Update to gcc-3.4.6
[dragonfly.git] / contrib / gcc-3.4 / libiberty / md5.c
CommitLineData
003757ed
MD
1/* md5.c - Functions to compute MD5 message digest of files or memory blocks
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
4
5 NOTE: This source is derived from an old version taken from the GNU C
6 Library (glibc).
7
8 This program is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 2, or (at your option) any
11 later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software Foundation,
20 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
23
24#ifdef HAVE_CONFIG_H
25# include <config.h>
26#endif
27
28#include <sys/types.h>
29
30#if STDC_HEADERS || defined _LIBC
31# include <stdlib.h>
32# include <string.h>
33#else
34# ifndef HAVE_MEMCPY
35# define memcpy(d, s, n) bcopy ((s), (d), (n))
36# endif
37#endif
38
39#include "ansidecl.h"
40#include "md5.h"
41
42#ifdef _LIBC
43# include <endian.h>
44# if __BYTE_ORDER == __BIG_ENDIAN
45# define WORDS_BIGENDIAN 1
46# endif
47#endif
48
49#ifdef WORDS_BIGENDIAN
50# define SWAP(n) \
51 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
52#else
53# define SWAP(n) (n)
54#endif
55
56
57/* This array contains the bytes used to pad the buffer to the next
58 64-byte boundary. (RFC 1321, 3.1: Step 1) */
59static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
60
61
62/* Initialize structure containing state of computation.
63 (RFC 1321, 3.3: Step 3) */
64void
65md5_init_ctx (ctx)
66 struct md5_ctx *ctx;
67{
68 ctx->A = (md5_uint32) 0x67452301;
69 ctx->B = (md5_uint32) 0xefcdab89;
70 ctx->C = (md5_uint32) 0x98badcfe;
71 ctx->D = (md5_uint32) 0x10325476;
72
73 ctx->total[0] = ctx->total[1] = 0;
74 ctx->buflen = 0;
75}
76
77/* Put result from CTX in first 16 bytes following RESBUF. The result
78 must be in little endian byte order.
79
80 IMPORTANT: On some systems it is required that RESBUF is correctly
81 aligned for a 32 bits value. */
82void *
83md5_read_ctx (ctx, resbuf)
84 const struct md5_ctx *ctx;
85 void *resbuf;
86{
87 ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
88 ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
89 ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
90 ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
91
92 return resbuf;
93}
94
95/* Process the remaining bytes in the internal buffer and the usual
96 prolog according to the standard and write the result to RESBUF.
97
98 IMPORTANT: On some systems it is required that RESBUF is correctly
99 aligned for a 32 bits value. */
100void *
101md5_finish_ctx (ctx, resbuf)
102 struct md5_ctx *ctx;
103 void *resbuf;
104{
105 /* Take yet unprocessed bytes into account. */
106 md5_uint32 bytes = ctx->buflen;
107 size_t pad;
108
109 /* Now count remaining bytes. */
110 ctx->total[0] += bytes;
111 if (ctx->total[0] < bytes)
112 ++ctx->total[1];
113
114 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
115 memcpy (&ctx->buffer[bytes], fillbuf, pad);
116
117 /* Put the 64-bit file length in *bits* at the end of the buffer. */
118 *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
119 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
120 (ctx->total[0] >> 29));
121
122 /* Process last bytes. */
123 md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
124
125 return md5_read_ctx (ctx, resbuf);
126}
127
128/* Compute MD5 message digest for bytes read from STREAM. The
129 resulting message digest number will be written into the 16 bytes
130 beginning at RESBLOCK. */
131int
132md5_stream (stream, resblock)
133 FILE *stream;
134 void *resblock;
135{
136 /* Important: BLOCKSIZE must be a multiple of 64. */
137#define BLOCKSIZE 4096
138 struct md5_ctx ctx;
139 char buffer[BLOCKSIZE + 72];
140 size_t sum;
141
142 /* Initialize the computation context. */
143 md5_init_ctx (&ctx);
