Allow the kernel to be compile without KTRACE option.
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread 
39  * scheduling is queued via (async) IPIs.
40  */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <machine/cpu.h>
51 #include <sys/lock.h>
52 #include <sys/caps.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68
69 #include <machine/stdarg.h>
70 #include <machine/smp.h>
71
72 #if !defined(KTR_CTXSW)
73 #define KTR_CTXSW KTR_ALL
74 #endif
75 KTR_INFO_MASTER(ctxsw);
76 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "sw  %p > %p", 2 * sizeof(struct thread *));
77 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "pre %p > %p", 2 * sizeof(struct thread *));
78 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "new_td %p %s", sizeof (struct thread *) +
79          sizeof(char *));
80 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "dead_td %p", sizeof (struct thread *));
81
82 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
83
84 #ifdef  INVARIANTS
85 static int panic_on_cscount = 0;
86 #endif
87 static __int64_t switch_count = 0;
88 static __int64_t preempt_hit = 0;
89 static __int64_t preempt_miss = 0;
90 static __int64_t preempt_weird = 0;
91 static __int64_t token_contention_count __debugvar = 0;
92 static int lwkt_use_spin_port;
93 static struct objcache *thread_cache;
94
95 #ifdef SMP
96 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
97 #endif
98
99 extern void cpu_heavy_restore(void);
100 extern void cpu_lwkt_restore(void);
101 extern void cpu_kthread_restore(void);
102 extern void cpu_idle_restore(void);
103
104 #ifdef __x86_64__
105
106 static int
107 jg_tos_ok(struct thread *td)
108 {
109         void *tos;
110         int tos_ok;
111
112         if (td == NULL) {
113                 return 1;
114         }
115         KKASSERT(td->td_sp != NULL);
116         tos = ((void **)td->td_sp)[0];
117         tos_ok = 0;
118         if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
119             (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
120                 tos_ok = 1;
121         }
122         return tos_ok;
123 }
124
125 #endif
126
127 /*
128  * We can make all thread ports use the spin backend instead of the thread
129  * backend.  This should only be set to debug the spin backend.
130  */
131 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
132
133 #ifdef  INVARIANTS
134 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
135 #endif
136 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
137 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
138 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
139 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
140 #ifdef  INVARIANTS
141 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
142         &token_contention_count, 0, "spinning due to token contention");
143 #endif
144
145 /*
146  * These helper procedures handle the runq, they can only be called from
147  * within a critical section.
148  *
149  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
150  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
151  * instead of 'mycpu' when referencing the globaldata structure.   Once
152  * SMP live enqueuing and dequeueing only occurs on the current cpu.
153  */
154 static __inline
155 void
156 _lwkt_dequeue(thread_t td)
157 {
158     if (td->td_flags & TDF_RUNQ) {
159         int nq = td->td_pri & TDPRI_MASK;
160         struct globaldata *gd = td->td_gd;
161
162         td->td_flags &= ~TDF_RUNQ;
163         TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
164         /* runqmask is passively cleaned up by the switcher */
165     }
166 }
167
168 static __inline
169 void
170 _lwkt_enqueue(thread_t td)
171 {
172     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
173         int nq = td->td_pri & TDPRI_MASK;
174         struct globaldata *gd = td->td_gd;
175
176         td->td_flags |= TDF_RUNQ;
177         TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
178         gd->gd_runqmask |= 1 << nq;
179     }
180 }
181
182 static __boolean_t
183 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
184 {
185         struct thread *td = (struct thread *)obj;
186
187         td->td_kstack = NULL;
188         td->td_kstack_size = 0;
189         td->td_flags = TDF_ALLOCATED_THREAD;
190         return (1);
191 }
192
193 static void
194 _lwkt_thread_dtor(void *obj, void *privdata)
195 {
196         struct thread *td = (struct thread *)obj;
197
198         KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
199             ("_lwkt_thread_dtor: not allocated from objcache"));
200         KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
201                 td->td_kstack_size > 0,
202             ("_lwkt_thread_dtor: corrupted stack"));
203         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
204 }
205
206 /*
207  * Initialize the lwkt s/system.
208  */
209 void
210 lwkt_init(void)
211 {
212     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
213     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
214                         NULL, CACHE_NTHREADS/2,
215                         _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
216 }
217
218 /*
219  * Schedule a thread to run.  As the current thread we can always safely
220  * schedule ourselves, and a shortcut procedure is provided for that
221  * function.
222  *
223  * (non-blocking, self contained on a per cpu basis)
224  */
225 void
226 lwkt_schedule_self(thread_t td)
227 {
228     crit_enter_quick(td);
229     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
230     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
231     _lwkt_enqueue(td);
232     crit_exit_quick(td);
233 }
234
235 /*
236  * Deschedule a thread.
237  *
238  * (non-blocking, self contained on a per cpu basis)
239  */
240 void
241 lwkt_deschedule_self(thread_t td)
242 {
243     crit_enter_quick(td);
244     _lwkt_dequeue(td);
245     crit_exit_quick(td);
246 }
247
248 /*
249  * LWKTs operate on a per-cpu basis
250  *
251  * WARNING!  Called from early boot, 'mycpu' may not work yet.
252  */
253 void
254 lwkt_gdinit(struct globaldata *gd)
255 {
256     int i;
257
258     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
259         TAILQ_INIT(&gd->gd_tdrunq[i]);
260     gd->gd_runqmask = 0;
261     TAILQ_INIT(&gd->gd_tdallq);
262 }
263
264 /*
265  * Create a new thread.  The thread must be associated with a process context
266  * or LWKT start address before it can be scheduled.  If the target cpu is
267  * -1 the thread will be created on the current cpu.
