b46b8b033293f0384265836deeeb5593134ba7eb
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update vm_load to slow down faulting processes.
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385 int
386 vm_pageout_flush(vm_page_t *mc, int count, int flags)
387 {
388         vm_object_t object;
389         int pageout_status[count];
390         int numpagedout = 0;
391         int i;
392
393         /*
394          * Initiate I/O.  Bump the vm_page_t->busy counter.
395          */
396         for (i = 0; i < count; i++) {
397                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
398                 vm_page_io_start(mc[i]);
399         }
400
401         /*
402          * We must make the pages read-only.  This will also force the
403          * modified bit in the related pmaps to be cleared.  The pager
404          * cannot clear the bit for us since the I/O completion code
405          * typically runs from an interrupt.  The act of making the page
406          * read-only handles the case for us.
407          */
408         for (i = 0; i < count; i++) {
409                 vm_page_protect(mc[i], VM_PROT_READ);
410         }
411
412         object = mc[0]->object;
413         vm_object_pip_add(object, count);
414
415         vm_pager_put_pages(object, mc, count,
416             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
417             pageout_status);
418
419         for (i = 0; i < count; i++) {
420                 vm_page_t mt = mc[i];
421
422                 switch (pageout_status[i]) {
423                 case VM_PAGER_OK:
424                         numpagedout++;
425                         break;
426                 case VM_PAGER_PEND:
427                         numpagedout++;
428                         break;
429                 case VM_PAGER_BAD:
430                         /*
431                          * Page outside of range of object. Right now we
432                          * essentially lose the changes by pretending it
433                          * worked.
434                          */
435                         pmap_clear_modify(mt);
436                         vm_page_undirty(mt);
437                         break;
438                 case VM_PAGER_ERROR:
439                 case VM_PAGER_FAIL:
440                         /*
441                          * A page typically cannot be paged out when we
442                          * have run out of swap.  We leave the page
443                          * marked inactive and will try to page it out
444                          * again later.
445                          *
446                          * Starvation of the active page list is used to
447                          * determine when the system is massively memory
448                          * starved.
449                          */
450                         break;
451                 case VM_PAGER_AGAIN:
452                         break;
453                 }
454
455                 /*
456                  * If the operation is still going, leave the page busy to
457                  * block all other accesses. Also, leave the paging in
458                  * progress indicator set so that we don't attempt an object
459                  * collapse.
460                  *
461                  * For any pages which have completed synchronously, 
462                  * deactivate the page if we are under a severe deficit.
463                  * Do not try to enter them into the cache, though, they
464                  * might still be read-heavy.
465                  */
466                 if (pageout_status[i] != VM_PAGER_PEND) {
467                         vm_object_pip_wakeup(object);
468                         vm_page_io_finish(mt);
469                         if (vm_page_count_severe())
470                                 vm_page_deactivate(mt);
471 #if 0
472                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
473                                 vm_page_protect(mt, VM_PROT_READ);
474 #endif
475                 }
476         }
477         return numpagedout;
478 }
479
480 #if !defined(NO_SWAPPING)
481 /*
482  *      vm_pageout_object_deactivate_pages
483  *
484  *      deactivate enough pages to satisfy the inactive target
485  *      requirements or if vm_page_proc_limit is set, then
486  *      deactivate all of the pages in the object and its
487  *      backing_objects.
488  *
489  *      The object and map must be locked.
490  */
491 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
492
493 static void
494 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
495         vm_pindex_t desired, int map_remove_only)
496 {
497         struct rb_vm_page_scan_info info;
498         int remove_mode;
499
500         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
501                 return;
502
503         while (object) {
504                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
505                         return;
506                 if (object->paging_in_progress)
507                         return;
508
509                 remove_mode = map_remove_only;
510                 if (object->shadow_count > 1)
511                         remove_mode = 1;
512
513                 /*
514                  * scan the objects entire memory queue.  spl protection is
515                  * required to avoid an interrupt unbusy/free race against
516                  * our busy check.
