dc39d79c8676ac6f1137205b399220a96ebfffac
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.26 2006/11/07 17:51:24 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter and
396          * mark the pages read-only.
397          *
398          * We do not have to fixup the clean/dirty bits here... we can
399          * allow the pager to do it after the I/O completes.
400          */
401
402         for (i = 0; i < count; i++) {
403                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404                 vm_page_io_start(mc[i]);
405                 vm_page_protect(mc[i], VM_PROT_READ);
406         }
407
408         object = mc[0]->object;
409         vm_object_pip_add(object, count);
410
411         vm_pager_put_pages(object, mc, count,
412             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413             pageout_status);
414
415         for (i = 0; i < count; i++) {
416                 vm_page_t mt = mc[i];
417
418                 switch (pageout_status[i]) {
419                 case VM_PAGER_OK:
420                         numpagedout++;
421                         break;
422                 case VM_PAGER_PEND:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_BAD:
426                         /*
427                          * Page outside of range of object. Right now we
428                          * essentially lose the changes by pretending it
429                          * worked.
430                          */
431                         pmap_clear_modify(mt);
432                         vm_page_undirty(mt);
433                         break;
434                 case VM_PAGER_ERROR:
435                 case VM_PAGER_FAIL:
436                         /*
437                          * If page couldn't be paged out, then reactivate the
438                          * page so it doesn't clog the inactive list.  (We
439                          * will try paging out it again later).
440                          */
441                         vm_page_activate(mt);
442                         break;
443                 case VM_PAGER_AGAIN:
444                         break;
445                 }
446
447                 /*
448                  * If the operation is still going, leave the page busy to
449                  * block all other accesses. Also, leave the paging in
450                  * progress indicator set so that we don't attempt an object
451                  * collapse.
452                  */
453                 if (pageout_status[i] != VM_PAGER_PEND) {
454                         vm_object_pip_wakeup(object);
455                         vm_page_io_finish(mt);
456                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457                                 vm_page_protect(mt, VM_PROT_READ);
458                 }
459         }
460         return numpagedout;
461 }
462
463 #if !defined(NO_SWAPPING)
464 /*
465  *      vm_pageout_object_deactivate_pages
466  *
467  *      deactivate enough pages to satisfy the inactive target
468  *      requirements or if vm_page_proc_limit is set, then
469  *      deactivate all of the pages in the object and its
470  *      backing_objects.
471  *
472  *      The object and map must be locked.
473  */
474 static void
475 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
476         vm_pindex_t desired, int map_remove_only)
477 {
478         vm_page_t p, next;
479         int rcount;
480         int remove_mode;
481
482         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
483                 return;
484
485         while (object) {
486                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487                         return;
488                 if (object->paging_in_progress)
489                         return;
490
491                 remove_mode = map_remove_only;
492                 if (object->shadow_count > 1)
493                         remove_mode = 1;
494
495                 /*
496                  * scan the objects entire memory queue.  spl protection is
497                  * required to avoid an interrupt unbusy/free race against
498                  * our busy check.
499                  */
500                 crit_enter();
501                 rcount = object->resident_page_count;
502                 p = TAILQ_FIRST(&object->memq);
503
504                 while (p && (rcount-- > 0)) {
505                         int actcount;
506                         if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
507                                 crit_exit();
508                                 return;
509                         }
510                         next = TAILQ_NEXT(p, listq);
511                         mycpu->gd_cnt.v_pdpages++;
512                         if (p->wire_count != 0 ||
513                             p->hold_count != 0 ||
514                             p->busy != 0 ||
515                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
516                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
517                                 p = next;
518                                 continue;
519                         }
520
521                         actcount = pmap_ts_referenced(p);
522                         if (actcount) {
523                                 vm_page_flag_set(p, PG_REFERENCED);
524                         } else if (p->flags & PG_REFERENCED) {
525                                 actcount = 1;
526                         }
527
528                         if ((p->queue != PQ_ACTIVE) &&
529                                 (p->flags & PG_REFERENCED)) {
530                                 vm_page_activate(p);
531                                 p->act_count += actcount;
532                                 vm_page_flag_clear(p, PG_REFERENCED);
533                         } else if (p->queue == PQ_ACTIVE) {
534                                 if ((p->flags & PG_REFERENCED) == 0) {
535                                         p->act_count -= min(p->act_count, ACT_DECLINE);
536                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
537                                                 vm_page_protect(p, VM_PROT_NONE);
538                                                 vm_page_deactivate(p);
539                                         } else {
540                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
541                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
542                                         }
543                                 } else {
544                                         vm_page_activate(p);
545                                         vm_page_flag_clear(p, PG_REFERENCED);
546                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
547                                                 p->act_count += ACT_ADVANCE;
548                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
549                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550                                 }
551                         } else if (p->queue == PQ_INACTIVE) {
552                                 vm_page_protect(p, VM_PROT_NONE);
553                         }
554                         p = next;
555                 }
556                 crit_exit();
557                 object = object->backing_object;
558         }
559 }
560
561 /*
562  * deactivate some number of pages in a map, try to do it fairly, but
563  * that is really hard to do.