268  *
269  * If you intend to create a thread without a process context this function
270  * does everything except load the startup and switcher function.
271  */
272 thread_t
273 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
274 {
275     globaldata_t gd = mycpu;
276     void *stack;
277
278     /*
279      * If static thread storage is not supplied allocate a thread.  Reuse
280      * a cached free thread if possible.  gd_freetd is used to keep an exiting
281      * thread intact through the exit.
282      */
283     if (td == NULL) {
284         if ((td = gd->gd_freetd) != NULL)
285             gd->gd_freetd = NULL;
286         else
287             td = objcache_get(thread_cache, M_WAITOK);
288         KASSERT((td->td_flags &
289                  (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
290                 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
291         flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
292     }
293
294     /*
295      * Try to reuse cached stack.
296      */
297     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
298         if (flags & TDF_ALLOCATED_STACK) {
299             kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
300             stack = NULL;
301         }
302     }
303     if (stack == NULL) {
304         stack = (void *)kmem_alloc(&kernel_map, stksize);
305         flags |= TDF_ALLOCATED_STACK;
306     }
307     if (cpu < 0)
308         lwkt_init_thread(td, stack, stksize, flags, gd);
309     else
310         lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
311     return(td);
312 }
313
314 /*
315  * Initialize a preexisting thread structure.  This function is used by
316  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
317  *
318  * All threads start out in a critical section at a priority of
319  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
320  * appropriate.  This function may send an IPI message when the 
321  * requested cpu is not the current cpu and consequently gd_tdallq may
322  * not be initialized synchronously from the point of view of the originating
323  * cpu.
324  *
325  * NOTE! we have to be careful in regards to creating threads for other cpus
326  * if SMP has not yet been activated.
327  */
328 #ifdef SMP
329
330 static void
331 lwkt_init_thread_remote(void *arg)
332 {
333     thread_t td = arg;
334
335     /*
336      * Protected by critical section held by IPI dispatch
337      */
338     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
339 }
340
341 #endif
342
343 void
344 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
345                 struct globaldata *gd)
346 {
347     globaldata_t mygd = mycpu;
348
349     bzero(td, sizeof(struct thread));
350     td->td_kstack = stack;
351     td->td_kstack_size = stksize;
352     td->td_flags = flags;
353     td->td_gd = gd;
354     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
355 #ifdef SMP
356     if ((flags & TDF_MPSAFE) == 0)
357         td->td_mpcount = 1;
358 #endif
359     if (lwkt_use_spin_port)
360         lwkt_initport_spin(&td->td_msgport);
361     else
362         lwkt_initport_thread(&td->td_msgport, td);
363     pmap_init_thread(td);
364 #ifdef SMP
365     /*
366      * Normally initializing a thread for a remote cpu requires sending an
367      * IPI.  However, the idlethread is setup before the other cpus are
368      * activated so we have to treat it as a special case.  XXX manipulation
369      * of gd_tdallq requires the BGL.
370      */
371     if (gd == mygd || td == &gd->gd_idlethread) {
372         crit_enter_gd(mygd);
373         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
374         crit_exit_gd(mygd);
375     } else {
376         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
377     }
378 #else
379     crit_enter_gd(mygd);
380     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
381     crit_exit_gd(mygd);
382 #endif
383 }
384
385 void
386 lwkt_set_comm(thread_t td, const char *ctl, ...)
387 {
388     __va_list va;
389
390     __va_start(va, ctl);
391     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
392     __va_end(va);
393     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
394 }
395
396 void
397 lwkt_hold(thread_t td)
398 {
399     ++td->td_refs;
400 }
401
402 void
403 lwkt_rele(thread_t td)
404 {
405     KKASSERT(td->td_refs > 0);
406     --td->td_refs;
407 }
408
409 void
410 lwkt_wait_free(thread_t td)
411 {
412     while (td->td_refs)
413         tsleep(td, 0, "tdreap", hz);
414 }
415
416 void
417 lwkt_free_thread(thread_t td)
418 {
419     KASSERT((td->td_flags & TDF_RUNNING) == 0,
420         ("lwkt_free_thread: did not exit! %p", td));
421
422     if (td->td_flags & TDF_ALLOCATED_THREAD) {
423         objcache_put(thread_cache, td);
424     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
425         /* client-allocated struct with internally allocated stack */
426         KASSERT(td->td_kstack && td->td_kstack_size > 0,
427             ("lwkt_free_thread: corrupted stack"));
428         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
429         td->td_kstack = NULL;
430         td->td_kstack_size = 0;
431     }
432     KTR_LOG(ctxsw_deadtd, td);
433 }
434
435
436 /*
437  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
438  * switch to the idlethread.  Switching must occur within a critical
439  * section to avoid races with the scheduling queue.
440  *
441  * We always have full control over our cpu's run queue.  Other cpus
442  * that wish to manipulate our queue must use the cpu_*msg() calls to
443  * talk to our cpu, so a critical section is all that is needed and
444  * the result is very, very fast thread switching.
445  *
446  * The LWKT scheduler uses a fixed priority model and round-robins at
447  * each priority level.  User process scheduling is a totally
448  * different beast and LWKT priorities should not be confused with
449  * user process priorities.
450  *
451  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
452  * cleans it up.  Note that the td_switch() function cannot do anything that
453  * requires the MP lock since the MP lock will have already been setup for
454  * the target thread (not the current thread).  It's nice to have a scheduler
455  * that does not need the MP lock to work because it allows us to do some
456  * really cool high-performance MP lock optimizations.
457  *
458  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
459  * is not called by the current thread in the preemption case, only when
460  * the preempting thread blocks (in order to return to the original thread).