517                  */
518                 crit_enter();
519                 info.limit = remove_mode;
520                 info.map = map;
521                 info.desired = desired;
522                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
523                                 vm_pageout_object_deactivate_pages_callback,
524                                 &info
525                 );
526                 crit_exit();
527                 object = object->backing_object;
528         }
529 }
530                                         
531 static int
532 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
533 {
534         struct rb_vm_page_scan_info *info = data;
535         int actcount;
536
537         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
538                 return(-1);
539         }
540         mycpu->gd_cnt.v_pdpages++;
541         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
542             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
543             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
544                 return(0);
545         }
546
547         actcount = pmap_ts_referenced(p);
548         if (actcount) {
549                 vm_page_flag_set(p, PG_REFERENCED);
550         } else if (p->flags & PG_REFERENCED) {
551                 actcount = 1;
552         }
553
554         if ((p->queue != PQ_ACTIVE) &&
555                 (p->flags & PG_REFERENCED)) {
556                 vm_page_activate(p);
557                 p->act_count += actcount;
558                 vm_page_flag_clear(p, PG_REFERENCED);
559         } else if (p->queue == PQ_ACTIVE) {
560                 if ((p->flags & PG_REFERENCED) == 0) {
561                         p->act_count -= min(p->act_count, ACT_DECLINE);
562                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
563                                 vm_page_busy(p);
564                                 vm_page_protect(p, VM_PROT_NONE);
565                                 vm_page_wakeup(p);
566                                 vm_page_deactivate(p);
567                         } else {
568                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
570                         }
571                 } else {
572                         vm_page_activate(p);
573                         vm_page_flag_clear(p, PG_REFERENCED);
574                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575                                 p->act_count += ACT_ADVANCE;
576                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
578                 }
579         } else if (p->queue == PQ_INACTIVE) {
580                 vm_page_busy(p);
581                 vm_page_protect(p, VM_PROT_NONE);
582                 vm_page_wakeup(p);
583         }
584         return(0);
585 }
586
587 /*
588  * deactivate some number of pages in a map, try to do it fairly, but
589  * that is really hard to do.
590  */
591 static void
592 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
593 {
594         vm_map_entry_t tmpe;
595         vm_object_t obj, bigobj;
596         int nothingwired;
597
598         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
599                 return;
600         }
601
602         bigobj = NULL;
603         nothingwired = TRUE;
604
605         /*
606          * first, search out the biggest object, and try to free pages from
607          * that.
608          */
609         tmpe = map->header.next;
610         while (tmpe != &map->header) {
611                 switch(tmpe->maptype) {
612                 case VM_MAPTYPE_NORMAL:
613                 case VM_MAPTYPE_VPAGETABLE:
614                         obj = tmpe->object.vm_object;
615                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
616                                 ((bigobj == NULL) ||
617                                  (bigobj->resident_page_count < obj->resident_page_count))) {
618                                 bigobj = obj;
619                         }
620                         break;
621                 default:
622                         break;
623                 }
624                 if (tmpe->wired_count > 0)
625                         nothingwired = FALSE;
626                 tmpe = tmpe->next;
627         }
628
629         if (bigobj)
630                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
631
632         /*
633          * Next, hunt around for other pages to deactivate.  We actually
634          * do this search sort of wrong -- .text first is not the best idea.
635          */
636         tmpe = map->header.next;
637         while (tmpe != &map->header) {
638                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
639                         break;
640                 switch(tmpe->maptype) {
641                 case VM_MAPTYPE_NORMAL:
642                 case VM_MAPTYPE_VPAGETABLE:
643                         obj = tmpe->object.vm_object;
644                         if (obj)
645                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
646                         break;
647                 default:
648                         break;
649                 }
650                 tmpe = tmpe->next;
651         };
652
653         /*
654          * Remove all mappings if a process is swapped out, this will free page
655          * table pages.
656          */
657         if (desired == 0 && nothingwired)
658                 pmap_remove(vm_map_pmap(map),
659                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
660         vm_map_unlock(map);
661 }
662 #endif
663
664 /*
665  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
666  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
667  * be trivially freed.
668  */
669 void
670 vm_pageout_page_free(vm_page_t m) 
671 {
672         vm_object_t object = m->object;
673         int type = object->type;
674
675         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
676                 vm_object_reference(object);
677         vm_page_busy(m);
678         vm_page_protect(m, VM_PROT_NONE);
679         vm_page_free(m);
680         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
681                 vm_object_deallocate(object);
682 }
683
684 /*
685  * vm_pageout_scan does the dirty work for the pageout daemon.
686  */
687 struct vm_pageout_scan_info {
688         struct proc *bigproc;
689         vm_offset_t bigsize;
690 };
691
692 static int vm_pageout_scan_callback(struct proc *p, void *data);
693
694 static int
695 vm_pageout_scan(int pass)
696 {
697         struct vm_pageout_scan_info info;
698         vm_page_t m, next;
699         struct vm_page marker;
700         int maxscan, pcount;
701         int recycle_count;
702         int inactive_shortage, active_shortage;
703         vm_object_t object;
704         int actcount;
705         int vnodes_skipped = 0;
706         int maxlaunder;
707
708         /*
709          * Do whatever cleanup that the pmap code can.
710          */
711         pmap_collect();
712
713         /*
714          * Calculate our target for the number of free+cache pages we
715          * want to get to.  This is higher then the number that causes
716          * allocations to stall (severe) in order to provide hysteresis,
717          * and if we don't make it all the way but get to the minimum
718          * we're happy.
719          */
720         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
721         vm_pageout_deficit = 0;
722
723         /*
724          * Initialize our marker
725          */
726         bzero(&marker, sizeof(marker));
727         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
728         marker.queue = PQ_INACTIVE;
729         marker.wire_count = 1;
730
731         /*
732          * Start scanning the inactive queue for pages we can move to the
733          * cache or free.  The scan will stop when the target is reached or
734          * we have scanned the entire inactive queue.  Note that m->act_count
735          * is not used to form decisions for the inactive queue, only for the
736          * active queue.
