/* Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* As a special exception, if you include this header file into source files compiled by GCC, this header file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* Implemented from the specification included in the Intel C++ Compiler User Guide and Reference, version 8.0. */ #ifndef _XMMINTRIN_H_INCLUDED #define _XMMINTRIN_H_INCLUDED #ifndef __SSE__ # error "SSE instruction set not enabled" #else /* We need type definitions from the MMX header file. */ #include /* The data type intended for user use. */ typedef float __m128 __attribute__ ((__mode__(__V4SF__))); /* Internal data types for implementing the intrinsics. */ typedef float __v4sf __attribute__ ((__mode__(__V4SF__))); /* Create a selector for use with the SHUFPS instruction. */ #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | (fp0)) /* Constants for use with _mm_prefetch. */ enum _mm_hint { _MM_HINT_T0 = 3, _MM_HINT_T1 = 2, _MM_HINT_T2 = 1, _MM_HINT_NTA = 0 }; /* Bits in the MXCSR. */ #define _MM_EXCEPT_MASK 0x003f #define _MM_EXCEPT_INVALID 0x0001 #define _MM_EXCEPT_DENORM 0x0002 #define _MM_EXCEPT_DIV_ZERO 0x0004 #define _MM_EXCEPT_OVERFLOW 0x0008 #define _MM_EXCEPT_UNDERFLOW 0x0010 #define _MM_EXCEPT_INEXACT 0x0020 #define _MM_MASK_MASK 0x1f80 #define _MM_MASK_INVALID 0x0080 #define _MM_MASK_DENORM 0x0100 #define _MM_MASK_DIV_ZERO 0x0200 #define _MM_MASK_OVERFLOW 0x0400 #define _MM_MASK_UNDERFLOW 0x0800 #define _MM_MASK_INEXACT 0x1000 #define _MM_ROUND_MASK 0x6000 #define _MM_ROUND_NEAREST 0x0000 #define _MM_ROUND_DOWN 0x2000 #define _MM_ROUND_UP 0x4000 #define _MM_ROUND_TOWARD_ZERO 0x6000 #define _MM_FLUSH_ZERO_MASK 0x8000 #define _MM_FLUSH_ZERO_ON 0x8000 #define _MM_FLUSH_ZERO_OFF 0x0000 /* Perform the respective operation on the lower SPFP (single-precision floating-point) values of A and B; the upper three SPFP values are passed through from A. */ static __inline __m128 _mm_add_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_addss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_sub_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_subss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_mul_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_mulss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_div_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_divss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_sqrt_ss (__m128 __A) { return (__m128) __builtin_ia32_sqrtss ((__v4sf)__A); } static __inline __m128 _mm_rcp_ss (__m128 __A) { return (__m128) __builtin_ia32_rcpss ((__v4sf)__A); } static __inline __m128 _mm_rsqrt_ss (__m128 __A) { return (__m128) __builtin_ia32_rsqrtss ((__v4sf)__A); } static __inline __m128 _mm_min_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_minss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_max_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_maxss ((__v4sf)__A, (__v4sf)__B); } /* Perform the respective operation on the four SPFP values in A and B. */ static __inline __m128 _mm_add_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_addps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_sub_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_subps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_mul_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_mulps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_div_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_divps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_sqrt_ps (__m128 __A) { return (__m128) __builtin_ia32_sqrtps ((__v4sf)__A); } static __inline __m128 _mm_rcp_ps (__m128 __A) { return (__m128) __builtin_ia32_rcpps ((__v4sf)__A); } static __inline __m128 _mm_rsqrt_ps (__m128 __A) { return (__m128) __builtin_ia32_rsqrtps ((__v4sf)__A); } static __inline __m128 _mm_min_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_minps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_max_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_maxps ((__v4sf)__A, (__v4sf)__B); } /* Perform logical