144
145 /* Iterate over full file contents. */
146 while (1)
147 {
148 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
149 computation function processes the whole buffer so that with the
150 next round of the loop another block can be read. */
151 size_t n;
152 sum = 0;
153
154 /* Read block. Take care for partial reads. */
155 do
156 {
157 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
158
159 sum += n;
160 }
161 while (sum < BLOCKSIZE && n != 0);
162 if (n == 0 && ferror (stream))
163 return 1;
164
165 /* If end of file is reached, end the loop. */
166 if (n == 0)
167 break;
168
169 /* Process buffer with BLOCKSIZE bytes. Note that
170 BLOCKSIZE % 64 == 0
171 */
172 md5_process_block (buffer, BLOCKSIZE, &ctx);
173 }
174
175 /* Add the last bytes if necessary. */
176 if (sum > 0)
177 md5_process_bytes (buffer, sum, &ctx);
178
179 /* Construct result in desired memory. */
180 md5_finish_ctx (&ctx, resblock);
181 return 0;
182}
183
184/* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
185 result is always in little endian byte order, so that a byte-wise
186 output yields to the wanted ASCII representation of the message
187 digest. */
188void *
189md5_buffer (buffer, len, resblock)
190 const char *buffer;
191 size_t len;
192 void *resblock;
193{
194 struct md5_ctx ctx;
195
196 /* Initialize the computation context. */
197 md5_init_ctx (&ctx);
198
199 /* Process whole buffer but last len % 64 bytes. */
200 md5_process_bytes (buffer, len, &ctx);
201
202 /* Put result in desired memory area. */
203 return md5_finish_ctx (&ctx, resblock);
204}
205
206
207void
208md5_process_bytes (buffer, len, ctx)
209 const void *buffer;
210 size_t len;
211 struct md5_ctx *ctx;
212{
213 /* When we already have some bits in our internal buffer concatenate
214 both inputs first. */
215 if (ctx->buflen != 0)
216 {
217 size_t left_over = ctx->buflen;
218 size_t add = 128 - left_over > len ? len : 128 - left_over;
219
220 memcpy (&ctx->buffer[left_over], buffer, add);
221 ctx->buflen += add;
222
223 if (left_over + add > 64)
224 {
225 md5_process_block (ctx->buffer, (left_over + add) & ~63, ctx);
226 /* The regions in the following copy operation cannot overlap. */
227 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
228 (left_over + add) & 63);
229 ctx->buflen = (left_over + add) & 63;
230 }
231
232 buffer = (const void *) ((const char *) buffer + add);
233 len -= add;
234 }
235
236 /* Process available complete blocks. */
237 if (len > 64)
238 {
1378ea41
SS
239#if !_STRING_ARCH_unaligned
240/* To check alignment gcc has an appropriate operator. Other
241 compilers don't. */
242# if __GNUC__ >= 2
243# define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
244# else
245# define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
246# endif
247 if (UNALIGNED_P (buffer))
248 while (len > 64)
249 {
250 md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
251 buffer = (const char *) buffer + 64;
252 len -= 64;
253 }
254 else
255#endif
003757ed
MD
256 md5_process_block (buffer, len & ~63, ctx);
257 buffer = (const void *) ((const char *) buffer + (len & ~63));
258 len &= 63;
259 }
260
261 /* Move remaining bytes in internal buffer. */
262 if (len > 0)
263 {
264 memcpy (ctx->buffer, buffer, len);
265 ctx->buflen = len;
266 }
267}
268
269
270/* These are the four functions used in the four steps of the MD5 algorithm
271 and defined in the RFC 1321. The first function is a little bit optimized
272 (as found in Colin Plumbs public domain implementation). */
273/* #define FF(b, c, d) ((b & c) | (~b & d)) */
274#define FF(b, c, d) (d ^ (b & (c ^ d)))
275#define FG(b, c, d) FF (d, b, c)
276#define FH(b, c, d) (b ^ c ^ d)
277#define FI(b, c, d) (c ^ (b | ~d))
278
279/* Process LEN bytes of BUFFER, accumulating context into CTX.