737          *
738          * maxlaunder limits the number of dirty pages we flush per scan.
739          * For most systems a smaller value (16 or 32) is more robust under
740          * extreme memory and disk pressure because any unnecessary writes
741          * to disk can result in extreme performance degredation.  However,
742          * systems with excessive dirty pages (especially when MAP_NOSYNC is
743          * used) will die horribly with limited laundering.  If the pageout
744          * daemon cannot clean enough pages in the first pass, we let it go
745          * all out in succeeding passes.
746          */
747         if ((maxlaunder = vm_max_launder) <= 1)
748                 maxlaunder = 1;
749         if (pass)
750                 maxlaunder = 10000;
751
752         /*
753          * We will generally be in a critical section throughout the 
754          * scan, but we can release it temporarily when we are sitting on a
755          * non-busy page without fear.  this is required to prevent an
756          * interrupt from unbusying or freeing a page prior to our busy
757          * check, leaving us on the wrong queue or checking the wrong
758          * page.
759          */
760         crit_enter();
761 rescan0:
762         maxscan = vmstats.v_inactive_count;
763         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
764              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
765              m = next
766          ) {
767                 mycpu->gd_cnt.v_pdpages++;
768
769                 /*
770                  * Give interrupts a chance
771                  */
772                 crit_exit();
773                 crit_enter();
774
775                 /*
776                  * It's easier for some of the conditions below to just loop
777                  * and catch queue changes here rather then check everywhere
778                  * else.
779                  */
780                 if (m->queue != PQ_INACTIVE)
781                         goto rescan0;
782                 next = TAILQ_NEXT(m, pageq);
783
784                 /*
785                  * skip marker pages
786                  */
787                 if (m->flags & PG_MARKER)
788                         continue;
789
790                 /*
791                  * A held page may be undergoing I/O, so skip it.
792                  */
793                 if (m->hold_count) {
794                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
795                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
796                         continue;
797                 }
798
799                 /*
800                  * Dont mess with busy pages, keep in the front of the
801                  * queue, most likely are being paged out.
802                  */
803                 if (m->busy || (m->flags & PG_BUSY)) {
804                         continue;
805                 }
806
807                 if (m->object->ref_count == 0) {
808                         /*
809                          * If the object is not being used, we ignore previous 
810                          * references.
811                          */
812                         vm_page_flag_clear(m, PG_REFERENCED);
813                         pmap_clear_reference(m);
814
815                 } else if (((m->flags & PG_REFERENCED) == 0) &&
816                             (actcount = pmap_ts_referenced(m))) {
817                         /*
818                          * Otherwise, if the page has been referenced while 
819                          * in the inactive queue, we bump the "activation
820                          * count" upwards, making it less likely that the
821                          * page will be added back to the inactive queue
822                          * prematurely again.  Here we check the page tables
823                          * (or emulated bits, if any), given the upper level
824                          * VM system not knowing anything about existing 
825                          * references.
826                          */
827                         vm_page_activate(m);
828                         m->act_count += (actcount + ACT_ADVANCE);
829                         continue;
830                 }
831
832                 /*
833                  * If the upper level VM system knows about any page 
834                  * references, we activate the page.  We also set the 
835                  * "activation count" higher than normal so that we will less 
836                  * likely place pages back onto the inactive queue again.
837                  */
838                 if ((m->flags & PG_REFERENCED) != 0) {
839                         vm_page_flag_clear(m, PG_REFERENCED);
840                         actcount = pmap_ts_referenced(m);
841                         vm_page_activate(m);
842                         m->act_count += (actcount + ACT_ADVANCE + 1);
843                         continue;
844                 }
845
846                 /*
847                  * If the upper level VM system doesn't know anything about 
848                  * the page being dirty, we have to check for it again.  As 
849                  * far as the VM code knows, any partially dirty pages are 
850                  * fully dirty.
851                  *
852                  * Pages marked PG_WRITEABLE may be mapped into the user
853                  * address space of a process running on another cpu.  A
854                  * user process (without holding the MP lock) running on
855                  * another cpu may be able to touch the page while we are
856                  * trying to remove it.  vm_page_cache() will handle this
857                  * case for us.
858                  */
859                 if (m->dirty == 0) {
860                         vm_page_test_dirty(m);
861                 } else {
862                         vm_page_dirty(m);
863                 }
864
865                 if (m->valid == 0) {
866                         /*
867                          * Invalid pages can be easily freed
868                          */
869                         vm_pageout_page_free(m);
870                         mycpu->gd_cnt.v_dfree++;
871                         --inactive_shortage;
872                 } else if (m->dirty == 0) {
873                         /*
874                          * Clean pages can be placed onto the cache queue.
875                          * This effectively frees them.