564  */
565 static void
566 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
567 {
568         vm_map_entry_t tmpe;
569         vm_object_t obj, bigobj;
570         int nothingwired;
571
572         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
573                 return;
574         }
575
576         bigobj = NULL;
577         nothingwired = TRUE;
578
579         /*
580          * first, search out the biggest object, and try to free pages from
581          * that.
582          */
583         tmpe = map->header.next;
584         while (tmpe != &map->header) {
585                 switch(tmpe->maptype) {
586                 case VM_MAPTYPE_NORMAL:
587                 case VM_MAPTYPE_VPAGETABLE:
588                         obj = tmpe->object.vm_object;
589                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
590                                 ((bigobj == NULL) ||
591                                  (bigobj->resident_page_count < obj->resident_page_count))) {
592                                 bigobj = obj;
593                         }
594                         break;
595                 default:
596                         break;
597                 }
598                 if (tmpe->wired_count > 0)
599                         nothingwired = FALSE;
600                 tmpe = tmpe->next;
601         }
602
603         if (bigobj)
604                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
605
606         /*
607          * Next, hunt around for other pages to deactivate.  We actually
608          * do this search sort of wrong -- .text first is not the best idea.
609          */
610         tmpe = map->header.next;
611         while (tmpe != &map->header) {
612                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
613                         break;
614                 switch(tmpe->maptype) {
615                 case VM_MAPTYPE_NORMAL:
616                 case VM_MAPTYPE_VPAGETABLE:
617                         obj = tmpe->object.vm_object;
618                         if (obj)
619                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
620                         break;
621                 default:
622                         break;
623                 }
624                 tmpe = tmpe->next;
625         };
626
627         /*
628          * Remove all mappings if a process is swapped out, this will free page
629          * table pages.
630          */
631         if (desired == 0 && nothingwired)
632                 pmap_remove(vm_map_pmap(map),
633                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
634         vm_map_unlock(map);
635 }
636 #endif
637
638 /*
639  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
640  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
641  * be trivially freed.
642  */
643 void
644 vm_pageout_page_free(vm_page_t m) {
645         vm_object_t object = m->object;
646         int type = object->type;
647
648         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
649                 vm_object_reference(object);
650         vm_page_busy(m);
651         vm_page_protect(m, VM_PROT_NONE);
652         vm_page_free(m);
653         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
654                 vm_object_deallocate(object);
655 }
656
657 /*
658  *      vm_pageout_scan does the dirty work for the pageout daemon.
659  */
660
661 struct vm_pageout_scan_info {
662         struct proc *bigproc;
663         vm_offset_t bigsize;
664 };
665
666 static int vm_pageout_scan_callback(struct proc *p, void *data);
667
668 static void
669 vm_pageout_scan(int pass)
670 {
671         struct vm_pageout_scan_info info;
672         vm_page_t m, next;
673         struct vm_page marker;
674         int page_shortage, maxscan, pcount;
675         int addl_page_shortage, addl_page_shortage_init;
676         vm_object_t object;
677         int actcount;
678         int vnodes_skipped = 0;
679         int maxlaunder;
680
681         /*
682          * Do whatever cleanup that the pmap code can.
683          */
684         pmap_collect();
685
686         addl_page_shortage_init = vm_pageout_deficit;
687         vm_pageout_deficit = 0;
688
689         /*
690          * Calculate the number of pages we want to either free or move
691          * to the cache.
692          */
693         page_shortage = vm_paging_target() + addl_page_shortage_init;
694
695         /*
696          * Initialize our marker
697          */
698         bzero(&marker, sizeof(marker));
699         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
700         marker.queue = PQ_INACTIVE;
701         marker.wire_count = 1;
702
703         /*
704          * Start scanning the inactive queue for pages we can move to the
705          * cache or free.  The scan will stop when the target is reached or
706          * we have scanned the entire inactive queue.  Note that m->act_count
707          * is not used to form decisions for the inactive queue, only for the
708          * active queue.
