/* mpfr_mpn_exp -- auxiliary function for mpfr_get_str and mpfr_set_str Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. Contributed by Alain Delplanque and Paul Zimmermann. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* this function computes an approximation of b^e in {a, n}, with exponent stored in exp_r. The computed value is rounded toward zero (truncated). It returns an integer f such that the final error is bounded by 2^f ulps, that is: a*2^exp_r <= b^e <= 2^exp_r (a + 2^f), where a represents {a, n}, i.e. the integer a[0] + a[1]*B + ... + a[n-1]*B^(n-1) where B=2^BITS_PER_MP_LIMB Return -1 is the result is exact. Return -2 if an overflow occurred in the computation of exp_r. */ long mpfr_mpn_exp (mp_limb_t *a, mp_exp_t *exp_r, int b, mp_exp_t e, size_t n) { mp_limb_t *c, B; mp_exp_t f, h; int i; unsigned long t; /* number of bits in e */ unsigned long bits; size_t n1; unsigned int error; /* (number - 1) of loop a^2b inexact */ /* error == t means no error */ int err_s_a2 = 0; int err_s_ab = 0; /* number of error when shift A^2, AB */ MPFR_TMP_DECL(marker); MPFR_ASSERTN(e > 0); MPFR_ASSERTN((2 <= b) && (b <= 36)); MPFR_TMP_MARK(marker); /* initialization of a, b, f, h */ /* normalize the base */ B = (mp_limb_t) b; count_leading_zeros (h, B); bits = BITS_PER_MP_LIMB - h; B = B << h; h = - h; /* allocate space for A and set it to B */ c = (mp_limb_t*) MPFR_TMP_ALLOC(2 * n * BYTES_PER_MP_LIMB); a [n - 1] = B; MPN_ZERO (a, n - 1); /* initial exponent for A: invariant is A = {a, n} * 2^f */ f = h - (n - 1) * BITS_PER_MP_LIMB; /* determine number of bits in e */ count_leading_zeros (t, (mp_limb_t) e); t = BITS_PER_MP_LIMB - t; /* number of bits of exponent e */ error = t; /* error <= BITS_PER_MP_LIMB */ MPN_ZERO (c, 2 * n); for (i = t - 2; i >= 0; i--) { /* determine precision needed */ bits = n * BITS_PER_MP_LIMB - mpn_scan1 (a, 0); n1 = (n * BITS_PER_MP_LIMB - bits) / BITS_PER_MP_LIMB; /* square of A : {c+2n1, 2(n-n1)} = {a+n1, n-n1}^2 */ mpn_sqr_n (c + 2 * n1, a + n1, n - n1); /* set {c+n, 2n1-n} to 0 : {c, n} = {a, n}^2*K^n */ /* check overflow on f */ if (MPFR_UNLIKELY(f < MPFR_EXP_MIN/2 || f > MPFR_EXP_MAX/2)) { overflow: MPFR_TMP_FREE(marker); return -2; } /* FIXME: Could f = 2*f + n * BITS_PER_MP_LIMB be used? */ f = 2*f; MPFR_SADD_OVERFLOW (f, f, n * BITS_PER_MP_LIMB, mp_exp_t, mp_exp_unsigned_t, MPFR_EXP_MIN, MPFR_EXP_MAX, goto overflow, goto overflow); if ((c[2*n - 1] & MPFR_LIMB_HIGHBIT) == 0) { /* shift A by one bit to the left */ mpn_lshift (a, c + n, n, 1); a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1); f --; if (error != t) err_s_a2 ++; } else MPN_COPY (a, c + n, n); if ((error == t) && (2 * n1 <= n) && (mpn_scan1 (c + 2 * n1, 0) < (n - 2 * n1) * BITS_PER_MP_LIMB)) error = i; if (e & ((mp_exp_t) 1 << i)) { /* multiply A by B */ c[2 * n - 1] = mpn_mul_1 (c + n - 1, a, n, B); f += h + BITS_PER_MP_LIMB; if ((c[2 * n - 1] & MPFR_LIMB_HIGHBIT) == 0) { /* shift A by one bit to the left */ mpn_lshift (a, c + n, n, 1); a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1); f --; } else { MPN_COPY (a, c + n, n); if (error != t) err_s_ab ++; } if ((error == t) && (c[n - 1] != 0)) error = i; } } MPFR_TMP_FREE(marker); *exp_r = f; if (error == t) return -1; /* result is exact */ else /* error <= t-2 <= BITS_PER_MP_LIMB-2 err_s_ab, err_s_a2 <= t-1 */ { /* if there are p loops after the first inexact result, with j shifts in a^2 and l shifts in a*b, then the final error is at most 2^(p+ceil((j+1)/2)+l+1)*ulp(res). This is bounded by 2^(5/2*t-1/2) where t is the number of bits of e. */ error = error + err_s_ab + err_s_a2 / 2 + 3; /* <= 5t/2-1/2 */ #if 0 if ((error - 1) >= ((n * BITS_PER_MP_LIMB - 1) / 2)) error = n * BITS_PER_MP_LIMB; /* result is completely wrong: this is very unlikely since error is at most 5/2*log_2(e), and n * BITS_PER_MP_LIMB is at least 3*log_2(e) */ #endif return error; } }