/* * (MPSAFE) * * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $ * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $ */ /* * The proverbial page-out daemon. */ #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * System initialization */ /* the kernel process "vm_pageout"*/ static int vm_pageout_clean (vm_page_t); static int vm_pageout_scan (int pass); static int vm_pageout_free_page_calc (vm_size_t count); struct thread *pagethread; #if !defined(NO_SWAPPING) /* the kernel process "vm_daemon"*/ static void vm_daemon (void); static struct thread *vmthread; static struct kproc_desc vm_kp = { "vmdaemon", vm_daemon, &vmthread }; SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp) #endif int vm_pages_needed=0; /* Event on which pageout daemon sleeps */ int vm_pageout_deficit=0; /* Estimated number of pages deficit */ int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */ #if !defined(NO_SWAPPING) static int vm_pageout_req_swapout; /* XXX */ static int vm_daemon_needed; #endif static int vm_max_launder = 32; static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0; static int vm_pageout_full_stats_interval = 0; static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0; static int defer_swap_pageouts=0; static int disable_swap_pageouts=0; #if defined(NO_SWAPPING) static int vm_swap_enabled=0; static int vm_swap_idle_enabled=0; #else static int vm_swap_enabled=1; static int vm_swap_idle_enabled=0; #endif SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm, CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt"); SYSCTL_INT(_vm, OID_AUTO, max_launder, CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout"); SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max, CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length"); SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval, CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan"); SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval, CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan"); SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max, CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented"); #if defined(NO_SWAPPING) SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled, CTLFLAG_RD, &vm_swap_enabled, 0, ""); SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled, CTLFLAG_RD, &vm_swap_idle_enabled, 0, ""); #else SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled, CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout"); SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled, CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria"); #endif SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts, CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem"); SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); static int pageout_lock_miss; SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); int vm_load; SYSCTL_INT(_vm, OID_AUTO, vm_load, CTLFLAG_RD, &vm_load, 0, "load on the VM system"); int vm_load_enable = 1; SYSCTL_INT(_vm, OID_AUTO, vm_load_enable, CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting"); #ifdef INVARIANTS int vm_load_debug; SYSCTL_INT(_vm, OID_AUTO, vm_load_debug, CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load"); #endif #define VM_PAGEOUT_PAGE_COUNT 16 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT; int vm_page_max_wired; /* XXX max # of wired pages system-wide */ #if !defined(NO_SWAPPING) typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int); static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t); static freeer_fcn_t vm_pageout_object_deactivate_pages; static void vm_req_vmdaemon (void); #endif static void vm_pageout_page_stats(void); /* * Update vm_load to slow down faulting processes. * * SMP races ok. * No requirements. */ void vm_fault_ratecheck(void) { if (vm_pages_needed) { if (vm_load < 1000) ++vm_load; } else { if (vm_load > 0) --vm_load; } } /* * vm_pageout_clean: * * Clean the page and remove it from the laundry. The page must not be * busy on-call. * * We set the busy bit to cause potential page faults on this page to * block. Note the careful timing, however, the busy bit isn't set till * late and we cannot do anything that will mess with the page. * * The caller must hold vm_token. */ static int vm_pageout_clean(vm_page_t m) { vm_object_t object; vm_page_t mc[2*vm_pageout_page_count]; int pageout_count; int ib, is, page_base; vm_pindex_t pindex = m->pindex; object = m->object; /* * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP * with the new swapper, but we could have serious problems paging * out other object types if there is insufficient memory. * * Unfortunately, checking free memory here is far too late, so the * check has been moved up a procedural level. */ /* * Don't mess with the page if it's busy, held, or special */ if ((m->hold_count != 0) || ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) { return 0; } mc[vm_pageout_page_count] = m; pageout_count = 1; page_base = vm_pageout_page_count; ib = 1; is = 1; /* * Scan object for clusterable pages. * * We can cluster ONLY if: ->> the page is NOT * clean, wired, busy, held, or mapped into a * buffer, and one of the following: * 1) The page is inactive, or a seldom used * active page. * -or- * 2) we force the issue. * * During heavy