709          *
710          * maxlaunder limits the number of dirty pages we flush per scan.
711          * For most systems a smaller value (16 or 32) is more robust under
712          * extreme memory and disk pressure because any unnecessary writes
713          * to disk can result in extreme performance degredation.  However,
714          * systems with excessive dirty pages (especially when MAP_NOSYNC is
715          * used) will die horribly with limited laundering.  If the pageout
716          * daemon cannot clean enough pages in the first pass, we let it go
717          * all out in succeeding passes.
718          */
719         if ((maxlaunder = vm_max_launder) <= 1)
720                 maxlaunder = 1;
721         if (pass)
722                 maxlaunder = 10000;
723
724         /*
725          * We will generally be in a critical section throughout the 
726          * scan, but we can release it temporarily when we are sitting on a
727          * non-busy page without fear.  this is required to prevent an
728          * interrupt from unbusying or freeing a page prior to our busy
729          * check, leaving us on the wrong queue or checking the wrong
730          * page.
731          */
732         crit_enter();
733 rescan0:
734         addl_page_shortage = addl_page_shortage_init;
735         maxscan = vmstats.v_inactive_count;
736         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
737              m != NULL && maxscan-- > 0 && page_shortage > 0;
738              m = next
739          ) {
740                 mycpu->gd_cnt.v_pdpages++;
741
742                 /*
743                  * Give interrupts a chance
744                  */
745                 crit_exit();
746                 crit_enter();
747
748                 /*
749                  * It's easier for some of the conditions below to just loop
750                  * and catch queue changes here rather then check everywhere
751                  * else.
752                  */
753                 if (m->queue != PQ_INACTIVE)
754                         goto rescan0;
755                 next = TAILQ_NEXT(m, pageq);
756
757                 /*
758                  * skip marker pages
759                  */
760                 if (m->flags & PG_MARKER)
761                         continue;
762
763                 /*
764                  * A held page may be undergoing I/O, so skip it.
765                  */
766                 if (m->hold_count) {
767                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
768                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
769                         addl_page_shortage++;
770                         continue;
771                 }
772
773                 /*
774                  * Dont mess with busy pages, keep in the front of the
775                  * queue, most likely are being paged out.
776                  */
777                 if (m->busy || (m->flags & PG_BUSY)) {
778                         addl_page_shortage++;
779                         continue;
780                 }
781
782                 if (m->object->ref_count == 0) {
783                         /*
784                          * If the object is not being used, we ignore previous 
785                          * references.
786                          */
787                         vm_page_flag_clear(m, PG_REFERENCED);
788                         pmap_clear_reference(m);
789
790                 } else if (((m->flags & PG_REFERENCED) == 0) &&
791                             (actcount = pmap_ts_referenced(m))) {
792                         /*
793                          * Otherwise, if the page has been referenced while 
794                          * in the inactive queue, we bump the "activation
795                          * count" upwards, making it less likely that the
796                          * page will be added back to the inactive queue
797                          * prematurely again.  Here we check the page tables
798                          * (or emulated bits, if any), given the upper level
799                          * VM system not knowing anything about existing 
800                          * references.
801                          */
802                         vm_page_activate(m);
803                         m->act_count += (actcount + ACT_ADVANCE);
804                         continue;
805                 }
806
807                 /*
808                  * If the upper level VM system knows about any page 
809                  * references, we activate the page.  We also set the 
810                  * "activation count" higher than normal so that we will less 
811                  * likely place pages back onto the inactive queue again.
812                  */
813                 if ((m->flags & PG_REFERENCED) != 0) {
814                         vm_page_flag_clear(m, PG_REFERENCED);
815                         actcount = pmap_ts_referenced(m);
816                         vm_page_activate(m);
817                         m->act_count += (actcount + ACT_ADVANCE + 1);
818                         continue;
819                 }
820
821                 /*
822                  * If the upper level VM system doesn't know anything about 
823                  * the page being dirty, we have to check for it again.  As 
824                  * far as the VM code knows, any partially dirty pages are 
825                  * fully dirty.
826                  *
827                  * Pages marked PG_WRITEABLE may be mapped into the user
828                  * address space of a process running on another cpu.  A
829                  * user process (without holding the MP lock) running on
830                  * another cpu may be able to touch the page while we are
831                  * trying to remove it.  To prevent this from occuring we
832                  * must call pmap_remove_all() or otherwise make the page
833                  * read-only.  If the race occured pmap_remove_all() is
834                  * responsible for setting m->dirty.