461  */
462 void
463 lwkt_switch(void)
464 {
465     globaldata_t gd = mycpu;
466     thread_t td = gd->gd_curthread;
467     thread_t ntd;
468 #ifdef SMP
469     int mpheld;
470 #endif
471
472     /*
473      * Switching from within a 'fast' (non thread switched) interrupt or IPI
474      * is illegal.  However, we may have to do it anyway if we hit a fatal
475      * kernel trap or we have paniced.
476      *
477      * If this case occurs save and restore the interrupt nesting level.
478      */
479     if (gd->gd_intr_nesting_level) {
480         int savegdnest;
481         int savegdtrap;
482
483         if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
484             panic("lwkt_switch: cannot switch from within "
485                   "a fast interrupt, yet, td %p\n", td);
486         } else {
487             savegdnest = gd->gd_intr_nesting_level;
488             savegdtrap = gd->gd_trap_nesting_level;
489             gd->gd_intr_nesting_level = 0;
490             gd->gd_trap_nesting_level = 0;
491             if ((td->td_flags & TDF_PANICWARN) == 0) {
492                 td->td_flags |= TDF_PANICWARN;
493                 kprintf("Warning: thread switch from interrupt or IPI, "
494                         "thread %p (%s)\n", td, td->td_comm);
495                 print_backtrace();
496             }
497             lwkt_switch();
498             gd->gd_intr_nesting_level = savegdnest;
499             gd->gd_trap_nesting_level = savegdtrap;
500             return;
501         }
502     }
503
504     /*
505      * Passive release (used to transition from user to kernel mode
506      * when we block or switch rather then when we enter the kernel).
507      * This function is NOT called if we are switching into a preemption
508      * or returning from a preemption.  Typically this causes us to lose
509      * our current process designation (if we have one) and become a true
510      * LWKT thread, and may also hand the current process designation to
511      * another process and schedule thread.
512      */
513     if (td->td_release)
514             td->td_release(td);
515
516     crit_enter_gd(gd);
517     if (td->td_toks)
518             lwkt_relalltokens(td);
519
520     /*
521      * We had better not be holding any spin locks, but don't get into an
522      * endless panic loop.
523      */
524     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL, 
525             ("lwkt_switch: still holding a shared spinlock %p!", 
526              gd->gd_spinlock_rd));
527     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 
528             ("lwkt_switch: still holding %d exclusive spinlocks!",
529              gd->gd_spinlocks_wr));
530
531
532 #ifdef SMP
533     /*
534      * td_mpcount cannot be used to determine if we currently hold the
535      * MP lock because get_mplock() will increment it prior to attempting
536      * to get the lock, and switch out if it can't.  Our ownership of 
537      * the actual lock will remain stable while we are in a critical section
538      * (but, of course, another cpu may own or release the lock so the
539      * actual value of mp_lock is not stable).
540      */
541     mpheld = MP_LOCK_HELD();
542 #ifdef  INVARIANTS
543     if (td->td_cscount) {
544         kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
545                 td);
546         if (panic_on_cscount)
547             panic("switching while mastering cpusync");
548     }
549 #endif
550 #endif
551     if ((ntd = td->td_preempted) != NULL) {
552         /*
553          * We had preempted another thread on this cpu, resume the preempted
554          * thread.  This occurs transparently, whether the preempted thread
555          * was scheduled or not (it may have been preempted after descheduling
556          * itself). 
557          *
558          * We have to setup the MP lock for the original thread after backing
559          * out the adjustment that was made to curthread when the original
560          * was preempted.
561          */
562         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
563 #ifdef SMP
564         if (ntd->td_mpcount && mpheld == 0) {
565             panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
566                td, ntd, td->td_mpcount, ntd->td_mpcount);
567         }
568         if (ntd->td_mpcount) {
569             td->td_mpcount -= ntd->td_mpcount;
570             KKASSERT(td->td_mpcount >= 0);
571         }
572 #endif
573         ntd->td_flags |= TDF_PREEMPT_DONE;
574
575         /*
576          * The interrupt may have woken a thread up, we need to properly
577          * set the reschedule flag if the originally interrupted thread is
578          * at a lower priority.
579          */
580         if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
581             need_lwkt_resched();
582         /* YYY release mp lock on switchback if original doesn't need it */
583     } else {
584         /*
585          * Priority queue / round-robin at each priority.  Note that user
586          * processes run at a fixed, low priority and the user process
587          * scheduler deals with interactions between user processes
588          * by scheduling and descheduling them from the LWKT queue as
589          * necessary.
590          *
591          * We have to adjust the MP lock for the target thread.  If we 
592          * need the MP lock and cannot obtain it we try to locate a
593          * thread that does not need the MP lock.  If we cannot, we spin
594          * instead of HLT.
595          *
596          * A similar issue exists for the tokens held by the target thread.
597          * If we cannot obtain ownership of the tokens we cannot immediately
598          * schedule the thread.
599          */
600
601         /*
602          * If an LWKT reschedule was requested, well that is what we are
603          * doing now so clear it.
604          */
605         clear_lwkt_resched();
606 again:
607         if (gd->gd_runqmask) {
608             int nq = bsrl(gd->gd_runqmask);
609             if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
610                 gd->gd_runqmask &= ~(1 << nq);
611                 goto again;
612             }
613 #ifdef SMP
614             /*
615              * THREAD SELECTION FOR AN SMP MACHINE BUILD
616              *
617              * If the target needs the MP lock and we couldn't get it,
618              * or if the target is holding tokens and we could not 
619              * gain ownership of the tokens, continue looking for a
620              * thread to schedule and spin instead of HLT if we can't.