mmap/modification loads the pageout * daemon can really fragment the underlying file * due to flushing pages out of order and not trying * align the clusters (which leave sporatic out-of-order * holes). To solve this problem we do the reverse scan * first and attempt to align our cluster, then do a * forward scan if room remains. */ more: while (ib && pageout_count < vm_pageout_page_count) { vm_page_t p; if (ib > pindex) { ib = 0; break; } if ((p = vm_page_lookup(object, pindex - ib)) == NULL) { ib = 0; break; } if (((p->queue - p->pc) == PQ_CACHE) || (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) { ib = 0; break; } vm_page_test_dirty(p); if ((p->dirty & p->valid) == 0 || p->queue != PQ_INACTIVE || p->wire_count != 0 || /* may be held by buf cache */ p->hold_count != 0) { /* may be undergoing I/O */ ib = 0; break; } mc[--page_base] = p; ++pageout_count; ++ib; /* * alignment boundry, stop here and switch directions. Do * not clear ib. */ if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) break; } while (pageout_count < vm_pageout_page_count && pindex + is < object->size) { vm_page_t p; if ((p = vm_page_lookup(object, pindex + is)) == NULL) break; if (((p->queue - p->pc) == PQ_CACHE) || (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) { break; } vm_page_test_dirty(p); if ((p->dirty & p->valid) == 0 || p->queue != PQ_INACTIVE || p->wire_count != 0 || /* may be held by buf cache */ p->hold_count != 0) { /* may be undergoing I/O */ break; } mc[page_base + pageout_count] = p; ++pageout_count; ++is; } /* * If we exhausted our forward scan, continue with the reverse scan * when possible, even past a page boundry. This catches boundry * conditions. */ if (ib && pageout_count < vm_pageout_page_count) goto more; /* * we allow reads during pageouts... */ return vm_pageout_flush(&mc[page_base], pageout_count, 0); } /* * vm_pageout_flush() - launder the given pages * * The given pages are laundered. Note that we setup for the start of * I/O ( i.e. busy the page ), mark it read-only, and bump the object * reference count all in here rather then in the parent. If we want * the parent to do more sophisticated things we may have to change * the ordering. * * The caller must hold vm_token. */ int vm_pageout_flush(vm_page_t *mc, int count, int flags) { vm_object_t object; int pageout_status[count]; int numpagedout = 0; int i; ASSERT_LWKT_TOKEN_HELD(&vm_token); /* * Initiate I/O. Bump the vm_page_t->busy counter. */ for (i = 0; i < count; i++) { KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count)); vm_page_io_start(mc[i]); } /* * We must make the pages read-only. This will also force the * modified bit in the related pmaps to be cleared. The pager * cannot clear the bit for us since the I/O completion code * typically runs from an interrupt. The act of making the page * read-only handles the case for us. */ for (i = 0; i < count; i++) { vm_page_protect(mc[i], VM_PROT_READ); } object = mc[0]->object; vm_object_pip_add(object, count); vm_pager_put_pages(object, mc, count, (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)), pageout_status); for (i = 0; i < count; i++) { vm_page_t mt = mc[i]; switch (pageout_status[i]) { case VM_PAGER_OK: numpagedout++; break; case VM_PAGER_PEND: numpagedout++; break; case VM_PAGER_BAD: /* * Page outside of range of object. Right now we * essentially lose the changes by pretending it * worked. */ pmap_clear_modify(mt); vm_page_undirty(mt); break; case VM_PAGER_ERROR: case VM_PAGER_FAIL: /* * A page typically cannot be paged out when we * have run out of swap. We leave the page * marked inactive and will try to page it out * again later. * * Starvation of the active page list is used to * determine when the system is massively memory * starved. */ break; case VM_PAGER_AGAIN: break; } /* * If the operation is still going, leave the page busy to * block all other accesses. Also, leave the paging in * progress indicator set so that we don't attempt an object * collapse. * * For any pages which have completed synchronously, * deactivate the page if we are under a severe deficit. * Do not try to enter them into the cache, though, they * might still be read-heavy. */ if (pageout_status[i] != VM_PAGER_PEND) { vm_object_pip_wakeup(object); vm_page_io_finish(mt); if (vm_page_count_severe()) vm_page_deactivate(mt); #if 0 if (!vm_page_count_severe() || !vm_page_try_to_cache(mt)) vm_page_protect(mt, VM_PROT_READ); #endif } } return numpagedout; } #if !defined(NO_SWAPPING) /* * vm_pageout_object_deactivate_pages * * deactivate enough pages to satisfy the inactive target * requirements or if vm_page_proc_limit is set, then * deactivate all of the pages in the object and its * backing_objects. * * The map must be locked. * The caller must hold vm_token. */ static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *); static void vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object, vm_pindex_t desired, int map_remove_only) { struct rb_vm_page_scan_info info; int remove_mode; if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS) return; while (object) { if (pmap_resident_count(vm_map_pmap(map)) <= desired) return; if (object->paging_in_progress) return; remove_mode = map_remove_only; if (object->shadow_count > 1) remove_mode = 1; /* * scan the objects entire memory queue. spl