1 .\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.19)
2 .\"
3 .\" Standard preamble:
4 .\" ========================================================================
5 .de Sp \" Vertical space (when we can't use .PP)
6 .if t .sp .5v
7 .if n .sp
8 ..
9 .de Vb \" Begin verbatim text
10 .ft CW
11 .nf
12 .ne \\\$1
13 ..
14 .de Ve \" End verbatim text
15 .ft R
16 .fi
17 ..
18 .\" Set up some character translations and predefined strings.  \*(-- will
19 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
20 .\" double quote, and \*(R" will give a right double quote.  \*(C+ will
21 .\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
22 .\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
23 .\" nothing in troff, for use with C<>.
24 .tr \(*W-
25 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
26 .ie n \{\
27 .    ds -- \(*W-
28 .    ds PI pi
29 .    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
30 .    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
31 .    ds L" ""
32 .    ds R" ""
33 .    ds C` ""
34 .    ds C' ""
35 'br\}
36 .el\{\
37 .    ds -- \|\(em\|
38 .    ds PI \(*p
39 .    ds L" ``
40 .    ds R" ''
41 'br\}
42 .\"
43 .\" Escape single quotes in literal strings from groff's Unicode transform.
44 .ie \n(.g .ds Aq \(aq
45 .el       .ds Aq '
46 .\"
47 .\" If the F register is turned on, we'll generate index entries on stderr for
48 .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
49 .\" entries marked with X<> in POD.  Of course, you'll have to process the
50 .\" output yourself in some meaningful fashion.
51 .ie \nF \{\
52 .    de IX
53 .    tm Index:\\\$1\t\\n%\t"\\\$2"
54 ..
55 .    nr % 0
56 .    rr F
57 .\}
58 .el \{\
59 .    de IX
60 ..
61 .\}
62 .\"
63 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
64 .\" Fear.  Run.  Save yourself.  No user-serviceable parts.
65 .    \" fudge factors for nroff and troff
66 .if n \{\
67 .    ds #H 0
68 .    ds #V .8m
69 .    ds #F .3m
70 .    ds #[ \f1
71 .    ds #] \fP
72 .\}
73 .if t \{\
74 .    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
75 .    ds #V .6m
76 .    ds #F 0
77 .    ds #[ \&
78 .    ds #] \&
79 .\}
80 .    \" simple accents for nroff and troff
81 .if n \{\
82 .    ds ' \&
83 .    ds ` \&
84 .    ds ^ \&
85 .    ds , \&
86 .    ds ~ ~
87 .    ds /
88 .\}
89 .if t \{\
90 .    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
91 .    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
92 .    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
93 .    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
94 .    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
95 .    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
96 .\}
97 .    \" troff and (daisy-wheel) nroff accents
98 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
99 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
100 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
101 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
102 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
103 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
104 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
105 .ds ae a\h'-(\w'a'u*4/10)'e
106 .ds Ae A\h'-(\w'A'u*4/10)'E
107 .    \" corrections for vroff
108 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
109 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
110 .    \" for low resolution devices (crt and lpr)
111 .if \n(.H>23 .if \n(.V>19 \
112 \{\
113 .    ds : e
114 .    ds 8 ss
115 .    ds o a
116 .    ds d- d\h'-1'\(ga
117 .    ds D- D\h'-1'\(hy
118 .    ds th \o'bp'
119 .    ds Th \o'LP'
120 .    ds ae ae
121 .    ds Ae AE
122 .\}
123 .rm #[ #] #H #V #F C
124 .\" ========================================================================
125 .\"
126 .IX Title "BIO_s_mem 3"
127 .TH BIO_s_mem 3 "2012-01-04" "1.0.0f" "OpenSSL"
128 .\" For nroff, turn off justification.  Always turn off hyphenation; it makes
129 .\" way too many mistakes in technical documents.
131 .nh
132 .SH "NAME"
133 BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,
134 BIO_get_mem_ptr, BIO_new_mem_buf \- memory BIO
135 .SH "SYNOPSIS"
137 .Vb 1
138 \& #include <openssl/bio.h>
139 \&
140 \& BIO_METHOD *   BIO_s_mem(void);
141 \&
142 \& BIO_set_mem_eof_return(BIO *b,int v)
143 \& long BIO_get_mem_data(BIO *b, char **pp)
144 \& BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
145 \& BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)
146 \&
147 \& BIO *BIO_new_mem_buf(void *buf, int len);
148 .Ve
149 .SH "DESCRIPTION"
151 \&\fIBIO_s_mem()\fR return the memory \s-1BIO\s0 method function.
152 .PP
153 A memory \s-1BIO\s0 is a source/sink \s-1BIO\s0 which uses memory for its I/O. Data
154 written to a memory \s-1BIO\s0 is stored in a \s-1BUF_MEM\s0 structure which is extended
155 as appropriate to accommodate the stored data.