876                          */
877                         vm_page_cache(m);
878                         --inactive_shortage;
879                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
880                         /*
881                          * Dirty pages need to be paged out, but flushing
882                          * a page is extremely expensive verses freeing
883                          * a clean page.  Rather then artificially limiting
884                          * the number of pages we can flush, we instead give
885                          * dirty pages extra priority on the inactive queue
886                          * by forcing them to be cycled through the queue
887                          * twice before being flushed, after which the 
888                          * (now clean) page will cycle through once more
889                          * before being freed.  This significantly extends
890                          * the thrash point for a heavily loaded machine.
891                          */
892                         vm_page_flag_set(m, PG_WINATCFLS);
893                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
894                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895                 } else if (maxlaunder > 0) {
896                         /*
897                          * We always want to try to flush some dirty pages if
898                          * we encounter them, to keep the system stable.
899                          * Normally this number is small, but under extreme
900                          * pressure where there are insufficient clean pages
901                          * on the inactive queue, we may have to go all out.
902                          */
903                         int swap_pageouts_ok;
904                         struct vnode *vp = NULL;
905
906                         object = m->object;
907
908                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
909                                 swap_pageouts_ok = 1;
910                         } else {
911                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
912                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
913                                 vm_page_count_min(0));
914                                                                                 
915                         }
916
917                         /*
918                          * We don't bother paging objects that are "dead".  
919                          * Those objects are in a "rundown" state.
920                          */
921                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
922                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
923                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924                                 continue;
925                         }
926
927                         /*
928                          * The object is already known NOT to be dead.   It
929                          * is possible for the vget() to block the whole
930                          * pageout daemon, but the new low-memory handling
931                          * code should prevent it.
932                          *
933                          * The previous code skipped locked vnodes and, worse,
934                          * reordered pages in the queue.  This results in
935                          * completely non-deterministic operation because,
936                          * quite often, a vm_fault has initiated an I/O and
937                          * is holding a locked vnode at just the point where
938                          * the pageout daemon is woken up.
939                          *
940                          * We can't wait forever for the vnode lock, we might
941                          * deadlock due to a vn_read() getting stuck in
942                          * vm_wait while holding this vnode.  We skip the 
943                          * vnode if we can't get it in a reasonable amount
944                          * of time.
945                          */
946
947                         if (object->type == OBJT_VNODE) {
948                                 vp = object->handle;
949
950                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
951                                         ++pageout_lock_miss;
952                                         if (object->flags & OBJ_MIGHTBEDIRTY)
953                                                     vnodes_skipped++;
954                                         continue;
955                                 }
956
957                                 /*
958                                  * The page might have been moved to another
959                                  * queue during potential blocking in vget()
960                                  * above.  The page might have been freed and
961                                  * reused for another vnode.  The object might
962                                  * have been reused for another vnode.
963                                  */
964                                 if (m->queue != PQ_INACTIVE ||
965                                     m->object != object ||
966                                     object->handle != vp) {
967                                         if (object->flags & OBJ_MIGHTBEDIRTY)
968                                                 vnodes_skipped++;
969                                         vput(vp);
970                                         continue;
971                                 }
972         
973                                 /*
974                                  * The page may have been busied during the
975                                  * blocking in vput();  We don't move the
976                                  * page back onto the end of the queue so that
977                                  * statistics are more correct if we don't.
978                                  */
979                                 if (m->busy || (m->flags & PG_BUSY)) {
980                                         vput(vp);
981                                         continue;
982                                 }
983
984                                 /*
985                                  * If the page has become held it might
986                                  * be undergoing I/O, so skip it
987                                  */
988                                 if (m->hold_count) {
989                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
990                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
991                                         if (object->flags & OBJ_MIGHTBEDIRTY)
992                                                 vnodes_skipped++;
993                                         vput(vp);
994                                         continue;
995                                 }
996                         }
997
998                         /*
999                          * If a page is dirty, then it is either being washed
1000                          * (but not yet cleaned) or it is still in the
1001                          * laundry.  If it is still in the laundry, then we
1002                          * start the cleaning operation. 
1003                          *
1004                          * This operation may cluster, invalidating the 'next'
1005                          * pointer.  To prevent an inordinate number of
1006                          * restarts we use our marker to remember our place.
1007                          *
1008                          * decrement inactive_shortage on success to account
1009                          * for the (future) cleaned page.  Otherwise we
1010                          * could wind up laundering or cleaning too many
1011                          * pages.
1012                          */
1013                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1014                         if (vm_pageout_clean(m) != 0) {
1015                                 --inactive_shortage;
1016                                 --maxlaunder;
1017                         }
1018                         next = TAILQ_NEXT(&marker, pageq);
1019                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1020                         if (vp != NULL)
1021                                 vput(vp);
1022                 }
1023         }
1024
1025         /*
1026          * We want to move pages from the active queue to the inactive
1027          * queue to get the inactive queue to the inactive target.  If
1028          * we still have a page shortage from above we try to directly free
1029          * clean pages instead of moving them.
1030          *
1031          * If we do still have a shortage we keep track of the number of
1032          * pages we free or cache (recycle_count) as a measure of thrashing
1033          * between the active and inactive queues.
