/* * top - a top users display for Unix * * SYNOPSIS: For DragonFly 2.x and later * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * This is the machine-dependent module for DragonFly 2.5.1 * Should work for: * DragonFly 2.x and above * * LIBS: -lkvm * * AUTHOR: Jan Lentfer * This module has been put together from different sources and is based on the * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev. * * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $ */ #include #include #include #include #include #include "os.h" #include #include #include #include #include #include #include #include #include #include #include #include /* Swap */ #include #include #include /* for changes in kernel structures */ #include #include #include "top.h" #include "display.h" #include "machine.h" #include "screen.h" #include "utils.h" int swapmode(int *retavail, int *retfree); static int smpmode; static int namelength; static int cmdlength; static int show_fullcmd; int n_cpus = 0; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" #define PP(pp, field) ((pp)->kp_ ## field) #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field) #define VP(pp, field) ((pp)->kp_vm_ ## field) /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \ ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) (VP((pp), map_size) / 1024) /* * These definitions control the format of the per-process area */ static char smp_header[] = " PID %-*.*s NICE SIZE PRES STATE CPU TIME CTIME CPU COMMAND"; #define smp_Proc_format \ "%5d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s" static char up_header[] = " PID %-*.*s NICE SIZE PRES STATE TIME CTIME CPU COMMAND"; #define up_Proc_format \ "%5d %-*.*s %3d%7s %6s %8.8s%.0d %7s %7s %5.2f%% %.*s" /* process state names for the "STATE" column of the display */ /* * the extra nulls in the string "run" are for adding a slash and the * processor number when needed */ const char *state_abbrev[] = { "", "RUN\0\0\0", "STOP", "SLEEP", }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; static long lastpid; static int ccpu; /* these are for calculating cpu state percentages */ static struct kinfo_cputime *cp_time, *cp_old; /* these are for detailing the process states */ int process_states[6]; char *procstatenames[] = { " running, ", " idle, ", " active, ", " stopped, ", " zombie, ", NULL }; /* these are for detailing the cpu states */ #define CPU_STATES 5 int *cpu_states; char *cpustatenames[CPU_STATES + 1] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ long memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; long swap_stats[7]; char *swapnames[] = { /* 0 1 2 3 4 5 */ "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* sorting orders. first is default */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", "pres", NULL }; /* compare routines */ int proc_compare (struct kinfo_proc **, struct kinfo_proc **); int compare_size (struct kinfo_proc **, struct kinfo_proc **); int compare_res (struct kinfo_proc **, struct kinfo_proc **); int compare_time (struct kinfo_proc **, struct kinfo_proc **); int compare_ctime (struct kinfo_proc **, struct kinfo_proc **); int compare_prio(struct kinfo_proc **, struct kinfo_proc **); int compare_thr (struct kinfo_proc **, struct kinfo_proc **); int compare_pid (struct kinfo_proc **, struct kinfo_proc **); int compare_pres(struct kinfo_proc **, struct kinfo_proc **); int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = { proc_compare, compare_size, compare_res, compare_time, compare_prio, compare_thr, compare_pid, compare_ctime, compare_pres, NULL }; static void cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new, struct kinfo_cputime *old) { struct kinfo_cputime diffs; uint64_t total_change, half_total; /* initialization */ total_change = 0; diffs.cp_user = new->cp_user - old->cp_user; diffs.cp_nice = new->cp_nice - old->cp_nice; diffs.cp_sys = new->cp_sys - old->cp_sys; diffs.cp_intr = new->cp_intr - old->cp_intr; diffs.cp_idle = new->cp_idle - old->cp_idle; total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys + diffs.cp_intr + diffs.cp_idle; old->cp_user = new->cp_user; old->cp_nice = new->cp_nice; old->cp_sys = new->cp_sys; old->cp_intr = new->cp_intr; old->cp_idle = new->cp_idle; /* avoid divide by zero potential */ if (total_change == 0) total_change = 1; /* calculate percentages based on overall change, rounding up */ half_total = total_change >> 1; out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change); out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change); out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change); out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change); out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change); } int machine_init(struct statics *statics) { int pagesize; size_t modelen; struct passwd *pw; struct timeval boottime; if (n_cpus < 1) { if (kinfo_get_cpus(&n_cpus)) err(1, "kinfo_get_cpus failed"); } /* get boot time */ modelen = sizeof(boottime); if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) { /* we have no boottime to report */ boottime.tv_sec = -1; } modelen = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || modelen != sizeof(smpmode)) smpmode = 0; while ((pw = getpwent()) != NULL) { if ((int)strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } if (namelength < 8) namelength = 8; if (smpmode && namelength > 13) namelength = 13; else if (namelength > 15) namelength = 15; if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL) return -1; if (kinfo_get_sched_ccpu(&ccpu)) { fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n"); return (-1); } /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* * get the page size with "getpagesize" and calculate pageshift from * it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->boottime = boottime.tv_sec; statics->swap_names = swapnames; statics->order_names = ordernames; /* we need kvm descriptor in order to show full commands */ statics->flags.fullcmds = kd != NULL; /* all done! */ return (0); } char * format_header(char *uname_field) { static char Header[128]; snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, namelength, namelength, uname_field); if (screen_width <= 79) cmdlength = 80; else cmdlength = screen_width; cmdlength = cmdlength - strlen(Header) + 6; return Header; } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(struct system_info *si) { size_t len; int cpu; if (cpu_states == NULL) { cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus); if (cpu_states == NULL) err(1, "malloc"); bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus); } if (cp_time == NULL) { cp_time = malloc(2 * n_cpus * sizeof(cp_time[0])); if (cp_time == NULL) err(1, "cp_time"); cp_old = cp_time + n_cpus; len = n_cpus * sizeof(cp_old[0]); bzero(cp_time, len); if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0)) err(1, "kern.cputime"); } len = n_cpus * sizeof(cp_time[0]); bzero(cp_time, len); if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0)) err(1, "kern.cputime"); getloadavg(si->load_avg, 3); lastpid = 0; /* convert cp_time counts to percentages */ for (cpu = 0; cpu < n_cpus; ++cpu) { cputime_percentages(cpu_states + cpu * CPU_STATES, &cp_time[cpu], &cp_old[cpu]); } /* sum memory & swap statistics */ { struct vmmeter vmm; struct vmstats vms; size_t vms_size = sizeof(vms); size_t vmm_size = sizeof(vmm); static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static long bufspace = 0; if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0)) err(1, "sysctlbyname: vm.vmstats"); if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0)) err(1, "sysctlbyname: vm.vmmeter"); if (kinfo_get_vfs_bufspace(&bufspace)) err(1, "kinfo_get_vfs_bufspace"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(vms.v_active_count); memory_stats[1] = pagetok(vms.v_inactive_count); memory_stats[2] = pagetok(vms.v_wire_count); memory_stats[3] = pagetok(vms.v_cache_count); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(vms.v_free_count); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin))); swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout))); } swappgsin = vmm.v_swappgsin; swappgsout = vmm.v_swappgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->swap = swap_stats; if (lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } } static struct handle handle; caddr_t get_process_info(struct system_info *si, struct process_select *sel, int compare_index) { int i; int total_procs; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; int show_threads; show_threads = sel->threads; pbase = kvm_getprocs(kd, KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc); if (nproc > onproc) pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void)fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_fullcmd = sel->fullcmd; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if ((show_threads && (LP(pp, pid) == -1)) || (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) { total_procs++; if (LP(pp, stat) == LSRUN) process_states[0]++; process_states[PP(pp, stat)]++; if ((show_threads && (LP(pp, pid) == -1)) || (show_idle || (LP(pp, pctcpu) != 0) || (LP(pp, stat) == LSRUN)) && (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) { *prefp++ = pp; active_procs++; } } } qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), (int (*)(const void *, const void *))proc_compares[compare_index]); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return ((caddr_t) & handle); } char fmt[MAX_COLS]; /* static area where result is built */ char * format_next_process(caddr_t xhandle, char *(*get_userid) (int)) { struct kinfo_proc *pp; long cputime; long ccputime; double pct; struct handle *hp; char status[16]; int state; int xnice; char **comm_full; char *comm; char cputime_fmt[10], ccputime_fmt[10]; /* find and remember the next proc structure */ hp = (struct handle *)xhandle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's