156 .PP
157 Any data written to a memory \s-1BIO\s0 can be recalled by reading from it.
158 Unless the memory \s-1BIO\s0 is read only any data read from it is deleted from
159 the \s-1BIO\s0.
160 .PP
161 Memory BIOs support \fIBIO_gets()\fR and \fIBIO_puts()\fR.
162 .PP
163 If the \s-1BIO_CLOSE\s0 flag is set when a memory \s-1BIO\s0 is freed then the underlying
164 \&\s-1BUF_MEM\s0 structure is also freed.
165 .PP
166 Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 clears any data in it. On a
167 read only \s-1BIO\s0 it restores the \s-1BIO\s0 to its original state and the read only
168 data can be read again.
169 .PP
170 \&\fIBIO_eof()\fR is true if no data is in the \s-1BIO\s0.
171 .PP
172 \&\fIBIO_ctrl_pending()\fR returns the number of bytes currently stored.
173 .PP
174 \&\fIBIO_set_mem_eof_return()\fR sets the behaviour of memory \s-1BIO\s0 \fBb\fR when it is
175 empty. If the \fBv\fR is zero then an empty memory \s-1BIO\s0 will return \s-1EOF\s0 (that is
176 it will return zero and BIO_should_retry(b) will be false. If \fBv\fR is non
177 zero then it will return \fBv\fR when it is empty and it will set the read retry
178 flag (that is BIO_read_retry(b) is true). To avoid ambiguity with a normal
179 positive return value \fBv\fR should be set to a negative value, typically \-1.
180 .PP
181 \&\fIBIO_get_mem_data()\fR sets \fBpp\fR to a pointer to the start of the memory BIOs data
182 and returns the total amount of data available. It is implemented as a macro.
183 .PP
184 \&\fIBIO_set_mem_buf()\fR sets the internal \s-1BUF_MEM\s0 structure to \fBbm\fR and sets the
185 close flag to \fBc\fR, that is \fBc\fR should be either \s-1BIO_CLOSE\s0 or \s-1BIO_NOCLOSE\s0.
186 It is a macro.
187 .PP
188 \&\fIBIO_get_mem_ptr()\fR places the underlying \s-1BUF_MEM\s0 structure in \fBpp\fR. It is
189 a macro.
190 .PP
191 \&\fIBIO_new_mem_buf()\fR creates a memory \s-1BIO\s0 using \fBlen\fR bytes of data at \fBbuf\fR,
192 if \fBlen\fR is \-1 then the \fBbuf\fR is assumed to be null terminated and its
193 length is determined by \fBstrlen\fR. The \s-1BIO\s0 is set to a read only state and
194 as a result cannot be written to. This is useful when some data needs to be
195 made available from a static area of memory in the form of a \s-1BIO\s0. The
196 supplied data is read directly from the supplied buffer: it is \fBnot\fR copied
197 first, so the supplied area of memory must be unchanged until the \s-1BIO\s0 is freed.
198 .SH "NOTES"
200 Writes to memory BIOs will always succeed if memory is available: that is
201 their size can grow indefinitely.
202 .PP
204 an internal copy operation, if a \s-1BIO\s0 contains a lot of data and it is
205 read in small chunks the operation can be very slow. The use of a read only
206 memory \s-1BIO\s0 avoids this problem. If the \s-1BIO\s0 must be read write then adding
207 a buffering \s-1BIO\s0 to the chain will speed up the process.
208 .SH "BUGS"
210 There should be an option to set the maximum size of a memory \s-1BIO\s0.
211 .PP
212 There should be a way to \*(L"rewind\*(R" a read write \s-1BIO\s0 without destroying
213 its contents.
214 .PP
215 The copying operation should not occur after every small read of a large \s-1BIO\s0
216 to improve efficiency.
217 .SH "EXAMPLE"
219 Create a memory \s-1BIO\s0 and write some data to it:
220 .PP
221 .Vb 2
222 \& BIO *mem = BIO_new(BIO_s_mem());
223 \& BIO_puts(mem, "Hello World\en");
224 .Ve
225 .PP
226 Create a read only memory \s-1BIO:\s0
227 .PP
228 .Vb 3
229 \& char data[] = "Hello World";
230 \& BIO *mem;
231 \& mem = BIO_new_mem_buf(data, \-1);
232 .Ve
233 .PP
234 Extract the \s-1BUF_MEM\s0 structure from a memory \s-1BIO\s0 and then free up the \s-1BIO:\s0
235 .PP
236 .Vb 4
237 \& BUF_MEM *bptr;
238 \& BIO_get_mem_ptr(mem, &bptr);
239 \& BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
240 \& BIO_free(mem);
241 .Ve
242 .SH "SEE ALSO"