drm/radeon: Update to Linux 3.18
[dragonfly.git] / sys / dev / drm / radeon / cik_sdma.c
1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "radeon.h"
27 #include "radeon_asic.h"
28 #ifdef TRACE_TODO
29 #include "radeon_trace.h"
30 #endif
31 #include "cikd.h"
32
33 /* sdma */
34 #define CIK_SDMA_UCODE_SIZE 1050
35 #define CIK_SDMA_UCODE_VERSION 64
36
37 /*
38  * sDMA - System DMA
39  * Starting with CIK, the GPU has new asynchronous
40  * DMA engines.  These engines are used for compute
41  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
42  * and each one supports 1 ring buffer used for gfx
43  * and 2 queues used for compute.
44  *
45  * The programming model is very similar to the CP
46  * (ring buffer, IBs, etc.), but sDMA has it's own
47  * packet format that is different from the PM4 format
48  * used by the CP. sDMA supports copying data, writing
49  * embedded data, solid fills, and a number of other
50  * things.  It also has support for tiling/detiling of
51  * buffers.
52  */
53
54 /**
55  * cik_sdma_get_rptr - get the current read pointer
56  *
57  * @rdev: radeon_device pointer
58  * @ring: radeon ring pointer
59  *
60  * Get the current rptr from the hardware (CIK+).
61  */
62 uint32_t cik_sdma_get_rptr(struct radeon_device *rdev,
63                            struct radeon_ring *ring)
64 {
65         u32 rptr, reg;
66
67         if (rdev->wb.enabled) {
68                 rptr = rdev->wb.wb[ring->rptr_offs/4];
69         } else {
70                 if (ring->idx == R600_RING_TYPE_DMA_INDEX)
71                         reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET;
72                 else
73                         reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET;
74
75                 rptr = RREG32(reg);
76         }
77
78         return (rptr & 0x3fffc) >> 2;
79 }
80
81 /**
82  * cik_sdma_get_wptr - get the current write pointer
83  *
84  * @rdev: radeon_device pointer
85  * @ring: radeon ring pointer
86  *
87  * Get the current wptr from the hardware (CIK+).
88  */
89 uint32_t cik_sdma_get_wptr(struct radeon_device *rdev,
90                            struct radeon_ring *ring)
91 {
92         u32 reg;
93
94         if (ring->idx == R600_RING_TYPE_DMA_INDEX)
95                 reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET;
96         else
97                 reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET;
98
99         return (RREG32(reg) & 0x3fffc) >> 2;
100 }
101
102 /**
103  * cik_sdma_set_wptr - commit the write pointer
104  *
105  * @rdev: radeon_device pointer
106  * @ring: radeon ring pointer
107  *
108  * Write the wptr back to the hardware (CIK+).
109  */
110 void cik_sdma_set_wptr(struct radeon_device *rdev,
111                        struct radeon_ring *ring)
112 {
113         u32 reg;
114
115         if (ring->idx == R600_RING_TYPE_DMA_INDEX)
116                 reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET;
117         else
118                 reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET;
119
120         WREG32(reg, (ring->wptr << 2) & 0x3fffc);
121         (void)RREG32(reg);
122 }
123
124 /**
125  * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine
126  *
127  * @rdev: radeon_device pointer
128  * @ib: IB object to schedule
129  *
130  * Schedule an IB in the DMA ring (CIK).
131  */
132 void cik_sdma_ring_ib_execute(struct radeon_device *rdev,
133                               struct radeon_ib *ib)
134 {
135         struct radeon_ring *ring = &rdev->ring[ib->ring];
136         u32 extra_bits = (ib->vm ? ib->vm->id : 0) & 0xf;
137
138         if (rdev->wb.enabled) {
139                 u32 next_rptr = ring->wptr + 5;
140                 while ((next_rptr & 7) != 4)
141                         next_rptr++;
142                 next_rptr += 4;
143                 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
144                 radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
145                 radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
146                 radeon_ring_write(ring, 1); /* number of DWs to follow */
147                 radeon_ring_write(ring, next_rptr);
148         }
149
150         /* IB packet must end on a 8 DW boundary */
151         while ((ring->wptr & 7) != 4)
152                 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
153         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits));
154         radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */
155         radeon_ring_write(ring, upper_32_bits(ib->gpu_addr));
156         radeon_ring_write(ring, ib->length_dw);
157
158 }
159
160 /**
161  * cik_sdma_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
162  *
163  * @rdev: radeon_device pointer
164  * @ridx: radeon ring index
165  *
166  * Emit an hdp flush packet on the requested DMA ring.
