/* * Copyright (c) 2009 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Sepherosa Ziehau * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #define MADT_VPRINTF(fmt, arg...) \ do { \ if (bootverbose) \ kprintf("ACPI MADT: " fmt , ##arg); \ } while (0) #define ACPI_RSDP_EBDA_MAPSZ 1024 #define ACPI_RSDP_BIOS_MAPSZ 0x20000 #define ACPI_RSDP_BIOS_MAPADDR 0xe0000 #define ACPI_RSDP_ALIGN 16 #define ACPI_RSDP_SIGLEN 8 #define ACPI_RSDP_SIG "RSD PTR " #define ACPI_SDTH_SIGLEN 4 #define ACPI_RSDT_SIG "RSDT" #define ACPI_XSDT_SIG "XSDT" #define ACPI_MADT_SIG "APIC" /* Root System Description Pointer */ struct acpi_rsdp { uint8_t rsdp_sig[ACPI_RSDP_SIGLEN]; uint8_t rsdp_cksum; uint8_t rsdp_oem_id[6]; uint8_t rsdp_rev; uint32_t rsdp_rsdt; uint32_t rsdp_len; uint64_t rsdp_xsdt; uint8_t rsdp_ext_cksum; uint8_t rsdp_rsvd[3]; } __packed; /* System Description Table Header */ struct acpi_sdth { uint8_t sdth_sig[ACPI_SDTH_SIGLEN]; uint32_t sdth_len; uint8_t sdth_rev; uint8_t sdth_cksum; uint8_t sdth_oem_id[6]; uint8_t sdth_oem_tbid[8]; uint32_t sdth_oem_rev; uint32_t sdth_crt_id; uint32_t sdth_crt_rev; } __packed; /* Extended System Description Table */ struct acpi_xsdt { struct acpi_sdth xsdt_hdr; uint64_t xsdt_ents[1]; } __packed; /* Root System Description Table */ struct acpi_rsdt { struct acpi_sdth rsdt_hdr; uint32_t rsdt_ents[1]; } __packed; /* Multiple APIC Description Table */ struct acpi_madt { struct acpi_sdth madt_hdr; uint32_t madt_lapic_addr; uint32_t madt_flags; uint8_t madt_ents[1]; } __packed; /* Common parts of MADT APIC structure */ struct acpi_madt_ent { uint8_t me_type; /* MADT_ENT_ */ uint8_t me_len; } __packed; #define MADT_ENT_LAPIC 0 #define MADT_ENT_IOAPIC 1 #define MADT_ENT_LAPIC_ADDR 5 /* MADT Processor Local APIC */ struct acpi_madt_lapic { struct acpi_madt_ent ml_hdr; uint8_t ml_cpu_id; uint8_t ml_apic_id; uint32_t ml_flags; /* MADT_LAPIC_ */ } __packed; #define MADT_LAPIC_ENABLED 0x1 /* MADT I/O APIC */ struct acpi_madt_ioapic { struct acpi_madt_ent mio_hdr; uint8_t mio_apic_id; uint8_t mio_reserved; uint32_t mio_addr; uint32_t mio_gsi_base; } __packed; /* MADT Local APIC Address Override */ struct acpi_madt_lapic_addr { struct acpi_madt_ent mla_hdr; uint16_t mla_reserved; uint64_t mla_lapic_addr; } __packed; struct madt_lapic_enumerator { struct lapic_enumerator enumerator; vm_paddr_t madt_paddr; }; typedef vm_paddr_t (*madt_search_t)(vm_paddr_t); typedef int (*madt_iter_t)(void *, const struct acpi_madt_ent *); static const struct acpi_rsdp *madt_rsdp_search(const uint8_t *, int); static void *madt_sdth_map(vm_paddr_t); static void madt_sdth_unmap(struct acpi_sdth *); static vm_paddr_t madt_search_xsdt(vm_paddr_t); static vm_paddr_t madt_search_rsdt(vm_paddr_t); static int madt_check(vm_paddr_t); static int madt_iterate_entries(struct acpi_madt *, madt_iter_t, void *); static vm_paddr_t madt_probe(void); static vm_offset_t madt_pass1(vm_paddr_t); static int madt_pass2(vm_paddr_t, int); static void madt_lapic_enumerate(struct lapic_enumerator *); static int madt_lapic_probe(struct lapic_enumerator *); extern u_long ebda_addr; static vm_paddr_t madt_probe(void) { const struct acpi_rsdp *rsdp; madt_search_t search; vm_paddr_t search_paddr, madt_paddr; vm_size_t mapsz; uint8_t *ptr; if (ebda_addr != 0) { mapsz = ACPI_RSDP_EBDA_MAPSZ; ptr = pmap_mapdev(ebda_addr, mapsz); rsdp = madt_rsdp_search(ptr, mapsz); if (rsdp == NULL) { MADT_VPRINTF("RSDP not in EBDA\n"); pmap_unmapdev((vm_offset_t)ptr, mapsz); ptr = NULL; mapsz = 0; } else { MADT_VPRINTF("RSDP in EBDA\n"); goto found_rsdp; } } mapsz = ACPI_RSDP_BIOS_MAPSZ; ptr = pmap_mapdev(ACPI_RSDP_BIOS_MAPADDR, mapsz); rsdp = madt_rsdp_search(ptr, mapsz); if (rsdp == NULL) { kprintf("madt_probe: no RSDP\n"); pmap_unmapdev((vm_offset_t)ptr, mapsz); return 0; } else { MADT_VPRINTF("RSDP in BIOS mem\n"); } found_rsdp: if (rsdp->rsdp_rev != 2) { search_paddr = rsdp->rsdp_rsdt; search = madt_search_rsdt; } else { search_paddr = rsdp->rsdp_xsdt; search = madt_search_xsdt; } pmap_unmapdev((vm_offset_t)ptr, mapsz); madt_paddr = search(search_paddr); if (madt_paddr == 0) { kprintf("madt_probe: can't locate MADT\n"); return 0; } /* Preliminary checks */ if (madt_check(madt_paddr)) return 0; return madt_paddr; } static const struct acpi_rsdp * madt_rsdp_search(const uint8_t *target, int size) { const struct acpi_rsdp *rsdp; int i; KKASSERT(size > sizeof(*rsdp)); for (i = 0; i < size - sizeof(*rsdp); i += ACPI_RSDP_ALIGN) { rsdp = (const struct acpi_rsdp *)&target[i]; if (memcmp(rsdp->rsdp_sig, ACPI_RSDP_SIG, ACPI_RSDP_SIGLEN) == 0) return rsdp; } return NULL; } static void * madt_sdth_map(vm_paddr_t paddr) { struct acpi_sdth *sdth; vm_size_t mapsz; sdth = pmap_mapdev(paddr, sizeof(*sdth)); mapsz = sdth->sdth_len; pmap_unmapdev((vm_offset_t)sdth, sizeof(*sdth)); if (mapsz < sizeof(*sdth)) return NULL; return pmap_mapdev(paddr, mapsz); } static void madt_sdth_unmap(struct acpi_sdth *sdth) { pmap_unmapdev((vm_offset_t)sdth, sdth->sdth_len); } static vm_paddr_t madt_search_xsdt(vm_paddr_t xsdt_paddr) { struct acpi_xsdt *xsdt; vm_paddr_t madt_paddr = 0; int i, nent; if (xsdt_paddr == 0) { kprintf("madt_search_xsdt: XSDT paddr == 0\n"); return 0; } xsdt = madt_sdth_map(xsdt_paddr); if (xsdt == NULL) { kprintf("madt_search_xsdt: can't map XSDT\n"); return 0; } if (memcmp(xsdt->xsdt_hdr.sdth_sig, ACPI_XSDT_SIG, ACPI_SDTH_SIGLEN) != 0) { kprintf("madt_search_xsdt: not XSDT\n"); goto back; } if (xsdt->xsdt_hdr.sdth_rev != 1) { kprintf("madt_search_xsdt: unsupported XSDT revision %d\n", xsdt->xsdt_hdr.sdth_rev); goto back; } nent = (xsdt->xsdt_hdr.sdth_len - sizeof(xsdt->xsdt_hdr)) / sizeof(xsdt->xsdt_ents[0]); for (i = 0; i < nent; ++i) { struct acpi_sdth *sdth; if (xsdt->xsdt_ents[i] == 0) continue; sdth = madt_sdth_map(xsdt->xsdt_ents[i]); if (sdth != NULL) { int ret; ret = memcmp(sdth->sdth_sig, ACPI_MADT_SIG, ACPI_SDTH_SIGLEN); madt_sdth_unmap(sdth); if (ret == 0) { MADT_VPRINTF("MADT in XSDT\n"); madt_paddr = xsdt->xsdt_ents[i]; break; } } } back: madt_sdth_unmap(&xsdt->xsdt_hdr); return madt_paddr; } static vm_paddr_t madt_search_rsdt(vm_paddr_t rsdt_paddr) { struct acpi_rsdt *rsdt; vm_paddr_t madt_paddr = 0; int i, nent; if (rsdt_paddr == 0) { kprintf("madt_search_rsdt: RSDT paddr == 0\n"); return 0; } rsdt = madt_sdth_map(rsdt_paddr); if (rsdt == NULL) { kprintf("madt_search_rsdt: can't map RSDT\n"); return 0; } if (memcmp(rsdt->rsdt_hdr.sdth_sig, ACPI_RSDT_SIG, ACPI_SDTH_SIGLEN) != 0) { kprintf("madt_search_rsdt: not RSDT\n"); goto back; } if (rsdt->rsdt_hdr.sdth_rev != 1) { kprintf("madt_search_rsdt: unsupported RSDT revision %d\n", rsdt->rsdt_hdr.sdth_rev); goto back; } nent = (rsdt->rsdt_hdr.sdth_len - sizeof(rsdt->rsdt_hdr)) / sizeof(rsdt->rsdt_ents[0]); for (i = 0; i < nent; ++i) { struct acpi_sdth *sdth; if (rsdt->rsdt_ents[i] == 0) continue; sdth = madt_sdth_map(rsdt->rsdt_ents[i]); if (sdth != NULL) { int ret; ret = memcmp(sdth->sdth_sig, ACPI_MADT_SIG, ACPI_SDTH_SIGLEN); madt_sdth_unmap(sdth); if (ret == 0) { MADT_VPRINTF("MADT in RSDT\n"); madt_paddr = rsdt->rsdt_ents[i]; break; } } } back: madt_sdth_unmap(&rsdt->rsdt_hdr); return madt_paddr; } static int madt_pass1_callback(void *xarg, const struct acpi_madt_ent *ent) { const struct acpi_madt_lapic_addr *lapic_addr_ent; uint64_t *addr64 = xarg; if (ent->me_type != MADT_ENT_LAPIC_ADDR) return 0; if (ent->me_len < sizeof(*lapic_addr_ent)) { kprintf("madt_pass1: invalid LAPIC address override length\n"); return 0; } lapic_addr_ent = (const struct acpi_madt_lapic_addr *)ent; *addr64 = lapic_addr_ent->mla_lapic_addr; return 0; } static vm_offset_t madt_pass1(vm_paddr_t madt_paddr) { struct acpi_madt *madt; vm_offset_t lapic_addr; uint64_t lapic_addr64; int error; KKASSERT(madt_paddr != 0); madt = madt_sdth_map(madt_paddr); KKASSERT(madt != NULL); MADT_VPRINTF("LAPIC address 0x%08x, flags %#x\n", madt->madt_lapic_addr, madt->madt_flags); lapic_addr = madt->madt_lapic_addr; lapic_addr64 = 0; error = madt_iterate_entries(madt, madt_pass1_callback, &lapic_addr64); if (error) panic("madt_iterate_entries(pass1) failed\n"); if (lapic_addr64 != 0) { kprintf("ACPI MADT: 64bits lapic address 0x%lx\n", lapic_addr64); lapic_addr = lapic_addr64; } madt_sdth_unmap(&madt->madt_hdr); return lapic_addr; } struct madt_pass2_cbarg { int cpu; int bsp_found; int bsp_apic_id; }; static int madt_pass2_callback(void *xarg, const struct acpi_madt_ent *ent) { const struct acpi_madt_lapic *lapic_ent; struct madt_pass2_cbarg *arg = xarg; if (ent->me_type != MADT_ENT_LAPIC) return 0; lapic_ent = (const struct acpi_madt_lapic *)ent; if (lapic_ent->ml_flags & MADT_LAPIC_ENABLED) { MADT_VPRINTF("cpu_id %d, apic_id %d\n", lapic_ent->ml_cpu_id, lapic_ent->ml_apic_id); if (lapic_ent->ml_apic_id == arg->bsp_apic_id) { mp_set_cpuids(0, lapic_ent->ml_apic_id); arg->bsp_found = 1; } else { mp_set_cpuids(arg->cpu, lapic_ent->ml_apic_id); arg->cpu++; } } return 0; } static int madt_pass2(vm_paddr_t madt_paddr, int bsp_apic_id) { struct acpi_madt *madt; struct madt_pass2_cbarg arg; int error; MADT_VPRINTF("BSP apic id %d\n", bsp_apic_id); KKASSERT(madt_paddr != 0); madt = madt_sdth_map(madt_paddr); KKASSERT(madt != NULL); bzero(&arg, sizeof(arg)); arg.cpu = 1; arg.bsp_apic_id = bsp_apic_id; error = madt_iterate_entries(madt, madt_pass2_callback, &arg); if (error) panic("madt_iterate_entries(pass2) failed\n"); KKASSERT(arg.bsp_found); KKASSERT(arg.cpu > 1); mp_naps = arg.cpu - 1; /* exclude BSP */ madt_sdth_unmap(&madt->madt_hdr); return 0; } struct madt_check_cbarg { int cpu_count; }; static int madt_check_callback(void *xarg, const struct acpi_madt_ent *ent) { struct madt_check_cbarg *arg = xarg; const struct acpi_madt_lapic *lapic_ent; if (ent->me_type != MADT_ENT_LAPIC) return 0; lapic_ent = (const struct acpi_madt_lapic *)ent; if (lapic_ent->ml_flags & MADT_LAPIC_ENABLED) arg->cpu_count++; return 0; } static int madt_check(vm_paddr_t madt_paddr) { struct madt_check_cbarg arg; struct acpi_madt *madt; int error = 0; KKASSERT(madt_paddr != 0); madt = madt_sdth_map(madt_paddr); KKASSERT(madt != NULL); if (madt->madt_hdr.sdth_rev != 1 && madt->madt_hdr.sdth_rev != 2) { kprintf("madt_check: unsupported MADT revision %d\n", madt->madt_hdr.sdth_rev); error = EOPNOTSUPP; goto back; } if (madt->madt_hdr.sdth_len < sizeof(*madt) - sizeof(madt->madt_ents)) { kprintf("madt_check: invalid MADT length %u\n", madt->madt_hdr.sdth_len); error = EINVAL; goto back; } bzero(&arg, sizeof(arg)); error = madt_iterate_entries(madt, madt_check_callback, &arg); if (!error) { if (arg.cpu_count <= 1) { kprintf("madt_check: less than 2 CPUs is found\n"); error = EOPNOTSUPP; } } back: madt_sdth_unmap(&madt->madt_hdr); return error; } static int madt_iterate_entries(struct acpi_madt *madt, madt_iter_t func, void *arg) { int size, cur, error; size = madt->madt_hdr.sdth_len - (sizeof(*madt) - sizeof(madt->madt_ents)); cur = 0; error = 0; while (size - cur > sizeof(struct acpi_madt_ent)) { const struct acpi_madt_ent *ent; ent = (const struct acpi_madt_ent *)&madt->madt_ents[cur]; if (ent->me_len < sizeof(*ent)) { kprintf("madt_iterate_entries: invalid MADT " "entry len %d\n", ent->me_len); error = EINVAL; break; } if (ent->me_len > (size - cur)) { kprintf("madt_iterate_entries: invalid MADT " "entry len %d, > table length\n", ent->me_len); error = EINVAL; break; } cur += ent->me_len; /* * Only Local APIC and I/O APIC are defined in * ACPI specification 1.0 - 3.0 */ switch (ent->me_type) { case MADT_ENT_LAPIC: if (ent->me_len < sizeof(struct acpi_madt_lapic)) { kprintf("madt_iterate_entries: invalid MADT " "lapic entry len %d\n", ent->me_len); error = EINVAL; } break; case MADT_ENT_IOAPIC: if (ent->me_len < sizeof(struct acpi_madt_ioapic)) { kprintf("madt_iterate_entries: invalid MADT " "ioapic entry len %d\n", ent->me_len); error = EINVAL; } break; } if (error) break; error = func(arg, ent); if (error) break; } return error; } static int madt_lapic_probe(struct lapic_enumerator *e) { vm_paddr_t madt_paddr; madt_paddr = madt_probe(); if (madt_paddr == 0) return ENXIO; ((struct madt_lapic_enumerator *)e)->madt_paddr = madt_paddr; return 0; } static void madt_lapic_enumerate(struct lapic_enumerator *e) { vm_paddr_t madt_paddr; vm_offset_t lapic_addr; int bsp_apic_id; madt_paddr = ((struct madt_lapic_enumerator *)e)->madt_paddr; KKASSERT(madt_paddr != 0); lapic_addr = madt_pass1(madt_paddr); if (lapic_addr == 0) panic("madt_lapic_enumerate no local apic\n"); lapic_init(lapic_addr); bsp_apic_id = APIC_ID(lapic->id); if (madt_pass2(madt_paddr, bsp_apic_id)) panic("mp_enable: madt_pass2 failed\n"); } static struct madt_lapic_enumerator madt_lapic_enumerator = { .enumerator = { .lapic_prio = LAPIC_ENUM_PRIO_MADT, .lapic_probe = madt_lapic_probe, .lapic_enumerate = madt_lapic_enumerate } }; static void madt_apic_register(void) { int prio; prio = LAPIC_ENUM_PRIO_MADT; kgetenv_int("hw.madt_lapic_prio", &prio); madt_lapic_enumerator.enumerator.lapic_prio = prio; lapic_enumerator_register(&madt_lapic_enumerator.enumerator); } SYSINIT(madt, SI_BOOT2_PRESMP, SI_ORDER_ANY, madt_apic_register, 0);