/* YACC parser for C expressions, for GDB. Copyright (C) 1986, 1989-2000, 2003-2004, 2006-2012 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Parse a C expression from text in a string, and return the result as a struct expression pointer. That structure contains arithmetic operations in reverse polish, with constants represented by operations that are followed by special data. See expression.h for the details of the format. What is important here is that it can be built up sequentially during the process of parsing; the lower levels of the tree always come first in the result. Note that malloc's and realloc's in this file are transformed to xmalloc and xrealloc respectively by the same sed command in the makefile that remaps any other malloc/realloc inserted by the parser generator. Doing this with #defines and trying to control the interaction with include files ( and for example) just became too messy, particularly when such includes can be inserted at random times by the parser generator. */ %{ #include "defs.h" #include "gdb_string.h" #include #include "expression.h" #include "value.h" #include "parser-defs.h" #include "language.h" #include "c-lang.h" #include "bfd.h" /* Required by objfiles.h. */ #include "symfile.h" /* Required by objfiles.h. */ #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */ #include "charset.h" #include "block.h" #include "cp-support.h" #include "dfp.h" #include "gdb_assert.h" #include "macroscope.h" #define parse_type builtin_type (parse_gdbarch) /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), as well as gratuitiously global symbol names, so we can have multiple yacc generated parsers in gdb. Note that these are only the variables produced by yacc. If other parser generators (bison, byacc, etc) produce additional global names that conflict at link time, then those parser generators need to be fixed instead of adding those names to this list. */ #define yymaxdepth c_maxdepth #define yyparse c_parse_internal #define yylex c_lex #define yyerror c_error #define yylval c_lval #define yychar c_char #define yydebug c_debug #define yypact c_pact #define yyr1 c_r1 #define yyr2 c_r2 #define yydef c_def #define yychk c_chk #define yypgo c_pgo #define yyact c_act #define yyexca c_exca #define yyerrflag c_errflag #define yynerrs c_nerrs #define yyps c_ps #define yypv c_pv #define yys c_s #define yy_yys c_yys #define yystate c_state #define yytmp c_tmp #define yyv c_v #define yy_yyv c_yyv #define yyval c_val #define yylloc c_lloc #define yyreds c_reds /* With YYDEBUG defined */ #define yytoks c_toks /* With YYDEBUG defined */ #define yyname c_name /* With YYDEBUG defined */ #define yyrule c_rule /* With YYDEBUG defined */ #define yylhs c_yylhs #define yylen c_yylen #define yydefred c_yydefred #define yydgoto c_yydgoto #define yysindex c_yysindex #define yyrindex c_yyrindex #define yygindex c_yygindex #define yytable c_yytable #define yycheck c_yycheck #ifndef YYDEBUG #define YYDEBUG 1 /* Default to yydebug support */ #endif #define YYFPRINTF parser_fprintf int yyparse (void); static int yylex (void); void yyerror (char *); %} /* Although the yacc "value" of an expression is not used, since the result is stored in the structure being created, other node types do have values. */ %union { LONGEST lval; struct { LONGEST val; struct type *type; } typed_val_int; struct { DOUBLEST dval; struct type *type; } typed_val_float; struct { gdb_byte val[16]; struct type *type; } typed_val_decfloat; struct symbol *sym; struct type *tval; struct stoken sval; struct typed_stoken tsval; struct ttype tsym; struct symtoken ssym; int voidval; struct block *bval; enum exp_opcode opcode; struct internalvar *ivar; struct stoken_vector svec; struct type **tvec; int *ivec; } %{ /* YYSTYPE gets defined by %union */ static int parse_number (char *, int, int, YYSTYPE *); static struct stoken operator_stoken (const char *); %} %type exp exp1 type_exp start variable qualified_name lcurly %type rcurly %type type typebase %type nonempty_typelist /* %type block */ /* Fancy type parsing. */ %type func_mod direct_abs_decl abs_decl %type ptype %type array_mod %token INT %token FLOAT %token DECFLOAT /* Both NAME and TYPENAME tokens represent symbols in the input, and both convey their data as strings. But a TYPENAME is a string that happens to be defined as a typedef or builtin type name (such as int or char) and a NAME is any other symbol. Contexts where this distinction is not important can use the nonterminal "name", which matches either NAME or TYPENAME. */ %token STRING %token CHAR %token NAME /* BLOCKNAME defined below to give it higher precedence. */ %token UNKNOWN_CPP_NAME %token COMPLETE %token TYPENAME %type name %type string_exp %type name_not_typename %type typename /* A NAME_OR_INT is a symbol which is not known in the symbol table, but which would parse as a valid number in the current input radix. E.g. "c" when input_radix==16. Depending on the parse, it will be turned into a name or into a number. */ %token NAME_OR_INT %token OPERATOR %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON %token TEMPLATE %token ERROR %token NEW DELETE %type operator %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST %token ENTRY /* Special type cases, put in to allow the parser to distinguish different legal basetypes. */ %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD %token VARIABLE %token ASSIGN_MODIFY /* C++ */ %token TRUEKEYWORD %token FALSEKEYWORD %left ',' %left ABOVE_COMMA %right '=' ASSIGN_MODIFY %right '?' %left OROR %left ANDAND %left '|' %left '^' %left '&' %left EQUAL NOTEQUAL %left '<' '>' LEQ GEQ %left LSH RSH %left '@' %left '+' '-' %left '*' '/' '%' %right UNARY INCREMENT DECREMENT %right ARROW ARROW_STAR '.' DOT_STAR '[' '(' %token BLOCKNAME %token FILENAME %type block %left COLONCOLON %% start : exp1 | type_exp ; type_exp: type { write_exp_elt_opcode(OP_TYPE); write_exp_elt_type($1); write_exp_elt_opcode(OP_TYPE);} ; /* Expressions, including the comma operator. */ exp1 : exp | exp1 ',' exp { write_exp_elt_opcode (BINOP_COMMA); } ; /* Expressions, not including the comma operator. */ exp : '*' exp %prec UNARY { write_exp_elt_opcode (UNOP_IND); } ; exp : '&' exp %prec UNARY { write_exp_elt_opcode (UNOP_ADDR); } ; exp : '-' exp %prec UNARY { write_exp_elt_opcode (UNOP_NEG); } ; exp : '+' exp %prec UNARY { write_exp_elt_opcode (UNOP_PLUS); } ; exp : '!' exp %prec UNARY { write_exp_elt_opcode (UNOP_LOGICAL_NOT); } ; exp : '~' exp %prec UNARY { write_exp_elt_opcode (UNOP_COMPLEMENT); } ; exp : INCREMENT exp %prec UNARY { write_exp_elt_opcode (UNOP_PREINCREMENT); } ; exp : DECREMENT exp %prec UNARY { write_exp_elt_opcode (UNOP_PREDECREMENT); } ; exp : exp INCREMENT %prec UNARY { write_exp_elt_opcode (UNOP_POSTINCREMENT); } ; exp : exp DECREMENT %prec UNARY { write_exp_elt_opcode (UNOP_POSTDECREMENT); } ; exp : SIZEOF exp %prec UNARY { write_exp_elt_opcode (UNOP_SIZEOF); } ; exp : exp ARROW name { write_exp_elt_opcode (STRUCTOP_PTR); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_PTR); } ; exp : exp ARROW name COMPLETE { mark_struct_expression (); write_exp_elt_opcode (STRUCTOP_PTR); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_PTR); } ; exp : exp ARROW COMPLETE { struct stoken s; mark_struct_expression (); write_exp_elt_opcode (STRUCTOP_PTR); s.ptr = ""; s.length = 0; write_exp_string (s); write_exp_elt_opcode (STRUCTOP_PTR); } ; exp : exp ARROW qualified_name { /* exp->type::name becomes exp->*(&type::name) */ /* Note: this doesn't work if name is a static member! FIXME */ write_exp_elt_opcode (UNOP_ADDR); write_exp_elt_opcode (STRUCTOP_MPTR); } ; exp : exp ARROW_STAR exp { write_exp_elt_opcode (STRUCTOP_MPTR); } ; exp : exp '.' name { write_exp_elt_opcode (STRUCTOP_STRUCT); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_STRUCT); } ; exp : exp '.' name COMPLETE { mark_struct_expression (); write_exp_elt_opcode (STRUCTOP_STRUCT); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_STRUCT); } ; exp : exp '.' COMPLETE { struct stoken s; mark_struct_expression (); write_exp_elt_opcode (STRUCTOP_STRUCT); s.ptr = ""; s.length = 0; write_exp_string (s); write_exp_elt_opcode (STRUCTOP_STRUCT); } ; exp : exp '.' qualified_name { /* exp.type::name becomes exp.