protection is * required to avoid an interrupt unbusy/free race against * our busy check. */ crit_enter(); info.limit = remove_mode; info.map = map; info.desired = desired; vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, vm_pageout_object_deactivate_pages_callback, &info ); crit_exit(); object = object->backing_object; } } /* * The caller must hold vm_token. */ static int vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data) { struct rb_vm_page_scan_info *info = data; int actcount; if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) { return(-1); } mycpu->gd_cnt.v_pdpages++; if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 || (p->flags & (PG_BUSY|PG_UNMANAGED)) || !pmap_page_exists_quick(vm_map_pmap(info->map), p)) { return(0); } actcount = pmap_ts_referenced(p); if (actcount) { vm_page_flag_set(p, PG_REFERENCED); } else if (p->flags & PG_REFERENCED) { actcount = 1; } if ((p->queue != PQ_ACTIVE) && (p->flags & PG_REFERENCED)) { vm_page_activate(p); p->act_count += actcount; vm_page_flag_clear(p, PG_REFERENCED); } else if (p->queue == PQ_ACTIVE) { if ((p->flags & PG_REFERENCED) == 0) { p->act_count -= min(p->act_count, ACT_DECLINE); if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) { vm_page_busy(p); vm_page_protect(p, VM_PROT_NONE); vm_page_wakeup(p); vm_page_deactivate(p); } else { TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq); } } else { vm_page_activate(p); vm_page_flag_clear(p, PG_REFERENCED); if (p->act_count < (ACT_MAX - ACT_ADVANCE)) p->act_count += ACT_ADVANCE; TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq); } } else if (p->queue == PQ_INACTIVE) { vm_page_busy(p); vm_page_protect(p, VM_PROT_NONE); vm_page_wakeup(p); } return(0); } /* * Deactivate some number of pages in a map, try to do it fairly, but * that is really hard to do. * * The caller must hold vm_token. */ static void vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired) { vm_map_entry_t tmpe; vm_object_t obj, bigobj; int nothingwired; if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) { return; } bigobj = NULL; nothingwired = TRUE; /* * first, search out the biggest object, and try to free pages from * that. */ tmpe = map->header.next; while (tmpe != &map->header) { switch(tmpe->maptype) { case VM_MAPTYPE_NORMAL: case VM_MAPTYPE_VPAGETABLE: obj = tmpe->object.vm_object; if ((obj != NULL) && (obj->shadow_count <= 1) && ((bigobj == NULL) || (bigobj->resident_page_count < obj->resident_page_count))) { bigobj = obj; } break; default: break; } if (tmpe->wired_count > 0) nothingwired = FALSE; tmpe = tmpe->next; } if (bigobj) vm_pageout_object_deactivate_pages(map, bigobj, desired, 0); /* * Next, hunt around for other pages to deactivate. We actually * do this search sort of wrong -- .text first is not the best idea. */ tmpe = map->header.next; while (tmpe != &map->header) { if (pmap_resident_count(vm_map_pmap(map)) <= desired) break; switch(tmpe->maptype) { case VM_MAPTYPE_NORMAL: case VM_MAPTYPE_VPAGETABLE: obj = tmpe->object.vm_object; if (obj) vm_pageout_object_deactivate_pages(map, obj, desired, 0); break; default: break; } tmpe = tmpe->next; }; /* * Remove all mappings if a process is swapped out, this will free page * table pages. */ if (desired == 0 && nothingwired) pmap_remove(vm_map_pmap(map), VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS); vm_map_unlock(map); } #endif /* * Don't try to be fancy - being fancy can lead to vnode deadlocks. We * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can * be trivially freed. * * The caller must hold vm_token. */ static void vm_pageout_page_free(vm_page_t m) { vm_object_t object = m->object; int type = object->type; if (type == OBJT_SWAP || type == OBJT_DEFAULT) vm_object_reference(object); vm_page_busy(m); vm_page_protect(m, VM_PROT_NONE); vm_page_free(m); if (type == OBJT_SWAP || type == OBJT_DEFAULT) vm_object_deallocate(object); } /* * vm_pageout_scan does the dirty work for the pageout daemon. */ struct vm_pageout_scan_info { struct proc *bigproc; vm_offset_t bigsize; }; static int vm_pageout_scan_callback(struct proc *p, void *data); /* * The caller must hold vm_token. */ static int vm_pageout_scan(int pass) { struct vm_pageout_scan_info info; vm_page_t m, next; struct vm_page marker; struct vnode *vpfailed; /* warning, allowed to be stale */ int maxscan, pcount; int recycle_count; int inactive_shortage, active_shortage; int inactive_original_shortage; vm_object_t object; int actcount; int vnodes_skipped = 0; int maxlaunder; /* * Do whatever cleanup that the pmap code can. */ pmap_collect(); /* * Calculate our target for the number of free+cache pages we * want to get to. This is higher then the number that causes * allocations to stall (severe) in order to provide hysteresis, * and if we don't make it all the way but get to the minimum * we're happy. */ inactive_shortage = vm_paging_target() + vm_pageout_deficit; inactive_original_shortage = inactive_shortage; vm_pageout_deficit = 0; /* * Initialize our marker */ bzero(&marker, sizeof(marker)); marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER; marker.queue = PQ_INACTIVE; marker.wire_count = 1; /* * Start scanning the inactive queue for pages we can move to the * cache or free. The scan will stop when the target is reached or * we have scanned the entire