/* * Copyright (c) 2006 Dave Airlie * Copyright © 2006-2008,2010 Intel Corporation * Jesse Barnes * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * Chris Wilson * * Copyright (c) 2011 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #include #include #include #include "iicbus_if.h" #include "iicbb_if.h" enum disp_clk { CDCLK, CZCLK }; struct gmbus_port { const char *name; int reg; }; static const struct gmbus_port gmbus_ports[] = { { "ssc", GPIOB }, { "vga", GPIOA }, { "panel", GPIOC }, { "dpc", GPIOD }, { "dpb", GPIOE }, { "dpd", GPIOF }, }; /* Intel GPIO access functions */ #define I2C_RISEFALL_TIME 10 static int get_disp_clk_div(struct drm_i915_private *dev_priv, enum disp_clk clk) { u32 reg_val; int clk_ratio; reg_val = I915_READ(CZCLK_CDCLK_FREQ_RATIO); if (clk == CDCLK) clk_ratio = ((reg_val & CDCLK_FREQ_MASK) >> CDCLK_FREQ_SHIFT) + 1; else clk_ratio = (reg_val & CZCLK_FREQ_MASK) + 1; return clk_ratio; } static void gmbus_set_freq(struct drm_i915_private *dev_priv) { int vco, gmbus_freq = 0, cdclk_div; BUG_ON(!IS_VALLEYVIEW(dev_priv->dev)); vco = valleyview_get_vco(dev_priv); /* Get the CDCLK divide ratio */ cdclk_div = get_disp_clk_div(dev_priv, CDCLK); /* * Program the gmbus_freq based on the cdclk frequency. * BSpec erroneously claims we should aim for 4MHz, but * in fact 1MHz is the correct frequency. */ if (cdclk_div) gmbus_freq = (vco << 1) / cdclk_div; if (WARN_ON(gmbus_freq == 0)) return; I915_WRITE(GMBUSFREQ_VLV, gmbus_freq); } void intel_i2c_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* * In BIOS-less system, program the correct gmbus frequency * before reading edid. */ if (IS_VALLEYVIEW(dev)) gmbus_set_freq(dev_priv); I915_WRITE(dev_priv->gpio_mmio_base + GMBUS0, 0); I915_WRITE(dev_priv->gpio_mmio_base + GMBUS4, 0); } static void intel_i2c_quirk_set(struct drm_i915_private *dev_priv, bool enable) { u32 val; /* When using bit bashing for I2C, this bit needs to be set to 1 */ if (!IS_PINEVIEW(dev_priv->dev)) return; val = I915_READ(DSPCLK_GATE_D); if (enable) val |= DPCUNIT_CLOCK_GATE_DISABLE; else val &= ~DPCUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, val); } static u32 get_reserved(device_t idev) { struct intel_iic_softc *sc = device_get_softc(idev); struct drm_device *dev = sc->drm_dev; struct drm_i915_private *dev_priv; u32 reserved = 0; dev_priv = dev->dev_private; /* On most chips, these bits must be preserved in software. */ if (!IS_I830(dev) && !IS_845G(dev)) reserved = I915_READ_NOTRACE(sc->reg) & (GPIO_DATA_PULLUP_DISABLE | GPIO_CLOCK_PULLUP_DISABLE); return reserved; } static int get_clock(device_t idev) { struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; u32 reserved; sc = device_get_softc(idev); dev_priv = sc->drm_dev->dev_private; reserved = get_reserved(idev); I915_WRITE_NOTRACE(sc->reg, reserved | GPIO_CLOCK_DIR_MASK); I915_WRITE_NOTRACE(sc->reg, reserved); return ((I915_READ_NOTRACE(sc->reg) & GPIO_CLOCK_VAL_IN) != 0); } static int get_data(device_t idev) { struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; u32 reserved; sc = device_get_softc(idev); dev_priv = sc->drm_dev->dev_private; reserved = get_reserved(idev); I915_WRITE_NOTRACE(sc->reg, reserved | GPIO_DATA_DIR_MASK); I915_WRITE_NOTRACE(sc->reg, reserved); return ((I915_READ_NOTRACE(sc->reg) & GPIO_DATA_VAL_IN) != 