835                  */
836                 if (m->dirty == 0) {
837                         vm_page_test_dirty(m);
838 #if 0
839                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
840                                 pmap_remove_all(m);
841 #endif
842                 } else {
843                         vm_page_dirty(m);
844                 }
845
846                 if (m->valid == 0) {
847                         /*
848                          * Invalid pages can be easily freed
849                          */
850                         vm_pageout_page_free(m);
851                         mycpu->gd_cnt.v_dfree++;
852                         --page_shortage;
853                 } else if (m->dirty == 0) {
854                         /*
855                          * Clean pages can be placed onto the cache queue.
856                          * This effectively frees them.
857                          */
858                         vm_page_cache(m);
859                         --page_shortage;
860                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
861                         /*
862                          * Dirty pages need to be paged out, but flushing
863                          * a page is extremely expensive verses freeing
864                          * a clean page.  Rather then artificially limiting
865                          * the number of pages we can flush, we instead give
866                          * dirty pages extra priority on the inactive queue
867                          * by forcing them to be cycled through the queue
868                          * twice before being flushed, after which the 
869                          * (now clean) page will cycle through once more
870                          * before being freed.  This significantly extends
871                          * the thrash point for a heavily loaded machine.
872                          */
873                         vm_page_flag_set(m, PG_WINATCFLS);
874                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
875                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
876                 } else if (maxlaunder > 0) {
877                         /*
878                          * We always want to try to flush some dirty pages if
879                          * we encounter them, to keep the system stable.
880                          * Normally this number is small, but under extreme
881                          * pressure where there are insufficient clean pages
882                          * on the inactive queue, we may have to go all out.
883                          */
884                         int swap_pageouts_ok;
885                         struct vnode *vp = NULL;
886
887                         object = m->object;
888
889                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
890                                 swap_pageouts_ok = 1;
891                         } else {
892                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
893                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
894                                 vm_page_count_min());
895                                                                                 
896                         }
897
898                         /*
899                          * We don't bother paging objects that are "dead".  
900                          * Those objects are in a "rundown" state.
901                          */
902                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
903                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
904                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
905                                 continue;
906                         }
907
908                         /*
909                          * The object is already known NOT to be dead.   It
910                          * is possible for the vget() to block the whole
911                          * pageout daemon, but the new low-memory handling
912                          * code should prevent it.
913                          *
914                          * The previous code skipped locked vnodes and, worse,
915                          * reordered pages in the queue.  This results in
916                          * completely non-deterministic operation because,
917                          * quite often, a vm_fault has initiated an I/O and
918                          * is holding a locked vnode at just the point where
919                          * the pageout daemon is woken up.
920                          *
921                          * We can't wait forever for the vnode lock, we might
922                          * deadlock due to a vn_read() getting stuck in
923                          * vm_wait while holding this vnode.  We skip the 
924                          * vnode if we can't get it in a reasonable amount
925                          * of time.
926                          */
927
928                         if (object->type == OBJT_VNODE) {
929                                 vp = object->handle;
930
931                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
932                                         ++pageout_lock_miss;
933                                         if (object->flags & OBJ_MIGHTBEDIRTY)
934                                                     vnodes_skipped++;
935                                         continue;
936                                 }
937
938                                 /*
939                                  * The page might have been moved to another
940                                  * queue during potential blocking in vget()
941                                  * above.  The page might have been freed and
942                                  * reused for another vnode.  The object might
943                                  * have been reused for another vnode.
944                                  */
945                                 if (m->queue != PQ_INACTIVE ||
946                                     m->object != object ||
947                                     object->handle != vp) {
948                                         if (object->flags & OBJ_MIGHTBEDIRTY)
949                                                 vnodes_skipped++;
950                                         vput(vp);
951                                         continue;
952                                 }
953         
954                                 /*
955                                  * The page may have been busied during the
956                                  * blocking in vput();  We don't move the
957                                  * page back onto the end of the queue so that
958                                  * statistics are more correct if we don't.
