netmap: change header includes
[dragonfly.git] / sys / net / netmap / netmap_mem2.c
CommitLineData
fb578518
FF
1/*
2 * Copyright (C) 2012-2013 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
fb578518
FF
26
27#include <sys/types.h>
28#include <sys/malloc.h>
29#include <sys/proc.h>
fb578518 30#include <sys/socket.h> /* sockaddrs */
fb578518 31#include <sys/sysctl.h>
ed9bd855
FF
32#include <sys/bus.h> /* bus_dmamap_* */
33
34#include <vm/vm.h> /* vtophys */
35#include <vm/pmap.h> /* vtophys */
36
fb578518
FF
37#include <net/if.h>
38#include <net/if_var.h>
fb578518 39#include <net/netmap.h>
fb578518 40
b3f97fad
FF
41#include <net/netmap/netmap_kern.h>
42#include <net/netmap/netmap_mem2.h>
fb578518 43
bf9f7c16 44#define NMA_LOCK_INIT(n) lockinit(&(n)->nm_mtx, "netmap memory allocator lock", 0, LK_CANRECURSE)
ed9bd855
FF
45#define NMA_LOCK_DESTROY(n) lockuninit(&(n)->nm_mtx)
46#define NMA_LOCK(n) lockmgr(&(n)->nm_mtx, LK_EXCLUSIVE)
47#define NMA_UNLOCK(n) lockmgr(&(n)->nm_mtx, LK_RELEASE)
fb578518
FF
48
49struct netmap_obj_params netmap_params[NETMAP_POOLS_NR] = {
50 [NETMAP_IF_POOL] = {
51 .size = 1024,
52 .num = 100,
53 },
54 [NETMAP_RING_POOL] = {
55 .size = 9*PAGE_SIZE,
56 .num = 200,
57 },
58 [NETMAP_BUF_POOL] = {
59 .size = 2048,
60 .num = NETMAP_BUF_MAX_NUM,
61 },
62};
63
64
65/*
66 * nm_mem is the memory allocator used for all physical interfaces
67 * running in netmap mode.
68 * Virtual (VALE) ports will have each its own allocator.
69 */
70static int netmap_mem_global_config(struct netmap_mem_d *nmd);
71static int netmap_mem_global_finalize(struct netmap_mem_d *nmd);
72static void netmap_mem_global_deref(struct netmap_mem_d *nmd);
73struct netmap_mem_d nm_mem = { /* Our memory allocator. */
74 .pools = {
75 [NETMAP_IF_POOL] = {
76 .name = "netmap_if",
77 .objminsize = sizeof(struct netmap_if),
78 .objmaxsize = 4096,
79 .nummin = 10, /* don't be stingy */
80 .nummax = 10000, /* XXX very large */
81 },
82 [NETMAP_RING_POOL] = {
83 .name = "netmap_ring",
84 .objminsize = sizeof(struct netmap_ring),
85 .objmaxsize = 32*PAGE_SIZE,
86 .nummin = 2,
87 .nummax = 1024,
88 },
89 [NETMAP_BUF_POOL] = {
90 .name = "netmap_buf",
91 .objminsize = 64,
92 .objmaxsize = 65536,
93 .nummin = 4,
94 .nummax = 1000000, /* one million! */
95 },
96 },
97 .config = netmap_mem_global_config,
98 .finalize = netmap_mem_global_finalize,
99 .deref = netmap_mem_global_deref,
100};
101
102
103// XXX logically belongs to nm_mem
104struct lut_entry *netmap_buffer_lut; /* exported */
105
106/* blueprint for the private memory allocators */
107static int netmap_mem_private_config(struct netmap_mem_d *nmd);
108static int netmap_mem_private_finalize(struct netmap_mem_d *nmd);
109static void netmap_mem_private_deref(struct netmap_mem_d *nmd);
110const struct netmap_mem_d nm_blueprint = {
111 .pools = {
112 [NETMAP_IF_POOL] = {
113 .name = "%s_if",
114 .objminsize = sizeof(struct netmap_if),
115 .objmaxsize = 4096,
116 .nummin = 1,
117 .nummax = 10,
118 },
119 [NETMAP_RING_POOL] = {
120 .name = "%s_ring",
121 .objminsize = sizeof(struct netmap_ring),
122 .objmaxsize = 32*PAGE_SIZE,
123 .nummin = 2,
124 .nummax = 1024,
125 },
126 [NETMAP_BUF_POOL] = {
127 .name = "%s_buf",
128 .objminsize = 64,
129 .objmaxsize = 65536,
130 .nummin = 4,
131 .nummax = 1000000, /* one million! */
132 },
133 },
134 .config = netmap_mem_private_config,
135 .finalize = netmap_mem_private_finalize,
136 .deref = netmap_mem_private_deref,
137
138 .flags = NETMAP_MEM_PRIVATE,
139};
140
141/* memory allocator related sysctls */
142
143#define STRINGIFY(x) #x
144
145
146#define DECLARE_SYSCTLS(id, name) \
147 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
148 CTLFLAG_RW, &netmap_params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
149 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
150 CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
151 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
152 CTLFLAG_RW, &netmap_params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
153 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
154 CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s")
155
156SYSCTL_DECL(_dev_netmap);
157DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
158DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
159DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
160
161/*
162 * First, find the allocator that contains the requested offset,
163 * then locate the cluster through a lookup table.