0); } static int intel_iicbus_reset(device_t idev, u_char speed, u_char addr, u_char *oldaddr) { struct intel_iic_softc *sc; struct drm_device *dev; sc = device_get_softc(idev); dev = sc->drm_dev; intel_i2c_reset(dev); return (0); } static void set_clock(device_t idev, int val) { struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; u32 clock_bits, reserved; sc = device_get_softc(idev); dev_priv = sc->drm_dev->dev_private; reserved = get_reserved(idev); if (val) clock_bits = GPIO_CLOCK_DIR_IN | GPIO_CLOCK_DIR_MASK; else clock_bits = GPIO_CLOCK_DIR_OUT | GPIO_CLOCK_DIR_MASK | GPIO_CLOCK_VAL_MASK; I915_WRITE_NOTRACE(sc->reg, reserved | clock_bits); POSTING_READ(sc->reg); } static void set_data(device_t idev, int val) { struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; u32 reserved; u32 data_bits; sc = device_get_softc(idev); dev_priv = sc->drm_dev->dev_private; reserved = get_reserved(idev); if (val) data_bits = GPIO_DATA_DIR_IN | GPIO_DATA_DIR_MASK; else data_bits = GPIO_DATA_DIR_OUT | GPIO_DATA_DIR_MASK | GPIO_DATA_VAL_MASK; I915_WRITE_NOTRACE(sc->reg, reserved | data_bits); POSTING_READ(sc->reg); } static const char *gpio_names[GMBUS_NUM_PORTS] = { "ssc", "vga", "panel", "dpc", "dpb", "dpd", }; static int intel_gpio_setup(device_t idev) { static const int map_pin_to_reg[] = { 0, GPIOB, GPIOA, GPIOC, GPIOD, GPIOE, GPIOF, 0 }; struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; int pin; sc = device_get_softc(idev); sc->drm_dev = device_get_softc(device_get_parent(idev)); dev_priv = sc->drm_dev->dev_private; pin = device_get_unit(idev); ksnprintf(sc->name, sizeof(sc->name), "i915 iicbb %s", gpio_names[pin]); device_set_desc(idev, sc->name); sc->reg0 = (pin + 1) | GMBUS_RATE_100KHZ; sc->reg = dev_priv->gpio_mmio_base + map_pin_to_reg[pin + 1]; /* add generic bit-banging code */ sc->iic_dev = device_add_child(idev, "iicbb", -1); if (sc->iic_dev == NULL) return (ENXIO); device_quiet(sc->iic_dev); bus_generic_attach(idev); return (0); } static int intel_i2c_quirk_xfer(device_t idev, struct iic_msg *msgs, int nmsgs) { device_t bridge_dev; struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; int ret; int i; bridge_dev = device_get_parent(device_get_parent(idev)); sc = device_get_softc(bridge_dev); dev_priv = sc->drm_dev->dev_private; intel_i2c_reset(sc->drm_dev); intel_i2c_quirk_set(dev_priv, true); IICBB_SETSDA(bridge_dev, 1); IICBB_SETSCL(bridge_dev, 1); DELAY(I2C_RISEFALL_TIME); for (i = 0; i < nmsgs - 1; i++) { /* force use of repeated start instead of default stop+start */ msgs[i].flags |= IIC_M_NOSTOP; } ret = iicbus_transfer(idev, msgs, nmsgs); IICBB_SETSDA(bridge_dev, 1); IICBB_SETSCL(bridge_dev, 1); intel_i2c_quirk_set(dev_priv, false); return (ret); } static int gmbus_wait_hw_status(struct drm_i915_private *dev_priv, u32 gmbus2_status, u32 gmbus4_irq_en) { int i; int reg_offset = dev_priv->gpio_mmio_base; u32 gmbus2 = 0; DEFINE_WAIT(wait); if (!HAS_GMBUS_IRQ(dev_priv->dev)) gmbus4_irq_en = 0; /* Important: The hw handles only the first bit, so set only one! Since * we also need to check for NAKs besides the hw ready/idle signal, we * need to wake up periodically and check that ourselves. */ I915_WRITE(GMBUS4 + reg_offset, gmbus4_irq_en); for (i = 0; i < msecs_to_jiffies_timeout(50); i++) { prepare_to_wait(&dev_priv->gmbus_wait_queue, &wait, TASK_UNINTERRUPTIBLE); gmbus2 = I915_READ_NOTRACE(GMBUS2 + reg_offset); if (gmbus2 & (GMBUS_SATOER | gmbus2_status)) break; schedule_timeout(1); } finish_wait(&dev_priv->gmbus_wait_queue, &wait); I915_WRITE(GMBUS4 + reg_offset, 0); if (gmbus2 & GMBUS_SATOER) return -ENXIO; if (gmbus2 & gmbus2_status) return 0; return -ETIMEDOUT; } static int gmbus_wait_idle(struct drm_i915_private *dev_priv) { int ret; int reg_offset = dev_priv->gpio_mmio_base; #define C ((I915_READ_NOTRACE(GMBUS2 + reg_offset) & GMBUS_ACTIVE) == 0) if (!HAS_GMBUS_IRQ(dev_priv->dev)) return wait_for(C, 10); /* Important: The hw handles only the first bit, so set only one! */ I915_WRITE(GMBUS4 + reg_offset, GMBUS_IDLE_EN); ret = wait_event_timeout(dev_priv->gmbus_wait_queue, C, msecs_to_jiffies_timeout(10)); I915_WRITE(GMBUS4 + reg_offset, 0); if (ret) return 0; else return -ETIMEDOUT; #undef C } static int gmbus_xfer_read(struct drm_i915_private *dev_priv, struct i2c_msg *msg, u32 gmbus1_index) { int reg_offset = dev_priv->gpio_mmio_base; u16 len = msg->len; u8 *buf = msg->buf; I915_WRITE(GMBUS1 + reg_offset, gmbus1_index | GMBUS_CYCLE_WAIT | (len << GMBUS_BYTE_COUNT_SHIFT) | (msg->slave << (GMBUS_SLAVE_ADDR_SHIFT - 1)) | GMBUS_SLAVE_READ | GMBUS_SW_RDY); while (len) { int ret; u32 val, loop = 0; ret = gmbus_wait_hw_status(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); if (ret) return ret; val = I915_READ(GMBUS3 + reg_offset); do { *buf++ = val & 0xff; val >>= 8; } while (--len && ++loop < 4); } return 0; } static int gmbus_xfer_write(struct drm_i915_private *dev_priv, struct i2c_msg *msg) { int reg_offset = dev_priv->gpio_mmio_base; u16 len = msg->len; u8 *buf = msg->buf; u32 val, loop; val = loop = 0; while (len && loop < 4) { val |= *buf++ << (8 * loop++); len -= 1; } I915_WRITE(GMBUS3 + reg_offset, val); I915_WRITE(GMBUS1 + reg_offset, GMBUS_CYCLE_WAIT | (msg->len << GMBUS_BYTE_COUNT_SHIFT) | (msg->slave << (GMBUS_SLAVE_ADDR_SHIFT - 1)) | GMBUS_SLAVE_WRITE | GMBUS_SW_RDY); while (len) { int ret; val = loop = 0; do { val |= *buf++ << (8 * loop); } while (--len && ++loop < 4); I915_WRITE(GMBUS3 + reg_offset, val); ret = gmbus_wait_hw_status(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); if (ret) return ret; } return 0; } /* * The gmbus controller can combine a 1 or 2 byte write with a read that * immediately follows it by using an "INDEX" cycle. */ static bool gmbus_is_index_read(struct i2c_msg *msgs, int i, int num) { return (i + 1 < num && !(msgs[i].flags & I2C_M_RD) && msgs[i].len <= 2 && (msgs[i + 1].flags & I2C_M_RD)); } static int gmbus_xfer_index_read(struct drm_i915_private *dev_priv, struct i2c_msg *msgs) { int reg_offset = dev_priv->gpio_mmio_base; u32 gmbus1_index = 0; u32 gmbus5 = 0; int ret; if (msgs[0].len == 2) gmbus5 = GMBUS_2BYTE_INDEX_EN | msgs[0].buf[1] | (msgs[0].buf[0] << 8); if (msgs[0].len == 1) gmbus1_index = GMBUS_CYCLE_INDEX | (msgs[0].buf[0] << GMBUS_SLAVE_INDEX_SHIFT); /* GMBUS5 holds 16-bit index */ if (gmbus5) I915_WRITE(GMBUS5 + reg_offset, gmbus5); ret = gmbus_xfer_read(dev_priv, &msgs[1], gmbus1_index); /* Clear GMBUS5 after each index transfer */ if (gmbus5) I915_WRITE(GMBUS5 + reg_offset, 0); return ret; } static int gmbus_xfer(struct device *adapter, struct