/* * AES-based functions * * - AES Key Wrap Algorithm (128-bit KEK) (RFC3394) * - One-Key CBC MAC (OMAC1) hash with AES-128 * - AES-128 CTR mode encryption * - AES-128 EAX mode encryption/decryption * - AES-128 CBC * * Copyright (c) 2003-2005, Jouni Malinen * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #include "includes.h" #include "common.h" #include "aes_wrap.h" #include "crypto.h" #ifdef INTERNAL_AES #include "aes.c" #endif /* INTERNAL_AES */ #ifndef CONFIG_NO_AES_WRAP /** * aes_wrap - Wrap keys with AES Key Wrap Algorithm (128-bit KEK) (RFC3394) * @kek: Key encryption key (KEK) * @n: Length of the wrapped key in 64-bit units; e.g., 2 = 128-bit = 16 bytes * @plain: Plaintext key to be wrapped, n * 64 bit * @cipher: Wrapped key, (n + 1) * 64 bit * Returns: 0 on success, -1 on failure */ int aes_wrap(const u8 *kek, int n, const u8 *plain, u8 *cipher) { u8 *a, *r, b[16]; int i, j; void *ctx; a = cipher; r = cipher + 8; /* 1) Initialize variables. */ os_memset(a, 0xa6, 8); os_memcpy(r, plain, 8 * n); ctx = aes_encrypt_init(kek, 16); if (ctx == NULL) return -1; /* 2) Calculate intermediate values. * For j = 0 to 5 * For i=1 to n * B = AES(K, A | R[i]) * A = MSB(64, B) ^ t where t = (n*j)+i * R[i] = LSB(64, B) */ for (j = 0; j <= 5; j++) { r = cipher + 8; for (i = 1; i <= n; i++) { os_memcpy(b, a, 8); os_memcpy(b + 8, r, 8); aes_encrypt(ctx, b, b); os_memcpy(a, b, 8); a[7] ^= n * j + i; os_memcpy(r, b + 8, 8); r += 8; } } aes_encrypt_deinit(ctx); /* 3) Output the results. * * These are already in @cipher due to the location of temporary * variables. */ return 0; } #endif /* CONFIG_NO_AES_WRAP */ /** * aes_unwrap - Unwrap key with AES Key Wrap Algorithm (128-bit KEK) (RFC3394) * @kek: Key encryption key (KEK) * @n: Length of the wrapped key in 64-bit units; e.g., 2 = 128-bit = 16 bytes * @cipher: Wrapped key to be unwrapped, (n + 1) * 64 bit * @plain: Plaintext key, n * 64 bit * Returns: 0 on success, -1 on failure (e.g., integrity verification failed) */ int aes_unwrap(const u8 *kek, int n, const u8 *cipher, u8 *plain) { u8 a[8], *r, b[16]; int i, j; void *ctx; /* 1) Initialize variables. */ os_memcpy(a, cipher, 8); r = plain; os_memcpy(r, cipher + 8, 8 * n); ctx = aes_decrypt_init(kek, 16); if (ctx == NULL) return -1; /* 2) Compute intermediate values. * For j = 5 to 0 * For i = n to 1 * B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i * A = MSB(64, B) * R[i] = LSB(64, B) */ for (j = 5; j >= 0; j--) { r = plain + (n - 1) * 8; for (i = n; i >= 1; i--) { os_memcpy(b, a, 8); b[7] ^= n * j + i; os_memcpy(b + 8, r, 8); aes_decrypt(ctx, b, b); os_memcpy(a, b, 8); os_memcpy(r, b + 8, 8); r -= 8; } } aes_decrypt_deinit(ctx); /* 3) Output results. * * These are already in @plain due to the location of temporary * variables. Just verify that the IV matches with the expected value. */ for (i = 0; i < 8; i++) { if (a[i] != 0xa6) return -1; } return 0; } #define BLOCK_SIZE 16 #ifndef CONFIG_NO_AES_OMAC1 static void gf_mulx(u8 *pad) { int i, carry; carry = pad[0] & 0x80; for (i = 0; i < BLOCK_SIZE - 1; i++) pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7); pad[BLOCK_SIZE - 1] <<= 1; if (carry) pad[BLOCK_SIZE - 1] ^= 0x87; } /** * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC) * @key: 