959                                  */
960                                 if (m->busy || (m->flags & PG_BUSY)) {
961                                         vput(vp);
962                                         continue;
963                                 }
964
965                                 /*
966                                  * If the page has become held it might
967                                  * be undergoing I/O, so skip it
968                                  */
969                                 if (m->hold_count) {
970                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
971                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
972                                         if (object->flags & OBJ_MIGHTBEDIRTY)
973                                                 vnodes_skipped++;
974                                         vput(vp);
975                                         continue;
976                                 }
977                         }
978
979                         /*
980                          * If a page is dirty, then it is either being washed
981                          * (but not yet cleaned) or it is still in the
982                          * laundry.  If it is still in the laundry, then we
983                          * start the cleaning operation. 
984                          *
985                          * This operation may cluster, invalidating the 'next'
986                          * pointer.  To prevent an inordinate number of
987                          * restarts we use our marker to remember our place.
988                          *
989                          * decrement page_shortage on success to account for
990                          * the (future) cleaned page.  Otherwise we could wind
991                          * up laundering or cleaning too many pages.
992                          */
993                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
994                         if (vm_pageout_clean(m) != 0) {
995                                 --page_shortage;
996                                 --maxlaunder;
997                         } 
998                         next = TAILQ_NEXT(&marker, pageq);
999                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1000                         if (vp != NULL)
1001                                 vput(vp);
1002                 }
1003         }
1004
1005         /*
1006          * Compute the number of pages we want to try to move from the
1007          * active queue to the inactive queue.
1008          */
1009         page_shortage = vm_paging_target() +
1010             vmstats.v_inactive_target - vmstats.v_inactive_count;
1011         page_shortage += addl_page_shortage;
1012
1013         /*
1014          * Scan the active queue for things we can deactivate. We nominally
1015          * track the per-page activity counter and use it to locate 
1016          * deactivation candidates.
1017          *
1018          * NOTE: we are still in a critical section.
1019          */
1020         pcount = vmstats.v_active_count;
1021         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1022
1023         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1024                 /*
1025                  * Give interrupts a chance.
1026                  */
1027                 crit_exit();
1028                 crit_enter();
1029
1030                 /*
1031                  * If the page was ripped out from under us, just stop.
1032                  */
1033                 if (m->queue != PQ_ACTIVE)
1034                         break;
1035                 next = TAILQ_NEXT(m, pageq);
1036
1037                 /*
1038                  * Don't deactivate pages that are busy.
1039                  */
1040                 if ((m->busy != 0) ||
1041                     (m->flags & PG_BUSY) ||
1042                     (m->hold_count != 0)) {
1043                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1044                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1045                         m = next;
1046                         continue;
1047                 }
1048
1049                 /*
1050                  * The count for pagedaemon pages is done after checking the
1051                  * page for eligibility...
1052                  */
1053                 mycpu->gd_cnt.v_pdpages++;
1054
1055                 /*
1056                  * Check to see "how much" the page has been used.
1057                  */
1058                 actcount = 0;
1059                 if (m->object->ref_count != 0) {
1060                         if (m->flags & PG_REFERENCED) {
1061                                 actcount += 1;
1062                         }
1063                         actcount += pmap_ts_referenced(m);
1064                         if (actcount) {
1065                                 m->act_count += ACT_ADVANCE + actcount;
1066                                 if (m->act_count > ACT_MAX)
1067                                         m->act_count = ACT_MAX;
1068                         }
1069                 }
1070
1071                 /*
1072                  * Since we have "tested" this bit, we need to clear it now.
1073                  */
1074                 vm_page_flag_clear(m, PG_REFERENCED);
1075
1076                 /*
1077                  * Only if an object is currently being used, do we use the
1078                  * page activation count stats.
1079                  */
1080                 if (actcount && (m->object->ref_count != 0)) {
1081                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1082                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1083                 } else {
1084                         m->act_count -= min(m->act_count, ACT_DECLINE);
1085                         if (vm_pageout_algorithm ||
1086                             m->object->ref_count == 0 ||
1087                             m->act_count < pass) {
1088                                 page_shortage--;
1089                                 if (m->object->ref_count == 0) {
1090                                         vm_page_protect(m, VM_PROT_NONE);
1091                                         if (m->dirty == 0)
1092                                                 vm_page_cache(m);
1093                                         else
1094                                                 vm_page_deactivate(m);
1095                                 } else {
1096                                         vm_page_deactivate(m);
1097                                 }
1098                         } else {
1099                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1100                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1101                         }
1102                 }
1103                 m = next;
1104         }
1105
1106         /*
1107          * We try to maintain some *really* free pages, this allows interrupt
1108          * code to be guaranteed space.  Since both cache and free queues 
1109          * are considered basically 'free', moving pages from cache to free
1110          * does not effect other calculations.