command name */ if (show_fullcmd) { if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) { return (fmt); } } else { comm = PP(pp, comm); } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time to be in compliance with ps output. */ cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000; ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec; format_time(cputime, cputime_fmt, sizeof(cputime_fmt)); format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt)); /* calculate the base for cpu percentages */ pct = pctdouble(LP(pp, pctcpu)); /* generate "STATE" field */ switch (state = LP(pp, stat)) { case LSRUN: if (smpmode && LP(pp, tdflags) & TDF_RUNNING) sprintf(status, "CPU%d", LP(pp, cpuid)); else strcpy(status, "RUN"); break; case LSSLEEP: if (LP(pp, wmesg) != NULL) { sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */ break; } /* fall through */ default: if (state >= 0 && (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev)) sprintf(status, "%.6s", state_abbrev[(unsigned char)state]); else sprintf(status, "?%5d", state); break; } if (PP(pp, stat) == SZOMB) strcpy(status, "ZOMB"); /* * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread * 0 - 31 -> nice value -53 - */ switch (LP(pp, rtprio.type)) { case RTP_PRIO_REALTIME: xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio); break; case RTP_PRIO_IDLE: xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio); break; case RTP_PRIO_THREAD: xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio); break; default: xnice = PP(pp, nice); break; } /* format this entry */ snprintf(fmt, sizeof(fmt), smpmode ? smp_Proc_format : up_Proc_format, (int)PP(pp, pid), namelength, namelength, get_userid(PP(pp, ruid)), (int)xnice, format_k(PROCSIZE(pp)), format_k(pagetok(VP(pp, prssize))), status, (int)(smpmode ? LP(pp, cpuid) : 0), cputime_fmt, ccputime_fmt, 100.0 * pct, cmdlength, show_fullcmd ? *comm_full : comm); /* return the result */ return (fmt); } /* comparison routines for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU \ if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks)) #define ORDERKEY_CPTICKS \ if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \ CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0) #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \ PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec) #define ORDERKEY_CTIME \ if ((result = CTIME(p2) > CTIME(p1) ? 1 : \ CTIME(p2) < CTIME(p1) ? -1 : 0) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \ sorted_state[(unsigned char) PP(p1, stat)]) == 0) #define ORDERKEY_PRIO \ if ((result = LP(p2, prio) - LP(p1, prio)) == 0) #define ORDERKEY_KTHREADS \ if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0) #define ORDERKEY_KTHREADS_PRIO \ if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0) #define ORDERKEY_RSSIZE \ if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0) #define ORDERKEY_MEM \ if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) #define ORDERKEY_PID \ if ( (result = PP(p1, pid) - PP(p2, pid)) == 0) #define ORDERKEY_PRSSIZE \ if((result = VP(p2, prssize) - VP(p1, prssize)) == 0) /* compare_cpu - the comparison function for sorting by cpu percentage */ int proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM {} return (result); } /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO {} return (result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO {} return (result); } /* compare_pres - the comparison function for sorting by proportional resident set size */ int compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PRSSIZE ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO {} return (result); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM {} return (result); } int compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CTIME ORDERKEY_PCTCPU ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM {} return (result); } /* compare_prio - the comparison function for sorting by cpu percentage */ int compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM {} return (result); } int compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **)pp1; p2 = *(struct kinfo_proc **)pp2; ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM {} return (result); } /* compare_pid - the comparison function for sorting by process id */ int compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2) { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PID ; return(result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(int pid) { int xcnt; struct kinfo_proc **prefp; struct kinfo_proc *pp; prefp = pref; xcnt = pref_len; while (--xcnt >= 0) { pp = *prefp++; if (PP(pp, pid) == (pid_t) pid) { return ((int)PP(pp, ruid)); } } return (-1); } /* * swapmode is based on a program called swapinfo written * by Kevin Lahey . */ int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int)((double)swapary[0].ksw_used * 100.0 / (double)swapary[0].ksw_total); return (n); }