bit-wise operations on 128-bit values. */ static __inline __m128 _mm_and_ps (__m128 __A, __m128 __B) { return __builtin_ia32_andps (__A, __B); } static __inline __m128 _mm_andnot_ps (__m128 __A, __m128 __B) { return __builtin_ia32_andnps (__A, __B); } static __inline __m128 _mm_or_ps (__m128 __A, __m128 __B) { return __builtin_ia32_orps (__A, __B); } static __inline __m128 _mm_xor_ps (__m128 __A, __m128 __B) { return __builtin_ia32_xorps (__A, __B); } /* Perform a comparison on the lower SPFP values of A and B. If the comparison is true, place a mask of all ones in the result, otherwise a mask of zeros. The upper three SPFP values are passed through from A. */ static __inline __m128 _mm_cmpeq_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpeqss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmplt_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpltss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmple_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpless ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpgt_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movss ((__v4sf) __A, (__v4sf) __builtin_ia32_cmpltss ((__v4sf) __B, (__v4sf) __A)); } static __inline __m128 _mm_cmpge_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movss ((__v4sf) __A, (__v4sf) __builtin_ia32_cmpless ((__v4sf) __B, (__v4sf) __A)); } static __inline __m128 _mm_cmpneq_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpneqss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpnlt_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpnltss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpnle_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpnless ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpngt_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movss ((__v4sf) __A, (__v4sf) __builtin_ia32_cmpnltss ((__v4sf) __B, (__v4sf) __A)); } static __inline __m128 _mm_cmpnge_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movss ((__v4sf) __A, (__v4sf) __builtin_ia32_cmpnless ((__v4sf) __B, (__v4sf) __A)); } static __inline __m128 _mm_cmpord_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpordss ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpunord_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpunordss ((__v4sf)__A, (__v4sf)__B); } /* Perform a comparison on the four SPFP values of A and B. For each element, if the comparison is true, place a mask of all ones in the result, otherwise a mask of zeros. */ static __inline __m128 _mm_cmpeq_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpeqps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmplt_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpltps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmple_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpleps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpgt_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpgtps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpge_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpgeps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpneq_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpneqps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpnlt_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpnltps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpnle_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpnleps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpngt_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpngtps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpnge_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpngeps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpord_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpordps ((__v4sf)__A, (__v4sf)__B); } static __inline __m128 _mm_cmpunord_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_cmpunordps ((__v4sf)__A, (__v4sf)__B); } /* Compare the lower SPFP values of A and B and return 1 if true and 0 if false. */ static __inline int _mm_comieq_ss (__m128 __A, __m128 __B) { return __builtin_ia32_comieq ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_comilt_ss (__m128 __A, __m128 __B) { return __builtin_ia32_comilt ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_comile_ss (__m128 __A, __m128 __B) { return __builtin_ia32_comile ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_comigt_ss (__m128 __A, __m128 __B) { return __builtin_ia32_comigt ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_comige_ss (__m128 __A, __m128 __B) { return __builtin_ia32_comige ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_comineq_ss (__m128 __A, __m128 __B) { return __builtin_ia32_comineq ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_ucomieq_ss (__m128 __A, __m128 __B) { return __builtin_ia32_ucomieq ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_ucomilt_ss (__m128 __A, __m128 __B) { return __builtin_ia32_ucomilt ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_ucomile_ss (__m128 __A, __m128 __B) { return __builtin_ia32_ucomile ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_ucomigt_ss (__m128 __A, __m128 __B) { return __builtin_ia32_ucomigt ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_ucomige_ss (__m128 __A, __m128 __B) { return __builtin_ia32_ucomige ((__v4sf)__A, (__v4sf)__B); } static __inline int _mm_ucomineq_ss (__m128 __A, __m128 __B) { return __builtin_ia32_ucomineq ((__v4sf)__A, (__v4sf)__B); } /* Convert the lower SPFP value to a 32-bit integer according to the current rounding mode. */ static __inline int _mm_cvtss_si32 (__m128 __A) { return __builtin_ia32_cvtss2si ((__v4sf) __A); } static __inline int _mm_cvt_ss2si (__m128 __A) { return _mm_cvtss_si32 (__A); } #ifdef __x86_64__ /* Convert the lower SPFP value to a 32-bit integer according to the current rounding mode. */ static __inline long long _mm_cvtss_si64x (__m128 __A) { return __builtin_ia32_cvtss2si64 ((__v4sf) __A); } #endif /* Convert the two lower SPFP values to 32-bit integers according to the current rounding mode. Return the integers in packed form. */ static __inline __m64 _mm_cvtps_pi32 (__m128 __A) { return (__m64) __builtin_ia32_cvtps2pi ((__v4sf) __A); } static __inline __m64 _mm_cvt_ps2pi (__m128 __A) { return _mm_cvtps_pi32 (__A); } /* Truncate the lower SPFP value to a 32-bit integer. */ static __inline int _mm_cvttss_si32 (__m128 __A) { return __builtin_ia32_cvttss2si ((__v4sf) __A); } static __inline int _mm_cvtt_ss2si (__m128 __A) { return _mm_cvttss_si32 (__A); } #ifdef __x86_64__ /* Truncate the lower SPFP value to a 32-bit integer. */ static __inline long long _mm_cvttss_si64x (__m128 __A) { return __builtin_ia32_cvttss2si64 ((__v4sf) __A); } #endif /* Truncate the two lower SPFP values to 32-bit integers. Return the integers in packed form. */ static __inline __m64 _mm_cvttps_pi32 (__m128 __A) { return (__m64) __builtin_ia32_cvttps2pi ((__v4sf) __A); } static __inline __m64 _mm_cvtt_ps2pi (__m128 __A) { return _mm_cvttps_pi32 (__A); } /* Convert B to a SPFP value and insert it as element zero in A. */ static __inline __m128 _mm_cvtsi32_ss (__m128 __A, int __B) { return (__m128) __builtin_ia32_cvtsi2ss ((__v4sf) __A, __B); } static __inline __m128 _mm_cvt_si2ss (__m128 __A, int __B) { return _mm_cvtsi32_ss (__A, __B); } #ifdef __x86_64__ /* Convert B to a SPFP value and insert it as element zero in A. */ static __inline __m128 _mm_cvtsi64x_ss (__m128 __A, long long __B) { return (__m128) __builtin_ia32_cvtsi642ss ((__v4sf) __A, __B); } #endif /* Convert the two 32-bit values in B to SPFP form and insert them as the two lower elements in A. */ static __inline __m128 _mm_cvtpi32_ps (__m128 __A, __m64 __B) { return (__m128) __builtin_ia32_cvtpi2ps ((__v4sf) __A, (__v2si)__B); } static __inline __m128 _mm_cvt_pi2ps (__m128 __A, __m64 __B) { return _mm_cvtpi32_ps (__A, __B); } /* Convert the four signed 16-bit values in A to SPFP form. */ static __inline __m128 _mm_cvtpi16_ps (__m64 __A) { __v4hi __sign; __v2si __hisi, __losi; __v4sf __r; /* This comparison against zero gives us a mask that can be used to