inactive queue. Note that m->act_count * is not used to form decisions for the inactive queue, only for the * active queue. * * maxlaunder limits the number of dirty pages we flush per scan. * For most systems a smaller value (16 or 32) is more robust under * extreme memory and disk pressure because any unnecessary writes * to disk can result in extreme performance degredation. However, * systems with excessive dirty pages (especially when MAP_NOSYNC is * used) will die horribly with limited laundering. If the pageout * daemon cannot clean enough pages in the first pass, we let it go * all out in succeeding passes. */ if ((maxlaunder = vm_max_launder) <= 1) maxlaunder = 1; if (pass) maxlaunder = 10000; /* * We will generally be in a critical section throughout the * scan, but we can release it temporarily when we are sitting on a * non-busy page without fear. this is required to prevent an * interrupt from unbusying or freeing a page prior to our busy * check, leaving us on the wrong queue or checking the wrong * page. */ crit_enter(); rescan0: vpfailed = NULL; maxscan = vmstats.v_inactive_count; for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl); m != NULL && maxscan-- > 0 && inactive_shortage > 0; m = next ) { mycpu->gd_cnt.v_pdpages++; /* * Give interrupts a chance */ crit_exit(); crit_enter(); /* * It's easier for some of the conditions below to just loop * and catch queue changes here rather then check everywhere * else. */ if (m->queue != PQ_INACTIVE) goto rescan0; next = TAILQ_NEXT(m, pageq); /* * skip marker pages */ if (m->flags & PG_MARKER) continue; /* * A held page may be undergoing I/O, so skip it. */ if (m->hold_count) { TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); ++vm_swapcache_inactive_heuristic; continue; } /* * Dont mess with busy pages, keep in the front of the * queue, most likely are being paged out. */ if (m->busy || (m->flags & PG_BUSY)) { continue; } if (m->object->ref_count == 0) { /* * If the object is not being used, we ignore previous * references. */ vm_page_flag_clear(m, PG_REFERENCED); pmap_clear_reference(m); } else if (((m->flags & PG_REFERENCED) == 0) && (actcount = pmap_ts_referenced(m))) { /* * Otherwise, if the page has been referenced while * in the inactive queue, we bump the "activation * count" upwards, making it less likely that the * page will be added back to the inactive queue * prematurely again. Here we check the page tables * (or emulated bits, if any), given the upper level * VM system not knowing anything about existing * references. */ vm_page_activate(m); m->act_count += (actcount + ACT_ADVANCE); continue; } /* * If the upper level VM system knows about any page * references, we activate the page. We also set the * "activation count" higher than normal so that we will less * likely place pages back onto the inactive queue again. */ if ((m->flags & PG_REFERENCED) != 0) { vm_page_flag_clear(m, PG_REFERENCED); actcount = pmap_ts_referenced(m); vm_page_activate(m); m->act_count += (actcount + ACT_ADVANCE + 1); continue; } /* * If the upper level VM system doesn't know anything about * the page being dirty, we have to check for it again. As * far as the VM code knows, any partially dirty pages are * fully dirty. * * Pages marked PG_WRITEABLE may be mapped into the user * address space of a process running on another cpu. A * user process (without holding the MP lock) running on * another cpu may be able to touch the page while we are * trying to remove it. vm_page_cache() will handle this * case for us. */ if (m->dirty == 0) { vm_page_test_dirty(m); } else { vm_page_dirty(m); } if (m->valid == 0) { /* * Invalid pages can be easily freed */ vm_pageout_page_free(m); mycpu->gd_cnt.v_dfree++; --inactive_shortage; } else if (m->dirty == 0) { /* * Clean pages can be placed onto the cache queue. * This effectively frees them. */ vm_page_cache(m); --inactive_shortage; } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) { /* * Dirty pages need to be paged out, but flushing * a page is extremely expensive verses freeing * a clean page. Rather then artificially limiting * the number of pages we can flush, we instead give * dirty pages extra priority on the inactive queue * by forcing them to be cycled through the queue * twice before being flushed, after which the * (now clean) page will cycle through once more * before being freed. This significantly extends * the thrash point for a heavily loaded machine. */ vm_page_flag_set(m, PG_WINATCFLS); TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); ++vm_swapcache_inactive_heuristic; } else if (maxlaunder > 0) { /* * We always want to try to flush some dirty pages if * we encounter them, to keep the system stable. * Normally this number is small, but under extreme * pressure where there are insufficient clean pages * on the inactive queue, we may have to go all out. */ int swap_pageouts_ok; struct vnode *vp = NULL; object = m->object; if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) { swap_pageouts_ok = 1; } else { swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts); swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts && vm_page_count_min(0)); } /* * We don't bother paging objects that are "dead". * Those objects are in a "rundown" state. */ if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) { TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); ++vm_swapcache_inactive_heuristic; continue; } /* * The object is already known NOT to be dead. It * is possible for the vget() to block the whole * pageout daemon, but the new low-memory handling * code should prevent it. * * The previous code skipped locked vnodes and, worse, * reordered pages in the queue. This results in * completely non-deterministic operation because, * quite often, a vm_fault has initiated an I/O and * is holding a locked vnode at just the point where * the pageout daemon is woken up. * * We can't wait forever for the vnode lock, we might * deadlock due to a vn_read() getting stuck in * vm_wait while holding this vnode. We skip the * vnode if we can't get it in a reasonable amount * of time. * * vpfailed is used to (try to) avoid the case where * a large number of pages are associated with a * locked vnode, which could cause the pageout daemon * to stall for an excessive amount of time. */ if (object->type == OBJT_VNODE) { int flags; vp = object->handle; flags = LK_EXCLUSIVE | LK_NOOBJ; if (vp == vpfailed) flags |= LK_NOWAIT; else flags |= LK_TIMELOCK; if (vget(vp, flags) != 0) { vpfailed = vp; ++pageout_lock_miss; if (object->flags & OBJ_MIGHTBEDIRTY) vnodes_skipped++; continue; } /* * The page might have been moved to another * queue during potential blocking in vget() * above. The page might have been freed and * reused for another vnode. The object might * have been reused for another vnode. */ if (m->queue != PQ_INACTIVE || m->object != object || object->handle != vp) { if (object->flags & OBJ_MIGHTBEDIRTY) vnodes_skipped++; vput(vp); continue; } /* * The page may have been busied during the * blocking in vput(); We don't move the * page back onto the end of the queue so that * statistics are more correct if we don't. */ if (m->busy || (m->flags & PG_BUSY)) { vput(vp); continue; } /* * If the page has become held it might * be undergoing I/O, so skip it */ if (m->hold_count) { TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); ++vm_swapcache_inactive_heuristic; if (object->flags & OBJ_MIGHTBEDIRTY) vnodes_skipped++; vput(vp); continue; } } /* * If a page is dirty, then it is either being washed * (but not yet cleaned) or it is still in the * laundry. If it is still in the laundry, then we * start the cleaning operation. * * This operation may cluster, invalidating the 'next' * pointer. To prevent an inordinate number of * restarts we use our marker to remember our place. * * decrement inactive_shortage on success to account * for the (future) cleaned page. Otherwise we * could wind up laundering or cleaning too many * pages. */ TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq); if (vm_pageout_clean(m) != 0) { --inactive_shortage; --maxlaunder; } next = TAILQ_NEXT(&marker, pageq); TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq); if (vp != NULL) vput(vp); } } /* * We want to move pages from the active queue to the inactive * queue to get the inactive queue to the inactive target. If * we still have a page shortage from above we try to directly free * clean pages instead of moving them. * * If we do still have a shortage we keep track of the number of * pages we free or cache (recycle_count) as a measure of thrashing * between the active and inactive queues. * * If we were able to completely satisfy the free+cache targets * from the inactive pool we limit the number of pages we move * from the active pool to the inactive pool to 2x the pages we * had removed from the inactive pool (with a minimum of 1/5 the * inactive target). If we were not able to completely satisfy * the free+cache targets we go for the whole target aggressively. * * NOTE: Both variables can end up negative. * NOTE: We are still in a critical section. */ active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count; if (inactive_original_shortage < vmstats.v_inactive_target / 10) inactive_original_shortage = vmstats.v_inactive_target / 10; if (inactive_shortage <= 0 && active_shortage > inactive_original_shortage * 2) { active_shortage = inactive_original_shortage * 2; } pcount = vmstats.v_active_count; recycle_count = 0; m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl); while ((m != NULL) && (pcount-- > 0) && (inactive_shortage > 0 || active_shortage > 0) ) { /* * Give interrupts a chance. */ crit_exit(); crit_enter(); /* * If the page was ripped out from under us, just stop. */ if (m->queue != PQ_ACTIVE) break; next = TAILQ_NEXT(m, pageq); /* * Don't deactivate pages that are busy. */ if ((m->busy != 0) || (m->flags & PG_BUSY) || (m->hold_count != 0)) { TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); m = next; continue; } /* * The count for pagedaemon pages is done after checking the * page for eligibility... */ mycpu->gd_cnt.v_pdpages++; /* * Check to see "how much" the page has been used and clear * the tracking access bits. If the object has no references * don't bother paying the expense. */ actcount = 0; if (m->object->ref_count != 0) { if (m->flags & PG_REFERENCED) ++actcount; actcount += pmap_ts_referenced(m); if (actcount) { m->act_count += ACT_ADVANCE + actcount; if (m->act_count > ACT_MAX) m->act_count = ACT_MAX; } } vm_page_flag_clear(m, PG_REFERENCED); /* * actcount is only valid if the object