167  */
168 static void cik_sdma_hdp_flush_ring_emit(struct radeon_device *rdev,
169                                          int ridx)
170 {
171         struct radeon_ring *ring = &rdev->ring[ridx];
172         u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
173                           SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
174         u32 ref_and_mask;
175
176         if (ridx == R600_RING_TYPE_DMA_INDEX)
177                 ref_and_mask = SDMA0;
178         else
179                 ref_and_mask = SDMA1;
180
181         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
182         radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
183         radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
184         radeon_ring_write(ring, ref_and_mask); /* reference */
185         radeon_ring_write(ring, ref_and_mask); /* mask */
186         radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
187 }
188
189 /**
190  * cik_sdma_fence_ring_emit - emit a fence on the DMA ring
191  *
192  * @rdev: radeon_device pointer
193  * @fence: radeon fence object
194  *
195  * Add a DMA fence packet to the ring to write
196  * the fence seq number and DMA trap packet to generate
197  * an interrupt if needed (CIK).
198  */
199 void cik_sdma_fence_ring_emit(struct radeon_device *rdev,
200                               struct radeon_fence *fence)
201 {
202         struct radeon_ring *ring = &rdev->ring[fence->ring];
203         u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
204
205         /* write the fence */
206         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
207         radeon_ring_write(ring, lower_32_bits(addr));
208         radeon_ring_write(ring, upper_32_bits(addr));
209         radeon_ring_write(ring, fence->seq);
210         /* generate an interrupt */
211         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0));
212         /* flush HDP */
213         cik_sdma_hdp_flush_ring_emit(rdev, fence->ring);
214 }
215
216 /**
217  * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring
218  *
219  * @rdev: radeon_device pointer
220  * @ring: radeon_ring structure holding ring information
221  * @semaphore: radeon semaphore object
222  * @emit_wait: wait or signal semaphore
223  *
224  * Add a DMA semaphore packet to the ring wait on or signal
225  * other rings (CIK).
226  */
227 bool cik_sdma_semaphore_ring_emit(struct radeon_device *rdev,
228                                   struct radeon_ring *ring,
229                                   struct radeon_semaphore *semaphore,
230                                   bool emit_wait)
231 {
232         u64 addr = semaphore->gpu_addr;
233         u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S;
234
235         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits));
236         radeon_ring_write(ring, addr & 0xfffffff8);
237         radeon_ring_write(ring, upper_32_bits(addr));
238
239         return true;
240 }
241
242 /**
243  * cik_sdma_gfx_stop - stop the gfx async dma engines
244  *
245  * @rdev: radeon_device pointer
246  *
247  * Stop the gfx async dma ring buffers (CIK).
248  */
249 static void cik_sdma_gfx_stop(struct radeon_device *rdev)
250 {
251         u32 rb_cntl, reg_offset;
252         int i;
253
254         if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
255             (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
256                 radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
257
258         for (i = 0; i < 2; i++) {
259                 if (i == 0)
260                         reg_offset = SDMA0_REGISTER_OFFSET;
261                 else
262                         reg_offset = SDMA1_REGISTER_OFFSET;
263                 rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset);
264                 rb_cntl &= ~SDMA_RB_ENABLE;
265                 WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
266                 WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0);
267         }
268         rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
269         rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false;
270 }
271
272 /**
273  * cik_sdma_rlc_stop - stop the compute async dma engines
274  *
275  * @rdev: radeon_device pointer
276  *
277  * Stop the compute async dma queues (CIK).