fill in the missing sign bits in the unpack operations below, so that we get signed values after unpacking. */ __sign = (__v4hi) __builtin_ia32_mmx_zero (); __sign = __builtin_ia32_pcmpgtw (__sign, (__v4hi)__A); /* Convert the four words to doublewords. */ __hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, __sign); __losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, __sign); /* Convert the doublewords to floating point two at a time. */ __r = (__v4sf) __builtin_ia32_setzerops (); __r = __builtin_ia32_cvtpi2ps (__r, __hisi); __r = __builtin_ia32_movlhps (__r, __r); __r = __builtin_ia32_cvtpi2ps (__r, __losi); return (__m128) __r; } /* Convert the four unsigned 16-bit values in A to SPFP form. */ static __inline __m128 _mm_cvtpu16_ps (__m64 __A) { __v4hi __zero = (__v4hi) __builtin_ia32_mmx_zero (); __v2si __hisi, __losi; __v4sf __r; /* Convert the four words to doublewords. */ __hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, __zero); __losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, __zero); /* Convert the doublewords to floating point two at a time. */ __r = (__v4sf) __builtin_ia32_setzerops (); __r = __builtin_ia32_cvtpi2ps (__r, __hisi); __r = __builtin_ia32_movlhps (__r, __r); __r = __builtin_ia32_cvtpi2ps (__r, __losi); return (__m128) __r; } /* Convert the low four signed 8-bit values in A to SPFP form. */ static __inline __m128 _mm_cvtpi8_ps (__m64 __A) { __v8qi __sign; /* This comparison against zero gives us a mask that can be used to fill in the missing sign bits in the unpack operations below, so that we get signed values after unpacking. */ __sign = (__v8qi) __builtin_ia32_mmx_zero (); __sign = __builtin_ia32_pcmpgtb (__sign, (__v8qi)__A); /* Convert the four low bytes to words. */ __A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, __sign); return _mm_cvtpi16_ps(__A); } /* Convert the low four unsigned 8-bit values in A to SPFP form. */ static __inline __m128 _mm_cvtpu8_ps(__m64 __A) { __v8qi __zero = (__v8qi) __builtin_ia32_mmx_zero (); __A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, __zero); return _mm_cvtpu16_ps(__A); } /* Convert the four signed 32-bit values in A and B to SPFP form. */ static __inline __m128 _mm_cvtpi32x2_ps(__m64 __A, __m64 __B) { __v4sf __zero = (__v4sf) __builtin_ia32_setzerops (); __v4sf __sfa = __builtin_ia32_cvtpi2ps (__zero, (__v2si)__A); __v4sf __sfb = __builtin_ia32_cvtpi2ps (__zero, (__v2si)__B); return (__m128) __builtin_ia32_movlhps (__sfa, __sfb); } /* Convert the four SPFP values in A to four signed 16-bit integers. */ static __inline __m64 _mm_cvtps_pi16(__m128 __A) { __v4sf __hisf = (__v4sf)__A; __v4sf __losf = __builtin_ia32_movhlps (__hisf, __hisf); __v2si __hisi = __builtin_ia32_cvtps2pi (__hisf); __v2si __losi = __builtin_ia32_cvtps2pi (__losf); return (__m64) __builtin_ia32_packssdw (__hisi, __losi); } /* Convert the four SPFP values in A to four signed 8-bit integers. */ static __inline __m64 _mm_cvtps_pi8(__m128 __A) { __v4hi __tmp = (__v4hi) _mm_cvtps_pi16 (__A); __v4hi __zero = (__v4hi) __builtin_ia32_mmx_zero (); return (__m64) __builtin_ia32_packsswb (__tmp, __zero); } /* Selects four specific SPFP values from A and B based on MASK. */ #if 0 static __inline __m128 _mm_shuffle_ps (__m128 __A, __m128 __B, int __mask) { return (__m128) __builtin_ia32_shufps ((__v4sf)__A, (__v4sf)__B, __mask); } #else #define _mm_shuffle_ps(A, B, MASK) \ ((__m128) __builtin_ia32_shufps ((__v4sf)(A), (__v4sf)(B), (MASK))) #endif /* Selects and interleaves the upper two SPFP values from A and B. */ static __inline __m128 _mm_unpackhi_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_unpckhps ((__v4sf)__A, (__v4sf)__B); } /* Selects and interleaves the lower two SPFP values from A and B. */ static __inline __m128 _mm_unpacklo_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_unpcklps ((__v4sf)__A, (__v4sf)__B); } /* Sets the upper two SPFP values with 64-bits of data loaded from P; the lower two values are passed through from A. */ static __inline __m128 _mm_loadh_pi (__m128 __A, __m64 const *__P) { return (__m128) __builtin_ia32_loadhps ((__v4sf)__A, (__v2si *)__P); } /* Stores the upper two SPFP values of A into P. */ static __inline void _mm_storeh_pi (__m64 *__P, __m128 __A) { __builtin_ia32_storehps ((__v2si *)__P, (__v4sf)__A); } /* Moves the upper two values of B into the lower two values of A. */ static __inline __m128 _mm_movehl_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movhlps ((__v4sf)__A, (__v4sf)__B); } /* Moves the lower two values of B into the upper two values of A. */ static __inline __m128 _mm_movelh_ps (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movlhps ((__v4sf)__A, (__v4sf)__B); } /* Sets the lower two SPFP values with 64-bits of data loaded from P; the upper two values are passed through from A. */ static __inline __m128 _mm_loadl_pi (__m128 __A, __m64 const *__P) { return (__m128) __builtin_ia32_loadlps ((__v4sf)__A, (__v2si *)__P); } /* Stores the lower two SPFP values of A into P. */ static __inline void _mm_storel_pi (__m64 *__P, __m128 __A) { __builtin_ia32_storelps ((__v2si *)__P, (__v4sf)__A); } /* Creates a 4-bit mask from the most significant bits of the SPFP values. */ static __inline int _mm_movemask_ps (__m128 __A) { return __builtin_ia32_movmskps ((__v4sf)__A); } /* Return the contents of the control register. */ static __inline unsigned int _mm_getcsr (void) { return __builtin_ia32_stmxcsr (); } /* Read exception bits from the control register. */ static __inline unsigned int _MM_GET_EXCEPTION_STATE (void) { return _mm_getcsr() & _MM_EXCEPT_MASK; } static __inline unsigned int _MM_GET_EXCEPTION_MASK (void) { return _mm_getcsr() & _MM_MASK_MASK; } static __inline unsigned int _MM_GET_ROUNDING_MODE (void) { return _mm_getcsr() & _MM_ROUND_MASK; } static __inline unsigned int _MM_GET_FLUSH_ZERO_MODE (void) { return _mm_getcsr() & _MM_FLUSH_ZERO_MASK; } /* Set the control register to I. */ static __inline void _mm_setcsr (unsigned int __I) { __builtin_ia32_ldmxcsr (__I); } /* Set exception bits in the control register. */ static __inline void _MM_SET_EXCEPTION_STATE(unsigned int __mask) { _mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | __mask); } static __inline void _MM_SET_EXCEPTION_MASK (unsigned int __mask) { _mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | __mask); } static __inline void _MM_SET_ROUNDING_MODE (unsigned int __mode) { _mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | __mode); } static __inline void _MM_SET_FLUSH_ZERO_MODE (unsigned int __mode) { _mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | __mode); } /* Create a vector with element 0 as *P and the rest zero. */ static __inline __m128 _mm_load_ss (float const *__P) { return (__m128) __builtin_ia32_loadss (__P); } /* Create a vector with all four elements equal to *P. */ static __inline __m128 _mm_load1_ps (float const *__P) { __v4sf __tmp = __builtin_ia32_loadss (__P); return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,0,0,0)); } static __inline __m128 _mm_load_ps1 (float const *__P) { return _mm_load1_ps (__P); } /* Load four SPFP values from P. The address must be 16-byte aligned. */ static __inline __m128 _mm_load_ps (float const *__P) { return (__m128) __builtin_ia32_loadaps (__P); } /* Load four SPFP values from P. The address need not be 16-byte aligned. */ static __inline __m128 _mm_loadu_ps (float const *__P) { return (__m128) __builtin_ia32_loadups (__P); } /* Load four SPFP values in reverse order. The address must be aligned. */ static __inline __m128 _mm_loadr_ps (float const *__P) { __v4sf __tmp = __builtin_ia32_loadaps (__P); return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,1,2,3)); } /* Create a vector with element 0 as F and the rest zero. */ static __inline __m128 _mm_set_ss (float __F) { return (__m128) __builtin_ia32_loadss (&__F); } /* Create a vector with all four elements equal to F. */ static __inline __m128 _mm_set1_ps (float __F) { __v4sf __tmp = __builtin_ia32_loadss (&__F); return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,0,0,0)); } static __inline __m128 _mm_set_ps1 (float __F) { return _mm_set1_ps (__F); } /* Create the vector [Z Y X W]. */ static __inline __m128 _mm_set_ps (const float __Z, const float __Y, const float __X, const float __W) { return (__v4sf) {__W, __X, __Y, __Z}; } /* Create the vector [W X Y Z]. */ static __inline __m128 _mm_setr_ps (float __Z, float __Y, float __X, float __W) { return _mm_set_ps (__W, __X, __Y, __Z); } /* Create a vector of zeros. */ static __inline __m128 _mm_setzero_ps (void) { return (__m128) __builtin_ia32_setzerops (); } /* Stores the lower SPFP value. */ static __inline void _mm_store_ss (float *__P, __m128 __A) { __builtin_ia32_storess (__P, (__v4sf)__A); } /* Store the lower SPFP value across four words. */ static __inline void _mm_store1_ps (float *__P, __m128 __A) { __v4sf __va = (__v4sf)__A; __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,0,0,0)); __builtin_ia32_storeaps (__P, __tmp); } static __inline void _mm_store_ps1 (float *__P, __m128 __A) { _mm_store1_ps (__P, __A); } /* Store four SPFP values. The address must be 16-byte aligned. */ static __inline void _mm_store_ps (float *__P, __m128 __A) { __builtin_ia32_storeaps (__P, (__v4sf)__A); } /* Store four SPFP values. The address need not be 16-byte aligned. */ static __inline void _mm_storeu_ps (float *__P, __m128 __A) { __builtin_ia32_storeups (__P, (__v4sf)__A); } /* Store four SPFP values in reverse order. The address must be aligned. */ static __inline void _mm_storer_ps (float *__P, __m128 __A) { __v4sf __va = (__v4sf)__A; __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,1,2,3)); __builtin_ia32_storeaps (__P, __tmp); } /* Sets the low SPFP value of A from the low value of B. */ static __inline __m128 _mm_move_ss (__m128 __A, __m128 __B) { return (__m128) __builtin_ia32_movss ((__v4sf)__A, (__v4sf)__B); } /* Extracts one of the four words of A. The selector N must be immediate. */ #if 0 static __inline int _mm_extract_pi16 (__m64 __A, int __N) { return __builtin_ia32_pextrw ((__v4hi)__A, __N); } static __inline int _m_pextrw (__m64 __A, int __N) { return _mm_extract_pi16 (__A, __N); } #else #define _mm_extract_pi16(A, N) \ __builtin_ia32_pextrw ((__v4hi)(A), (N)) #define _m_pextrw(A, N) _mm_extract_pi16((A), (N)) #endif /* Inserts word D into one of four words of A. The selector N must be immediate. */ #if 0 static __inline __m64 _mm_insert_pi16 (__m64 __A, int __D, int __N) { return (__m64)__builtin_ia32_pinsrw ((__v4hi)__A, __D, __N); } static __inline __m64 _m_pinsrw (__m64 __A, int __D, int __N) { return _mm_insert_pi16 (__A, __D, __N); } #else #define _mm_insert_pi16(A, D, N) \ ((__m64) __builtin_ia32_pinsrw ((__v4hi)(A), (D), (N))) #define _m_pinsrw(A, D, N) _mm_insert_pi16((A), (D), (N)) #endif /* Compute the element-wise maximum of signed 16-bit values. */ static __inline __m64 _mm_max_pi16 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pmaxsw ((__v4hi)__A, (__v4hi)__B); } static __inline __m64 _m_pmaxsw (__m64 __A, __m64 __B) { return _mm_max_pi16 (__A, __B); } /* Compute the element-wise maximum of unsigned 8-bit values. */ static __inline __m64 _mm_max_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pmaxub ((__v8qi)__A, (__v8qi)__B); } static __inline __m64 _m_pmaxub (__m64 __A, __m64 __B) { return _mm_max_pu8 (__A, __B); } /* Compute the element-wise minimum of signed 16-bit values. */ static __inline __m64 _mm_min_pi16 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pminsw ((__v4hi)__A, (__v4hi)__B); } static __inline __m64 _m_pminsw (__m64 __A, __m64 __B) { return _mm_min_pi16 (__A, __B); } /* Compute the element-wise minimum of unsigned 8-bit values. */ static __inline __m64 _mm_min_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pminub ((__v8qi)__A, (__v8qi)__B); } static __inline __m64 _m_pminub (__m64 __A, __m64 __B) { return _mm_min_pu8 (__A, __B); } /* Create an 8-bit mask of the signs of 8-bit values. */ static __inline int _mm_movemask_pi8 (__m64 __A) { return __builtin_ia32_pmovmskb ((__v8qi)__A); } static __inline int _m_pmovmskb (__m64 __A) { return _mm_movemask_pi8 (__A); } /* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values in B and produce the high 16 bits of the 32-bit results. */ static __inline __m64 _mm_mulhi_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pmulhuw ((__v4hi)__A, (__v4hi)__B); } static __inline __m64 _m_pmulhuw (__m64 __A, __m64 __B) { return _mm_mulhi_pu16 (__A, __B); } /* Return a combination of the four 16-bit values in A. The selector must be an immediate. */ #if 0 static __inline __m64 _mm_shuffle_pi16 (__m64 __A, int __N) { return (__m64) __builtin_ia32_pshufw ((__v4hi)__A, __N); } static __inline __m64 _m_pshufw (__m64 __A, int __N) { return _mm_shuffle_pi16 (__A, __N); } #else #define _mm_shuffle_pi16(A, N) \ ((__m64) __builtin_ia32_pshufw ((__v4hi)(A), (N))) #define _m_pshufw(A, N) _mm_shuffle_pi16 ((A), (N)) #endif /* Conditionally store byte elements of A into P. The high bit of each byte in the selector N determines whether the corresponding byte from A is stored. */ static __inline void _mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P) { __builtin_ia32_maskmovq ((__v8qi)__A, (__v8qi)__N, __P); } static __inline void _m_maskmovq (__m64 __A, __m64 __N, char *__P) { _mm_maskmove_si64 (__A, __N, __P); } /* Compute the rounded averages of the unsigned 8-bit values in A and B. */ static __inline __m64 _mm_avg_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pavgb ((__v8qi)__A, (__v8qi)__B); } static __inline __m64 _m_pavgb (__m64 __A, __m64 __B) { return _mm_avg_pu8 (__A, __B); } /* Compute the rounded averages of the unsigned 16-bit values in A and B. */ static __inline __m64 _mm_avg_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pavgw ((__v4hi)__A, (__v4hi)__B); } static __inline __m64 _m_pavgw (__m64 __A, __m64 __B) { return _mm_avg_pu16 (__A, __B); } /* Compute the sum of the absolute differences of the unsigned 8-bit values in A and B. Return the value in the lower 16-bit word; the upper words are cleared. */ static __inline __m64 _mm_sad_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_psadbw ((__v8qi)__A, (__v8qi)__B); } static __inline __m64 _m_psadbw (__m64 __A, __m64 __B) { return _mm_sad_pu8 (__A, __B); } /* Loads one cache line from address P to a location "closer" to the processor. The selector I specifies the type of prefetch operation. */ #if 0 static __inline void _mm_prefetch (void *__P, enum _mm_hint __I) { __builtin_prefetch (__P, 0, __I); } #else #define _mm_prefetch(P, I) \ __builtin_prefetch ((P), 0, (I)) #endif /* Stores the data in A to the address P without polluting the caches. */ static __inline void _mm_stream_pi (__m64 *__P, __m64 __A) { __builtin_ia32_movntq ((unsigned long long *)__P, (unsigned long long)__A); } /* Likewise. The address must be 16-byte aligned. */ static __inline void _mm_stream_ps (float *__P, __m128 __A) { __builtin_ia32_movntps (__P, (__v4sf)__A); } /* Guarantees that every preceding store is globally visible before any subsequent store. */ static __inline void _mm_sfence (void) { __builtin_ia32_sfence (); } /* The execution of the next instruction is delayed by an implementation specific amount of time. The instruction does not modify the architectural state. */ static __inline void _mm_pause (void) { __asm__ __volatile__ ("rep; nop" : : ); } /* Transpose the 4x4 matrix composed of row[0-3]. */ #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ do { \ __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \ __v4sf __t0 = __builtin_ia32_shufps (__r0, __r1, 0x44); \ __v4sf __t2 = __builtin_ia32_shufps (__r0, __r1, 0xEE); \ __v4sf __t1 = __builtin_ia32_shufps (__r2, __r3, 0x44); \ __v4sf __t3 = __builtin_ia32_shufps (__r2, __r3, 0xEE); \ (row0) = __builtin_ia32_shufps (__t0, __t1, 0x88); \ (row1) = __builtin_ia32_shufps (__t0, __t1, 0xDD); \ (row2) = __builtin_ia32_shufps (__t2, __t3, 0x88); \ (row3) = __builtin_ia32_shufps (__t2, __t3, 0xDD); \ } while (0) /* For backward source compatibility. */ #include #endif /* __SSE__ */ #endif /* _XMMINTRIN_H_INCLUDED */