621              *
622              * NOTE: the mpheld variable invalid after this conditional, it
623              * can change due to both cpu_try_mplock() returning success
624              * AND interactions in lwkt_getalltokens() due to the fact that
625              * we are trying to check the mpcount of a thread other then
626              * the current thread.  Because of this, if the current thread
627              * is not holding td_mpcount, an IPI indirectly run via
628              * lwkt_getalltokens() can obtain and release the MP lock and
629              * cause the core MP lock to be released. 
630              */
631             if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
632                 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
633             ) {
634                 u_int32_t rqmask = gd->gd_runqmask;
635
636                 mpheld = MP_LOCK_HELD();
637                 ntd = NULL;
638                 while (rqmask) {
639                     TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
640                         if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
641                             /* spinning due to MP lock being held */
642                             continue;
643                         }
644
645                         /*
646                          * mpheld state invalid after getalltokens call returns
647                          * failure, but the variable is only needed for
648                          * the loop.
649                          */
650                         if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
651                             /* spinning due to token contention */
652 #ifdef  INVARIANTS
653                             ++token_contention_count;
654 #endif
655                             mpheld = MP_LOCK_HELD();
656                             continue;
657                         }
658                         break;
659                     }
660                     if (ntd)
661                         break;
662                     rqmask &= ~(1 << nq);
663                     nq = bsrl(rqmask);
664
665                     /*
666                      * We have two choices. We can either refuse to run a
667                      * user thread when a kernel thread needs the MP lock
668                      * but could not get it, or we can allow it to run but
669                      * then expect an IPI (hopefully) later on to force a
670                      * reschedule when the MP lock might become available.
671                      */
672                     if (nq < TDPRI_KERN_LPSCHED) {
673                         break;  /* for now refuse to run */
674 #if 0
675                         if (chain_mplock == 0)
676                                 break;
677                         /* continue loop, allow user threads to be scheduled */
678 #endif
679                     }
680                 }
681
682                 /*
683                  * Case where a (kernel) thread needed the MP lock and could
684                  * not get one, and we may or may not have found another
685                  * thread which does not need the MP lock to run while
686                  * we wait (ntd).
687                  */
688                 if (ntd == NULL) {
689                     ntd = &gd->gd_idlethread;
690                     ntd->td_flags |= TDF_IDLE_NOHLT;
691                     set_mplock_contention_mask(gd);
692                     cpu_mplock_contested();
693                     goto using_idle_thread;
694                 } else {
695                     clr_mplock_contention_mask(gd);
696                     ++gd->gd_cnt.v_swtch;
697                     TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
698                     TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
699                 }
700             } else {
701                 clr_mplock_contention_mask(gd);
702                 ++gd->gd_cnt.v_swtch;
703                 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
704                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
705             }
706 #else
707             /*
708              * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
709              * worry about tokens or the BGL.  However, we still have
710              * to call lwkt_getalltokens() in order to properly detect
711              * stale tokens.  This call cannot fail for a UP build!
712              */
713             lwkt_getalltokens(ntd);
714             ++gd->gd_cnt.v_swtch;
715             TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
716             TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
717 #endif
718         } else {
719             /*
720              * We have nothing to run but only let the idle loop halt
721              * the cpu if there are no pending interrupts.
722              */
723             ntd = &gd->gd_idlethread;
724             if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
725                 ntd->td_flags |= TDF_IDLE_NOHLT;
726 #ifdef SMP
727 using_idle_thread:
728             /*
729              * The idle thread should not be holding the MP lock unless we
730              * are trapping in the kernel or in a panic.  Since we select the
731              * idle thread unconditionally when no other thread is available,
732              * if the MP lock is desired during a panic or kernel trap, we
733              * have to loop in the scheduler until we get it.
734              */
735             if (ntd->td_mpcount) {
736                 mpheld = MP_LOCK_HELD();
737                 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
738                     panic("Idle thread %p was holding the BGL!", ntd);
739                 if (mpheld == 0)
740                     goto again;
741             }
742 #endif
743         }
744     }
745     KASSERT(ntd->td_pri >= TDPRI_CRIT,
746         ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
747
748     /*
749      * Do the actual switch.  If the new target does not need the MP lock
750      * and we are holding it, release the MP lock.  If the new target requires
751      * the MP lock we have already acquired it for the target.
752      */
753 #ifdef SMP
754     if (ntd->td_mpcount == 0 ) {
755         if (MP_LOCK_HELD())
756             cpu_rel_mplock();
757     } else {
758         ASSERT_MP_LOCK_HELD(ntd);
759     }
760 #endif
761     if (td != ntd) {
762         ++switch_count;
763 #ifdef __x86_64__
764     {
765         int tos_ok __debugvar = jg_tos_ok(ntd);
766         KKASSERT(tos_ok);
767     }
768 #endif
769         KTR_LOG(ctxsw_sw, td, ntd);
770         td->td_switch(ntd);
771     }
772     /* NOTE: current cpu may have changed after switch */
773     crit_exit_quick(td);
774 }
775
776 /*
777  * Request that the target thread preempt the current thread.  Preemption
778  * only works under a specific set of conditions:
779  *
780  *      - We are not preempting ourselves
781  *      - The target thread is owned by the current cpu
782  *      - We are not currently being preempted
783  *      - The target is not currently being preempted
784  *      - We are not holding any spin locks
785  *      - The target thread is not holding any tokens
786  *      - We are able to satisfy the target's MP lock requirements (if any).
787  *
788  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
789  * this is called via lwkt_schedule() through the td_preemptable callback.
790  * critpri is the managed critical priority that we should ignore in order
791  * to determine whether preemption is possible (aka usually just the crit
792  * priority of lwkt_schedule() itself).