278  */
279 static void cik_sdma_rlc_stop(struct radeon_device *rdev)
280 {
281         /* XXX todo */
282 }
283
284 /**
285  * cik_sdma_enable - stop the async dma engines
286  *
287  * @rdev: radeon_device pointer
288  * @enable: enable/disable the DMA MEs.
289  *
290  * Halt or unhalt the async dma engines (CIK).
291  */
292 void cik_sdma_enable(struct radeon_device *rdev, bool enable)
293 {
294         u32 me_cntl, reg_offset;
295         int i;
296
297         if (enable == false) {
298                 cik_sdma_gfx_stop(rdev);
299                 cik_sdma_rlc_stop(rdev);
300         }
301
302         for (i = 0; i < 2; i++) {
303                 if (i == 0)
304                         reg_offset = SDMA0_REGISTER_OFFSET;
305                 else
306                         reg_offset = SDMA1_REGISTER_OFFSET;
307                 me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset);
308                 if (enable)
309                         me_cntl &= ~SDMA_HALT;
310                 else
311                         me_cntl |= SDMA_HALT;
312                 WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl);
313         }
314 }
315
316 /**
317  * cik_sdma_gfx_resume - setup and start the async dma engines
318  *
319  * @rdev: radeon_device pointer
320  *
321  * Set up the gfx DMA ring buffers and enable them (CIK).
322  * Returns 0 for success, error for failure.
323  */
324 static int cik_sdma_gfx_resume(struct radeon_device *rdev)
325 {
326         struct radeon_ring *ring;
327         u32 rb_cntl, ib_cntl;
328         u32 rb_bufsz;
329         u32 reg_offset, wb_offset;
330         int i, r;
331
332         for (i = 0; i < 2; i++) {
333                 if (i == 0) {
334                         ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
335                         reg_offset = SDMA0_REGISTER_OFFSET;
336                         wb_offset = R600_WB_DMA_RPTR_OFFSET;
337                 } else {
338                         ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
339                         reg_offset = SDMA1_REGISTER_OFFSET;
340                         wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
341                 }
342
343                 WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
344                 WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);
345
346                 /* Set ring buffer size in dwords */
347                 rb_bufsz = order_base_2(ring->ring_size / 4);
348                 rb_cntl = rb_bufsz << 1;
349 #ifdef __BIG_ENDIAN
350                 rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE;
351 #endif
352                 WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
353
354                 /* Initialize the ring buffer's read and write pointers */
355                 WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0);
356                 WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0);
357
358                 /* set the wb address whether it's enabled or not */
359                 WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset,
360                        upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
361                 WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset,
362                        ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));
363
364                 if (rdev->wb.enabled)
365                         rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE;
366
367                 WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8);
368                 WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40);
369
370                 ring->wptr = 0;
371                 WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2);
372
373                 /* enable DMA RB */
374                 WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE);
375
376                 ib_cntl = SDMA_IB_ENABLE;
377 #ifdef __BIG_ENDIAN
378                 ib_cntl |= SDMA_IB_SWAP_ENABLE;
379 #endif
380                 /* enable DMA IBs */
381                 WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl);
382
383                 ring->ready = true;
384
385                 r = radeon_ring_test(rdev, ring->idx, ring);
386                 if (r) {
387                         ring->ready = false;
388                         return r;
389                 }
390         }
391
392         if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
393             (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
394                 radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
395
396         return 0;
397 }
398
399 /**
400  * cik_sdma_rlc_resume - setup and start the async dma engines
401  *
402  * @rdev: radeon_device pointer
403  *
404  * Set up the compute DMA queues and enable them (CIK).
405  * Returns 0 for success, error for failure.
406  */
407 static int cik_sdma_rlc_resume(struct radeon_device *rdev)
408 {
409         /* XXX todo */
410         return 0;
411 }
412
413 /**
414  * cik_sdma_load_microcode - load the sDMA ME ucode
415  *
416  * @rdev: radeon_device pointer
417  *
418  * Loads the sDMA0/1 ucode.
419  * Returns 0 for success, -EINVAL if the ucode is not available.
