/* Intel 387 floating point stuff. Copyright (C) 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "doublest.h" #include "floatformat.h" #include "frame.h" #include "gdbcore.h" #include "inferior.h" #include "language.h" #include "regcache.h" #include "value.h" #include "gdb_assert.h" #include "gdb_string.h" #include "i386-tdep.h" #include "i387-tdep.h" /* Print the floating point number specified by RAW. */ static void print_i387_value (struct gdbarch *gdbarch, const gdb_byte *raw, struct ui_file *file) { DOUBLEST value; /* Using extract_typed_floating here might affect the representation of certain numbers such as NaNs, even if GDB is running natively. This is fine since our caller already detects such special numbers and we print the hexadecimal representation anyway. */ value = extract_typed_floating (raw, i387_ext_type (gdbarch)); /* We try to print 19 digits. The last digit may or may not contain garbage, but we'd better print one too many. We need enough room to print the value, 1 position for the sign, 1 for the decimal point, 19 for the digits and 6 for the exponent adds up to 27. */ #ifdef PRINTF_HAS_LONG_DOUBLE fprintf_filtered (file, " %-+27.19Lg", (long double) value); #else fprintf_filtered (file, " %-+27.19g", (double) value); #endif } /* Print the classification for the register contents RAW. */ static void print_i387_ext (struct gdbarch *gdbarch, const gdb_byte *raw, struct ui_file *file) { int sign; int integer; unsigned int exponent; unsigned long fraction[2]; sign = raw[9] & 0x80; integer = raw[7] & 0x80; exponent = (((raw[9] & 0x7f) << 8) | raw[8]); fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) | (raw[5] << 8) | raw[4]); if (exponent == 0x7fff && integer) { if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000) /* Infinity. */ fprintf_filtered (file, " %cInf", (sign ? '-' : '+')); else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000) /* Real Indefinite (QNaN). */ fputs_unfiltered (" Real Indefinite (QNaN)", file); else if (fraction[1] & 0x40000000) /* QNaN. */ fputs_filtered (" QNaN", file); else /* SNaN. */ fputs_filtered (" SNaN", file); } else if (exponent < 0x7fff && exponent > 0x0000 && integer) /* Normal. */ print_i387_value (gdbarch, raw, file); else if (exponent == 0x0000) { /* Denormal or zero. */ print_i387_value (gdbarch, raw, file); if (integer) /* Pseudo-denormal. */ fputs_filtered (" Pseudo-denormal", file); else if (fraction[0] || fraction[1]) /* Denormal. */ fputs_filtered (" Denormal", file); } else /* Unsupported. */ fputs_filtered (" Unsupported", file); } /* Print the status word STATUS. */ static void print_i387_status_word (unsigned int status, struct ui_file *file) { fprintf_filtered (file, "Status Word: %s", hex_string_custom (status, 4)); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " "); fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " "); fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " "); fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " "); fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " "); fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " "); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " "); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " "); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " "); fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " "); fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " "); fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " "); fputs_filtered ("\n", file); fprintf_filtered (file, " TOP: %d\n", ((status >> 11) & 7)); } /* Print the control word CONTROL. */ static void print_i387_control_word (unsigned int control, struct ui_file *file) { fprintf_filtered (file, "Control Word: %s", hex_string_custom (control, 4)); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " "); fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " "); fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " "); fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " "); fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " "); fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " "); fputs_filtered ("\n", file); fputs_filtered (" PC: ", file); switch ((control >> 8) & 3) { case 0: fputs_filtered ("Single Precision (24-bits)\n", file); break; case 1: fputs_filtered ("Reserved\n", file); break; case 2: fputs_filtered ("Double Precision (53-bits)\n", file); break; case 