i2c_msg *msgs, int num) { struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; int i, reg_offset, unit; int ret = 0; sc = device_get_softc(adapter); dev_priv = sc->drm_dev->dev_private; unit = device_get_unit(adapter); mutex_lock(&dev_priv->gmbus_mutex); if (sc->force_bit_dev) { ret = intel_i2c_quirk_xfer(dev_priv->bbbus[unit], msgs, num); goto out; } reg_offset = HAS_PCH_SPLIT(dev_priv->dev) ? PCH_GMBUS0 - GMBUS0 : 0; I915_WRITE(GMBUS0 + reg_offset, sc->reg0); for (i = 0; i < num; i++) { if (gmbus_is_index_read(msgs, i, num)) { ret = gmbus_xfer_index_read(dev_priv, &msgs[i]); i += 1; /* set i to the index of the read xfer */ } else if (msgs[i].flags & I2C_M_RD) { ret = gmbus_xfer_read(dev_priv, &msgs[i], 0); } else { ret = gmbus_xfer_write(dev_priv, &msgs[i]); } if (ret == -ETIMEDOUT) goto timeout; if (ret == -ENXIO) goto clear_err; ret = gmbus_wait_hw_status(dev_priv, GMBUS_HW_WAIT_PHASE, GMBUS_HW_WAIT_EN); if (ret == -ENXIO) goto clear_err; if (ret) goto timeout; } /* Generate a STOP condition on the bus. Note that gmbus can't generata * a STOP on the very first cycle. To simplify the code we * unconditionally generate the STOP condition with an additional gmbus * cycle. */ I915_WRITE(GMBUS1 + reg_offset, GMBUS_CYCLE_STOP | GMBUS_SW_RDY); /* Mark the GMBUS interface as disabled after waiting for idle. * We will re-enable it at the start of the next xfer, * till then let it sleep. */ if (gmbus_wait_idle(dev_priv)) { DRM_DEBUG_KMS("GMBUS [%s] timed out waiting for idle\n", sc->name); ret = -ETIMEDOUT; } I915_WRITE(GMBUS0 + reg_offset, 0); ret = ret ?: i; goto timeout; /* XXX: should be out */ clear_err: /* * Wait for bus to IDLE before clearing NAK. * If we clear the NAK while bus is still active, then it will stay * active and the next transaction may fail. * * If no ACK is received during the address phase of a transaction, the * adapter must report -ENXIO. It is not clear what to return if no ACK * is received at other times. But we have to be careful to not return * spurious -ENXIO because that will prevent i2c and drm edid functions * from retrying. So return -ENXIO only when gmbus properly quiescents - * timing out seems to happen when there _is_ a ddc chip present, but * it's slow responding and only answers on the 2nd retry. */ ret = -ENXIO; if (gmbus_wait_idle(dev_priv)) { DRM_DEBUG_KMS("GMBUS [%s] timed out after NAK\n", sc->name); ret = -ETIMEDOUT; } /* Toggle the Software Clear Interrupt bit. This has the effect * of resetting the GMBUS controller and so clearing the * BUS_ERROR raised by the slave's NAK. */ I915_WRITE(GMBUS1 + reg_offset, GMBUS_SW_CLR_INT); I915_WRITE(GMBUS1 + reg_offset, 0); I915_WRITE(GMBUS0 + reg_offset, 0); DRM_DEBUG_KMS("GMBUS [%s] NAK for addr: %04x %c(%d)\n", sc->name, msgs[i].slave, (msgs[i].flags & I2C_M_RD) ? 