164 */
165vm_paddr_t
166netmap_mem_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
167{
168 int i;
169 vm_ooffset_t o = offset;
170 vm_paddr_t pa;
171 struct netmap_obj_pool *p;
172
173 NMA_LOCK(nmd);
174 p = nmd->pools;
175
176 for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
177 if (offset >= p[i].memtotal)
178 continue;
179 // now lookup the cluster's address
180 pa = p[i].lut[offset / p[i]._objsize].paddr +
181 offset % p[i]._objsize;
182 NMA_UNLOCK(nmd);
183 return pa;
184 }
185 /* this is only in case of errors */
186 D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
187 p[NETMAP_IF_POOL].memtotal,
188 p[NETMAP_IF_POOL].memtotal
189 + p[NETMAP_RING_POOL].memtotal,
190 p[NETMAP_IF_POOL].memtotal
191 + p[NETMAP_RING_POOL].memtotal
192 + p[NETMAP_BUF_POOL].memtotal);
193 NMA_UNLOCK(nmd);
194 return 0; // XXX bad address
195}
196
197int
198netmap_mem_get_info(struct netmap_mem_d* nmd, u_int* size, u_int *memflags)
199{
200 int error = 0;
201 NMA_LOCK(nmd);
202 error = nmd->config(nmd);
203 if (error)
204 goto out;
205 if (nmd->flags & NETMAP_MEM_FINALIZED) {
206 *size = nmd->nm_totalsize;
207 } else {
208 int i;
209 *size = 0;
210 for (i = 0; i < NETMAP_POOLS_NR; i++) {
211 struct netmap_obj_pool *p = nmd->pools + i;
212 *size += (p->_numclusters * p->_clustsize);
213 }
214 }
215 *memflags = nmd->flags;
216out:
217 NMA_UNLOCK(nmd);
218 return error;
219}
220
221/*
222 * we store objects by kernel address, need to find the offset
223 * within the pool to export the value to userspace.
224 * Algorithm: scan until we find the cluster, then add the
225 * actual offset in the cluster
226 */
227static ssize_t
228netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
229{
230 int i, k = p->_clustentries, n = p->objtotal;
231 ssize_t ofs = 0;
232
233 for (i = 0; i < n; i += k, ofs += p->_clustsize) {
234 const char *base = p->lut[i].vaddr;
235 ssize_t relofs = (const char *) vaddr - base;
236
237 if (relofs < 0 || relofs >= p->_clustsize)
238 continue;
239
240 ofs = ofs + relofs;
241 ND("%s: return offset %d (cluster %d) for pointer %p",
242 p->name, ofs, i, vaddr);
243 return ofs;
244 }
245 D("address %p is not contained inside any cluster (%s)",
246 vaddr, p->name);
247 return 0; /* An error occurred */
248}
249
250/* Helper functions which convert virtual addresses to offsets */
251#define netmap_if_offset(n, v) \
252 netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
253
254#define netmap_ring_offset(n, v) \
255 ((n)->pools[NETMAP_IF_POOL].memtotal + \
256 netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
257
258#define netmap_buf_offset(n, v) \
259 ((n)->pools[NETMAP_IF_POOL].memtotal + \
260 (n)->pools[NETMAP_RING_POOL].memtotal + \
261 netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)))
262
263
264ssize_t
265netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *addr)
266{
267 ssize_t v;
268 NMA_LOCK(nmd);
269 v = netmap_if_offset(nmd, addr);
270 NMA_UNLOCK(nmd);
271 return v;
272}
273
274/*
275 * report the index, and use start position as a hint,
276 * otherwise buffer allocation becomes terribly expensive.