3: fputs_filtered ("Extended Precision (64-bits)\n", file); break; } fputs_filtered (" RC: ", file); switch ((control >> 10) & 3) { case 0: fputs_filtered ("Round to nearest\n", file); break; case 1: fputs_filtered ("Round down\n", file); break; case 2: fputs_filtered ("Round up\n", file); break; case 3: fputs_filtered ("Round toward zero\n", file); break; } } /* Print out the i387 floating point state. Note that we ignore FRAME in the code below. That's OK since floating-point registers are never saved on the stack. */ void i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args) { struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); gdb_byte buf[4]; ULONGEST fctrl; ULONGEST fstat; ULONGEST ftag; ULONGEST fiseg; ULONGEST fioff; ULONGEST foseg; ULONGEST fooff; ULONGEST fop; int fpreg; int top; gdb_assert (gdbarch == get_frame_arch (frame)); fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM (tdep)); fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM (tdep)); ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM (tdep)); fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM (tdep)); fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM (tdep)); foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM (tdep)); fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM (tdep)); fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM (tdep)); top = ((fstat >> 11) & 7); for (fpreg = 7; fpreg >= 0; fpreg--) { gdb_byte raw[I386_MAX_REGISTER_SIZE]; int tag = (ftag >> (fpreg * 2)) & 3; int i; fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); switch (tag) { case 0: fputs_filtered ("Valid ", file); break; case 1: fputs_filtered ("Zero ", file); break; case 2: fputs_filtered ("Special ", file); break; case 3: fputs_filtered ("Empty ", file); break; } get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep), raw); fputs_filtered ("0x", file); for (i = 9; i >= 0; i--) fprintf_filtered (file, "%02x", raw[i]); if (tag != 3) print_i387_ext (gdbarch, raw, file); fputs_filtered ("\n", file); } fputs_filtered ("\n", file); print_i387_status_word (fstat, file); print_i387_control_word (fctrl, file); fprintf_filtered (file, "Tag Word: %s\n", hex_string_custom (ftag, 4)); fprintf_filtered (file, "Instruction Pointer: %s:", hex_string_custom (fiseg, 2)); fprintf_filtered (file, "%s\n", hex_string_custom (fioff, 8)); fprintf_filtered (file, "Operand Pointer: %s:", hex_string_custom (foseg, 2)); fprintf_filtered (file, "%s\n", hex_string_custom (fooff, 8)); fprintf_filtered (file, "Opcode: %s\n", hex_string_custom (fop ? (fop | 0xd800) : 0, 4)); } /* Return nonzero if a value of type TYPE stored in register REGNUM needs any special handling. */ int i387_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type) { if (i386_fp_regnum_p (gdbarch, regnum)) { /* Floating point registers must be converted unless we are accessing them in their hardware type. */ if (type == i387_ext_type (gdbarch)) return 0; else return 1; } return 0; } /* Read a value of type TYPE from register REGNUM in frame FRAME, and return its contents in TO. */ void i387_register_to_value (struct frame_info *frame, int regnum, struct type *type, gdb_byte *to) { struct gdbarch *gdbarch = get_frame_arch (frame); gdb_byte from[I386_MAX_REGISTER_SIZE]; gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); /* We only support floating-point values. */ if (TYPE_CODE (type) != TYPE_CODE_FLT) { warning (_("Cannot convert floating-point register value " "to non-floating-point type.")); return; } /* Convert to TYPE. */ get_frame_register (frame, regnum, from); convert_typed_floating (from, i387_ext_type (gdbarch), to, type); } /* Write the contents FROM of a value of type TYPE into register REGNUM in frame FRAME. */ void i387_value_to_register (struct frame_info *frame, int regnum, struct type *type, const gdb_byte *from) { struct gdbarch *gdbarch = get_frame_arch (frame); gdb_byte to[I386_MAX_REGISTER_SIZE]; gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); /* We only support floating-point values. */ if (TYPE_CODE (type) != TYPE_CODE_FLT) { warning (_("Cannot convert non-floating-point type " "to floating-point register value.")); return; } /* Convert from TYPE. */ convert_typed_floating (from, type, to, i387_ext_type (gdbarch)); put_frame_register (frame, regnum, to); } /* Handle FSAVE and FXSAVE formats. */ /* At fsave_offset[REGNUM] you'll