420  */
421 static int cik_sdma_load_microcode(struct radeon_device *rdev)
422 {
423         const __be32 *fw_data;
424         int i;
425
426         if (!rdev->sdma_fw)
427                 return -EINVAL;
428
429         /* halt the MEs */
430         cik_sdma_enable(rdev, false);
431
432         /* sdma0 */
433         fw_data = (const __be32 *)rdev->sdma_fw->data;
434         WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
435         for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
436                 WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++));
437         WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
438
439         /* sdma1 */
440         fw_data = (const __be32 *)rdev->sdma_fw->data;
441         WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
442         for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
443                 WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++));
444         WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
445
446         WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
447         WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
448         return 0;
449 }
450
451 /**
452  * cik_sdma_resume - setup and start the async dma engines
453  *
454  * @rdev: radeon_device pointer
455  *
456  * Set up the DMA engines and enable them (CIK).
457  * Returns 0 for success, error for failure.
458  */
459 int cik_sdma_resume(struct radeon_device *rdev)
460 {
461         int r;
462
463         r = cik_sdma_load_microcode(rdev);
464         if (r)
465                 return r;
466
467         /* unhalt the MEs */
468         cik_sdma_enable(rdev, true);
469
470         /* start the gfx rings and rlc compute queues */
471         r = cik_sdma_gfx_resume(rdev);
472         if (r)
473                 return r;
474         r = cik_sdma_rlc_resume(rdev);
475         if (r)
476                 return r;
477
478         return 0;
479 }
480
481 /**
482  * cik_sdma_fini - tear down the async dma engines
483  *
484  * @rdev: radeon_device pointer
485  *
486  * Stop the async dma engines and free the rings (CIK).
487  */
488 void cik_sdma_fini(struct radeon_device *rdev)
489 {
490         /* halt the MEs */
491         cik_sdma_enable(rdev, false);
492         radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
493         radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
494         /* XXX - compute dma queue tear down */
495 }
496
497 /**
498  * cik_copy_dma - copy pages using the DMA engine
499  *
500  * @rdev: radeon_device pointer
501  * @src_offset: src GPU address
502  * @dst_offset: dst GPU address
503  * @num_gpu_pages: number of GPU pages to xfer
504  * @fence: radeon fence object
505  *
506  * Copy GPU paging using the DMA engine (CIK).
507  * Used by the radeon ttm implementation to move pages if
508  * registered as the asic copy callback.
509  */
510 int cik_copy_dma(struct radeon_device *rdev,
511                  uint64_t src_offset, uint64_t dst_offset,
512                  unsigned num_gpu_pages,
513                  struct radeon_fence **fence)
514 {
515         struct radeon_semaphore *sem = NULL;
516         int ring_index = rdev->asic->copy.dma_ring_index;
517         struct radeon_ring *ring = &rdev->ring[ring_index];
518         u32 size_in_bytes, cur_size_in_bytes;
519         int i, num_loops;
520         int r = 0;
521
522         r = radeon_semaphore_create(rdev, &sem);
523         if (r) {
524                 DRM_ERROR("radeon: moving bo (%d).\n", r);
525                 return r;
526         }
527
528         size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT);
529         num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff);
530         r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14);
531         if (r) {
532                 DRM_ERROR("radeon: moving bo (%d).\n", r);
533                 radeon_semaphore_free(rdev, &sem, NULL);
534                 return r;
535         }
536
537         radeon_semaphore_sync_to(sem, *fence);
538         radeon_semaphore_sync_rings(rdev, sem, ring->idx);
539
540         for (i = 0; i < num_loops; i++) {
541                 cur_size_in_bytes = size_in_bytes;
542                 if (cur_size_in_bytes > 0x1fffff)
543                         cur_size_in_bytes = 0x1fffff;
544                 size_in_bytes -= cur_size_in_bytes;
545                 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0));
546                 radeon_ring_write(ring, cur_size_in_bytes);
547                 radeon_ring_write(ring, 0); /* src/dst endian swap */
548                 radeon_ring_write(ring, lower_32_bits(src_offset));
549                 radeon_ring_write(ring, upper_32_bits(src_offset));
550                 radeon_ring_write(ring, lower_32_bits(dst_offset));
551                 radeon_ring_write(ring, upper_32_bits(dst_offset));
552                 src_offset += cur_size_in_bytes;
553                 dst_offset += cur_size_in_bytes;
554         }
555
556         r = radeon_fence_emit(rdev, fence, ring->idx);
557         if (r) {
558                 radeon_ring_unlock_undo(rdev, ring);
559                 radeon_semaphore_free(rdev, &sem, NULL);
560                 return r;
561         }
562
563         radeon_ring_unlock_commit(rdev, ring, false);
564         radeon_semaphore_free(rdev, &sem, *fence);
565
566         return r;
567 }
568
569 /**
570  * cik_sdma_ring_test - simple async dma engine test
571  *
572  * @rdev: radeon_device pointer
573  * @ring: radeon_ring structure holding ring information
574  *
575  * Test the DMA engine by writing using it to write an
576  * value to memory. (CIK).