'r' : 'w', msgs[i].len); goto out; timeout: DRM_INFO("GMBUS [%s] timed out, falling back to bit banging on pin %d\n", sc->name, sc->reg0 & 0xff); I915_WRITE(GMBUS0 + reg_offset, 0); /* Hardware may not support GMBUS over these pins? Try GPIO bitbanging instead. */ sc->force_bit_dev = true; ret = intel_i2c_quirk_xfer(dev_priv->bbbus[unit], msgs, num); out: mutex_unlock(&dev_priv->gmbus_mutex); return ret; } struct device *intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned port) { WARN_ON(!intel_gmbus_is_port_valid(port)); /* -1 to map pin pair to gmbus index */ return (intel_gmbus_is_port_valid(port)) ? dev_priv->gmbus[port-1] : NULL; } void intel_gmbus_set_speed(device_t idev, int speed) { struct intel_iic_softc *sc; sc = device_get_softc(device_get_parent(idev)); sc->reg0 = (sc->reg0 & ~(0x3 << 8)) | speed; } void intel_gmbus_force_bit(device_t idev, bool force_bit) { struct intel_iic_softc *sc; sc = device_get_softc(device_get_parent(idev)); sc->force_bit_dev += force_bit ? 1 : -1; DRM_DEBUG_KMS("%sabling bit-banging on %s. force bit now %d\n", force_bit ? "en" : "dis", sc->name, sc->force_bit_dev); } static int intel_gmbus_probe(device_t dev) { return (BUS_PROBE_SPECIFIC); } static int intel_gmbus_attach(device_t idev) { struct drm_i915_private *dev_priv; struct intel_iic_softc *sc; int pin; sc = device_get_softc(idev); sc->drm_dev = device_get_softc(device_get_parent(idev)); dev_priv = sc->drm_dev->dev_private; pin = device_get_unit(idev); ksnprintf(sc->name, sizeof(sc->name), "gmbus bus %s", gpio_names[pin]); device_set_desc(idev, sc->name); /* By default use a conservative clock rate */ sc->reg0 = (pin + 1) | GMBUS_RATE_100KHZ; /* XXX force bit banging until GMBUS is fully debugged */ if (IS_GEN2(sc->drm_dev)) { sc->force_bit_dev = true; } /* add bus interface device */ sc->iic_dev = device_add_child(idev, "iicbus", -1); if (sc->iic_dev == NULL) return (ENXIO); device_quiet(sc->iic_dev); bus_generic_attach(idev); return (0); } static int intel_gmbus_detach(device_t idev) { struct intel_iic_softc *sc; struct drm_i915_private *dev_priv; device_t child; int u; sc = device_get_softc(idev); u = device_get_unit(idev); dev_priv = sc->drm_dev->dev_private; child = sc->iic_dev; bus_generic_detach(idev); if (child != NULL) device_delete_child(idev, child); return (0); } static int intel_iicbb_probe(device_t dev) { return (BUS_PROBE_DEFAULT); } static int intel_iicbb_detach(device_t idev) { struct intel_iic_softc *sc; device_t child; sc = device_get_softc(idev); child = sc->iic_dev; bus_generic_detach(idev); if (child) device_delete_child(idev, child); return (0); } static device_method_t intel_gmbus_methods[] = { DEVMETHOD(device_probe, intel_gmbus_probe), DEVMETHOD(device_attach, intel_gmbus_attach), DEVMETHOD(device_detach, intel_gmbus_detach), DEVMETHOD(iicbus_reset, intel_iicbus_reset), DEVMETHOD(iicbus_transfer, gmbus_xfer), DEVMETHOD_END }; static driver_t intel_gmbus_driver = { "intel_gmbus", intel_gmbus_methods, sizeof(struct intel_iic_softc) }; static devclass_t intel_gmbus_devclass; DRIVER_MODULE_ORDERED(intel_gmbus, drm, intel_gmbus_driver, intel_gmbus_devclass, 0, 0, SI_ORDER_FIRST); DRIVER_MODULE(iicbus, intel_gmbus, iicbus_driver, iicbus_devclass, NULL, NULL); static device_method_t intel_iicbb_methods[] = { DEVMETHOD(device_probe, intel_iicbb_probe), DEVMETHOD(device_attach, intel_gpio_setup), DEVMETHOD(device_detach, intel_iicbb_detach), DEVMETHOD(bus_add_child, bus_generic_add_child), DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(iicbb_callback, iicbus_null_callback), DEVMETHOD(iicbb_reset, intel_iicbus_reset), DEVMETHOD(iicbb_setsda, set_data), DEVMETHOD(iicbb_setscl, set_clock), DEVMETHOD(iicbb_getsda, get_data), DEVMETHOD(iicbb_getscl, get_clock), DEVMETHOD_END }; static driver_t