128-bit key for the hash operation * @data: Data buffer for which a MAC is determined * @data: Length of data buffer in bytes * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure */ int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) { void *ctx; u8 cbc[BLOCK_SIZE], pad[BLOCK_SIZE]; const u8 *pos = data; size_t i, left = data_len; ctx = aes_encrypt_init(key, 16); if (ctx == NULL) return -1; os_memset(cbc, 0, BLOCK_SIZE); while (left >= BLOCK_SIZE) { for (i = 0; i < BLOCK_SIZE; i++) cbc[i] ^= *pos++; if (left > BLOCK_SIZE) aes_encrypt(ctx, cbc, cbc); left -= BLOCK_SIZE; } os_memset(pad, 0, BLOCK_SIZE); aes_encrypt(ctx, pad, pad); gf_mulx(pad); if (left || data_len == 0) { for (i = 0; i < left; i++) cbc[i] ^= *pos++; cbc[left] ^= 0x80; gf_mulx(pad); } for (i = 0; i < BLOCK_SIZE; i++) pad[i] ^= cbc[i]; aes_encrypt(ctx, pad, mac); aes_encrypt_deinit(ctx); return 0; } #endif /* CONFIG_NO_AES_OMAC1 */ /** * aes_128_encrypt_block - Perform one AES 128-bit block operation * @key: Key for AES * @in: Input data (16 bytes) * @out: Output of the AES block operation (16 bytes) * Returns: 0 on success, -1 on failure */ int aes_128_encrypt_block(const u8 *key, const u8 *in, u8 *out) { void *ctx; ctx = aes_encrypt_init(key, 16); if (ctx == NULL) return -1; aes_encrypt(ctx, in, out); aes_encrypt_deinit(ctx); return 0; } #ifndef CONFIG_NO_AES_CTR /** * aes_128_ctr_encrypt - AES-128 CTR mode encryption * @key: Key for encryption (16 bytes) * @nonce: Nonce for counter mode (16 bytes) * @data: Data to encrypt in-place * @data_len: Length of data in bytes * Returns: 0 on success, -1 on failure */ int aes_128_ctr_encrypt(const u8 *key, const u8 *nonce, u8 *data, size_t data_len) { void *ctx; size_t j, len, left = data_len; int i; u8 *pos = data; u8 counter[BLOCK_SIZE], buf[BLOCK_SIZE]; ctx = aes_encrypt_init(key, 16); if (ctx == NULL) return -1; os_memcpy(counter, nonce, BLOCK_SIZE); while (left > 0) { aes_encrypt(ctx, counter, buf); len = (left < BLOCK_SIZE) ? left : BLOCK_SIZE; for (j = 0; j < len; j++) pos[j] ^= buf[j]; pos += len; left -= len; for (i = BLOCK_SIZE - 1; i >= 0; i--) { counter[i]++; if (counter[i]) break; } } aes_encrypt_deinit(ctx); return 0; } #endif /* CONFIG_NO_AES_CTR */ #ifndef CONFIG_NO_AES_EAX /** * aes_128_eax_encrypt - AES-128 EAX mode encryption * @key: Key for encryption (16 bytes) * @nonce: Nonce for counter mode * @nonce_len: Nonce length in bytes * @hdr: Header data to be authenticity protected * @hdr_len: Length of the header data bytes * @data: Data to encrypt in-place * @data_len: Length of data in bytes * @tag: 16-byte tag value * Returns: 0 on success, -1 on failure */ int aes_128_eax_encrypt(const u8 *key, const u8 *nonce, size_t nonce_len, const u8 *hdr, size_t hdr_len, u8 *data, size_t data_len, u8 *tag) { u8 *buf; size_t buf_len; u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE]; int i; if (nonce_len > data_len) buf_len = nonce_len; else buf_len = data_len; if (hdr_len > buf_len) buf_len = hdr_len; buf_len += 16; buf = os_malloc(buf_len); if (buf == NULL) return -1; os_memset(buf, 0, 15); buf[15] = 0; os_memcpy(buf + 16, nonce, nonce_len); omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac); buf[15] = 1; os_memcpy(buf + 