577  * Returns 0 for success, error for failure.
578  */
579 int cik_sdma_ring_test(struct radeon_device *rdev,
580                        struct radeon_ring *ring)
581 {
582         unsigned i;
583         int r;
584         unsigned index;
585         u32 tmp;
586         u64 gpu_addr;
587
588         if (ring->idx == R600_RING_TYPE_DMA_INDEX)
589                 index = R600_WB_DMA_RING_TEST_OFFSET;
590         else
591                 index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;
592
593         gpu_addr = rdev->wb.gpu_addr + index;
594
595         tmp = 0xCAFEDEAD;
596         rdev->wb.wb[index/4] = cpu_to_le32(tmp);
597
598         r = radeon_ring_lock(rdev, ring, 5);
599         if (r) {
600                 DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r);
601                 return r;
602         }
603         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
604         radeon_ring_write(ring, lower_32_bits(gpu_addr));
605         radeon_ring_write(ring, upper_32_bits(gpu_addr));
606         radeon_ring_write(ring, 1); /* number of DWs to follow */
607         radeon_ring_write(ring, 0xDEADBEEF);
608         radeon_ring_unlock_commit(rdev, ring, false);
609
610         for (i = 0; i < rdev->usec_timeout; i++) {
611                 tmp = le32_to_cpu(rdev->wb.wb[index/4]);
612                 if (tmp == 0xDEADBEEF)
613                         break;
614                 DRM_UDELAY(1);
615         }
616
617         if (i < rdev->usec_timeout) {
618                 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
619         } else {
620                 DRM_ERROR("radeon: ring %d test failed (0x%08X)\n",
621                           ring->idx, tmp);
622                 r = -EINVAL;
623         }
624         return r;
625 }
626
627 /**
628  * cik_sdma_ib_test - test an IB on the DMA engine
629  *
630  * @rdev: radeon_device pointer
631  * @ring: radeon_ring structure holding ring information
632  *
633  * Test a simple IB in the DMA ring (CIK).
634  * Returns 0 on success, error on failure.
