/*- * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $NetBSD: bus.h,v 1.12 1997/10/01 08:25:15 fvdl Exp $ * $FreeBSD: src/sys/i386/include/bus_dma.h,v 1.15.2.2 2002/11/21 23:36:01 sam Exp $ */ #ifndef _SYS_BUS_DMA_H_ #define _SYS_BUS_DMA_H_ /* * Include machine-specific bus stuff */ #include /* bus_addr_t */ /* * Flags used in various bus DMA methods. */ #define BUS_DMA_WAITOK 0x0000 /* safe to sleep (pseudo-flag) */ #define BUS_DMA_NOWAIT 0x0001 /* not safe to sleep */ #define BUS_DMA_ALLOCNOW 0x0002 /* perform resource allocation now */ #define BUS_DMA_COHERENT 0x0004 /* map memory to not require sync */ #define BUS_DMA_ZERO 0x0008 /* allocate zero'ed memory */ #define BUS_DMA_BUS1 0x0010 /* placeholders for bus functions... */ #define BUS_DMA_BUS2 0x0020 #define BUS_DMA_BUS3 0x0040 #define BUS_DMA_BUS4 0x0080 #define BUS_DMA_ONEBPAGE 0x0100 /* allocate one bpage per map at most */ #define BUS_DMA_ALIGNED 0x0200 /* no bpage should be allocated due to * alignment requirement; all to-be- * loaded memory is properly aligned */ #define BUS_DMA_PRIVBZONE 0x0400 /* need private bounce zone */ #define BUS_DMA_ALLOCALL 0x0800 /* allocate all needed resources */ #define BUS_DMA_PROTECTED 0x1000 /* all busdma functions are already * protected */ /* Forwards needed by prototypes below. */ struct mbuf; struct uio; /* * bus_dmasync_op_t * * Operations performed by bus_dmamap_sync(). */ typedef enum { BUS_DMASYNC_PREREAD, BUS_DMASYNC_POSTREAD, BUS_DMASYNC_PREWRITE, BUS_DMASYNC_POSTWRITE } bus_dmasync_op_t; /* * bus_dma_tag_t * * A machine-dependent opaque type describing the characteristics * of how to perform DMA mappings. This structure encapsultes * information concerning address and alignment restrictions, number * of S/G segments, amount of data per S/G segment, etc. */ typedef struct bus_dma_tag *bus_dma_tag_t; /* * bus_dmamap_t * * DMA mapping instance information. */ typedef struct bus_dmamap *bus_dmamap_t; /* * bus_dma_segment_t * * Describes a single contiguous DMA transaction. Values * are suitable for programming into DMA registers. */ typedef struct bus_dma_segment { bus_addr_t ds_addr; /* DMA address */ bus_size_t ds_len; /* length of transfer */ } bus_dma_segment_t; typedef struct bus_dmamem { bus_dma_tag_t dmem_tag; bus_dmamap_t dmem_map; void *dmem_addr; bus_addr_t dmem_busaddr; } bus_dmamem_t; /* * A function that returns 1 if the address cannot be accessed by * a device and 0 if it can be. */ typedef int bus_dma_filter_t(void *, bus_addr_t); /* * Allocate a device specific dma_tag encapsulating the constraints of * the parent tag in addition to other restrictions specified: * * alignment: alignment for segments. * boundary: Boundary that segments cannot cross. * lowaddr: Low restricted address that cannot appear in a mapping. * highaddr: High restricted address that cannot appear in a mapping. * filtfunc: An optional function to further test if an address * within the range of lowaddr and highaddr cannot appear * in a mapping. * filtfuncarg: An argument that will be passed to filtfunc in addition * to the address to test. * maxsize: Maximum mapping size supported by this tag. * nsegments: Number of discontinuities allowed in maps. * maxsegsz: Maximum size of a segment in the map. * flags: Bus DMA flags. * dmat: A pointer to set to a valid dma tag should the return * value of this function indicate success. */ /* XXX Should probably allow specification of alignment */ int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filtfunc, void *filtfuncarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_tag_t *dmat); int bus_dma_tag_destroy(bus_dma_tag_t dmat); bus_size_t bus_dma_tag_getmaxsize(bus_dma_tag_t tag); /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp); /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map); /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp); /* * Free a piece of memory and it's allociated dmamap, that was allocated * via bus_dmamem_alloc. */ void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map); /* * A function that processes a successfully loaded dma map or an error * from a delayed load map. */ typedef void bus_dmamap_callback_t(void *, bus_dma_segment_t *, int, int); /* * Map the buffer buf into bus space using the dmamap map. */ int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_callback but includes map size in bytes. This is * defined as a separate interface to maintain compatiiblity for users * of bus_dmamap_callback_t--at some point these interfaces should be merged. */ typedef void bus_dmamap_callback2_t(void *, bus_dma_segment_t *, int, bus_size_t, int); /* * Like bus_dmamap_load but for mbufs. Note the use of the * bus_dmamap_callback2_t interface. */ int bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *mbuf, bus_dmamap_callback2_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_load but for uios. Note the use of the * bus_dmamap_callback2_t interface. */ int bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *ui, bus_dmamap_callback2_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_load_mbuf without callback. * Segmentation information are saved in 'segs' and 'nsegs' if * the loading is successful. 'maxsegs' must be set by caller * and must be at least 1 but less than 'dmat' nsegment. It * indicates the number of elements in 'segs'. 'flags' must * have BUS_DMA_NOWAIT turned on. */ int bus_dmamap_load_mbuf_segment(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *mbuf, bus_dma_segment_t *segs, int maxsegs, int *nsegs, int flags); /* * Like bus_dmamap_load_mbuf_segment, but it will call m_defrag() * and try reloading if low level code indicates too many fragments * in the '*mbuf'; 'mbuf' will be updated under this situation. */ int bus_dmamap_load_mbuf_defrag(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf **mbuf, bus_dma_segment_t *segs, int maxsegs, int *nsegs, int flags); /* * Convenient function to create coherent busdma memory */ int bus_dmamem_coherent(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_size_t maxsize, int flags, bus_dmamem_t *dmem); /* * Simplified version of bus_dmamem_coherent() with: * boundary == 0 * lowaddr == BUS_SPACE_MAXADDR * highaddr == BUS_SPACE_MAXADDR * * 'parent' usually should not be NULL, so we could inherit * boundary, lowaddr and highaddr from it. */ void * bus_dmamem_coherent_any(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t maxsize, int flags, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, bus_addr_t *busaddr); /* * Perform a syncronization operation on the given map. */ void _bus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_dmasync_op_t); #define bus_dmamap_sync(dmat, dmamap, op) \ if ((dmamap) != NULL) \ _bus_dmamap_sync(dmat, dmamap, op) /* * Release the mapping held by map. */ void _bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map); #define bus_dmamap_unload(dmat, dmamap) \ if ((dmamap) != NULL) \ _bus_dmamap_unload(dmat, dmamap) #endif /* _SYS_BUS_DMA_H_ */