1034          *
1035          * We do not do this if we were able to satisfy the requirement
1036          * entirely from the inactive queue.
1037          *
1038          * NOTE: Both variables can end up negative.
1039          * NOTE: We are still in a critical section.
1040          */
1041         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1042         if (inactive_shortage <= 0)
1043                 active_shortage = 0;
1044
1045         pcount = vmstats.v_active_count;
1046         recycle_count = 0;
1047         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1048
1049         while ((m != NULL) && (pcount-- > 0) &&
1050                (inactive_shortage > 0 || active_shortage > 0)
1051         ) {
1052                 /*
1053                  * Give interrupts a chance.
1054                  */
1055                 crit_exit();
1056                 crit_enter();
1057
1058                 /*
1059                  * If the page was ripped out from under us, just stop.
1060                  */
1061                 if (m->queue != PQ_ACTIVE)
1062                         break;
1063                 next = TAILQ_NEXT(m, pageq);
1064
1065                 /*
1066                  * Don't deactivate pages that are busy.
1067                  */
1068                 if ((m->busy != 0) ||
1069                     (m->flags & PG_BUSY) ||
1070                     (m->hold_count != 0)) {
1071                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1072                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073                         m = next;
1074                         continue;
1075                 }
1076
1077                 /*
1078                  * The count for pagedaemon pages is done after checking the
1079                  * page for eligibility...
1080                  */
1081                 mycpu->gd_cnt.v_pdpages++;
1082
1083                 /*
1084                  * Check to see "how much" the page has been used and clear
1085                  * the tracking access bits.  If the object has no references
1086                  * don't bother paying the expense.
1087                  */
1088                 actcount = 0;
1089                 if (m->object->ref_count != 0) {
1090                         if (m->flags & PG_REFERENCED)
1091                                 ++actcount;
1092                         actcount += pmap_ts_referenced(m);
1093                         if (actcount) {
1094                                 m->act_count += ACT_ADVANCE + actcount;
1095                                 if (m->act_count > ACT_MAX)
1096                                         m->act_count = ACT_MAX;
1097                         }
1098                 }
1099                 vm_page_flag_clear(m, PG_REFERENCED);
1100
1101                 /*
1102                  * actcount is only valid if the object ref_count is non-zero.
1103                  */
1104                 if (actcount && m->object->ref_count != 0) {
1105                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1107                 } else {
1108                         m->act_count -= min(m->act_count, ACT_DECLINE);
1109                         if (vm_pageout_algorithm ||
1110                             m->object->ref_count == 0 ||
1111                             m->act_count < pass + 1
1112                         ) {
1113                                 /*
1114                                  * Deactivate the page.  If we had a
1115                                  * shortage from our inactive scan try to
1116                                  * free (cache) the page instead.
1117                                  */
1118                                 --active_shortage;
1119                                 if (inactive_shortage > 0 ||
1120                                     m->object->ref_count == 0) {
1121                                         if (inactive_shortage > 0)
1122                                                 ++recycle_count;
1123                                         vm_page_busy(m);
1124                                         vm_page_protect(m, VM_PROT_NONE);
1125                                         vm_page_wakeup(m);
1126                                         if (m->dirty == 0) {
1127                                                 --inactive_shortage;
1128                                                 vm_page_cache(m);
1129                                         } else {
1130                                                 vm_page_deactivate(m);
1131                                         }
1132                                 } else {
1133                                         vm_page_deactivate(m);
1134                                 }
1135                         } else {
1136                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1137                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1138                         }
1139                 }
1140                 m = next;
1141         }
1142
1143         /*
1144          * We try to maintain some *really* free pages, this allows interrupt
1145          * code to be guaranteed space.  Since both cache and free queues 
1146          * are considered basically 'free', moving pages from cache to free
1147          * does not effect other calculations.
1148          *
1149          * NOTE: we are still in a critical section.
1150          *
1151          * Pages moved from PQ_CACHE to totally free are not counted in the
1152          * pages_freed counter.
1153          */
1154         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1155                 static int cache_rover = 0;
1156                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1157                 if (m == NULL)
1158                         break;
1159                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1160                     m->busy || 
1161                     m->hold_count || 
1162                     m->wire_count) {
1163 #ifdef INVARIANTS
1164                         kprintf("Warning: busy page %p found in cache\n", m);
1165 #endif
1166                         vm_page_deactivate(m);
1167                         continue;
1168                 }
1169                 KKASSERT((m->flags & PG_MAPPED) == 0);
1170                 KKASSERT(m->dirty == 0);
1171                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1172                 vm_pageout_page_free(m);
1173                 mycpu->gd_cnt.v_dfree++;
1174         }
1175
1176         crit_exit();
1177
1178 #if !defined(NO_SWAPPING)
1179         /*
1180          * Idle process swapout -- run once per second.