793  *
794  * XXX at the moment we run the target thread in a critical section during
795  * the preemption in order to prevent the target from taking interrupts
796  * that *WE* can't.  Preemption is strictly limited to interrupt threads
797  * and interrupt-like threads, outside of a critical section, and the
798  * preempted source thread will be resumed the instant the target blocks
799  * whether or not the source is scheduled (i.e. preemption is supposed to
800  * be as transparent as possible).
801  *
802  * The target thread inherits our MP count (added to its own) for the
803  * duration of the preemption in order to preserve the atomicy of the
804  * MP lock during the preemption.  Therefore, any preempting targets must be
805  * careful in regards to MP assertions.  Note that the MP count may be
806  * out of sync with the physical mp_lock, but we do not have to preserve
807  * the original ownership of the lock if it was out of synch (that is, we
808  * can leave it synchronized on return).
809  */
810 void
811 lwkt_preempt(thread_t ntd, int critpri)
812 {
813     struct globaldata *gd = mycpu;
814     thread_t td;
815 #ifdef SMP
816     int mpheld;
817     int savecnt;
818 #endif
819
820     /*
821      * The caller has put us in a critical section.  We can only preempt
822      * if the caller of the caller was not in a critical section (basically
823      * a local interrupt), as determined by the 'critpri' parameter.  We
824      * also can't preempt if the caller is holding any spinlocks (even if
825      * he isn't in a critical section).  This also handles the tokens test.
826      *
827      * YYY The target thread must be in a critical section (else it must
828      * inherit our critical section?  I dunno yet).
829      *
830      * Set need_lwkt_resched() unconditionally for now YYY.
831      */
832     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
833
834     td = gd->gd_curthread;
835     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
836         ++preempt_miss;
837         return;
838     }
839     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
840         ++preempt_miss;
841         need_lwkt_resched();
842         return;
843     }
844 #ifdef SMP
845     if (ntd->td_gd != gd) {
846         ++preempt_miss;
847         need_lwkt_resched();
848         return;
849     }
850 #endif
851     /*
852      * Take the easy way out and do not preempt if we are holding
853      * any spinlocks.  We could test whether the thread(s) being
854      * preempted interlock against the target thread's tokens and whether
855      * we can get all the target thread's tokens, but this situation 
856      * should not occur very often so its easier to simply not preempt.
857      * Also, plain spinlocks are impossible to figure out at this point so 
858      * just don't preempt.
859      *
860      * Do not try to preempt if the target thread is holding any tokens.
861      * We could try to acquire the tokens but this case is so rare there
862      * is no need to support it.
863      */
864     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
865         ++preempt_miss;
866         need_lwkt_resched();
867         return;
868     }
869     if (ntd->td_toks) {
870         ++preempt_miss;
871         need_lwkt_resched();
872         return;
873     }
874     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
875         ++preempt_weird;
876         need_lwkt_resched();
877         return;
878     }
879     if (ntd->td_preempted) {
880         ++preempt_hit;
881         need_lwkt_resched();
882         return;
883     }
884 #ifdef SMP
885     /*
886      * note: an interrupt might have occured just as we were transitioning
887      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
888      * (non-zero) but not actually synchronized with the actual state of the
889      * lock.  We can use it to imply an MP lock requirement for the
890      * preemption but we cannot use it to test whether we hold the MP lock
891      * or not.
892      */
893     savecnt = td->td_mpcount;
894     mpheld = MP_LOCK_HELD();
895     ntd->td_mpcount += td->td_mpcount;
896     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
897         ntd->td_mpcount -= td->td_mpcount;
898         ++preempt_miss;
899         need_lwkt_resched();
900         return;
901     }
902 #endif
903
904     /*
905      * Since we are able to preempt the current thread, there is no need to
906      * call need_lwkt_resched().
907      */
908     ++preempt_hit;
909     ntd->td_preempted = td;
910     td->td_flags |= TDF_PREEMPT_LOCK;
911     KTR_LOG(ctxsw_pre, td, ntd);
912     td->td_switch(ntd);
913
914     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
915 #ifdef SMP
916     KKASSERT(savecnt == td->td_mpcount);
917     mpheld = MP_LOCK_HELD();
918     if (mpheld && td->td_mpcount == 0)
919         cpu_rel_mplock();
920     else if (mpheld == 0 && td->td_mpcount)
921         panic("lwkt_preempt(): MP lock was not held through");
922 #endif
923     ntd->td_preempted = NULL;
924     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
925 }
926
927 /*
928  * Conditionally call splz() if gd_reqflags indicates work is pending.
929  *
930  * td_nest_count prevents deep nesting via splz() or doreti() which
931  * might otherwise blow out the kernel stack.  Note that except for
932  * this special case, we MUST call splz() here to handle any
933  * pending ints, particularly after we switch, or we might accidently
934  * halt the cpu with interrupts pending.
935  *
936  * (self contained on a per cpu basis)
937  */
938 void
939 splz_check(void)
940 {
941     globaldata_t gd = mycpu;
942     thread_t td = gd->gd_curthread;
943
944     if (gd->gd_reqflags && td->td_nest_count < 2)
945         splz();
946 }
947
948 /*
949  * This implements a normal yield which will yield to equal priority
950  * threads as well as higher priority threads.  Note that gd_reqflags
951  * tests will be handled by the crit_exit() call in lwkt_switch().
952  *
953  * (self contained on a per cpu basis)
954  */
955 void
956 lwkt_yield(void)
957 {
958     lwkt_schedule_self(curthread);
959     lwkt_switch();
960 }
961
962 /*
963  * This function is used along with the lwkt_passive_recover() inline
964  * by the trap code to negotiate a passive release of the current
965  * process/lwp designation with the user scheduler.