635  */
636 int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
637 {
638         struct radeon_ib ib;
639         unsigned i;
640         unsigned index;
641         int r;
642         u32 tmp = 0;
643         u64 gpu_addr;
644
645         if (ring->idx == R600_RING_TYPE_DMA_INDEX)
646                 index = R600_WB_DMA_RING_TEST_OFFSET;
647         else
648                 index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;
649
650         gpu_addr = rdev->wb.gpu_addr + index;
651
652         tmp = 0xCAFEDEAD;
653         rdev->wb.wb[index/4] = cpu_to_le32(tmp);
654
655         r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
656         if (r) {
657                 DRM_ERROR("radeon: failed to get ib (%d).\n", r);
658                 return r;
659         }
660
661         ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
662         ib.ptr[1] = lower_32_bits(gpu_addr);
663         ib.ptr[2] = upper_32_bits(gpu_addr);
664         ib.ptr[3] = 1;
665         ib.ptr[4] = 0xDEADBEEF;
666         ib.length_dw = 5;
667
668         r = radeon_ib_schedule(rdev, &ib, NULL, false);
669         if (r) {
670                 radeon_ib_free(rdev, &ib);
671                 DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
672                 return r;
673         }
674         r = radeon_fence_wait(ib.fence, false);
675         if (r) {
676                 DRM_ERROR("radeon: fence wait failed (%d).\n", r);
677                 return r;
678         }
679         for (i = 0; i < rdev->usec_timeout; i++) {
680                 tmp = le32_to_cpu(rdev->wb.wb[index/4]);
681                 if (tmp == 0xDEADBEEF)
682                         break;
683                 DRM_UDELAY(1);
684         }
685         if (i < rdev->usec_timeout) {
686                 DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
687         } else {
688                 DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp);
689                 r = -EINVAL;
690         }
691         radeon_ib_free(rdev, &ib);
692         return r;
693 }
694
695 /**
696  * cik_sdma_is_lockup - Check if the DMA engine is locked up
697  *
698  * @rdev: radeon_device pointer
699  * @ring: radeon_ring structure holding ring information
700  *
701  * Check if the async DMA engine is locked up (CIK).
702  * Returns true if the engine appears to be locked up, false if not.
703  */
704 bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
705 {
706         u32 reset_mask = cik_gpu_check_soft_reset(rdev);
707         u32 mask;
708
709         if (ring->idx == R600_RING_TYPE_DMA_INDEX)
710                 mask = RADEON_RESET_DMA;
711         else
712                 mask = RADEON_RESET_DMA1;
713
714         if (!(reset_mask & mask)) {
715                 radeon_ring_lockup_update(rdev, ring);
716                 return false;
717         }
718         return radeon_ring_test_lockup(rdev, ring);
719 }
720
721 /**
722  * cik_sdma_vm_copy_pages - update PTEs by copying them from the GART
723  *
724  * @rdev: radeon_device pointer
725  * @ib: indirect buffer to fill with commands
726  * @pe: addr of the page entry
727  * @src: src addr to copy from
728  * @count: number of page entries to update
729  *
730  * Update PTEs by copying them from the GART using sDMA (CIK).
731  */
732 void cik_sdma_vm_copy_pages(struct radeon_device *rdev,
733                             struct radeon_ib *ib,
734                             uint64_t pe, uint64_t src,
735                             unsigned count)
736 {
737         while (count) {
738                 unsigned bytes = count * 8;
739                 if (bytes > 0x1FFFF8)
740                         bytes = 0x1FFFF8;
741
742                 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY,
743                         SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
744                 ib->ptr[ib->length_dw++] = bytes;
745                 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
746                 ib->ptr[ib->length_dw++] = lower_32_bits(src);
747                 ib->ptr[ib->length_dw++] = upper_32_bits(src);
748                 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
749                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
750
751                 pe += bytes;
752                 src += bytes;
753                 count -= bytes / 8;
754         }
755 }
756
757 /**
758  * cik_sdma_vm_write_pages - update PTEs by writing them manually
759  *
760  * @rdev: radeon_device pointer
761  * @ib: indirect buffer to fill with commands
762  * @pe: addr of the page entry
763  * @addr: dst addr to write into pe
764  * @count: number of page entries to update
765  * @incr: increase next addr by incr bytes
766  * @flags: access flags
767  *
768  * Update PTEs by writing them manually using sDMA (CIK).