find the offset to the location in the data structure used by the "fsave" instruction where GDB register REGNUM is stored. */ static int fsave_offset[] = { 28 + 0 * 10, /* %st(0) ... */ 28 + 1 * 10, 28 + 2 * 10, 28 + 3 * 10, 28 + 4 * 10, 28 + 5 * 10, 28 + 6 * 10, 28 + 7 * 10, /* ... %st(7). */ 0, /* `fctrl' (16 bits). */ 4, /* `fstat' (16 bits). */ 8, /* `ftag' (16 bits). */ 16, /* `fiseg' (16 bits). */ 12, /* `fioff'. */ 24, /* `foseg' (16 bits). */ 20, /* `fooff'. */ 18 /* `fop' (bottom 11 bits). */ }; #define FSAVE_ADDR(tdep, fsave, regnum) \ (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)]) /* Fill register REGNUM in REGCACHE with the appropriate value from *FSAVE. This function masks off any of the reserved bits in *FSAVE. */ void i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave) { struct gdbarch *gdbarch = get_regcache_arch (regcache); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); const gdb_byte *regs = fsave; int i; gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) { if (fsave == NULL) { regcache_raw_supply (regcache, i, NULL); continue; } /* Most of the FPU control registers occupy only 16 bits in the fsave area. Give those a special treatment. */ if (i >= I387_FCTRL_REGNUM (tdep) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) { gdb_byte val[4]; memcpy (val, FSAVE_ADDR (tdep, regs, i), 2); val[2] = val[3] = 0; if (i == I387_FOP_REGNUM (tdep)) val[1] &= ((1 << 3) - 1); regcache_raw_supply (regcache, i, val); } else regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i)); } /* Provide dummy values for the SSE registers. */ for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) regcache_raw_supply (regcache, i, NULL); if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep)) { gdb_byte buf[4]; store_unsigned_integer (buf, 4, byte_order, 0x1f80); regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf); } } /* Fill register REGNUM (if it is a floating-point register) in *FSAVE with the value from REGCACHE. If REGNUM is -1, do this for all registers. This function doesn't touch any of the reserved bits in *FSAVE. */ void i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave) { struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); gdb_byte *regs = fsave; int i; gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) { /* Most of the FPU control registers occupy only 16 bits in the fsave area. Give those a special treatment. */ if (i >= I387_FCTRL_REGNUM (tdep) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) { gdb_byte buf[4]; regcache_raw_collect (regcache, i, buf); if (i == I387_FOP_REGNUM (tdep)) { /* The opcode occupies only 11 bits. Make sure we don't touch the other bits. */ buf[1] &= ((1 << 3) - 1); buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); } memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2); } else regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i)); } } /* At fxsave_offset[REGNUM] you'll find the offset to the location in the data structure used by the "fxsave" instruction where GDB register REGNUM is stored. */ static int fxsave_offset[] = { 32, /* %st(0) through ... */ 48, 64, 80, 96, 112, 128, 144, /* ... %st(7) (80 bits each). */ 0, /* `fctrl' (16 bits). */ 2, /* `fstat' (16 bits). */ 4, /* `ftag' (16 bits). */ 12, /* `fiseg' (16 bits). */ 8, /* `fioff'. */ 20, /* `foseg' (16 bits). */ 16, /* `fooff'. */ 6, /* `fop' (bottom 11 bits). */ 160 + 0 * 16, /* %xmm0 through ... */ 160 + 1 * 16, 160 + 2 * 16, 160 + 3 * 16, 160 + 4 * 16, 160 + 5 * 16, 160 + 6 * 16, 160 + 7 * 16, 160 + 8 * 16, 160 + 9 * 16, 160 + 10 * 16, 160 + 11 * 16, 160 + 12 * 16, 160 + 13 * 16, 160 + 14 * 16, 160 + 15 * 16, /* ... %xmm15 (128 bits each). */ }; #define FXSAVE_ADDR(tdep, fxsave, regnum) \ (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)]) /* We made an unfortunate choice in putting %mxcsr after the SSE registers %xmm0-%xmm7 instead of before, since it makes supporting the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we don't include the offset for %mxcsr here above. */ #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24) static int i387_tag (const gdb_byte *raw); /* Fill register REGNUM in REGCACHE with the appropriate floating-point or SSE register value from *FXSAVE. This function masks off any of the reserved bits in *FXSAVE. */ void i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave) { struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); const