1111          *
1112          * NOTE: we are still in a critical section.
1113          */
1114
1115         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1116                 static int cache_rover = 0;
1117                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1118                 if (!m)
1119                         break;
1120                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1121                     m->busy || 
1122                     m->hold_count || 
1123                     m->wire_count) {
1124 #ifdef INVARIANTS
1125                         printf("Warning: busy page %p found in cache\n", m);
1126 #endif
1127                         vm_page_deactivate(m);
1128                         continue;
1129                 }
1130                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1131                 vm_pageout_page_free(m);
1132                 mycpu->gd_cnt.v_dfree++;
1133         }
1134
1135         crit_exit();
1136
1137 #if !defined(NO_SWAPPING)
1138         /*
1139          * Idle process swapout -- run once per second.
1140          */
1141         if (vm_swap_idle_enabled) {
1142                 static long lsec;
1143                 if (time_second != lsec) {
1144                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1145                         vm_req_vmdaemon();
1146                         lsec = time_second;
1147                 }
1148         }
1149 #endif
1150                 
1151         /*
1152          * If we didn't get enough free pages, and we have skipped a vnode
1153          * in a writeable object, wakeup the sync daemon.  And kick swapout
1154          * if we did not get enough free pages.
1155          */
1156         if (vm_paging_target() > 0) {
1157                 if (vnodes_skipped && vm_page_count_min())
1158                         speedup_syncer();
1159 #if !defined(NO_SWAPPING)
1160                 if (vm_swap_enabled && vm_page_count_target()) {
1161                         vm_req_vmdaemon();
1162                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1163                 }
1164 #endif
1165         }
1166
1167         /*
1168          * If we are out of swap and were not able to reach our paging
1169          * target, kill the largest process.
1170          */
1171         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1172             (swap_pager_full && vm_paging_target() > 0)) {
1173 #if 0
1174         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1175 #endif
1176                 info.bigproc = NULL;
1177                 info.bigsize = 0;
1178                 allproc_scan(vm_pageout_scan_callback, &info);
1179                 if (info.bigproc != NULL) {
1180                         killproc(info.bigproc, "out of swap space");
1181                         info.bigproc->p_nice = PRIO_MIN;
1182                         info.bigproc->p_usched->resetpriority(&info.bigproc->p_lwp);
1183                         wakeup(&vmstats.v_free_count);
1184                         PRELE(info.bigproc);
1185                 }
1186         }
1187 }
1188
1189 static int
1190 vm_pageout_scan_callback(struct proc *p, void *data)
1191 {
1192         struct vm_pageout_scan_info *info = data;
1193         vm_offset_t size;
1194
1195         /*
1196          * if this is a system process, skip it
1197          */
1198         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1199             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1200                 return (0);
1201         }
1202
1203         /*
1204          * if the process is in a non-running type state,
1205          * don't touch it.
1206          */
1207         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1208                 return (0);
1209         }
1210
1211         /*
1212          * get the process size
1213          */
1214         size = vmspace_resident_count(p->p_vmspace) +
1215                 vmspace_swap_count(p->p_vmspace);
1216
1217         /*
1218          * If the this process is bigger than the biggest one
1219          * remember it.
1220          */
1221         if (size > info->bigsize) {
1222                 if (info->bigproc)
1223                         PRELE(info->bigproc);
1224                 PHOLD(p);
1225                 info->bigproc = p;
1226                 info->bigsize = size;
1227         }
1228         return(0);
1229 }
1230
1231 /*
1232  * This routine tries to maintain the pseudo LRU active queue,
1233  * so that during long periods of time where there is no paging,
1234  * that some statistic accumulation still occurs.  This code
1235  * helps the situation where paging just starts to occur.
1236  */
1237 static void
1238 vm_pageout_page_stats(void)
1239 {
1240         vm_page_t m,next;
1241         int pcount,tpcount;             /* Number of pages to check */
1242         static int fullintervalcount = 0;
1243         int page_shortage;
1244
1245         page_shortage = 
1246             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1247             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1248
1249         if (page_shortage <= 0)
1250                 return;
1251
1252         crit_enter();
1253
1254         pcount = vmstats.v_active_count;
1255         fullintervalcount += vm_pageout_stats_interval;
1256         if (fullintervalcount < vm_pageout_full_stats_interval) {
1257                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1258                 if (pcount > tpcount)
1259                         pcount = tpcount;
1260         } else {
1261                 fullintervalcount = 0;
1262         }
1263
1264         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1265         while ((m != NULL) && (pcount-- > 0)) {
1266                 int actcount;
1267
1268                 if (m->queue != PQ_ACTIVE) {
1269                         break;
1270                 }
1271
1272                 next = TAILQ_NEXT(m, pageq);
1273                 /*
1274                  * Don't deactivate pages that are busy.