966  */
967 void
968 lwkt_passive_release(struct thread *td)
969 {
970     struct lwp *lp = td->td_lwp;
971
972     td->td_release = NULL;
973     lwkt_setpri_self(TDPRI_KERN_USER);
974     lp->lwp_proc->p_usched->release_curproc(lp);
975 }
976
977 /*
978  * Make a kernel thread act as if it were in user mode with regards
979  * to scheduling, to avoid becoming cpu-bound in the kernel.  Kernel
980  * loops which may be potentially cpu-bound can call lwkt_user_yield().
981  *
982  * The lwkt_user_yield() function is designed to have very low overhead
983  * if no yield is determined to be needed.
984  */
985 void
986 lwkt_user_yield(void)
987 {
988     thread_t td = curthread;
989     struct lwp *lp = td->td_lwp;
990
991 #ifdef SMP
992     /*
993      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
994      * kernel can prevent other cpus from servicing interrupt threads
995      * which still require the MP lock (which is a lot of them).  This
996      * has a chaining effect since if the interrupt is blocked, so is
997      * the event, so normal scheduling will not pick up on the problem.
998      */
999     if (mp_lock_contention_mask && td->td_mpcount) {
1000         yield_mplock(td);
1001     }
1002 #endif
1003
1004     /*
1005      * Another kernel thread wants the cpu
1006      */
1007     if (lwkt_resched_wanted())
1008         lwkt_switch();
1009
1010     /*
1011      * If the user scheduler has asynchronously determined that the current
1012      * process (when running in user mode) needs to lose the cpu then make
1013      * sure we are released.
1014      */
1015     if (user_resched_wanted()) {
1016         if (td->td_release)
1017             td->td_release(td);
1018     }
1019
1020     /*
1021      * If we are released reduce our priority
1022      */
1023     if (td->td_release == NULL) {
1024         if (lwkt_check_resched(td) > 0)
1025                 lwkt_switch();
1026         if (lp) {
1027                 lp->lwp_proc->p_usched->acquire_curproc(lp);
1028                 td->td_release = lwkt_passive_release;
1029                 lwkt_setpri_self(TDPRI_USER_NORM);
1030         }
1031     }
1032 }
1033
1034 /*
1035  * Return 0 if no runnable threads are pending at the same or higher
1036  * priority as the passed thread.
1037  *
1038  * Return 1 if runnable threads are pending at the same priority.
1039  *
1040  * Return 2 if runnable threads are pending at a higher priority.
1041  */
1042 int
1043 lwkt_check_resched(thread_t td)
1044 {
1045         int pri = td->td_pri & TDPRI_MASK;
1046
1047         if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1048                 return(2);
1049         if (TAILQ_NEXT(td, td_threadq))
1050                 return(1);
1051         return(0);
1052 }
1053
1054 /*
1055  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1056  * deal with threads that might be blocked on a wait queue.
1057  *
1058  * We have a little helper inline function which does additional work after
1059  * the thread has been enqueued, including dealing with preemption and
1060  * setting need_lwkt_resched() (which prevents the kernel from returning
1061  * to userland until it has processed higher priority threads).
1062  *
1063  * It is possible for this routine to be called after a failed _enqueue
1064  * (due to the target thread migrating, sleeping, or otherwise blocked).
1065  * We have to check that the thread is actually on the run queue!
1066  *
1067  * reschedok is an optimized constant propagated from lwkt_schedule() or
1068  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1069  * reschedule to be requested if the target thread has a higher priority.
1070  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1071  * be 0, prevented undesired reschedules.
1072  */
1073 static __inline
1074 void
1075 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1076 {
1077     thread_t otd;
1078
1079     if (ntd->td_flags & TDF_RUNQ) {
1080         if (ntd->td_preemptable && reschedok) {
1081             ntd->td_preemptable(ntd, cpri);     /* YYY +token */
1082         } else if (reschedok) {
1083             otd = curthread;
1084             if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1085                 need_lwkt_resched();
1086         }
1087     }
1088 }
1089
1090 static __inline
1091 void
1092 _lwkt_schedule(thread_t td, int reschedok)
1093 {
1094     globaldata_t mygd = mycpu;
1095
1096     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1097     crit_enter_gd(mygd);
1098     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1099     if (td == mygd->gd_curthread) {
1100         _lwkt_enqueue(td);
1101     } else {
1102         /*
1103          * If we own the thread, there is no race (since we are in a
1104          * critical section).  If we do not own the thread there might
1105          * be a race but the target cpu will deal with it.
1106          */
1107 #ifdef SMP
1108         if (td->td_gd == mygd) {
1109             _lwkt_enqueue(td);
1110             _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1111         } else {
1112             lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1113         }
1114 #else
1115         _lwkt_enqueue(td);
1116         _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1117 #endif
1118     }
1119     crit_exit_gd(mygd);
1120 }
1121
1122 void
1123 lwkt_schedule(thread_t td)
1124 {
1125     _lwkt_schedule(td, 1);
1126 }
1127
1128 void
1129 lwkt_schedule_noresched(thread_t td)
1130 {
1131     _lwkt_schedule(td, 0);
1132 }
1133
1134 #ifdef SMP
1135
1136 /*
1137  * When scheduled remotely if frame != NULL the IPIQ is being
1138  * run via doreti or an interrupt then preemption can be allowed.
1139  *
1140  * To allow preemption we have to drop the critical section so only
1141  * one is present in _lwkt_schedule_post.
1142  */
1143 static void
1144 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1145 {
1146     thread_t td = curthread;
1147     thread_t ntd = arg;
1148
1149     if (frame && ntd->td_preemptable) {
1150         crit_exit_noyield(td);
1151         _lwkt_schedule(ntd, 1);
1152         crit_enter_quick(td);
1153     } else {
1154         _lwkt_schedule(ntd, 1);
1155     }
1156 }
1157
1158 /*
1159  * Thread migration using a 'Pull' method.  The thread may or may not be
1160  * the current thread.  It MUST be descheduled and in a stable state.