277 */
278static void *
279netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
280{
281 uint32_t i = 0; /* index in the bitmap */
282 uint32_t mask, j; /* slot counter */
283 void *vaddr = NULL;
284
285 if (len > p->_objsize) {
286 D("%s request size %d too large", p->name, len);
287 // XXX cannot reduce the size
288 return NULL;
289 }
290
291 if (p->objfree == 0) {
292 D("%s allocator: run out of memory", p->name);
293 return NULL;
294 }
295 if (start)
296 i = *start;
297
298 /* termination is guaranteed by p->free, but better check bounds on i */
299 while (vaddr == NULL && i < p->bitmap_slots) {
300 uint32_t cur = p->bitmap[i];
301 if (cur == 0) { /* bitmask is fully used */
302 i++;
303 continue;
304 }
305 /* locate a slot */
306 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
307 ;
308
309 p->bitmap[i] &= ~mask; /* mark object as in use */
310 p->objfree--;
311
312 vaddr = p->lut[i * 32 + j].vaddr;
313 if (index)
314 *index = i * 32 + j;
315 }
316 ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
317
318 if (start)
319 *start = i;
320 return vaddr;
321}
322
323
324/*
325 * free by index, not by address. This is slow, but is only used
326 * for a small number of objects (rings, nifp)
327 */
328static void
329netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
330{
331 if (j >= p->objtotal) {
332 D("invalid index %u, max %u", j, p->objtotal);
333 return;
334 }
335 p->bitmap[j / 32] |= (1 << (j % 32));
336 p->objfree++;
337 return;
338}
339
340static void
341netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
342{
343 u_int i, j, n = p->numclusters;
344
345 for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
346 void *base = p->lut[i * p->_clustentries].vaddr;
347 ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
348
349 /* Given address, is out of the scope of the current cluster.*/
350 if (vaddr < base || relofs >= p->_clustsize)
351 continue;
352
353 j = j + relofs / p->_objsize;
354 /* KASSERT(j != 0, ("Cannot free object 0")); */
355 netmap_obj_free(p, j);
356 return;
357 }
358 D("address %p is not contained inside any cluster (%s)",
359 vaddr, p->name);
360}
361
362#define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
363#define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
364#define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
365#define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
366#define netmap_buf_malloc(n, _pos, _index) \
367 netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], NETMAP_BDG_BUF_SIZE(n), _pos, _index)
368
369
370/* Return the index associated to the given packet buffer */
371#define netmap_buf_index(n, v) \
372 (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
373
374
375/* Return nonzero on error */
376static int
377netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
378{
379 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
380 u_int i = 0; /* slot counter */
381 uint32_t pos = 0; /* slot in p->bitmap */
382 uint32_t index = 0; /* buffer index */
383
384 for (i = 0; i < n; i++) {
385 void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
386 if (vaddr == NULL) {
387 D("unable to locate empty packet buffer");
388 goto cleanup;
389 }
390 slot[i].buf_idx = index;
391 slot[i].len = p->_objsize;
392 /* XXX setting flags=NS_BUF_CHANGED forces a pointer reload
393 * in the NIC ring. This is a hack that hides missing
394 * initializations in the drivers, and should go away.