*(&type::name) */ /* Note: this doesn't work if name is a static member! FIXME */ write_exp_elt_opcode (UNOP_ADDR); write_exp_elt_opcode (STRUCTOP_MEMBER); } ; exp : exp DOT_STAR exp { write_exp_elt_opcode (STRUCTOP_MEMBER); } ; exp : exp '[' exp1 ']' { write_exp_elt_opcode (BINOP_SUBSCRIPT); } ; exp : exp '(' /* This is to save the value of arglist_len being accumulated by an outer function call. */ { start_arglist (); } arglist ')' %prec ARROW { write_exp_elt_opcode (OP_FUNCALL); write_exp_elt_longcst ((LONGEST) end_arglist ()); write_exp_elt_opcode (OP_FUNCALL); } ; exp : UNKNOWN_CPP_NAME '(' { /* This could potentially be a an argument defined lookup function (Koenig). */ write_exp_elt_opcode (OP_ADL_FUNC); write_exp_elt_block (expression_context_block); write_exp_elt_sym (NULL); /* Placeholder. */ write_exp_string ($1.stoken); write_exp_elt_opcode (OP_ADL_FUNC); /* This is to save the value of arglist_len being accumulated by an outer function call. */ start_arglist (); } arglist ')' %prec ARROW { write_exp_elt_opcode (OP_FUNCALL); write_exp_elt_longcst ((LONGEST) end_arglist ()); write_exp_elt_opcode (OP_FUNCALL); } ; lcurly : '{' { start_arglist (); } ; arglist : ; arglist : exp { arglist_len = 1; } ; arglist : arglist ',' exp %prec ABOVE_COMMA { arglist_len++; } ; exp : exp '(' nonempty_typelist ')' const_or_volatile { int i; write_exp_elt_opcode (TYPE_INSTANCE); write_exp_elt_longcst ((LONGEST) $3[0]); for (i = 0; i < $3[0]; ++i) write_exp_elt_type ($3[i + 1]); write_exp_elt_longcst((LONGEST) $3[0]); write_exp_elt_opcode (TYPE_INSTANCE); free ($3); } ; rcurly : '}' { $$ = end_arglist () - 1; } ; exp : lcurly arglist rcurly %prec ARROW { write_exp_elt_opcode (OP_ARRAY); write_exp_elt_longcst ((LONGEST) 0); write_exp_elt_longcst ((LONGEST) $3); write_exp_elt_opcode (OP_ARRAY); } ; exp : lcurly type rcurly exp %prec UNARY { write_exp_elt_opcode (UNOP_MEMVAL); write_exp_elt_type ($2); write_exp_elt_opcode (UNOP_MEMVAL); } ; exp : '(' type ')' exp %prec UNARY { write_exp_elt_opcode (UNOP_CAST); write_exp_elt_type ($2); write_exp_elt_opcode (UNOP_CAST); } ; exp : '(' exp1 ')' { } ; /* Binary operators in order of decreasing precedence. */ exp : exp '@' exp { write_exp_elt_opcode (BINOP_REPEAT); } ; exp : exp '*' exp { write_exp_elt_opcode (BINOP_MUL); } ; exp : exp '/' exp { write_exp_elt_opcode (BINOP_DIV); } ; exp : exp '%' exp { write_exp_elt_opcode (BINOP_REM); } ; exp : exp '+' exp { write_exp_elt_opcode (BINOP_ADD); } ; exp : exp '-' exp { write_exp_elt_opcode (BINOP_SUB); } ; exp : exp LSH exp { write_exp_elt_opcode (BINOP_LSH); } ; exp : exp RSH exp { write_exp_elt_opcode (BINOP_RSH); } ; exp : exp EQUAL exp { write_exp_elt_opcode (BINOP_EQUAL); } ; exp : exp NOTEQUAL exp { write_exp_elt_opcode (BINOP_NOTEQUAL); } ; exp : exp LEQ exp { write_exp_elt_opcode (BINOP_LEQ); } ; exp : exp GEQ exp { write_exp_elt_opcode (BINOP_GEQ); } ; exp : exp '<' exp { write_exp_elt_opcode (BINOP_LESS); } ; exp : exp '>' exp { write_exp_elt_opcode (BINOP_GTR); } ; exp : exp '&' exp { write_exp_elt_opcode (BINOP_BITWISE_AND); } ; exp : exp '^' exp { write_exp_elt_opcode (BINOP_BITWISE_XOR); } ; exp : exp '|' exp { write_exp_elt_opcode (BINOP_BITWISE_IOR); } ; exp : exp ANDAND exp { write_exp_elt_opcode (BINOP_LOGICAL_AND); } ; exp : exp OROR exp { write_exp_elt_opcode (BINOP_LOGICAL_OR); } ; exp : exp '?' exp ':' exp %prec '?' { write_exp_elt_opcode (TERNOP_COND); } ; exp : exp '=' exp { write_exp_elt_opcode (BINOP_ASSIGN); } ; exp : exp ASSIGN_MODIFY exp { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); write_exp_elt_opcode ($2); write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); } ; exp : INT { write_exp_elt_opcode (OP_LONG); write_exp_elt_type ($1.type); write_exp_elt_longcst ((LONGEST)($1.val)); write_exp_elt_opcode (OP_LONG); } ; exp : CHAR { struct stoken_vector vec; vec.len = 1; vec.tokens = &$1; write_exp_string_vector ($1.type, &vec); } ; exp : NAME_OR_INT { YYSTYPE val; parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val); write_exp_elt_opcode (OP_LONG); write_exp_elt_type (val.typed_val_int.type); write_exp_elt_longcst ((LONGEST)val.typed_val_int.val); write_exp_elt_opcode (OP_LONG); } ; exp : FLOAT { write_exp_elt_opcode (OP_DOUBLE); write_exp_elt_type ($1.type); write_exp_elt_dblcst ($1.dval); write_exp_elt_opcode (OP_DOUBLE); } ; exp : DECFLOAT { write_exp_elt_opcode (OP_DECFLOAT); write_exp_elt_type ($1.type); write_exp_elt_decfloatcst ($1.val); write_exp_elt_opcode (OP_DECFLOAT); } ; exp : variable ; exp : VARIABLE { write_dollar_variable ($1); } ; exp : SIZEOF '(' type ')' %prec UNARY { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (lookup_signed_typename (parse_language, parse_gdbarch, "int")); CHECK_TYPEDEF ($3); write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3)); write_exp_elt_opcode (OP_LONG); } ; exp : REINTERPRET_CAST '<' type '>' '(' exp ')' %prec UNARY { write_exp_elt_opcode (UNOP_REINTERPRET_CAST); write_exp_elt_type ($3); write_exp_elt_opcode (UNOP_REINTERPRET_CAST); } ; exp : STATIC_CAST '<' type '>' '(' exp ')' %prec UNARY { write_exp_elt_opcode (UNOP_CAST); write_exp_elt_type ($3); write_exp_elt_opcode (UNOP_CAST); } ; exp : DYNAMIC_CAST '<' type '>' '(' exp ')' %prec UNARY { write_exp_elt_opcode (UNOP_DYNAMIC_CAST); write_exp_elt_type ($3); write_exp_elt_opcode (UNOP_DYNAMIC_CAST); } ; exp : CONST_CAST '<' type '>' '(' exp ')' %prec UNARY { /* We could do more error checking here, but it doesn't seem worthwhile. */ write_exp_elt_opcode (UNOP_CAST); write_exp_elt_type ($3); write_exp_elt_opcode (UNOP_CAST); } ; string_exp: STRING { /* We copy the string here, and not in the lexer, to guarantee that we do not leak a string. Note that we follow the NUL-termination convention of the lexer. */ struct typed_stoken *vec = XNEW (struct typed_stoken); $$.len = 1; $$.tokens = vec; vec->type = $1.type; vec->length = $1.length; vec->ptr = malloc ($1.length + 1); memcpy (vec->ptr, $1.ptr, $1.length + 1); } | string_exp STRING { /* Note that we NUL-terminate here, but just for convenience. */ char *p; ++$$.len; $$.tokens = realloc ($$.tokens, $$.len * sizeof (struct typed_stoken)); p = malloc ($2.length + 1); memcpy (p, $2.ptr, $2.length + 1); $$.tokens[$$.len - 1].type = $2.type; $$.tokens[$$.len - 1].length = $2.length; $$.tokens[$$.len - 1].ptr = p; } ; exp : string_exp { int i; enum c_string_type type = C_STRING; for (i = 0; i < $1.len; ++i) { switch ($1.tokens[i].type) { case C_STRING: break; case C_WIDE_STRING: case C_STRING_16: case C_STRING_32: if (type != C_STRING && type != $1.tokens[i].type) error (_("Undefined string concatenation.")); type = $1.tokens[i].type; break; default: /* internal error */ internal_error (__FILE__, __LINE__, "unrecognized type in string concatenation"); } } write_exp_string_vector (type, &$1); for (i = 0; i < $1.len; ++i) free ($1.tokens[i].ptr); free ($1.tokens); } ; /* C++. */ exp : TRUEKEYWORD { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (parse_type->builtin_bool); write_exp_elt_longcst ((LONGEST) 1); write_exp_elt_opcode (OP_LONG); } ; exp : FALSEKEYWORD { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (parse_type->builtin_bool); write_exp_elt_longcst ((LONGEST) 0); write_exp_elt_opcode (OP_LONG); } ; /* end of C++. */ block : BLOCKNAME { if ($1.sym) $$ = SYMBOL_BLOCK_VALUE ($1.sym); else error (_("No file or function \"%s\"."), copy_name ($1.stoken)); } | FILENAME { $$ = $1; } ; block : block COLONCOLON name { struct symbol *tem = lookup_symbol (copy_name ($3), $1, VAR_DOMAIN, (int *) NULL); if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK) error (_("No function \"%s\" in specified context."), copy_name ($3)); $$ = SYMBOL_BLOCK_VALUE (tem); } ; variable: name_not_typename ENTRY { struct symbol *sym = $1.sym; if (sym == NULL || !SYMBOL_IS_ARGUMENT (sym) || !symbol_read_needs_frame (sym)) error (_("@entry can be used only for function " "parameters, not for \"%s\""), copy_name ($1.stoken)); write_exp_elt_opcode (OP_VAR_ENTRY_VALUE); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_ENTRY_VALUE); } ; variable: block COLONCOLON name { struct symbol *sym; sym = lookup_symbol (copy_name ($3), $1, VAR_DOMAIN, (int *) NULL); if (sym == 0) error (_("No symbol \"%s\" in specified context."), copy_name ($3)); write_exp_elt_opcode (OP_VAR_VALUE); /* block_found is set by lookup_symbol. */ write_exp_elt_block (block_found); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } ; qualified_name: TYPENAME COLONCOLON name { struct type *type = $1.type; CHECK_TYPEDEF (type); if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION && TYPE_CODE (type) != TYPE_CODE_NAMESPACE) error (_("`%s' is not defined as an aggregate type."), TYPE_NAME (type)); write_exp_elt_opcode (OP_SCOPE); write_exp_elt_type (type); write_exp_string ($3); write_exp_elt_opcode (OP_SCOPE); } | TYPENAME COLONCOLON '~' name { struct type *type = $1.type; struct stoken tmp_token; CHECK_TYPEDEF (type); if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION && TYPE_CODE (type) != TYPE_CODE_NAMESPACE) error (_("`%s' is not defined as an aggregate type."), TYPE_NAME (type)); tmp_token.ptr = (char*) alloca ($4.length + 2); tmp_token.length = $4.length + 1; tmp_token.ptr[0] = '~'; memcpy (tmp_token.ptr+1, $4.ptr, $4.length); tmp_token.ptr[tmp_token.length] = 0; /* Check for valid destructor name. */ destructor_name_p (tmp_token.ptr, $1.type); write_exp_elt_opcode (OP_SCOPE); write_exp_elt_type (type); write_exp_string (tmp_token); write_exp_elt_opcode (OP_SCOPE); } | TYPENAME COLONCOLON name COLONCOLON name { char *copy = copy_name ($3); error (_("No type \"%s\" within class " "or namespace \"%s\"."), copy, TYPE_NAME ($1.type)); } ; variable: qualified_name | COLONCOLON name_not_typename { char *name = copy_name ($2.stoken); struct symbol *sym; struct minimal_symbol *msymbol; sym = lookup_symbol (name, (const struct block *) NULL, VAR_DOMAIN, (int *) NULL); if (sym) { write_exp_elt_opcode (OP_VAR_VALUE); write_exp_elt_block (NULL); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); break; } msymbol = lookup_minimal_symbol (name, NULL, NULL); if (msymbol != NULL) write_exp_msymbol (msymbol); else if (!have_full_symbols () && !have_partial_symbols ()) error (_("No symbol table is loaded. Use the \"file\" command.")); else error (_("No symbol \"%s\" in current context."), name); } ; variable: name_not_typename { struct symbol *sym = $1.sym; if (sym) { if (symbol_read_needs_frame (sym)) { if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; } write_exp_elt_opcode (OP_VAR_VALUE); /* We want to use the selected frame, not another more inner frame which happens to be in the same block. */ write_exp_elt_block (NULL); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } else if ($1.is_a_field_of_this) { /* C++: it hangs off of `this'. Must not inadvertently convert from a method call to data ref. */ if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (STRUCTOP_PTR); write_exp_string ($1.stoken); write_exp_elt_opcode (STRUCTOP_PTR); } else { struct minimal_symbol *msymbol; char *arg = copy_name ($1.stoken); msymbol = lookup_minimal_symbol (arg, NULL, NULL); if (msymbol != NULL) write_exp_msymbol (msymbol); else if (!have_full_symbols () && !have_partial_symbols ()) error (_("No symbol table is loaded. Use the \"file\" command.")); else error (_("No symbol \"%s\" in current context."), copy_name ($1.stoken)); } } ; space_identifier : '@' NAME { push_type_address_space (copy_name ($2.stoken)); push_type (tp_space_identifier); } ; const_or_volatile: const_or_volatile_noopt | ; cv_with_space_id : const_or_volatile space_identifier const_or_volatile ; const_or_volatile_or_space_identifier_noopt: cv_with_space_id | const_or_volatile_noopt ; const_or_volatile_or_space_identifier: const_or_volatile_or_space_identifier_noopt | ; abs_decl: '*' { push_type (tp_pointer); $$ = 0; } | '*' abs_decl { push_type (tp_pointer); $$ = $2; } | '&' { push_type (tp_reference); $$ = 0; } | '&' abs_decl { push_type (tp_reference); $$ = $2; } | direct_abs_decl ; direct_abs_decl: '(' abs_decl ')' { $$ = $2; } | direct_abs_decl array_mod { push_type_int ($2); push_type (tp_array); } | array_mod { push_type_int ($1); push_type (tp_array); $$ = 0; } | direct_abs_decl func_mod { push_type (tp_function); } | func_mod { push_type (tp_function); } ; array_mod: '[' ']' { $$ = -1; } | '[' INT ']' { $$ = $2.val; } ; func_mod: '(' ')' { $$ = 0; } | '(' nonempty_typelist ')' { free ($2); $$ = 0; } ; /* We used to try to recognize pointer to member types here, but that didn't work (shift/reduce conflicts meant that these rules never got executed). The problem is that int (foo::bar::baz::bizzle) is a function type but int (foo::bar::baz::bizzle::*) is a pointer to member type. Stroustrup loses again! */ type : ptype ; typebase /* Implements (approximately): (type-qualifier)* type-specifier */ : TYPENAME { $$ = $1.type; } | INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "int"); } | LONG { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long"); } | SHORT { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "short"); } | LONG INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long"); } | LONG SIGNED_KEYWORD INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long"); } | LONG SIGNED_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long"); } | SIGNED_KEYWORD LONG INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long"); } | UNSIGNED LONG INT_KEYWORD { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long"); } | LONG UNSIGNED INT_KEYWORD { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long"); } | LONG UNSIGNED { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long"); } | LONG LONG { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long long"); } | LONG LONG INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long long"); } | LONG LONG SIGNED_KEYWORD INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long long"); } | LONG LONG SIGNED_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long long"); } | SIGNED_KEYWORD LONG LONG { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long long"); } | SIGNED_KEYWORD LONG LONG INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "long long"); } | UNSIGNED LONG LONG { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long long"); } | UNSIGNED LONG LONG INT_KEYWORD { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long long"); } | LONG LONG UNSIGNED { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long long"); } | LONG LONG UNSIGNED INT_KEYWORD { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "long long"); } | SHORT INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "short"); } | SHORT SIGNED_KEYWORD INT_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "short"); } | SHORT SIGNED_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "short"); } | UNSIGNED SHORT INT_KEYWORD { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "short"); } | SHORT UNSIGNED { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "short"); } | SHORT UNSIGNED INT_KEYWORD { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "short"); } | DOUBLE_KEYWORD { $$ = lookup_typename (parse_language, parse_gdbarch, "double", (struct block *) NULL, 0); } | LONG DOUBLE_KEYWORD { $$ = lookup_typename (parse_language, parse_gdbarch, "long double", (struct block *) NULL, 0); } | STRUCT name { $$ = lookup_struct (copy_name ($2), expression_context_block); } | CLASS name { $$ = lookup_struct (copy_name ($2), expression_context_block); } | UNION name { $$ = lookup_union (copy_name ($2), expression_context_block); } | ENUM name { $$ = lookup_enum (copy_name ($2), expression_context_block); } | UNSIGNED typename { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, TYPE_NAME($2.type)); } | UNSIGNED { $$ = lookup_unsigned_typename (parse_language, parse_gdbarch, "int"); } | SIGNED_KEYWORD typename { $$ = lookup_signed_typename (parse_language, parse_gdbarch, TYPE_NAME($2.type)); } | SIGNED_KEYWORD { $$ = lookup_signed_typename (parse_language, parse_gdbarch, "int"); } /* It appears that this rule for templates is never reduced; template recognition happens by lookahead in the token processing code in yylex. */ | TEMPLATE name '<' type '>' { $$ = lookup_template_type(copy_name($2), $4, expression_context_block); } | const_or_volatile_or_space_identifier_noopt typebase { $$ = follow_types ($2); } | typebase const_or_volatile_or_space_identifier_noopt { $$ = follow_types ($1); } ; typename: TYPENAME | INT_KEYWORD { $$.stoken.ptr = "int"; $$.stoken.length = 3; $$.type = lookup_signed_typename (parse_language, parse_gdbarch, "int"); } | LONG { $$.stoken.ptr = "long"; $$.stoken.length = 4; $$.type = lookup_signed_typename (parse_language, parse_gdbarch, "long"); } | SHORT { $$.stoken.ptr = "short"; $$.stoken.length = 5; $$.type = lookup_signed_typename (parse_language, parse_gdbarch, "short"); } ; nonempty_typelist : type { $$ = (struct type **) malloc (sizeof (struct type *) * 2); $$[0] = 1; /* Number of types in vector */ $$[1] = $1; } | nonempty_typelist ',' type { int len = sizeof (struct type *) * (++($1[0]) + 1); $$ = (struct type **) realloc ((char *) $1, len); $$[$$[0]] = $3; } ; ptype : typebase | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier { $$ = follow_types ($1); } ; const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD | VOLATILE_KEYWORD CONST_KEYWORD ; const_or_volatile_noopt: const_and_volatile { push_type (tp_const); push_type (tp_volatile); } | CONST_KEYWORD { push_type (tp_const); } | VOLATILE_KEYWORD { push_type (tp_volatile); } ; operator: OPERATOR NEW { $$ = operator_stoken (" new"); } | OPERATOR DELETE { $$ = operator_stoken (" delete"); } | OPERATOR NEW '[' ']' { $$ = operator_stoken (" new[]"); } | OPERATOR DELETE '[' ']' { $$ = operator_stoken (" delete[]"); } | OPERATOR '+' { $$ = operator_stoken ("+"); } | OPERATOR '-' { $$ = operator_stoken ("-"); } | OPERATOR '*' { $$ = operator_stoken ("*"); } | OPERATOR '/' { $$ = operator_stoken ("/"); } | OPERATOR '%' { $$ = operator_stoken ("%"); } | OPERATOR '^' { $$ = operator_stoken ("^"); } | OPERATOR '&' { $$ = operator_stoken ("&"); } | OPERATOR '|' { $$ = operator_stoken ("|"); } | OPERATOR '~' { $$ = operator_stoken ("~"); } | OPERATOR '!' { $$ = operator_stoken ("!"); } | OPERATOR '=' { $$ = operator_stoken ("="); } | OPERATOR '<' { $$ = operator_stoken ("<"); } | OPERATOR '>' { $$ = operator_stoken (">"); } | OPERATOR ASSIGN_MODIFY { const char *op = "unknown"; switch ($2) { case BINOP_RSH: op = ">>="; break; case BINOP_LSH: op = "<<="; break; case BINOP_ADD: op = "+="; break; case BINOP_SUB: op = "-="; break; case BINOP_MUL: op = "*="; break; case BINOP_DIV: op = "/="; break; case BINOP_REM: op = "%="; break; case BINOP_BITWISE_IOR: op = "|="; break; case BINOP_BITWISE_AND: op = "&="; break; case BINOP_BITWISE_XOR: op = "^="; break; default: break; } $$ = operator_stoken (op); } | OPERATOR LSH { $$ = operator_stoken ("<<"); } | OPERATOR RSH { $$ = operator_stoken (">>"); } | OPERATOR EQUAL { $$ = operator_stoken ("=="); } | OPERATOR NOTEQUAL { $$ = operator_stoken ("!="); } | OPERATOR LEQ { $$ = operator_stoken ("<="); } | OPERATOR GEQ { $$ = operator_stoken (">="); } | OPERATOR ANDAND { $$ = operator_stoken ("&&"); } | OPERATOR OROR { $$ = operator_stoken ("||"); } | OPERATOR INCREMENT { $$ = operator_stoken ("++"); } | OPERATOR DECREMENT { $$ = operator_stoken ("--"); } | OPERATOR ',' { $$ = operator_stoken (","); } | OPERATOR ARROW_STAR { $$ = operator_stoken ("->*"); } | OPERATOR ARROW { $$ = operator_stoken ("->"); } | OPERATOR '(' ')' { $$ = operator_stoken ("()"); } | OPERATOR '[' ']' { $$ = operator_stoken ("[]"); } | OPERATOR ptype { char *name; long length; struct ui_file *buf = mem_fileopen (); c_print_type ($2, NULL, buf, -1, 0); name = ui_file_xstrdup (buf, &length); ui_file_delete (buf); $$ = operator_stoken (name); free (name); } ; name : NAME { $$ = $1.stoken; } | BLOCKNAME { $$ = $1.stoken; } | TYPENAME { $$ = $1.stoken; } | NAME_OR_INT { $$ = $1.stoken; } | UNKNOWN_CPP_NAME { $$ = $1.stoken; } | operator { $$ = $1; } ; name_not_typename : NAME | BLOCKNAME /* These would be useful if name_not_typename was useful, but it is just a fake for "variable", so these cause reduce/reduce conflicts because the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, =exp) or just an exp. If name_not_typename was ever used in an lvalue context where only a name could occur, this might be useful. | NAME_OR_INT */ | operator { $$.stoken = $1; $$.sym = lookup_symbol ($1.ptr, expression_context_block, VAR_DOMAIN, &$$.is_a_field_of_this); } | UNKNOWN_CPP_NAME ; %% /* Returns a stoken of the operator name given by OP (which does not include the string "operator"). */ static struct stoken operator_stoken (const char *op) { static const char *operator_string = "operator"; struct stoken st = { NULL, 0 }; st.length = strlen (operator_string) + strlen (op); st.ptr = malloc (st.length + 1); strcpy (st.ptr, operator_string); strcat (st.ptr, op); /* The toplevel (c_parse) will free the memory allocated here. */ make_cleanup (free, st.ptr); return st; }; /* Take care of parsing a number (anything that starts with a digit). Set yylval and return the token type; update lexptr. LEN is the number of characters in it. */ /*** Needs some error checking for the float case ***/ static int parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere) { /* FIXME: Shouldn't these be unsigned? We don't deal with negative values here, and we do kind of silly things like cast to unsigned. */ LONGEST n = 0; LONGEST prevn = 0; ULONGEST un; int i = 0; int c; int base = input_radix; int unsigned_p = 