ref_count is non-zero. */ if (actcount && m->object->ref_count != 0) { TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); } else { m->act_count -= min(m->act_count, ACT_DECLINE); if (vm_pageout_algorithm || m->object->ref_count == 0 || m->act_count < pass + 1 ) { /* * Deactivate the page. If we had a * shortage from our inactive scan try to * free (cache) the page instead. * * Don't just blindly cache the page if * we do not have a shortage from the * inactive scan, that could lead to * gigabytes being moved. */ --active_shortage; if (inactive_shortage > 0 || m->object->ref_count == 0) { if (inactive_shortage > 0) ++recycle_count; vm_page_busy(m); vm_page_protect(m, VM_PROT_NONE); vm_page_wakeup(m); if (m->dirty == 0 && inactive_shortage > 0) { --inactive_shortage; vm_page_cache(m); } else { vm_page_deactivate(m); } } else { vm_page_deactivate(m); } } else { TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); } } m = next; } /* * The number of actually free pages can drop down to v_free_reserved, * we try to build the free count back above v_free_min. Note that * vm_paging_needed() also returns TRUE if v_free_count is not at * least v_free_min so that is the minimum we must build the free * count to. * * We use a slightly higher target to improve hysteresis, * ((v_free_target + v_free_min) / 2). Since v_free_target * is usually the same as v_cache_min this maintains about * half the pages in the free queue as are in the cache queue, * providing pretty good pipelining for pageout operation. * * The system operator can manipulate vm.v_cache_min and * vm.v_free_target to tune the pageout demon. Be sure * to keep vm.v_free_min < vm.v_free_target. * * Note that the original paging target is to get at least * (free_min + cache_min) into (free + cache). The slightly * higher target will shift additional pages from cache to free * without effecting the original paging target in order to * maintain better hysteresis and not have the free count always * be dead-on v_free_min. * * NOTE: we are still in a critical section. * * Pages moved from PQ_CACHE to totally free are not counted in the * pages_freed counter. */ while (vmstats.v_free_count < (vmstats.v_free_min + vmstats.v_free_target) / 2) { /* * */ static int cache_rover = 0; m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE); if (m == NULL) break; if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->hold_count || m->wire_count) { #ifdef INVARIANTS kprintf("Warning: busy page %p found in cache\n", m); #endif vm_page_deactivate(m); continue; } KKASSERT((m->flags & PG_MAPPED) == 0); KKASSERT(m->dirty == 0); cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK; vm_pageout_page_free(m); mycpu->gd_cnt.v_dfree++; } crit_exit(); #if !defined(NO_SWAPPING) /* * Idle process swapout -- run once per second. */ if (vm_swap_idle_enabled) { static long lsec; if (time_second != lsec) { vm_pageout_req_swapout |= VM_SWAP_IDLE; vm_req_vmdaemon(); lsec = time_second; } } #endif /* * If we didn't get enough free pages, and we have skipped a vnode * in a writeable object, wakeup the sync daemon. And kick swapout * if we did not get enough free pages. */ if (vm_paging_target() > 0) { if (vnodes_skipped && vm_page_count_min(0)) speedup_syncer(); #if !defined(NO_SWAPPING) if (vm_swap_enabled && vm_page_count_target()) { vm_req_vmdaemon(); vm_pageout_req_swapout |= VM_SWAP_NORMAL; } #endif } /* * Handle catastrophic conditions. Under good conditions we should * be at the target, well beyond our minimum. If we could not even * reach our minimum the system is under heavy stress. * * Determine whether we have run out of memory. This occurs when * swap_pager_full is TRUE and the only pages left in the page * queues are dirty. We will still likely have page shortages. * * - swap_pager_full is set if insufficient swap was * available to satisfy a requested pageout. * * - the inactive queue is bloated (4 x size of active queue), * meaning it is unable to get rid of dirty pages and. * * - vm_page_count_min() without counting pages recycled from the * active queue (recycle_count) means we could not recover * enough pages to meet bare minimum needs. This test only * works if the inactive queue is bloated. * * - due to a positive inactive_shortage we shifted the remaining * dirty pages from the active queue to the inactive queue * trying to find clean ones to free. */ if (swap_pager_full && vm_page_count_min(recycle_count)) kprintf("Warning: system low on memory+swap!\n"); if (swap_pager_full && vm_page_count_min(recycle_count) && vmstats.v_inactive_count > vmstats.v_active_count * 4 && inactive_shortage > 0) { /* * Kill something. */ info.bigproc = NULL; info.bigsize = 0; allproc_scan(vm_pageout_scan_callback, &info); if (info.bigproc != NULL) { killproc(info.bigproc, "out of swap space"); info.bigproc->p_nice = PRIO_MIN; info.bigproc->p_usched->resetpriority( FIRST_LWP_IN_PROC(info.bigproc)); wakeup(&vmstats.v_free_count); PRELE(info.bigproc); } } return(inactive_shortage); } /* * The caller must hold vm_token and proc_token. */ static int vm_pageout_scan_callback(struct proc *p, void *data) { struct vm_pageout_scan_info *info = data; vm_offset_t size; /* * Never kill system processes or init. If we have configured swap * then try to avoid killing low-numbered pids. */ if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) || ((p->p_pid < 48) && (vm_swap_size != 0))) { return (0); } /* * if the process is in a non-running type state, * don't touch it. */ if (p->p_stat != SACTIVE && p->p_stat != SSTOP) return (0); /* * Get the approximate process size. Note that anonymous pages * with backing swap will be counted twice, but there should not * be too many such pages due to the stress the VM system is * under at this point. */ size = vmspace_anonymous_count(p->p_vmspace) + vmspace_swap_count(p->p_vmspace); /* * If the this process is bigger than the biggest one * remember it. */ if (info->bigsize < size) { if (info->bigproc) PRELE(info->bigproc); PHOLD(p); info->bigproc = p; info->bigsize = size; } return(0); } /* * This routine tries to maintain the pseudo LRU active queue, * so that during long periods of time where there is no paging, * that some statistic accumulation still occurs. This code * helps the situation where paging just starts to occur. * * The caller must hold vm_token. */ static void vm_pageout_page_stats(void) { vm_page_t m,next; int pcount,tpcount; /* Number of pages to check */ static int fullintervalcount = 0; int page_shortage; page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) - (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count); if (page_shortage <= 0) return; crit_enter(); pcount = vmstats.v_active_count; fullintervalcount += vm_pageout_stats_interval; if (fullintervalcount < vm_pageout_full_stats_interval) { tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count; if (pcount > tpcount) pcount = tpcount; } else { fullintervalcount = 0; } m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl); while ((m != NULL) && (pcount-- > 0)) { int actcount; if (m->queue != PQ_ACTIVE) { break; } next = TAILQ_NEXT(m, pageq); /* * Don't deactivate pages that are busy. */ if ((m->busy != 0) || (m->flags & PG_BUSY) || (m->hold_count != 0)) { TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); m = next; continue; } actcount = 0; if (m->flags & PG_REFERENCED) { vm_page_flag_clear(m, PG_REFERENCED); actcount += 1; } actcount += pmap_ts_referenced(m); if (actcount) { m->act_count += ACT_ADVANCE + actcount; if (m->act_count > ACT_MAX) m->act_count = ACT_MAX; TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); } else { if (m->act_count == 0) { /* * We turn off page access, so that we have * more accurate RSS stats. We don't do this * in the normal page deactivation when the * system is loaded VM wise, because the * cost of the large number of page protect * operations would be higher than the value * of doing the operation. */ vm_page_busy(m); vm_page_protect(m, VM_PROT_NONE); vm_page_wakeup(m); vm_page_deactivate(m); } else { m->act_count -= min(m->act_count, ACT_DECLINE); TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); } } m = next; } crit_exit(); } /* * The caller must hold vm_token. */ static int vm_pageout_free_page_calc(vm_size_t count) { if (count < vmstats.v_page_count) return 0; /* * free_reserved needs to include enough for the largest swap pager * structures plus enough for any pv_entry structs when paging. */ if (vmstats.v_page_count > 1024) vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200; else vmstats.v_free_min = 4; vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + vmstats.v_interrupt_free_min; vmstats.v_free_reserved = vm_pageout_page_count + vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE; vmstats.v_free_severe = vmstats.v_free_min / 2; vmstats.v_free_min += vmstats.v_free_reserved; vmstats.v_free_severe += vmstats.v_free_reserved; return 1; } /* * vm_pageout is the high level pageout daemon. * * No requirements. */ static void vm_pageout_thread(void) { int pass; int inactive_shortage; /* * Permanently hold vm_token. */ lwkt_gettoken(&vm_token); /* * Initialize some paging parameters. */ curthread->td_flags |= TDF_SYSTHREAD; vmstats.v_interrupt_free_min = 2; if (vmstats.v_page_count < 2000) vm_pageout_page_count = 8; vm_pageout_free_page_calc(vmstats.v_page_count); /* * v_free_target and v_cache_min control pageout hysteresis. Note * that these are more a measure of the VM cache queue hysteresis * then the VM free queue. Specifically, v_free_target is the * high water mark (free+cache pages). * * v_free_reserved + v_cache_min (mostly means v_cache_min) is the * low water mark, while v_free_min is the stop. v_cache_min must * be big enough to handle memory needs while the pageout daemon * is signalled and run to free more pages. */ if (vmstats.v_free_count > 6144) vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved; else vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved; /* * NOTE: With the new buffer cache b_act_count we want the default * inactive target to be a percentage of available memory. * * The inactive target essentially determines the minimum * number of 'temporary' pages capable of caching one-time-use * files when the VM system is otherwise full of pages * belonging to multi-time-use files or active program data. * * NOTE: The inactive target is aggressively persued only if the * inactive queue becomes too small. If the inactive queue * is large enough to satisfy page movement to free+cache * then it is repopulated more slowly from the active queue. * This allows a general inactive_target