gdb_byte *regs = fxsave; int i; gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); gdb_assert (tdep->num_xmm_regs > 0); for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) { if (regs == NULL) { regcache_raw_supply (regcache, i, NULL); continue; } /* Most of the FPU control registers occupy only 16 bits in the fxsave area. Give those a special treatment. */ if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) { gdb_byte val[4]; memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); val[2] = val[3] = 0; if (i == I387_FOP_REGNUM (tdep)) val[1] &= ((1 << 3) - 1); else if (i== I387_FTAG_REGNUM (tdep)) { /* The fxsave area contains a simplified version of the tag word. We have to look at the actual 80-bit FP data to recreate the traditional i387 tag word. */ unsigned long ftag = 0; int fpreg; int top; top = ((FXSAVE_ADDR (tdep, regs, I387_FSTAT_REGNUM (tdep)))[1] >> 3); top &= 0x7; for (fpreg = 7; fpreg >= 0; fpreg--) { int tag; if (val[0] & (1 << fpreg)) { int regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep); tag = i387_tag (FXSAVE_ADDR (tdep, regs, regnum)); } else tag = 3; /* Empty */ ftag |= tag << (2 * fpreg); } val[0] = ftag & 0xff; val[1] = (ftag >> 8) & 0xff; } regcache_raw_supply (regcache, i, val); } else regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i)); } if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) { if (regs == NULL) regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL); else regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), FXSAVE_MXCSR_ADDR (regs)); } } /* Fill register REGNUM (if it is a floating-point or SSE register) in *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for all registers. This function doesn't touch any of the reserved bits in *FXSAVE. */ void i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave) { struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); gdb_byte *regs = fxsave; int i; gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); gdb_assert (tdep->num_xmm_regs > 0); for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) { /* Most of the FPU control registers occupy only 16 bits in the fxsave area. Give those a special treatment. */ if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) { gdb_byte buf[4]; regcache_raw_collect (regcache, i, buf); if (i == I387_FOP_REGNUM (tdep)) { /* The opcode occupies only 11 bits. Make sure we don't touch the other bits. */ buf[1] &= ((1 << 3) - 1); buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); } else if (i == I387_FTAG_REGNUM (tdep)) { /* Converting back is much easier. */ unsigned short ftag; int fpreg; ftag = (buf[1] << 8) | buf[0]; buf[0] = 0; buf[1] = 0; for (fpreg = 7; fpreg >= 0; fpreg--) { int tag = (ftag >> (fpreg * 2)) & 3; if (tag != 3) buf[0] |= (1 << fpreg); } } memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2); } else regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i)); } if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep), FXSAVE_MXCSR_ADDR (regs)); } /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in *RAW. */ static int i387_tag (const gdb_byte *raw) { int integer; unsigned int exponent; unsigned long fraction[2]; integer = raw[7] & 0x80; exponent = (((raw[9] & 0x7f) << 8) | raw[8]); fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) | (raw[5] << 8) | raw[4]); if (exponent == 0x7fff) { /* Special. */ return (2); } else if (exponent == 0x0000) { if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) { /* Zero. */ return (1); } else { /* Special. */ return (2); } } else { if (integer) { /* Valid. */ return (0); } else { /* Special. */ return (2); } } } /* Prepare the FPU stack in REGCACHE for a function return. */ void i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); ULONGEST fstat; /* Set the top of the floating-point register stack to 7. The actual value doesn't really matter, but 7 is what a normal function return would end up with if the program started out with a freshly initialized FPU. */ regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat); fstat |= (7 << 11); regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat); /* Mark %st(1) through %st(7) as empty. Since we set the top of the floating-point register stack to 7, the appropriate value for the tag word is 0x3fff. */ regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff); }