769  */
770 void cik_sdma_vm_write_pages(struct radeon_device *rdev,
771                              struct radeon_ib *ib,
772                              uint64_t pe,
773                              uint64_t addr, unsigned count,
774                              uint32_t incr, uint32_t flags)
775 {
776         uint64_t value;
777         unsigned ndw;
778
779         while (count) {
780                 ndw = count * 2;
781                 if (ndw > 0xFFFFE)
782                         ndw = 0xFFFFE;
783
784                 /* for non-physically contiguous pages (system) */
785                 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE,
786                         SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
787                 ib->ptr[ib->length_dw++] = pe;
788                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
789                 ib->ptr[ib->length_dw++] = ndw;
790                 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
791                         if (flags & R600_PTE_SYSTEM) {
792                                 value = radeon_vm_map_gart(rdev, addr);
793                                 value &= 0xFFFFFFFFFFFFF000ULL;
794                         } else if (flags & R600_PTE_VALID) {
795                                 value = addr;
796                         } else {
797                                 value = 0;
798                         }
799                         addr += incr;
800                         value |= flags;
801                         ib->ptr[ib->length_dw++] = value;
802                         ib->ptr[ib->length_dw++] = upper_32_bits(value);
803                 }
804         }
805 }
806
807 /**
808  * cik_sdma_vm_set_pages - update the page tables using sDMA
809  *
810  * @rdev: radeon_device pointer
811  * @ib: indirect buffer to fill with commands
812  * @pe: addr of the page entry
813  * @addr: dst addr to write into pe
814  * @count: number of page entries to update
815  * @incr: increase next addr by incr bytes
816  * @flags: access flags
817  *
818  * Update the page tables using sDMA (CIK).
819  */
820 void cik_sdma_vm_set_pages(struct radeon_device *rdev,
821                            struct radeon_ib *ib,
822                            uint64_t pe,
823                            uint64_t addr, unsigned count,
824                            uint32_t incr, uint32_t flags)
825 {
826         uint64_t value;
827         unsigned ndw;
828
829         while (count) {
830                 ndw = count;
831                 if (ndw > 0x7FFFF)
832                         ndw = 0x7FFFF;
833
834                 if (flags & R600_PTE_VALID)
835                         value = addr;
836                 else
837                         value = 0;
838
839                 /* for physically contiguous pages (vram) */
840                 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0);
841                 ib->ptr[ib->length_dw++] = pe; /* dst addr */
842                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
843                 ib->ptr[ib->length_dw++] = flags; /* mask */
844                 ib->ptr[ib->length_dw++] = 0;
845                 ib->ptr[ib->length_dw++] = value; /* value */
846                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
847                 ib->ptr[ib->length_dw++] = incr; /* increment size */
848                 ib->ptr[ib->length_dw++] = 0;
849                 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
850
851                 pe += ndw * 8;
852                 addr += ndw * incr;
853                 count -= ndw;
854         }
855 }
856
857 /**
858  * cik_sdma_vm_pad_ib - pad the IB to the required number of dw
859  *
860  * @ib: indirect buffer to fill with padding
861  *
862  */
863 void cik_sdma_vm_pad_ib(struct radeon_ib *ib)
864 {
865         while (ib->length_dw & 0x7)
866                 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0);
867 }
868
869 /**
870  * cik_dma_vm_flush - cik vm flush using sDMA
871  *
872  * @rdev: radeon_device pointer
873  *
874  * Update the page table base and flush the VM TLB
875  * using sDMA (CIK).
876  */
877 void cik_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm)
878 {
879         struct radeon_ring *ring = &rdev->ring[ridx];
880
881         if (vm == NULL)
882                 return;
883
884         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
885         if (vm->id < 8) {
886                 radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2);
887         } else {
888                 radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2);
889         }
890         radeon_ring_write(ring, vm->pd_gpu_addr >> 12);
891
892         /* update SH_MEM_* regs */
893         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
894         radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
895         radeon_ring_write(ring, VMID(vm->id));
896
897         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
898         radeon_ring_write(ring, SH_MEM_BASES >> 2);
899         radeon_ring_write(ring, 0);
900
901         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
902         radeon_ring_write(ring, SH_MEM_CONFIG >> 2);
903         radeon_ring_write(ring, 0);
904
905         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
906         radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2);
907         radeon_ring_write(ring, 1);
908
909         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
910         radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2);
911         radeon_ring_write(ring, 0);
912
913         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
914         radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
915         radeon_ring_write(ring, VMID(0));
916
917         /* flush HDP */
918         cik_sdma_hdp_flush_ring_emit(rdev, ridx);
919
920         /* flush TLB */
921         radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
922         radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
923         radeon_ring_write(ring, 1 << vm->id);
924 }