0; /* Number of "L" suffixes encountered. */ int long_p = 0; /* We have found a "L" or "U" suffix. */ int found_suffix = 0; ULONGEST high_bit; struct type *signed_type; struct type *unsigned_type; if (parsed_float) { const char *suffix; int suffix_len; /* If it ends at "df", "dd" or "dl", take it as type of decimal floating point. Return DECFLOAT. */ if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f') { p[len - 2] = '\0'; putithere->typed_val_decfloat.type = parse_type->builtin_decfloat; decimal_from_string (putithere->typed_val_decfloat.val, 4, gdbarch_byte_order (parse_gdbarch), p); p[len - 2] = 'd'; return DECFLOAT; } if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd') { p[len - 2] = '\0'; putithere->typed_val_decfloat.type = parse_type->builtin_decdouble; decimal_from_string (putithere->typed_val_decfloat.val, 8, gdbarch_byte_order (parse_gdbarch), p); p[len - 2] = 'd'; return DECFLOAT; } if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l') { p[len - 2] = '\0'; putithere->typed_val_decfloat.type = parse_type->builtin_declong; decimal_from_string (putithere->typed_val_decfloat.val, 16, gdbarch_byte_order (parse_gdbarch), p); p[len - 2] = 'd'; return DECFLOAT; } if (! parse_c_float (parse_gdbarch, p, len, &putithere->typed_val_float.dval, &putithere->typed_val_float.type)) return ERROR; return FLOAT; } /* Handle base-switching prefixes 0x, 0t, 0d, 0 */ if (p[0] == '0') switch (p[1]) { case 'x': case 'X': if (len >= 3) { p += 2; base = 16; len -= 2; } break; case 'b': case 'B': if (len >= 3) { p += 2; base = 2; len -= 2; } break; case 't': case 'T': case 'd': case 'D': if (len >= 3) { p += 2; base = 10; len -= 2; } break; default: base = 8; break; } while (len-- > 0) { c = *p++; if (c >= 'A' && c <= 'Z') c += 'a' - 'A'; if (c != 'l' && c != 'u') n *= base; if (c >= '0' && c <= '9') { if (found_suffix) return ERROR; n += i = c - '0'; } else { if (base > 10 && c >= 'a' && c <= 'f') { if (found_suffix) return ERROR; n += i = c - 'a' + 10; } else if (c == 'l') { ++long_p; found_suffix = 1; } else if (c == 'u') { unsigned_p = 1; found_suffix = 1; } else return ERROR; /* Char not a digit */ } if (i >= base) return ERROR; /* Invalid digit in this base */ /* Portably test for overflow (only works for nonzero values, so make a second check for zero). FIXME: Can't we just make n and prevn unsigned and avoid this? */ if (c != 'l' && c != 'u' && (prevn >= n) && n != 0) unsigned_p = 1; /* Try something unsigned */ /* Portably test for unsigned overflow. FIXME: This check is wrong; for example it doesn't find overflow on 0x123456789 when LONGEST is 32 bits. */ if (c != 'l' && c != 'u' && n != 0) { if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n)) error (_("Numeric constant too large.")); } prevn = n; } /* An integer constant is an int, a long, or a long long. An L suffix forces it to be long; an LL suffix forces it to be long long. If not forced to a larger size, it gets the first type of the above that it fits in. To figure out whether it fits, we shift it right and see whether anything remains. Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one operation, because many compilers will warn about such a shift (which always produces a zero result). Sometimes gdbarch_int_bit or gdbarch_long_bit will be that big, sometimes not. To deal with the case where it is we just always shift the value more than once, with fewer bits each time. */ un = (ULONGEST)n >> 2; if (long_p == 0 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0) { high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1); /* A large decimal (not hex or octal) constant (between INT_MAX and UINT_MAX) is a long or unsigned long, according to ANSI, never an unsigned int, but this code treats it as unsigned int. This probably should be fixed. GCC gives a warning on such constants. */ unsigned_type = parse_type->builtin_unsigned_int; signed_type = parse_type->builtin_int; } else if (long_p <= 1 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0) { high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1); unsigned_type = parse_type->builtin_unsigned_long; signed_type = parse_type->builtin_long; } else { int shift; if (sizeof (ULONGEST) * HOST_CHAR_BIT < gdbarch_long_long_bit (parse_gdbarch)) /* A long long does not fit in a LONGEST. */ shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1); else shift = (gdbarch_long_long_bit (parse_gdbarch) - 1); high_bit = (ULONGEST) 1 << shift; unsigned_type = parse_type->builtin_unsigned_long_long; signed_type = parse_type->builtin_long_long; } putithere->typed_val_int.val = n; /* If the high bit of the worked out type is set then this number has to be unsigned. */ if (unsigned_p || (n & high_bit)) { putithere->typed_val_int.type = unsigned_type; } else { putithere->typed_val_int.type = signed_type; } return INT; } /* Temporary obstack used for holding strings. */ static struct obstack tempbuf; static int tempbuf_init; /* Parse a C escape sequence. The initial backslash of the sequence is at (*PTR)[-1]. *PTR will be updated to point to just after the last character of the sequence. If OUTPUT is not NULL, the translated form of the escape sequence will be written there. If OUTPUT is NULL, no output is written and the call will only affect *PTR. If an escape sequence is expressed in target bytes, then the entire sequence will simply be copied to OUTPUT. Return 1 if any character was emitted, 0 otherwise. */ int c_parse_escape (char **ptr, struct obstack *output) { char *tokptr = *ptr; int result = 1; /* Some escape sequences undergo character set conversion. Those we translate here. */ switch (*tokptr) { /* Hex escapes do not undergo character set conversion, so keep the escape sequence for later. */ case 'x': if (output) obstack_grow_str (output, "\\x"); ++tokptr; if (!isxdigit (*tokptr)) error (_("\\x escape without a following hex digit")); while (isxdigit (*tokptr)) { if (output) obstack_1grow (output, *tokptr); ++tokptr; } break; /* Octal escapes do not undergo character set conversion, so keep the escape sequence for later. */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int i; if (output) obstack_grow_str (output, "\\"); for (i = 0; i < 3 && isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9'; ++i) { if (output) obstack_1grow (output, *tokptr); ++tokptr; } } break; /* We handle UCNs later. We could handle them here, but that would mean a spurious error in the case where the UCN could be converted to the target charset but not the host charset. */ case 'u': case 'U': { char c = *tokptr; int i, len = c == 'U' ? 