1275                  */
1276                 if ((m->busy != 0) ||
1277                     (m->flags & PG_BUSY) ||
1278                     (m->hold_count != 0)) {
1279                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1280                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1281                         m = next;
1282                         continue;
1283                 }
1284
1285                 actcount = 0;
1286                 if (m->flags & PG_REFERENCED) {
1287                         vm_page_flag_clear(m, PG_REFERENCED);
1288                         actcount += 1;
1289                 }
1290
1291                 actcount += pmap_ts_referenced(m);
1292                 if (actcount) {
1293                         m->act_count += ACT_ADVANCE + actcount;
1294                         if (m->act_count > ACT_MAX)
1295                                 m->act_count = ACT_MAX;
1296                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1297                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1298                 } else {
1299                         if (m->act_count == 0) {
1300                                 /*
1301                                  * We turn off page access, so that we have
1302                                  * more accurate RSS stats.  We don't do this
1303                                  * in the normal page deactivation when the
1304                                  * system is loaded VM wise, because the
1305                                  * cost of the large number of page protect
1306                                  * operations would be higher than the value
1307                                  * of doing the operation.
1308                                  */
1309                                 vm_page_protect(m, VM_PROT_NONE);
1310                                 vm_page_deactivate(m);
1311                         } else {
1312                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1313                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1314                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1315                         }
1316                 }
1317
1318                 m = next;
1319         }
1320         crit_exit();
1321 }
1322
1323 static int
1324 vm_pageout_free_page_calc(vm_size_t count)
1325 {
1326         if (count < vmstats.v_page_count)
1327                  return 0;
1328         /*
1329          * free_reserved needs to include enough for the largest swap pager
1330          * structures plus enough for any pv_entry structs when paging.
1331          */
1332         if (vmstats.v_page_count > 1024)
1333                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1334         else
1335                 vmstats.v_free_min = 4;
1336         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1337                 vmstats.v_interrupt_free_min;
1338         vmstats.v_free_reserved = vm_pageout_page_count +
1339                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1340         vmstats.v_free_severe = vmstats.v_free_min / 2;
1341         vmstats.v_free_min += vmstats.v_free_reserved;
1342         vmstats.v_free_severe += vmstats.v_free_reserved;
1343         return 1;
1344 }
1345
1346
1347 /*
1348  *      vm_pageout is the high level pageout daemon.
1349  */
1350 static void
1351 vm_pageout(void)
1352 {
1353         int pass;
1354
1355         /*
1356          * Initialize some paging parameters.
1357          */
1358
1359         vmstats.v_interrupt_free_min = 2;
1360         if (vmstats.v_page_count < 2000)
1361                 vm_pageout_page_count = 8;
1362
1363         vm_pageout_free_page_calc(vmstats.v_page_count);
1364         /*
1365          * v_free_target and v_cache_min control pageout hysteresis.  Note
1366          * that these are more a measure of the VM cache queue hysteresis
1367          * then the VM free queue.  Specifically, v_free_target is the
1368          * high water mark (free+cache pages).
1369          *
1370          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1371          * low water mark, while v_free_min is the stop.  v_cache_min must
1372          * be big enough to handle memory needs while the pageout daemon
1373          * is signalled and run to free more pages.
1374          */
1375         if (vmstats.v_free_count > 6144)
1376                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1377         else
1378                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1379
1380         if (vmstats.v_free_count > 2048) {
1381                 vmstats.v_cache_min = vmstats.v_free_target;
1382                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1383                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1384         } else {
1385                 vmstats.v_cache_min = 0;
1386                 vmstats.v_cache_max = 0;
1387                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1388         }
1389         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1390                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1391
1392         /* XXX does not really belong here */
1393         if (vm_page_max_wired == 0)
1394                 vm_page_max_wired = vmstats.v_free_count / 3;
1395
1396         if (vm_pageout_stats_max == 0)
1397                 vm_pageout_stats_max = vmstats.v_free_target;
1398
1399         /*
1400          * Set interval in seconds for stats scan.