1181          */
1182         if (vm_swap_idle_enabled) {
1183                 static long lsec;
1184                 if (time_second != lsec) {
1185                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1186                         vm_req_vmdaemon();
1187                         lsec = time_second;
1188                 }
1189         }
1190 #endif
1191                 
1192         /*
1193          * If we didn't get enough free pages, and we have skipped a vnode
1194          * in a writeable object, wakeup the sync daemon.  And kick swapout
1195          * if we did not get enough free pages.
1196          */
1197         if (vm_paging_target() > 0) {
1198                 if (vnodes_skipped && vm_page_count_min(0))
1199                         speedup_syncer();
1200 #if !defined(NO_SWAPPING)
1201                 if (vm_swap_enabled && vm_page_count_target()) {
1202                         vm_req_vmdaemon();
1203                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1204                 }
1205 #endif
1206         }
1207
1208         /*
1209          * Handle catastrophic conditions.  Under good conditions we should
1210          * be at the target, well beyond our minimum.  If we could not even
1211          * reach our minimum the system is under heavy stress.
1212          *
1213          * Determine whether we have run out of memory.  This occurs when
1214          * swap_pager_full is TRUE and the only pages left in the page
1215          * queues are dirty.  We will still likely have page shortages.
1216          *
1217          * - swap_pager_full is set if insufficient swap was
1218          *   available to satisfy a requested pageout.
1219          *
1220          * - the inactive queue is bloated (4 x size of active queue),
1221          *   meaning it is unable to get rid of dirty pages and.
1222          *
1223          * - vm_page_count_min() without counting pages recycled from the
1224          *   active queue (recycle_count) means we could not recover
1225          *   enough pages to meet bare minimum needs.  This test only
1226          *   works if the inactive queue is bloated.
1227          *
1228          * - due to a positive inactive_shortage we shifted the remaining
1229          *   dirty pages from the active queue to the inactive queue
1230          *   trying to find clean ones to free.
1231          */
1232         if (swap_pager_full && vm_page_count_min(recycle_count))
1233                 kprintf("Warning: system low on memory+swap!\n");
1234         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1235             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1236             inactive_shortage > 0) {
1237                 /*
1238                  * Kill something.
1239                  */
1240                 info.bigproc = NULL;
1241                 info.bigsize = 0;
1242                 allproc_scan(vm_pageout_scan_callback, &info);
1243                 if (info.bigproc != NULL) {
1244                         killproc(info.bigproc, "out of swap space");
1245                         info.bigproc->p_nice = PRIO_MIN;
1246                         info.bigproc->p_usched->resetpriority(
1247                                 FIRST_LWP_IN_PROC(info.bigproc));
1248                         wakeup(&vmstats.v_free_count);
1249                         PRELE(info.bigproc);
1250                 }
1251         }
1252         return(inactive_shortage);
1253 }
1254
1255 static int
1256 vm_pageout_scan_callback(struct proc *p, void *data)
1257 {
1258         struct vm_pageout_scan_info *info = data;
1259         vm_offset_t size;
1260
1261         /*
1262          * Never kill system processes or init.  If we have configured swap
1263          * then try to avoid killing low-numbered pids.
1264          */
1265         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1266             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1267                 return (0);
1268         }
1269
1270         /*
1271          * if the process is in a non-running type state,
1272          * don't touch it.
1273          */
1274         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1275                 return (0);
1276
1277         /*
1278          * Get the approximate process size.  Note that anonymous pages
1279          * with backing swap will be counted twice, but there should not
1280          * be too many such pages due to the stress the VM system is
1281          * under at this point.
1282          */
1283         size = vmspace_anonymous_count(p->p_vmspace) +
1284                 vmspace_swap_count(p->p_vmspace);
1285
1286         /*
1287          * If the this process is bigger than the biggest one
1288          * remember it.
1289          */
1290         if (info->bigsize < size) {
1291                 if (info->bigproc)
1292                         PRELE(info->bigproc);
1293                 PHOLD(p);
1294                 info->bigproc = p;
1295                 info->bigsize = size;
1296         }
1297         return(0);
1298 }
1299
1300 /*
1301  * This routine tries to maintain the pseudo LRU active queue,
1302  * so that during long periods of time where there is no paging,
1303  * that some statistic accumulation still occurs.  This code
1304  * helps the situation where paging just starts to occur.
1305  */
1306 static void
1307 vm_pageout_page_stats(void)
1308 {
1309         vm_page_t m,next;
1310         int pcount,tpcount;             /* Number of pages to check */
1311         static int fullintervalcount = 0;
1312         int page_shortage;
1313
1314         page_shortage = 
1315             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1316             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1317
1318         if (page_shortage <= 0)
1319                 return;
1320
1321         crit_enter();
1322
1323         pcount = vmstats.v_active_count;
1324         fullintervalcount += vm_pageout_stats_interval;
1325         if (fullintervalcount < vm_pageout_full_stats_interval) {
1326                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1327                 if (pcount > tpcount)
1328                         pcount = tpcount;
1329         } else {
1330                 fullintervalcount = 0;
1331         }
1332
1333         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1334         while ((m != NULL) && (pcount-- > 0)) {
1335                 int actcount;
1336
1337                 if (m->queue != PQ_ACTIVE) {
1338                         break;
1339                 }
1340
1341                 next = TAILQ_NEXT(m, pageq);
1342                 /*
1343                  * Don't deactivate pages that are busy.