8 : 4; if (output) { obstack_1grow (output, '\\'); obstack_1grow (output, *tokptr); } ++tokptr; if (!isxdigit (*tokptr)) error (_("\\%c escape without a following hex digit"), c); for (i = 0; i < len && isxdigit (*tokptr); ++i) { if (output) obstack_1grow (output, *tokptr); ++tokptr; } } break; /* We must pass backslash through so that it does not cause quoting during the second expansion. */ case '\\': if (output) obstack_grow_str (output, "\\\\"); ++tokptr; break; /* Escapes which undergo conversion. */ case 'a': if (output) obstack_1grow (output, '\a'); ++tokptr; break; case 'b': if (output) obstack_1grow (output, '\b'); ++tokptr; break; case 'f': if (output) obstack_1grow (output, '\f'); ++tokptr; break; case 'n': if (output) obstack_1grow (output, '\n'); ++tokptr; break; case 'r': if (output) obstack_1grow (output, '\r'); ++tokptr; break; case 't': if (output) obstack_1grow (output, '\t'); ++tokptr; break; case 'v': if (output) obstack_1grow (output, '\v'); ++tokptr; break; /* GCC extension. */ case 'e': if (output) obstack_1grow (output, HOST_ESCAPE_CHAR); ++tokptr; break; /* Backslash-newline expands to nothing at all. */ case '\n': ++tokptr; result = 0; break; /* A few escapes just expand to the character itself. */ case '\'': case '\"': case '?': /* GCC extensions. */ case '(': case '{': case '[': case '%': /* Unrecognized escapes turn into the character itself. */ default: if (output) obstack_1grow (output, *tokptr); ++tokptr; break; } *ptr = tokptr; return result; } /* Parse a string or character literal from TOKPTR. The string or character may be wide or unicode. *OUTPTR is set to just after the end of the literal in the input string. The resulting token is stored in VALUE. This returns a token value, either STRING or CHAR, depending on what was parsed. *HOST_CHARS is set to the number of host characters in the literal. */ static int parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value, int *host_chars) { int quote; enum c_string_type type; /* Build the gdb internal form of the input string in tempbuf. Note that the buffer is null byte terminated *only* for the convenience of debugging gdb itself and printing the buffer contents when the buffer contains no embedded nulls. Gdb does not depend upon the buffer being null byte terminated, it uses the length string instead. This allows gdb to handle C strings (as well as strings in other languages) with embedded null bytes */ if (!tempbuf_init) tempbuf_init = 1; else obstack_free (&tempbuf, NULL); obstack_init (&tempbuf); /* Record the string type. */ if (*tokptr == 'L') { type = C_WIDE_STRING; ++tokptr; } else if (*tokptr == 'u') { type = C_STRING_16; ++tokptr; } else if (*tokptr == 'U') { type = C_STRING_32; ++tokptr; } else type = C_STRING; /* Skip the quote. */ quote = *tokptr; if (quote == '\'') type |= C_CHAR; ++tokptr; *host_chars = 0; while (*tokptr) { char c = *tokptr; if (c == '\\') { ++tokptr; *host_chars += c_parse_escape (&tokptr, &tempbuf); } else if (c == quote) break; else { obstack_1grow (&tempbuf, c); ++tokptr; /* FIXME: this does the wrong thing with multi-byte host characters. We could use mbrlen here, but that would make "set host-charset" a bit less useful. */ ++*host_chars; } } if (*tokptr != quote) { if (quote == '"') error (_("Unterminated string in expression.")); else error (_("Unmatched single quote.")); } ++tokptr; value->type = type; value->ptr = obstack_base (&tempbuf); value->length = obstack_object_size (&tempbuf); *outptr = tokptr; return quote == '"' ? STRING : CHAR; } struct token { char *operator; int token; enum exp_opcode opcode; int cxx_only; }; static const struct token tokentab3[] = { {">>=", ASSIGN_MODIFY, BINOP_RSH, 0}, {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0}, {"->*", ARROW_STAR, BINOP_END, 1} }; static const struct token tokentab2[] = { {"+=", ASSIGN_MODIFY, BINOP_ADD, 0}, {"-=", ASSIGN_MODIFY, BINOP_SUB, 0}, {"*=", ASSIGN_MODIFY, BINOP_MUL, 0}, {"/=", ASSIGN_MODIFY, BINOP_DIV, 0}, {"%=", ASSIGN_MODIFY, BINOP_REM, 0}, {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0}, {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0}, {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0}, {"++", INCREMENT, BINOP_END, 0}, {"--", DECREMENT, BINOP_END, 0}, {"->", ARROW, BINOP_END, 0}, {"&&", ANDAND, BINOP_END, 0}, {"||", OROR, BINOP_END, 0}, /* "::" is *not* only C++: gdb overrides its meaning in several different ways, e.g., 'filename'::func, function::variable. */ {"::", COLONCOLON, BINOP_END, 0}, {"<<", LSH, BINOP_END, 0}, {">>", RSH, BINOP_END, 0}, {"==", EQUAL, BINOP_END, 0}, {"!=", NOTEQUAL, BINOP_END, 0}, {"<=", LEQ, BINOP_END, 0}, {">=", GEQ, BINOP_END, 0}, {".*", DOT_STAR, BINOP_END, 1} }; /* Identifier-like tokens. */ static const struct token ident_tokens[] = { {"unsigned", UNSIGNED, OP_NULL, 0}, {"template", TEMPLATE, OP_NULL, 1}, {"volatile", VOLATILE_KEYWORD, OP_NULL, 0}, {"struct", STRUCT, OP_NULL, 0}, {"signed", SIGNED_KEYWORD, OP_NULL, 0}, {"sizeof", SIZEOF, OP_NULL, 0}, {"double", DOUBLE_KEYWORD, OP_NULL, 0}, {"false", FALSEKEYWORD, OP_NULL, 1}, {"class", CLASS, OP_NULL, 1}, {"union", UNION, OP_NULL, 0}, {"short", SHORT, OP_NULL, 0}, {"const", CONST_KEYWORD, OP_NULL, 0}, {"enum", ENUM, OP_NULL, 0}, {"long", LONG, OP_NULL, 0}, {"true", TRUEKEYWORD, OP_NULL, 1}, {"int", INT_KEYWORD, OP_NULL, 0}, {"new", NEW, OP_NULL, 1}, {"delete", DELETE, OP_NULL, 1}, {"operator", OPERATOR, OP_NULL, 1}, {"and", ANDAND, BINOP_END, 1}, {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1}, {"bitand", '&', OP_NULL, 1}, {"bitor", '|', OP_NULL, 1}, {"compl", '~', OP_NULL, 1}, {"not", '!', OP_NULL, 1}, {"not_eq", NOTEQUAL, BINOP_END, 1}, {"or", OROR, BINOP_END, 1}, {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1}, {"xor", '^', OP_NULL, 1}, {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1}, {"const_cast", CONST_CAST, OP_NULL, 1 }, {"dynamic_cast", DYNAMIC_CAST, OP_NULL, 1 }, {"static_cast", STATIC_CAST, OP_NULL, 1 }, {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, 1 } }; /* When we find that lexptr (the global var defined in parse.c) is pointing at a macro invocation, we expand the invocation, and call scan_macro_expansion to save the old lexptr here and point lexptr into the expanded text. When we reach the end of that, we call end_macro_expansion to pop back to the value we saved here. The macro expansion code promises to return only fully-expanded text, so we don't need to "push" more than one level. This is disgusting, of course. It would be cleaner to do all macro expansion beforehand, and then hand that to lexptr. But we don't really know where the expression ends. Remember, in a command like (gdb) break *ADDRESS if CONDITION we evaluate ADDRESS in the scope of the current frame, but we evaluate CONDITION in the scope of the breakpoint's location. So it's simply wrong to try to macro-expand the whole thing at once. */ static char *macro_original_text; /* We save all intermediate macro expansions on this obstack for the duration of a single parse. The expansion text may sometimes have to live past the end of the expansion, due to yacc lookahead. Rather than try to be clever about saving the data for a single token, we simply keep it all and delete it after parsing has completed. */ static struct obstack expansion_obstack; static void scan_macro_expansion (char *expansion) { char *copy; /* We'd better not be trying to push the stack twice. */ gdb_assert (! macro_original_text); /* Copy to the obstack, and then free the intermediate expansion. */ copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion)); xfree (expansion); /* Save the old lexptr value, so we can return to it when we're done parsing the expanded text. */ macro_original_text = lexptr; lexptr = copy; } static int scanning_macro_expansion (void) { return macro_original_text != 0; } static void finished_macro_expansion (void) { /* There'd better be something to pop back to. */ gdb_assert (macro_original_text); /* Pop back to the original text. */ lexptr = macro_original_text; macro_original_text = 0; } static void scan_macro_cleanup (void *dummy) { if (macro_original_text) finished_macro_expansion (); obstack_free (&expansion_obstack, NULL); } /* Return true iff the token represents a C++ cast operator. */ static int is_cast_operator (const char *token, int len) { return (! strncmp (token, "dynamic_cast", len) || ! strncmp (token, "static_cast", len) || ! strncmp (token, "reinterpret_cast", len) || ! strncmp (token, "const_cast", len)); } /* The scope used for macro expansion. */ static struct macro_scope *expression_macro_scope; /* This is set if a NAME token appeared at the very end of the input string, with no whitespace separating the name from the EOF. This is used only when parsing to do field name completion. */ static int saw_name_at_eof; /* This is set if the previously-returned token was a structure operator -- either '.' or ARROW. This is used only when parsing to do field name completion. */ static int last_was_structop; /* Read one token, getting characters through lexptr. */ static int lex_one_token (void) { int c; int namelen; unsigned int i; char *tokstart; int saw_structop = last_was_structop; char *copy; last_was_structop = 0; retry: /* Check if this is a macro invocation that we need to expand. */ if (! scanning_macro_expansion ()) { char *expanded = macro_expand_next (&lexptr, standard_macro_lookup, expression_macro_scope); if (expanded) scan_macro_expansion (expanded); } prev_lexptr = lexptr; tokstart = lexptr; /* See if it is a special token of length 3. */ for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++) if (strncmp (tokstart, tokentab3[i].operator, 3) == 0) { if (tokentab3[i].cxx_only && parse_language->la_language != language_cplus) break; lexptr += 3; yylval.opcode = tokentab3[i].opcode; return tokentab3[i].token; } /* See if it is a special token of length 2. */ for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++) if (strncmp (tokstart, tokentab2[i].operator, 2) == 0) { if (tokentab2[i].cxx_only && parse_language->la_language != language_cplus) break; lexptr += 2; yylval.opcode = tokentab2[i].opcode; if (in_parse_field && tokentab2[i].token == ARROW) last_was_structop = 1; return tokentab2[i].token; } switch (c = *tokstart) { case 0: /* If we were just scanning the result of a macro expansion, then we need to resume scanning the original text. If we're parsing for field name completion, and the previous token allows such completion, return a COMPLETE token. Otherwise, we were already scanning the original text, and we're really done. */ if (scanning_macro_expansion ()) { finished_macro_expansion (); goto retry; } else if (saw_name_at_eof) { saw_name_at_eof = 0; return COMPLETE; } else if (saw_structop) return COMPLETE; else return 0; case ' ': case '\t': case '\n': lexptr++; goto retry; case '[': case '(': paren_depth++; lexptr++; return c; case ']': case ')': if (paren_depth == 0) return 0; paren_depth--; lexptr++; return c; case ',': if (comma_terminates && paren_depth == 0 && ! scanning_macro_expansion ()) return 0; lexptr++; return c; case '.': /* Might be a floating point number. */ if (lexptr[1] < '0' || lexptr[1] > '9') { if (in_parse_field) last_was_structop = 1; goto symbol; /* Nope, must be a symbol. */ } /* FALL THRU into number case. */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* It's a number. */ int got_dot = 0, got_e = 0, toktype; char *p = tokstart; int hex = input_radix > 10; if (c == '0' && (p[1] == 'x' || p[1] == 'X')) { p += 2; hex = 1; } else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D')) { p += 2; hex = 0; } for (;; ++p) { /* This test includes !hex because 'e' is a valid hex digit and thus does not indicate a floating point number when the radix is hex. */ if (!hex && !got_e && (*p == 'e' || *p == 'E')) got_dot = got_e = 1; /* This test does not include !hex, because a '.' always indicates a decimal floating point number regardless of the radix. */ else if (!got_dot && *p == '.') got_dot = 1; else if (got_e && (p[-1] == 'e' || p[-1] == 'E') && (*p == '-' || *p == '+')) /* This is the sign of the exponent, not the end of the number. */ continue; /* We will take any letters or digits. parse_number will complain if past the radix, or if L or U are not final. */ else if ((*p < '0' || *p > '9') && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z'))) break; } toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval); if (toktype == ERROR) { char *err_copy = (char *) alloca (p - tokstart + 1); memcpy (err_copy, tokstart, p - tokstart); err_copy[p - tokstart] = 0; error (_("Invalid number \"%s\"."), err_copy); } lexptr = p; return toktype; } case '@': { char *p = &tokstart[1]; size_t len = strlen ("entry"); while (isspace (*p)) p++; if (strncmp (p, "entry", len) == 0 && !isalnum (p[len]) && p[len] != '_') { lexptr = &p[len]; return ENTRY; } } /* FALLTHRU */ case '+': case '-': case '*': case '/': case '%': case '|': case '&': case '^': case '~': case '!': case '<': case '>': case '?': case ':': case '=': case '{': case '}': symbol: lexptr++; return c; case 'L': case 'u': case 'U': if (tokstart[1] != '"' && tokstart[1] != '\'') break; /* Fall through. */ case '\'': case '"': { int host_len; int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval, &host_len); if (result == CHAR) { if (host_len == 0) error (_("Empty character constant.")); else if (host_len > 2 && c == '\'') { ++tokstart; namelen = lexptr - tokstart - 1; goto tryname; } else if (host_len > 1) error (_("Invalid character constant.")); } return result; } } if (!(c == '_' || c == '$' || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) /* We must have come across a bad character (e.g. ';'). */ error (_("Invalid character '%c' in expression."), c); /* It's a name. See how long it is. */ namelen = 0; for (c = tokstart[namelen]; (c == '_' || c == '$' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');) { /* Template parameter lists are part of the name. FIXME: This mishandles `print $a<4&&$a>3'. */ if (c == '<') { if (! is_cast_operator (tokstart, namelen)) { /* Scan ahead to get rest of the template specification. Note that we look ahead only when the '<' adjoins non-whitespace characters; for comparison expressions, e.g. "a < b > c", there must be spaces before the '<', etc. */ char * p = find_template_name_end (tokstart + namelen); if (p) namelen = p - tokstart; } break; } c = tokstart[++namelen]; } /* The token "if" terminates the expression and is NOT removed from the input stream. It doesn't count if it appears in the expansion of a macro. */ if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f' && ! scanning_macro_expansion ()) { return 0; } /* For the same reason (breakpoint conditions), "thread N" terminates the expression. "thread" could be an identifier, but an identifier is never followed by a number without intervening punctuation. "task" is similar. Handle abbreviations of these, similarly to breakpoint.c:find_condition_and_thread. */ if (namelen >= 1 && (strncmp (tokstart, "thread", namelen) == 0 || strncmp (tokstart, "task", namelen) == 0) && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t') && ! scanning_macro_expansion ()) { char *p = tokstart + namelen + 1; while (*p == ' ' || *p == '\t') p++; if (*p >= '0' && *p <= '9') return 0; } lexptr += namelen; tryname: yylval.sval.ptr = tokstart; yylval.sval.length = namelen; /* Catch specific keywords. */ copy = copy_name (yylval.sval); for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++) if (strcmp (copy, ident_tokens[i].operator) == 0) { if (ident_tokens[i].cxx_only && parse_language->la_language != language_cplus) break; /* It is ok to always set this, even though we don't always strictly need to. */ yylval.opcode = ident_tokens[i].opcode; return ident_tokens[i].token; } if (*tokstart == '$') return VARIABLE; if (in_parse_field && *lexptr == '\0') saw_name_at_eof = 1; return NAME; } /* An object of this type is pushed on a FIFO by the "outer" lexer. */ typedef struct { int token; YYSTYPE value; } token_and_value; DEF_VEC_O (token_and_value); /* A FIFO of tokens that have been read but not yet returned to the parser. */ static VEC (token_and_value) *token_fifo; /* Non-zero if the lexer should return tokens from the FIFO. */ static int popping; /* Temporary storage for c_lex; this holds symbol names as they are built up. */ static struct obstack name_obstack; /* Classify a NAME token. The contents of the token are in `yylval'. Updates yylval and returns the new token type. BLOCK is the block in which lookups start; this can be NULL to mean the global scope. */ static int classify_name (struct block *block) { struct symbol *sym; char *copy; int is_a_field_of_this = 0; copy = copy_name (yylval.sval); sym = lookup_symbol (copy, block, VAR_DOMAIN, parse_language->la_language == language_cplus ? &is_a_field_of_this : (int *) NULL); if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK) { yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return BLOCKNAME; } else if (!sym) { /* See if it's a file name. */ struct symtab *symtab; symtab = lookup_symtab (copy); if (symtab) { yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK); return FILENAME; } } if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF) { yylval.tsym.type = SYMBOL_TYPE (sym); return TYPENAME; } yylval.tsym.type = language_lookup_primitive_type_by_name (parse_language, parse_gdbarch, copy); if (yylval.tsym.type != NULL) return TYPENAME; /* Input names that aren't symbols but ARE valid hex numbers, when the input radix permits them, can be names or numbers depending on the parse. Note we support radixes > 16 here. */ if (!sym && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10) || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10))) { YYSTYPE newlval; /* Its value is ignored. */ int hextype = parse_number (copy, yylval.sval.length, 0, &newlval); if (hextype == INT) { yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return NAME_OR_INT; } } /* Any other kind of symbol */ yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; if (sym == NULL && parse_language->la_language == language_cplus && !is_a_field_of_this && !lookup_minimal_symbol (copy, NULL, NULL)) return UNKNOWN_CPP_NAME; return NAME; } /* Like classify_name, but used by the inner loop of the lexer, when a name might have already been seen. FIRST_NAME is true if the token in `yylval' is the first component of a name, false otherwise. If this function returns NAME, it might not have updated `yylval'. This is ok because the caller only cares about TYPENAME. */ static int classify_inner_name (struct block *block, int first_name) { struct type *type, *new_type; char *copy; if (first_name) return classify_name (block); type = check_typedef (yylval.tsym.type); if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION && TYPE_CODE (type) != TYPE_CODE_NAMESPACE) /* We know the caller won't expect us to update yylval. */ return NAME; copy = copy_name (yylval.tsym.stoken); new_type = cp_lookup_nested_type (yylval.tsym.type, copy, block); if (new_type == NULL) /* We know the caller won't expect us to update yylval. */ return NAME; yylval.tsym.type = new_type; return TYPENAME; } /* The outer level of a two-level lexer. This calls the inner lexer to return tokens. It then either returns these tokens, or aggregates them into a larger token. This lets us work around a problem in our parsing approach, where the parser could not distinguish between qualified names and qualified types at the right point. This approach is still not ideal, because it mishandles template types. See the comment in lex_one_token for an example. However, this is still an improvement over the earlier approach, and will suffice until we move to better parsing technology. */ static int yylex (void) { token_and_value current; int first_was_coloncolon, last_was_coloncolon, first_iter; if (popping && !VEC_empty (token_and_value, token_fifo)) { token_and_value tv = *VEC_index (token_and_value, token_fifo, 0); VEC_ordered_remove (token_and_value, token_fifo, 0); yylval = tv.value; return tv.token; } popping = 0; current.token = lex_one_token (); if (current.token == NAME) current.token = classify_name (expression_context_block); if (parse_language->la_language != language_cplus || (current.token != TYPENAME && current.token != COLONCOLON)) return current.token; first_was_coloncolon = current.token == COLONCOLON; last_was_coloncolon = first_was_coloncolon; obstack_free (&name_obstack, obstack_base (&name_obstack)); if (!last_was_coloncolon) obstack_grow (&name_obstack, yylval.sval.ptr, yylval.sval.length); current.value = yylval; first_iter = 1; while (1) { token_and_value next; next.token = lex_one_token (); next.value = yylval; if (next.token == NAME && last_was_coloncolon) { int classification; classification = classify_inner_name (first_was_coloncolon ? NULL : expression_context_block, first_iter); /* We keep going until we either run out of names, or until we have a qualified name which is not a type. */ if (classification != TYPENAME) { /* Push the final component and leave the loop. */ VEC_safe_push (token_and_value, token_fifo, &next); break; } /* Update the partial name we are constructing. */ if (!first_iter) { /* We don't want to put a leading "::" into the name. */ obstack_grow_str (&name_obstack, "::"); } obstack_grow (&name_obstack, next.value.sval.ptr, next.value.sval.length); yylval.sval.ptr = obstack_base (&name_obstack); yylval.sval.length = obstack_object_size (&name_obstack); current.value = yylval; current.token = classification; last_was_coloncolon = 0; } else if (next.token == COLONCOLON && !last_was_coloncolon) last_was_coloncolon = 1; else { /* We've reached the end of the name. */ VEC_safe_push (token_and_value, token_fifo, &next); break; } first_iter = 0; } popping = 1; /* If we ended with a "::", insert it too. */ if (last_was_coloncolon) { token_and_value cc; memset (&cc, 0, sizeof (token_and_value)); if (first_was_coloncolon && first_iter) { yylval = cc.value; return COLONCOLON; } cc.token = COLONCOLON; VEC_safe_insert (token_and_value, token_fifo, 0, &cc); } yylval = current.value; yylval.sval.ptr = obstack_copy0 (&expansion_obstack, yylval.sval.ptr, yylval.sval.length); return current.token; } int c_parse (void) { int result; struct cleanup *back_to = make_cleanup (free_current_contents, &expression_macro_scope); /* Set up the scope for macro expansion. */ expression_macro_scope = NULL; if (expression_context_block) expression_macro_scope = sal_macro_scope (find_pc_line (expression_context_pc, 0)); else expression_macro_scope = default_macro_scope (); if (! expression_macro_scope) expression_macro_scope = user_macro_scope (); /* Initialize macro expansion code. */ obstack_init (&expansion_obstack); gdb_assert (! macro_original_text); make_cleanup (scan_macro_cleanup, 0); make_cleanup_restore_integer (&yydebug); yydebug = parser_debug; /* Initialize some state used by the lexer. */ last_was_structop = 0; saw_name_at_eof = 0; VEC_free (token_and_value, token_fifo); popping = 0; obstack_init (&name_obstack); make_cleanup_obstack_free (&name_obstack); result = yyparse (); do_cleanups (back_to); return result; } void yyerror (char *msg) { if (prev_lexptr) lexptr = prev_lexptr; error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr); }