default to be set. * * There is an issue here for processes which sit mostly idle * 'overnight', such as sshd, tcsh, and X. Any movement from * the active queue will eventually cause such pages to * recycle eventually causing a lot of paging in the morning. * To reduce the incidence of this pages cycled out of the * buffer cache are moved directly to the inactive queue if * they were only used once or twice. * * The vfs.vm_cycle_point sysctl can be used to adjust this. * Increasing the value (up to 64) increases the number of * buffer recyclements which go directly to the inactive queue. */ if (vmstats.v_free_count > 2048) { vmstats.v_cache_min = vmstats.v_free_target; vmstats.v_cache_max = 2 * vmstats.v_cache_min; } else { vmstats.v_cache_min = 0; vmstats.v_cache_max = 0; } vmstats.v_inactive_target = vmstats.v_free_count / 4; /* XXX does not really belong here */ if (vm_page_max_wired == 0) vm_page_max_wired = vmstats.v_free_count / 3; if (vm_pageout_stats_max == 0) vm_pageout_stats_max = vmstats.v_free_target; /* * Set interval in seconds for stats scan. */ if (vm_pageout_stats_interval == 0) vm_pageout_stats_interval = 5; if (vm_pageout_full_stats_interval == 0) vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4; /* * Set maximum free per pass */ if (vm_pageout_stats_free_max == 0) vm_pageout_stats_free_max = 5; swap_pager_swap_init(); pass = 0; /* * The pageout daemon is never done, so loop forever. */ while (TRUE) { int error; /* * Wait for an action request. If we timeout check to * see if paging is needed (in case the normal wakeup * code raced us). */ if (vm_pages_needed == 0) { error = tsleep(&vm_pages_needed, 0, "psleep", vm_pageout_stats_interval * hz); if (error && vm_paging_needed() == 0 && vm_pages_needed == 0) { vm_pageout_page_stats(); continue; } vm_pages_needed = 1; } mycpu->gd_cnt.v_pdwakeups++; /* * Scan for pageout. Try to avoid thrashing the system * with activity. */ inactive_shortage = vm_pageout_scan(pass); if (inactive_shortage > 0) { ++pass; if (swap_pager_full) { /* * Running out of memory, catastrophic back-off * to one-second intervals. */ tsleep(&vm_pages_needed, 0, "pdelay", hz); } else if (pass < 10 && vm_pages_needed > 1) { /* * Normal operation, additional processes * have already kicked us. Retry immediately. */ } else if (pass < 10) { /* * Normal operation, fewer processes. Delay * a bit but allow wakeups. */ vm_pages_needed = 0; tsleep(&vm_pages_needed, 0, "pdelay", hz / 10); vm_pages_needed = 1; } else { /* * We've taken too many passes, forced delay. */ tsleep(&vm_pages_needed, 0, "pdelay", hz / 10); } } else { /* * Interlocked wakeup of waiters (non-optional) */ pass = 0; if (vm_pages_needed && !vm_page_count_min(0)) { wakeup(&vmstats.v_free_count); vm_pages_needed = 0; } } } } static struct kproc_desc page_kp = { "pagedaemon", vm_pageout_thread, &pagethread }; SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp) /* * Called after allocating a page out of the cache or free queue * to possibly wake the pagedaemon up to replentish our supply. * * We try to generate some hysteresis by waking the pagedaemon up * when our free+cache pages go below the free_min+cache_min level. * The pagedaemon tries to get the count back up to at least the * minimum, and through to the target level if possible. * * If the pagedaemon is already active bump vm_pages_needed as a hint * that there are even more requests pending. * * SMP races ok? * No requirements. */ void pagedaemon_wakeup(void) { if (vm_paging_needed() && curthread != pagethread) { if (vm_pages_needed == 0) { vm_pages_needed = 1; /* SMP race ok */ wakeup(&vm_pages_needed); } else if (vm_page_count_min(0)) { ++vm_pages_needed; /* SMP race ok */ } } } #if !defined(NO_SWAPPING) /* * SMP races ok? * No requirements. */ static void vm_req_vmdaemon(void) { static int lastrun = 0; if ((ticks > (lastrun + hz)) || (ticks < lastrun)) { wakeup(&vm_daemon_needed); lastrun = ticks; } } static int vm_daemon_callback(struct proc *p, void *data __unused); /* * No requirements. */ static void vm_daemon(void) { /* * Permanently hold vm_token. */ lwkt_gettoken(&vm_token); while (TRUE) { tsleep(&vm_daemon_needed, 0, "psleep", 0); if (vm_pageout_req_swapout) { swapout_procs(vm_pageout_req_swapout); vm_pageout_req_swapout = 0; } /* * scan the processes for exceeding their rlimits or if * process is swapped out -- deactivate pages */ allproc_scan(vm_daemon_callback, NULL); } } /* * Caller must hold vm_token and proc_token. */ static int vm_daemon_callback(struct proc *p, void *data __unused) { vm_pindex_t limit, size; /* * if this is a system process or if we have already * looked at this process, skip it. */ if (p->p_flag & (P_SYSTEM | P_WEXIT)) return (0); /* * if the process is in a non-running type state, * don't touch it. */ if (p->p_stat != SACTIVE && p->p_stat != SSTOP) return (0); /* * get a limit */ limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur, p->p_rlimit[RLIMIT_RSS].rlim_max)); /* * let processes that are swapped out really be * swapped out. Set the limit to nothing to get as * many pages out to swap as possible. */ if (p->p_flag & P_SWAPPEDOUT) limit = 0; size = vmspace_resident_count(p->p_vmspace); if (limit >= 0 && size >= limit) { vm_pageout_map_deactivate_pages( &p->p_vmspace->vm_map, limit); } return (0); } #endif