1344                  */
1345                 if ((m->busy != 0) ||
1346                     (m->flags & PG_BUSY) ||
1347                     (m->hold_count != 0)) {
1348                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1349                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1350                         m = next;
1351                         continue;
1352                 }
1353
1354                 actcount = 0;
1355                 if (m->flags & PG_REFERENCED) {
1356                         vm_page_flag_clear(m, PG_REFERENCED);
1357                         actcount += 1;
1358                 }
1359
1360                 actcount += pmap_ts_referenced(m);
1361                 if (actcount) {
1362                         m->act_count += ACT_ADVANCE + actcount;
1363                         if (m->act_count > ACT_MAX)
1364                                 m->act_count = ACT_MAX;
1365                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1366                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1367                 } else {
1368                         if (m->act_count == 0) {
1369                                 /*
1370                                  * We turn off page access, so that we have
1371                                  * more accurate RSS stats.  We don't do this
1372                                  * in the normal page deactivation when the
1373                                  * system is loaded VM wise, because the
1374                                  * cost of the large number of page protect
1375                                  * operations would be higher than the value
1376                                  * of doing the operation.
1377                                  */
1378                                 vm_page_busy(m);
1379                                 vm_page_protect(m, VM_PROT_NONE);
1380                                 vm_page_wakeup(m);
1381                                 vm_page_deactivate(m);
1382                         } else {
1383                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1384                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1385                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1386                         }
1387                 }
1388
1389                 m = next;
1390         }
1391         crit_exit();
1392 }
1393
1394 static int
1395 vm_pageout_free_page_calc(vm_size_t count)
1396 {
1397         if (count < vmstats.v_page_count)
1398                  return 0;
1399         /*
1400          * free_reserved needs to include enough for the largest swap pager
1401          * structures plus enough for any pv_entry structs when paging.
1402          */
1403         if (vmstats.v_page_count > 1024)
1404                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1405         else
1406                 vmstats.v_free_min = 4;
1407         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1408                 vmstats.v_interrupt_free_min;
1409         vmstats.v_free_reserved = vm_pageout_page_count +
1410                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1411         vmstats.v_free_severe = vmstats.v_free_min / 2;
1412         vmstats.v_free_min += vmstats.v_free_reserved;
1413         vmstats.v_free_severe += vmstats.v_free_reserved;
1414         return 1;
1415 }
1416
1417
1418 /*
1419  * vm_pageout is the high level pageout daemon.
1420  */
1421 static void
1422 vm_pageout(void)
1423 {
1424         int pass;
1425         int inactive_shortage;
1426
1427         /*
1428          * Initialize some paging parameters.
1429          */
1430         curthread->td_flags |= TDF_SYSTHREAD;
1431
1432         vmstats.v_interrupt_free_min = 2;
1433         if (vmstats.v_page_count < 2000)
1434                 vm_pageout_page_count = 8;
1435
1436         vm_pageout_free_page_calc(vmstats.v_page_count);
1437
1438         /*
1439          * v_free_target and v_cache_min control pageout hysteresis.  Note
1440          * that these are more a measure of the VM cache queue hysteresis
1441          * then the VM free queue.  Specifically, v_free_target is the
1442          * high water mark (free+cache pages).
1443          *
1444          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1445          * low water mark, while v_free_min is the stop.  v_cache_min must
1446          * be big enough to handle memory needs while the pageout daemon
1447          * is signalled and run to free more pages.
1448          */
1449         if (vmstats.v_free_count > 6144)
1450                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1451         else
1452                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1453
1454         if (vmstats.v_free_count > 2048) {
1455                 vmstats.v_cache_min = vmstats.v_free_target;
1456                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1457                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1458         } else {
1459                 vmstats.v_cache_min = 0;
1460                 vmstats.v_cache_max = 0;
1461                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1462         }
1463         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1464                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1465
1466         /* XXX does not really belong here */
1467         if (vm_page_max_wired == 0)
1468                 vm_page_max_wired = vmstats.v_free_count / 3;
1469
1470         if (vm_pageout_stats_max == 0)
1471                 vm_pageout_stats_max = vmstats.v_free_target;
1472
1473         /*
1474          * Set interval in seconds for stats scan.
1475          */
1476         if (vm_pageout_stats_interval == 0)
1477                 vm_pageout_stats_interval = 5;
1478         if (vm_pageout_full_stats_interval == 0)
1479                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1480         
1481
1482         /*
1483          * Set maximum free per pass
1484          */
1485         if (vm_pageout_stats_free_max == 0)
1486                 vm_pageout_stats_free_max = 5;
1487
1488         swap_pager_swap_init();
1489         pass = 0;
1490
1491         /*
1492          * The pageout daemon is never done, so loop forever.