1161  * lwkt_giveaway() must be called on the cpu owning the thread.
1162  *
1163  * At any point after lwkt_giveaway() is called, the target cpu may
1164  * 'pull' the thread by calling lwkt_acquire().
1165  *
1166  * We have to make sure the thread is not sitting on a per-cpu tsleep
1167  * queue or it will blow up when it moves to another cpu.
1168  *
1169  * MPSAFE - must be called under very specific conditions.
1170  */
1171 void
1172 lwkt_giveaway(thread_t td)
1173 {
1174     globaldata_t gd = mycpu;
1175
1176     crit_enter_gd(gd);
1177     if (td->td_flags & TDF_TSLEEPQ)
1178         tsleep_remove(td);
1179     KKASSERT(td->td_gd == gd);
1180     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1181     td->td_flags |= TDF_MIGRATING;
1182     crit_exit_gd(gd);
1183 }
1184
1185 void
1186 lwkt_acquire(thread_t td)
1187 {
1188     globaldata_t gd;
1189     globaldata_t mygd;
1190
1191     KKASSERT(td->td_flags & TDF_MIGRATING);
1192     gd = td->td_gd;
1193     mygd = mycpu;
1194     if (gd != mycpu) {
1195         cpu_lfence();
1196         KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1197         crit_enter_gd(mygd);
1198         while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1199 #ifdef SMP
1200             lwkt_process_ipiq();
1201 #endif
1202             cpu_lfence();
1203         }
1204         td->td_gd = mygd;
1205         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1206         td->td_flags &= ~TDF_MIGRATING;
1207         crit_exit_gd(mygd);
1208     } else {
1209         crit_enter_gd(mygd);
1210         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1211         td->td_flags &= ~TDF_MIGRATING;
1212         crit_exit_gd(mygd);
1213     }
1214 }
1215
1216 #endif
1217
1218 /*
1219  * Generic deschedule.  Descheduling threads other then your own should be
1220  * done only in carefully controlled circumstances.  Descheduling is 
1221  * asynchronous.  
1222  *
1223  * This function may block if the cpu has run out of messages.
1224  */
1225 void
1226 lwkt_deschedule(thread_t td)
1227 {
1228     crit_enter();
1229 #ifdef SMP
1230     if (td == curthread) {
1231         _lwkt_dequeue(td);
1232     } else {
1233         if (td->td_gd == mycpu) {
1234             _lwkt_dequeue(td);
1235         } else {
1236             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1237         }
1238     }
1239 #else
1240     _lwkt_dequeue(td);
1241 #endif
1242     crit_exit();
1243 }
1244
1245 /*
1246  * Set the target thread's priority.  This routine does not automatically
1247  * switch to a higher priority thread, LWKT threads are not designed for
1248  * continuous priority changes.  Yield if you want to switch.
1249  *
1250  * We have to retain the critical section count which uses the high bits
1251  * of the td_pri field.  The specified priority may also indicate zero or
1252  * more critical sections by adding TDPRI_CRIT*N.
1253  *
1254  * Note that we requeue the thread whether it winds up on a different runq
1255  * or not.  uio_yield() depends on this and the routine is not normally
1256  * called with the same priority otherwise.
1257  */
1258 void
1259 lwkt_setpri(thread_t td, int pri)
1260 {
1261     KKASSERT(pri >= 0);
1262     KKASSERT(td->td_gd == mycpu);
1263     crit_enter();
1264     if (td->td_flags & TDF_RUNQ) {
1265         _lwkt_dequeue(td);
1266         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1267         _lwkt_enqueue(td);
1268     } else {
1269         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1270     }
1271     crit_exit();
1272 }
1273
1274 /*
1275  * Set the initial priority for a thread prior to it being scheduled for
1276  * the first time.  The thread MUST NOT be scheduled before or during
1277  * this call.  The thread may be assigned to a cpu other then the current
1278  * cpu.
1279  *
1280  * Typically used after a thread has been created with TDF_STOPPREQ,
1281  * and before the thread is initially scheduled.
1282  */
1283 void
1284 lwkt_setpri_initial(thread_t td, int pri)
1285 {
1286     KKASSERT(pri >= 0);
1287     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1288     td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1289 }
1290
1291 void
1292 lwkt_setpri_self(int pri)
1293 {
1294     thread_t td = curthread;
1295
1296     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1297     crit_enter();
1298     if (td->td_flags & TDF_RUNQ) {
1299         _lwkt_dequeue(td);
1300         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1301         _lwkt_enqueue(td);
1302     } else {
1303         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1304     }
1305     crit_exit();
1306 }
1307
1308 /*
1309  * Migrate the current thread to the specified cpu. 
1310  *
1311  * This is accomplished by descheduling ourselves from the current cpu,
1312  * moving our thread to the tdallq of the target cpu, IPI messaging the
1313  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1314  * races while the thread is being migrated.
1315  *
1316  * We must be sure to remove ourselves from the current cpu's tsleepq
1317  * before potentially moving to another queue.  The thread can be on
1318  * a tsleepq due to a left-over tsleep_interlock().