280 It is assumed that LEN % 64 == 0. */
281
282void
283md5_process_block (buffer, len, ctx)
284 const void *buffer;
285 size_t len;
286 struct md5_ctx *ctx;
287{
288 md5_uint32 correct_words[16];
289 const md5_uint32 *words = (const md5_uint32 *) buffer;
290 size_t nwords = len / sizeof (md5_uint32);
291 const md5_uint32 *endp = words + nwords;
292 md5_uint32 A = ctx->A;
293 md5_uint32 B = ctx->B;
294 md5_uint32 C = ctx->C;
295 md5_uint32 D = ctx->D;
296
297 /* First increment the byte count. RFC 1321 specifies the possible
298 length of the file up to 2^64 bits. Here we only compute the
299 number of bytes. Do a double word increment. */
300 ctx->total[0] += len;
301 if (ctx->total[0] < len)
302 ++ctx->total[1];
303
304 /* Process all bytes in the buffer with 64 bytes in each round of
305 the loop. */
306 while (words < endp)
307 {
308 md5_uint32 *cwp = correct_words;
309 md5_uint32 A_save = A;
310 md5_uint32 B_save = B;
311 md5_uint32 C_save = C;
312 md5_uint32 D_save = D;
313
314 /* First round: using the given function, the context and a constant
315 the next context is computed. Because the algorithms processing
316 unit is a 32-bit word and it is determined to work on words in
317 little endian byte order we perhaps have to change the byte order
318 before the computation. To reduce the work for the next steps
319 we store the swapped words in the array CORRECT_WORDS. */
320
321#define OP(a, b, c, d, s, T) \
322 do \
323 { \
324 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
325 ++words; \
326 CYCLIC (a, s); \
327 a += b; \
328 } \
329 while (0)
330
331 /* It is unfortunate that C does not provide an operator for
332 cyclic rotation. Hope the C compiler is smart enough. */
333#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
334
335 /* Before we start, one word to the strange constants.
336 They are defined in RFC 1321 as
337
338 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
339 */
340
341 /* Round 1. */
342 OP (A, B, C, D, 7, (md5_uint32) 0xd76aa478);
343 OP (D, A, B, C, 12, (md5_uint32) 0xe8c7b756);
344 OP (C, D, A, B, 17, (md5_uint32) 0x242070db);
345 OP (B, C, D, A, 22, (md5_uint32) 0xc1bdceee);
346 OP (A, B, C, D, 7, (md5_uint32) 0xf57c0faf);
347 OP (D, A, B, C, 12, (md5_uint32) 0x4787c62a);
348 OP (C, D, A, B, 17, (md5_uint32) 0xa8304613);
349 OP (B, C, D, A, 22, (md5_uint32) 0xfd469501);
350 OP (A, B, C, D, 7, (md5_uint32) 0x698098d8);
351 OP (D, A, B, C, 12, (md5_uint32) 0x8b44f7af);
352 OP (C, D, A, B, 17, (md5_uint32) 0xffff5bb1);
353 OP (B, C, D, A, 22, (md5_uint32) 0x895cd7be);
354 OP (A, B, C, D, 7, (md5_uint32) 0x6b901122);
355 OP (D, A, B, C, 12, (md5_uint32) 0xfd987193);
356 OP (C, D, A, B, 17, (md5_uint32) 0xa679438e);
357 OP (B, C, D, A, 22, (md5_uint32) 0x49b40821);
358
359 /* For the second to fourth round we have the possibly swapped words
360 in CORRECT_WORDS. Redefine the macro to take an additional first
361 argument specifying the function to use. */
362#undef OP
363#define OP(a, b, c, d, k, s, T) \
364 do \
365 { \
366 a += FX (b, c, d) + correct_words[k] + T; \