1493          */
1494         while (TRUE) {
1495                 int error;
1496
1497                 if (vm_pages_needed == 0) {
1498                         /*
1499                          * Wait for an action request
1500                          */
1501                         error = tsleep(&vm_pages_needed,
1502                                        0, "psleep",
1503                                        vm_pageout_stats_interval * hz);
1504                         if (error && vm_pages_needed == 0) {
1505                                 vm_pageout_page_stats();
1506                                 continue;
1507                         }
1508                         vm_pages_needed = 1;
1509                 }
1510
1511                 /*
1512                  * If we have enough free memory, wakeup waiters.
1513                  */
1514                 crit_enter();
1515                 if (!vm_page_count_min(0))
1516                         wakeup(&vmstats.v_free_count);
1517                 mycpu->gd_cnt.v_pdwakeups++;
1518                 crit_exit();
1519                 inactive_shortage = vm_pageout_scan(pass);
1520
1521                 /*
1522                  * Try to avoid thrashing the system with activity.
1523                  */
1524                 if (inactive_shortage > 0) {
1525                         ++pass;
1526                         if (swap_pager_full) {
1527                                 /*
1528                                  * Running out of memory, catastrophic back-off
1529                                  * to one-second intervals.
1530                                  */
1531                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1532                         } else if (pass < 10 && vm_pages_needed > 1) {
1533                                 /*
1534                                  * Normal operation, additional processes
1535                                  * have already kicked us.  Retry immediately.
1536                                  */
1537                         } else if (pass < 10) {
1538                                 /*
1539                                  * Normal operation, fewer processes.  Delay
1540                                  * a bit but allow wakeups.
1541                                  */
1542                                 vm_pages_needed = 0;
1543                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1544                                 vm_pages_needed = 1;
1545                         } else {
1546                                 /*
1547                                  * We've taken too many passes, forced delay.
1548                                  */
1549                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1550                         }
1551                 } else {
1552                         pass = 0;
1553                         vm_pages_needed = 0;
1554                 }
1555         }
1556 }
1557
1558 /*
1559  * Called after allocating a page out of the cache or free queue
1560  * to possibly wake the pagedaemon up to replentish our supply.
1561  *
1562  * We try to generate some hysteresis by waking the pagedaemon up
1563  * when our free+cache pages go below the severe level.  The pagedaemon
1564  * tries to get the count back up to at least the minimum, and through
1565  * to the target level if possible.
1566  *
1567  * If the pagedaemon is already active bump vm_pages_needed as a hint
1568  * that there are even more requests pending.
1569  */
1570 void
1571 pagedaemon_wakeup(void)
1572 {
1573         if (vm_page_count_severe() && curthread != pagethread) {
1574                 if (vm_pages_needed == 0) {
1575                         vm_pages_needed = 1;
1576                         wakeup(&vm_pages_needed);
1577                 } else if (vm_page_count_min(0)) {
1578                         ++vm_pages_needed;
1579                 }
1580         }
1581 }
1582
1583 #if !defined(NO_SWAPPING)
1584 static void
1585 vm_req_vmdaemon(void)
1586 {
1587         static int lastrun = 0;
1588
1589         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1590                 wakeup(&vm_daemon_needed);
1591                 lastrun = ticks;
1592         }
1593 }
1594
1595 static int vm_daemon_callback(struct proc *p, void *data __unused);
1596
1597 static void
1598 vm_daemon(void)
1599 {
1600         while (TRUE) {
1601                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1602                 if (vm_pageout_req_swapout) {
1603                         swapout_procs(vm_pageout_req_swapout);
1604                         vm_pageout_req_swapout = 0;
1605                 }
1606                 /*
1607                  * scan the processes for exceeding their rlimits or if
1608                  * process is swapped out -- deactivate pages
1609                  */
1610                 allproc_scan(vm_daemon_callback, NULL);
1611         }
1612 }
1613
1614 static int
1615 vm_daemon_callback(struct proc *p, void *data __unused)
1616 {
1617         vm_pindex_t limit, size;
1618
1619         /*
1620          * if this is a system process or if we have already
1621          * looked at this process, skip it.
1622          */
1623         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1624                 return (0);
1625
1626         /*
1627          * if the process is in a non-running type state,
1628          * don't touch it.
1629          */
1630         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1631                 return (0);
1632
1633         /*
1634          * get a limit
1635          */
1636         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1637                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1638
1639         /*
1640          * let processes that are swapped out really be
1641          * swapped out.  Set the limit to nothing to get as
1642          * many pages out to swap as possible.
1643          */
1644         if (p->p_flag & P_SWAPPEDOUT)
1645                 limit = 0;
1646
1647         size = vmspace_resident_count(p->p_vmspace);
1648         if (limit >= 0 && size >= limit) {
1649                 vm_pageout_map_deactivate_pages(
1650                     &p->p_vmspace->vm_map, limit);
1651         }
1652         return (0);
1653 }
1654
1655 #endif