395 */
396 // slot[i].flags = NS_BUF_CHANGED;
397 }
398
399 ND("allocated %d buffers, %d available, first at %d", n, p->objfree, pos);
400 return (0);
401
402cleanup:
403 while (i > 0) {
404 i--;
405 netmap_obj_free(p, slot[i].buf_idx);
406 }
407 bzero(slot, n * sizeof(slot[0]));
408 return (ENOMEM);
409}
410
411
412static void
413netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
414{
415 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
416
417 if (i < 2 || i >= p->objtotal) {
418 D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
419 return;
420 }
421 netmap_obj_free(p, i);
422}
423
424static void
425netmap_reset_obj_allocator(struct netmap_obj_pool *p)
426{
427
428 if (p == NULL)
429 return;
430 if (p->bitmap)
ed9bd855 431 kfree(p->bitmap, M_NETMAP);
fb578518
FF
432 p->bitmap = NULL;
433 if (p->lut) {
434 u_int i;
435 size_t sz = p->_clustsize;
436
437 for (i = 0; i < p->objtotal; i += p->_clustentries) {
438 if (p->lut[i].vaddr)
439 contigfree(p->lut[i].vaddr, sz, M_NETMAP);
440 }
441 bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
ed9bd855 442 kfree(p->lut, M_NETMAP);
fb578518
FF
443 }
444 p->lut = NULL;
445 p->objtotal = 0;
446 p->memtotal = 0;
447 p->numclusters = 0;
448 p->objfree = 0;
449}
450
451/*
452 * Free all resources related to an allocator.
453 */
454static void
455netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
456{
457 if (p == NULL)
458 return;
459 netmap_reset_obj_allocator(p);
460}
461
462/*
463 * We receive a request for objtotal objects, of size objsize each.
464 * Internally we may round up both numbers, as we allocate objects
465 * in small clusters multiple of the page size.
466 * We need to keep track of objtotal and clustentries,
467 * as they are needed when freeing memory.
468 *
469 * XXX note -- userspace needs the buffers to be contiguous,
470 * so we cannot afford gaps at the end of a cluster.
471 */
472
473
474/* call with NMA_LOCK held */
475static int
476netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
477{
478 int i;
479 u_int clustsize; /* the cluster size, multiple of page size */
480 u_int clustentries; /* how many objects per entry */
481
482 /* we store the current request, so we can
483 * detect configuration changes later */
484 p->r_objtotal = objtotal;
485 p->r_objsize = objsize;
486
487#define MAX_CLUSTSIZE (1<<17)
488#define LINE_ROUND 64
489 if (objsize >= MAX_CLUSTSIZE) {
490 /* we could do it but there is no point */
491 D("unsupported allocation for %d bytes", objsize);
492 return EINVAL;
493 }
494 /* make sure objsize is a multiple of LINE_ROUND */
495 i = (objsize & (LINE_ROUND - 1));
496 if (i) {
497 D("XXX aligning object by %d bytes", LINE_ROUND - i);
498 objsize += LINE_ROUND - i;
499 }
500 if (objsize < p->objminsize || objsize > p->objmaxsize) {
501 D("requested objsize %d out of range [%d, %d]",
502 objsize, p->objminsize, p->objmaxsize);
503 return EINVAL;
504 }
505 if (objtotal < p->nummin || objtotal > p->nummax) {
506 D("requested objtotal %d out of range [%d, %d]",
507 objtotal, p->nummin, p->nummax);
508 return EINVAL;
509 }
510 /*
511 * Compute number of objects using a brute-force approach:
512 * given a max cluster size,
513 * we try to fill it with objects keeping track of the
514 * wasted space to the next page boundary.