1319  */
1320 #ifdef SMP
1321 static void lwkt_setcpu_remote(void *arg);
1322 #endif
1323
1324 void
1325 lwkt_setcpu_self(globaldata_t rgd)
1326 {
1327 #ifdef SMP
1328     thread_t td = curthread;
1329
1330     if (td->td_gd != rgd) {
1331         crit_enter_quick(td);
1332         if (td->td_flags & TDF_TSLEEPQ)
1333             tsleep_remove(td);
1334         td->td_flags |= TDF_MIGRATING;
1335         lwkt_deschedule_self(td);
1336         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1337         lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1338         lwkt_switch();
1339         /* we are now on the target cpu */
1340         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1341         crit_exit_quick(td);
1342     }
1343 #endif
1344 }
1345
1346 void
1347 lwkt_migratecpu(int cpuid)
1348 {
1349 #ifdef SMP
1350         globaldata_t rgd;
1351
1352         rgd = globaldata_find(cpuid);
1353         lwkt_setcpu_self(rgd);
1354 #endif
1355 }
1356
1357 /*
1358  * Remote IPI for cpu migration (called while in a critical section so we
1359  * do not have to enter another one).  The thread has already been moved to
1360  * our cpu's allq, but we must wait for the thread to be completely switched
1361  * out on the originating cpu before we schedule it on ours or the stack
1362  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1363  * change to main memory.
1364  *
1365  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1366  * against wakeups.  It is best if this interface is used only when there
1367  * are no pending events that might try to schedule the thread.
1368  */
1369 #ifdef SMP
1370 static void
1371 lwkt_setcpu_remote(void *arg)
1372 {
1373     thread_t td = arg;
1374     globaldata_t gd = mycpu;
1375
1376     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1377 #ifdef SMP
1378         lwkt_process_ipiq();
1379 #endif
1380         cpu_lfence();
1381     }
1382     td->td_gd = gd;
1383     cpu_sfence();
1384     td->td_flags &= ~TDF_MIGRATING;
1385     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1386     _lwkt_enqueue(td);
1387 }
1388 #endif
1389
1390 struct lwp *
1391 lwkt_preempted_proc(void)
1392 {
1393     thread_t td = curthread;
1394     while (td->td_preempted)
1395         td = td->td_preempted;
1396     return(td->td_lwp);
1397 }
1398
1399 /*
1400  * Create a kernel process/thread/whatever.  It shares it's address space
1401  * with proc0 - ie: kernel only.
1402  *
1403  * NOTE!  By default new threads are created with the MP lock held.  A 
1404  * thread which does not require the MP lock should release it by calling
1405  * rel_mplock() at the start of the new thread.
1406  */
1407 int
1408 lwkt_create(void (*func)(void *), void *arg,
1409     struct thread **tdp, thread_t template, int tdflags, int cpu,
1410     const char *fmt, ...)
1411 {
1412     thread_t td;
1413     __va_list ap;
1414
1415     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1416                            tdflags);
1417     if (tdp)
1418         *tdp = td;
1419     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1420
1421     /*
1422      * Set up arg0 for 'ps' etc
1423      */
1424     __va_start(ap, fmt);
1425     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1426     __va_end(ap);
1427
1428     /*
1429      * Schedule the thread to run
1430      */
1431     if ((td->td_flags & TDF_STOPREQ) == 0)
1432         lwkt_schedule(td);
1433     else
1434         td->td_flags &= ~TDF_STOPREQ;
1435     return 0;
1436 }
1437
1438 /*
1439  * Destroy an LWKT thread.   Warning!  This function is not called when
1440  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1441  * uses a different reaping mechanism.
1442  */
1443 void
1444 lwkt_exit(void)
1445 {
1446     thread_t td = curthread;
1447     thread_t std;
1448     globaldata_t gd;
1449
1450     if (td->td_flags & TDF_VERBOSE)
1451         kprintf("kthread %p %s has exited\n", td, td->td_comm);
1452     caps_exit(td);
1453
1454     /*
1455      * Get us into a critical section to interlock gd_freetd and loop
1456      * until we can get it freed.
1457      *
1458      * We have to cache the current td in gd_freetd because objcache_put()ing
1459      * it would rip it out from under us while our thread is still active.
1460      */
1461     gd = mycpu;
1462     crit_enter_quick(td);
1463     while ((std = gd->gd_freetd) != NULL) {
1464         gd->gd_freetd = NULL;
1465         objcache_put(thread_cache, std);
1466     }
1467
1468     /*
1469      * Remove thread resources from kernel lists and deschedule us for
1470      * the last time.
1471      */
1472     if (td->td_flags & TDF_TSLEEPQ)
1473         tsleep_remove(td);
1474     biosched_done(td);
1475     lwkt_deschedule_self(td);
1476     lwkt_remove_tdallq(td);
1477     if (td->td_flags & TDF_ALLOCATED_THREAD)
1478         gd->gd_freetd = td;
1479     cpu_thread_exit();
1480 }
1481
1482 void
1483 lwkt_remove_tdallq(thread_t td)
1484 {
1485     KKASSERT(td->td_gd == mycpu);
1486     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1487 }
1488
1489 void
1490 crit_panic(void)
1491 {
1492     thread_t td = curthread;
1493     int lpri = td->td_pri;
1494
1495     td->td_pri = 0;
1496     panic("td_pri is/would-go negative! %p %d", td, lpri);
1497 }
1498
1499 #ifdef SMP
1500
1501 /*
1502  * Called from debugger/panic on cpus which have been stopped.  We must still
1503  * process the IPIQ while stopped, even if we were stopped while in a critical
1504  * section (XXX).
1505  *
1506  * If we are dumping also try to process any pending interrupts.  This may
1507  * or may not work depending on the state of the cpu at the point it was
1508  * stopped.
1509  */
1510 void
1511 lwkt_smp_stopped(void)
1512 {
1513     globaldata_t gd = mycpu;
1514
1515     crit_enter_gd(gd);
1516     if (dumping) {
1517         lwkt_process_ipiq();
1518         splz();
1519     } else {
1520         lwkt_process_ipiq();
1521     }
1522     crit_exit_gd(gd);
1523 }
1524
1525 #endif