->update = &block_encoder_update;
184                 next->coder->next = LZMA_NEXT_CODER_INIT;
185         }
186
187         // Basic initializations
188         next->coder->sequence = SEQ_CODE;
189         next->coder->block = block;
190         next->coder->compressed_size = 0;
191         next->coder->uncompressed_size = 0;
192         next->coder->pos = 0;
193
194         // Initialize the check
195         lzma_check_init(&next->coder->check, block->check);
196
197         // Initialize the requested filters.
198         return lzma_raw_encoder_init(&next->coder->next, allocator,
199                         block->filters);
200 }
201
202
203 extern LZMA_API(lzma_ret)
204 lzma_block_encoder(lzma_stream *strm, lzma_block *block)
205 {
206         lzma_next_strm_init(lzma_block_encoder_init, strm, block);
207
208         strm->internal->supported_actions[LZMA_RUN] = true;
209         strm->internal->supported_actions[LZMA_FINISH] = true;
210
211         return LZMA_OK;
212 }