16, hdr, hdr_len); omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac); aes_128_ctr_encrypt(key, nonce_mac, data, data_len); buf[15] = 2; os_memcpy(buf + 16, data, data_len); omac1_aes_128(key, buf, 16 + data_len, data_mac); os_free(buf); for (i = 0; i < BLOCK_SIZE; i++) tag[i] = nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i]; return 0; } /** * aes_128_eax_decrypt - AES-128 EAX mode decryption * @key: Key for decryption (16 bytes) * @nonce: Nonce for counter mode * @nonce_len: Nonce length in bytes * @hdr: Header data to be authenticity protected * @hdr_len: Length of the header data bytes * @data: Data to encrypt in-place * @data_len: Length of data in bytes * @tag: 16-byte tag value * Returns: 0 on success, -1 on failure, -2 if tag does not match */ int aes_128_eax_decrypt(const u8 *key, const u8 *nonce, size_t nonce_len, const u8 *hdr, size_t hdr_len, u8 *data, size_t data_len, const u8 *tag) { u8 *buf; size_t buf_len; u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE]; int i; if (nonce_len > data_len) buf_len = nonce_len; else buf_len = data_len; if (hdr_len > buf_len) buf_len = hdr_len; buf_len += 16; buf = os_malloc(buf_len); if (buf == NULL) return -1; os_memset(buf, 0, 15); buf[15] = 0; os_memcpy(buf + 16, nonce, nonce_len); omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac); buf[15] = 1; os_memcpy(buf + 16, hdr, hdr_len); omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac); buf[15] = 2; os_memcpy(buf + 16, data, data_len); omac1_aes_128(key, buf, 16 + data_len, data_mac); os_free(buf); for (i = 0; i < BLOCK_SIZE; i++) { if (tag[i] != (nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i])) return -2; } aes_128_ctr_encrypt(key, nonce_mac, data, data_len); return 0; } #endif /* CONFIG_NO_AES_EAX */ #ifndef CONFIG_NO_AES_CBC /** * aes_128_cbc_encrypt - AES-128 CBC encryption * @key: Encryption key * @iv: Encryption IV for CBC mode (16 bytes) * @data: Data to encrypt in-place * @data_len: Length of data in bytes (must be divisible by 16) * Returns: 0 on success, -1 on failure */ int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) { void *ctx; u8 cbc[BLOCK_SIZE]; u8 *pos = data; int i, j, blocks; ctx = aes_encrypt_init(key, 16); if (ctx == NULL) return -1; os_memcpy(cbc, iv, BLOCK_SIZE); blocks = data_len / BLOCK_SIZE; for (i = 0; i < blocks; i++) { for (j = 0; j < BLOCK_SIZE; j++) cbc[j] ^= pos[j]; aes_encrypt(ctx, cbc, cbc); os_memcpy(pos, cbc, BLOCK_SIZE); pos += BLOCK_SIZE; } aes_encrypt_deinit(ctx); return 0; } /** * aes_128_cbc_decrypt - AES-128 CBC decryption * @key: Decryption key * @iv: Decryption IV for CBC mode (16 bytes) * @data: Data to decrypt in-place * @data_len: Length of data in bytes (must be divisible by 16) * Returns: 0 on success, -1 on failure */ int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) { void *ctx; u8 cbc[BLOCK_SIZE], tmp[BLOCK_SIZE]; u8 *pos = data; int i, j, blocks; ctx = aes_decrypt_init(key, 16); if (ctx == NULL) return -1; os_memcpy(cbc, iv, BLOCK_SIZE); blocks = data_len / BLOCK_SIZE; for (i = 0; i < blocks; i++) { os_memcpy(tmp, pos, BLOCK_SIZE); aes_decrypt(ctx, pos, pos); for (j = 0; j < BLOCK_SIZE; j++) pos[j] ^= cbc[j]; os_memcpy(cbc, tmp, BLOCK_SIZE); pos += BLOCK_SIZE; } aes_decrypt_deinit(ctx); return 0; } #endif /* CONFIG_NO_AES_CBC */