intel_iicbb_driver = { "intel_iicbb", intel_iicbb_methods, sizeof(struct intel_iic_softc) }; static devclass_t intel_iicbb_devclass; DRIVER_MODULE_ORDERED(intel_iicbb, drm, intel_iicbb_driver, intel_iicbb_devclass, 0, 0, SI_ORDER_FIRST); DRIVER_MODULE(iicbb, intel_iicbb, iicbb_driver, iicbb_devclass, NULL, NULL); static void intel_teardown_gmbus_m(struct drm_device *dev, int m); int intel_setup_gmbus(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; device_t iic_dev; int i, ret; if (HAS_PCH_NOP(dev)) return 0; else if (HAS_PCH_SPLIT(dev)) dev_priv->gpio_mmio_base = PCH_GPIOA - GPIOA; else if (IS_VALLEYVIEW(dev)) dev_priv->gpio_mmio_base = VLV_DISPLAY_BASE; else dev_priv->gpio_mmio_base = 0; lockinit(&dev_priv->gmbus_mutex, "gmbus", 0, LK_CANRECURSE); init_waitqueue_head(&dev_priv->gmbus_wait_queue); dev_priv->gmbus_bridge = kmalloc(sizeof(device_t) * GMBUS_NUM_PORTS, M_DRM, M_WAITOK | M_ZERO); dev_priv->bbbus_bridge = kmalloc(sizeof(device_t) * GMBUS_NUM_PORTS, M_DRM, M_WAITOK | M_ZERO); dev_priv->gmbus = kmalloc(sizeof(device_t) * GMBUS_NUM_PORTS, M_DRM, M_WAITOK | M_ZERO); dev_priv->bbbus = kmalloc(sizeof(device_t) * GMBUS_NUM_PORTS, M_DRM, M_WAITOK | M_ZERO); for (i = 0; i < GMBUS_NUM_PORTS; i++) { /* * Initialized bbbus_bridge before gmbus_bridge, since * gmbus may decide to force quirk transfer in the * attachment code. */ dev_priv->bbbus_bridge[i] = device_add_child(dev->dev, "intel_iicbb", i); if (dev_priv->bbbus_bridge[i] == NULL) { DRM_ERROR("bbbus bridge %d creation failed\n", i); ret = ENXIO; goto err; } device_quiet(dev_priv->bbbus_bridge[i]); ret = device_probe_and_attach(dev_priv->bbbus_bridge[i]); if (ret != 0) { DRM_ERROR("bbbus bridge %d attach failed, %d\n", i, ret); goto err; } iic_dev = device_find_child(dev_priv->bbbus_bridge[i], "iicbb", -1); if (iic_dev == NULL) { DRM_ERROR("bbbus bridge doesn't have iicbb child\n"); goto err; } iic_dev = device_find_child(iic_dev, "iicbus", -1); if (iic_dev == NULL) { DRM_ERROR( "bbbus bridge doesn't have iicbus grandchild\n"); goto err; } dev_priv->bbbus[i] = iic_dev; dev_priv->gmbus_bridge[i] = device_add_child(dev->dev, "intel_gmbus", i); if (dev_priv->gmbus_bridge[i] == NULL) { DRM_ERROR("gmbus bridge %d creation failed\n", i); ret = ENXIO; goto err; } device_quiet(dev_priv->gmbus_bridge[i]); ret = device_probe_and_attach(dev_priv->gmbus_bridge[i]); if (ret != 0) { DRM_ERROR("gmbus bridge %d attach failed, %d\n", i, ret); ret = ENXIO; goto err; } iic_dev = device_find_child(dev_priv->gmbus_bridge[i], "iicbus", -1); if (iic_dev == NULL) { DRM_ERROR("gmbus bridge doesn't have iicbus child\n"); goto err; } dev_priv->gmbus[i] = iic_dev; intel_i2c_reset(dev); } return (0); err: intel_teardown_gmbus_m(dev, i); return (ret); } static void intel_teardown_gmbus_m(struct drm_device *dev, int m) { struct drm_i915_private *dev_priv; dev_priv = dev->dev_private; drm_free(dev_priv->gmbus, M_DRM); dev_priv->gmbus = NULL; drm_free(dev_priv->bbbus, M_DRM); dev_priv->bbbus = NULL; drm_free(dev_priv->gmbus_bridge, M_DRM); dev_priv->gmbus_bridge = NULL; drm_free(dev_priv->bbbus_bridge, M_DRM); dev_priv->bbbus_bridge = NULL; lockuninit(&dev_priv->gmbus_mutex); } void intel_teardown_gmbus(struct drm_device *dev) { get_mplock(); intel_teardown_gmbus_m(dev, GMBUS_NUM_PORTS); rel_mplock(); }