1401          */
1402         if (vm_pageout_stats_interval == 0)
1403                 vm_pageout_stats_interval = 5;
1404         if (vm_pageout_full_stats_interval == 0)
1405                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1406         
1407
1408         /*
1409          * Set maximum free per pass
1410          */
1411         if (vm_pageout_stats_free_max == 0)
1412                 vm_pageout_stats_free_max = 5;
1413
1414         swap_pager_swap_init();
1415         pass = 0;
1416         /*
1417          * The pageout daemon is never done, so loop forever.
1418          */
1419         while (TRUE) {
1420                 int error;
1421
1422                 /*
1423                  * If we have enough free memory, wakeup waiters.  Do
1424                  * not clear vm_pages_needed until we reach our target,
1425                  * otherwise we may be woken up over and over again and
1426                  * waste a lot of cpu.
1427                  */
1428                 crit_enter();
1429                 if (vm_pages_needed && !vm_page_count_min()) {
1430                         if (vm_paging_needed() <= 0)
1431                                 vm_pages_needed = 0;
1432                         wakeup(&vmstats.v_free_count);
1433                 }
1434                 if (vm_pages_needed) {
1435                         /*
1436                          * Still not done, take a second pass without waiting
1437                          * (unlimited dirty cleaning), otherwise sleep a bit
1438                          * and try again.
1439                          */
1440                         ++pass;
1441                         if (pass > 1)
1442                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1443                 } else {
1444                         /*
1445                          * Good enough, sleep & handle stats.  Prime the pass
1446                          * for the next run.
1447                          */
1448                         if (pass > 1)
1449                                 pass = 1;
1450                         else
1451                                 pass = 0;
1452                         error = tsleep(&vm_pages_needed,
1453                                 0, "psleep", vm_pageout_stats_interval * hz);
1454                         if (error && !vm_pages_needed) {
1455                                 crit_exit();
1456                                 pass = 0;
1457                                 vm_pageout_page_stats();
1458                                 continue;
1459                         }
1460                 }
1461
1462                 if (vm_pages_needed)
1463                         mycpu->gd_cnt.v_pdwakeups++;
1464                 crit_exit();
1465                 vm_pageout_scan(pass);
1466                 vm_pageout_deficit = 0;
1467         }
1468 }
1469
1470 void
1471 pagedaemon_wakeup(void)
1472 {
1473         if (!vm_pages_needed && curthread != pagethread) {
1474                 vm_pages_needed++;
1475                 wakeup(&vm_pages_needed);
1476         }
1477 }
1478
1479 #if !defined(NO_SWAPPING)
1480 static void
1481 vm_req_vmdaemon(void)
1482 {
1483         static int lastrun = 0;
1484
1485         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1486                 wakeup(&vm_daemon_needed);
1487                 lastrun = ticks;
1488         }
1489 }
1490
1491 static int vm_daemon_callback(struct proc *p, void *data __unused);
1492
1493 static void
1494 vm_daemon(void)
1495 {
1496         while (TRUE) {
1497                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1498                 if (vm_pageout_req_swapout) {
1499                         swapout_procs(vm_pageout_req_swapout);
1500                         vm_pageout_req_swapout = 0;
1501                 }
1502                 /*
1503                  * scan the processes for exceeding their rlimits or if
1504                  * process is swapped out -- deactivate pages
1505                  */
1506                 allproc_scan(vm_daemon_callback, NULL);
1507         }
1508 }
1509
1510 static int
1511 vm_daemon_callback(struct proc *p, void *data __unused)
1512 {
1513         vm_pindex_t limit, size;
1514
1515         /*
1516          * if this is a system process or if we have already
1517          * looked at this process, skip it.
1518          */
1519         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1520                 return (0);
1521
1522         /*
1523          * if the process is in a non-running type state,
1524          * don't touch it.
1525          */
1526         if (p->p_stat != SRUN && p->p_stat != SSLEEP)
1527                 return (0);
1528
1529         /*
1530          * get a limit
1531          */
1532         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1533                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1534
1535         /*
1536          * let processes that are swapped out really be
1537          * swapped out.  Set the limit to nothing to get as
1538          * many pages out to swap as possible.
1539          */
1540         if (p->p_flag & P_SWAPPEDOUT)
1541                 limit = 0;
1542
1543         size = vmspace_resident_count(p->p_vmspace);
1544         if (limit >= 0 && size >= limit) {
1545                 vm_pageout_map_deactivate_pages(
1546                     &p->p_vmspace->vm_map, limit);
1547         }
1548         return (0);
1549 }
1550
1551 #endif