367 CYCLIC (a, s); \
368 a += b; \
369 } \
370 while (0)
371
372#define FX(b, c, d) FG (b, c, d)
373
374 /* Round 2. */
375 OP (A, B, C, D, 1, 5, (md5_uint32) 0xf61e2562);
376 OP (D, A, B, C, 6, 9, (md5_uint32) 0xc040b340);
377 OP (C, D, A, B, 11, 14, (md5_uint32) 0x265e5a51);
378 OP (B, C, D, A, 0, 20, (md5_uint32) 0xe9b6c7aa);
379 OP (A, B, C, D, 5, 5, (md5_uint32) 0xd62f105d);
380 OP (D, A, B, C, 10, 9, (md5_uint32) 0x02441453);
381 OP (C, D, A, B, 15, 14, (md5_uint32) 0xd8a1e681);
382 OP (B, C, D, A, 4, 20, (md5_uint32) 0xe7d3fbc8);
383 OP (A, B, C, D, 9, 5, (md5_uint32) 0x21e1cde6);
384 OP (D, A, B, C, 14, 9, (md5_uint32) 0xc33707d6);
385 OP (C, D, A, B, 3, 14, (md5_uint32) 0xf4d50d87);
386 OP (B, C, D, A, 8, 20, (md5_uint32) 0x455a14ed);
387 OP (A, B, C, D, 13, 5, (md5_uint32) 0xa9e3e905);
388 OP (D, A, B, C, 2, 9, (md5_uint32) 0xfcefa3f8);
389 OP (C, D, A, B, 7, 14, (md5_uint32) 0x676f02d9);
390 OP (B, C, D, A, 12, 20, (md5_uint32) 0x8d2a4c8a);
391
392#undef FX
393#define FX(b, c, d) FH (b, c, d)
394
395 /* Round 3. */
396 OP (A, B, C, D, 5, 4, (md5_uint32) 0xfffa3942);
397 OP (D, A, B, C, 8, 11, (md5_uint32) 0x8771f681);
398 OP (C, D, A, B, 11, 16, (md5_uint32) 0x6d9d6122);
399 OP (B, C, D, A, 14, 23, (md5_uint32) 0xfde5380c);
400 OP (A, B, C, D, 1, 4, (md5_uint32) 0xa4beea44);
401 OP (D, A, B, C, 4, 11, (md5_uint32) 0x4bdecfa9);
402 OP (C, D, A, B, 7, 16, (md5_uint32) 0xf6bb4b60);
403 OP (B, C, D, A, 10, 23, (md5_uint32) 0xbebfbc70);
404 OP (A, B, C, D, 13, 4, (md5_uint32) 0x289b7ec6);
405 OP (D, A, B, C, 0, 11, (md5_uint32) 0xeaa127fa);
406 OP (C, D, A, B, 3, 16, (md5_uint32) 0xd4ef3085);
407 OP (B, C, D, A, 6, 23, (md5_uint32) 0x04881d05);
408 OP (A, B, C, D, 9, 4, (md5_uint32) 0xd9d4d039);
409 OP (D, A, B, C, 12, 11, (md5_uint32) 0xe6db99e5);
410 OP (C, D, A, B, 15, 16, (md5_uint32) 0x1fa27cf8);
411 OP (B, C, D, A, 2, 23, (md5_uint32) 0xc4ac5665);
412
413#undef FX
414#define FX(b, c, d) FI (b, c, d)
415
416 /* Round 4. */
417 OP (A, B, C, D, 0, 6, (md5_uint32) 0xf4292244);
418 OP (D, A, B, C, 7, 10, (md5_uint32) 0x432aff97);
419 OP (C, D, A, B, 14, 15, (md5_uint32) 0xab9423a7);
420 OP (B, C, D, A, 5, 21, (md5_uint32) 0xfc93a039);
421 OP (A, B, C, D, 12, 6, (md5_uint32) 0x655b59c3);
422 OP (D, A, B, C, 3, 10, (md5_uint32) 0x8f0ccc92);
423 OP (C, D, A, B, 10, 15, (md5_uint32) 0xffeff47d);
424 OP (B, C, D, A, 1, 21, (md5_uint32) 0x85845dd1);
425 OP (A, B, C, D, 8, 6, (md5_uint32) 0x6fa87e4f);
426 OP (D, A, B, C, 15, 10, (md5_uint32) 0xfe2ce6e0);
427 OP (C, D, A, B, 6, 15, (md5_uint32) 0xa3014314);
428 OP (B, C, D, A, 13, 21, (md5_uint32) 0x4e0811a1);
429 OP (A, B, C, D, 4, 6, (md5_uint32) 0xf7537e82);
430 OP (D, A, B, C, 11, 10, (md5_uint32) 0xbd3af235);
431 OP (C, D, A, B, 2, 15, (md5_uint32) 0x2ad7d2bb);
432 OP (B, C, D, A, 9, 21, (md5_uint32) 0xeb86d391);
433
434 /* Add the starting values of the context. */
435 A += A_save;
436 B += B_save;
437 C += C_save;
438 D += D_save;
439 }
440
441 /* Put checksum in context given as argument. */
442 ctx->A = A;
443 ctx->B = B;
444 ctx->C = C;
445 ctx->D = D;
446}