515 */
516 for (clustentries = 0, i = 1;; i++) {
517 u_int delta, used = i * objsize;
518 if (used > MAX_CLUSTSIZE)
519 break;
520 delta = used % PAGE_SIZE;
521 if (delta == 0) { // exact solution
522 clustentries = i;
523 break;
524 }
525 if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
526 clustentries = i;
527 }
528 // D("XXX --- ouch, delta %d (bad for buffers)", delta);
529 /* compute clustsize and round to the next page */
530 clustsize = clustentries * objsize;
531 i = (clustsize & (PAGE_SIZE - 1));
532 if (i)
533 clustsize += PAGE_SIZE - i;
534 if (netmap_verbose)
535 D("objsize %d clustsize %d objects %d",
536 objsize, clustsize, clustentries);
537
538 /*
539 * The number of clusters is n = ceil(objtotal/clustentries)
540 * objtotal' = n * clustentries
541 */
542 p->_clustentries = clustentries;
543 p->_clustsize = clustsize;
544 p->_numclusters = (objtotal + clustentries - 1) / clustentries;
545
546 /* actual values (may be larger than requested) */
547 p->_objsize = objsize;
548 p->_objtotal = p->_numclusters * clustentries;
549
550 return 0;
551}
552
553
554/* call with NMA_LOCK held */
555static int
556netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
557{
558 int i; /* must be signed */
559 size_t n;
560
561 /* optimistically assume we have enough memory */
562 p->numclusters = p->_numclusters;
563 p->objtotal = p->_objtotal;
564
565 n = sizeof(struct lut_entry) * p->objtotal;
ed9bd855 566 p->lut = kmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO);
fb578518
FF
567 if (p->lut == NULL) {
568 D("Unable to create lookup table (%d bytes) for '%s'", (int)n, p->name);
569 goto clean;
570 }
571
572 /* Allocate the bitmap */
573 n = (p->objtotal + 31) / 32;
ed9bd855 574 p->bitmap = kmalloc(sizeof(uint32_t) * n, M_NETMAP, M_NOWAIT | M_ZERO);
fb578518
FF
575 if (p->bitmap == NULL) {
576 D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
577 p->name);
578 goto clean;
579 }
580 p->bitmap_slots = n;
581
582 /*
583 * Allocate clusters, init pointers and bitmap
584 */
585
586 n = p->_clustsize;
587 for (i = 0; i < (int)p->objtotal;) {
588 int lim = i + p->_clustentries;
589 char *clust;
590
591 clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
592 (size_t)0, -1UL, PAGE_SIZE, 0);
593 if (clust == NULL) {
594 /*
595 * If we get here, there is a severe memory shortage,
596 * so halve the allocated memory to reclaim some.
597 */
598 D("Unable to create cluster at %d for '%s' allocator",
599 i, p->name);
600 if (i < 2) /* nothing to halve */
601 goto out;
602 lim = i / 2;
603 for (i--; i >= lim; i--) {
604 p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) );
605 if (i % p->_clustentries == 0 && p->lut[i].vaddr)
606 contigfree(p->lut[i].vaddr,
607 n, M_NETMAP);
608 }
609 out:
610 p->objtotal = i;
611 /* we may have stopped in the middle of a cluster */
612 p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
613 break;
614 }
615 for (; i < lim; i++, clust += p->_objsize) {
616 p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) );
617 p->lut[i].vaddr = clust;
618 p->lut[i].paddr = vtophys(clust);
619 }
620 }
621 p->objfree = p->objtotal;
622 p->memtotal = p->numclusters * p->_clustsize;
623 if (p->objfree == 0)
624 goto clean;
625 if (netmap_verbose)
626 D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
627 p->numclusters, p->_clustsize >> 10,
628 p->memtotal >> 10, p->name);
629
630 return 0;
631
632clean:
633 netmap_reset_obj_allocator(p);
634 return ENOMEM;
635}
636
637/* call with lock held */
638static int
639netmap_memory_config_changed(struct netmap_mem_d *nmd)
640{
641 int i;
642
643 for (i = 0; i < NETMAP_POOLS_NR; i++) {
644 if (nmd->pools[i].r_objsize != netmap_params[i].size ||
645 nmd->pools[i].r_objtotal != netmap_params[i].num)
646 return 1;
647 }
648 return 0;
649}
650
651static void
652netmap_mem_reset_all(struct netmap_mem_d *nmd)
653{
654 int i;
655 D("resetting %p", nmd);
656 for (i = 0; i < NETMAP_POOLS_NR; i++) {
657 netmap_reset_obj_allocator(&nmd->pools[i]);
658 }
659 nmd->flags &= ~NETMAP_MEM_FINALIZED;
660}
661
662static int
663netmap_mem_finalize_all(struct netmap_mem_d *nmd)
664{
665 int i;
666 if (nmd->flags & NETMAP_MEM_FINALIZED)
667 return 0;
668 nmd->lasterr = 0;
669 nmd->nm_totalsize = 0;
670 for (i = 0; i < NETMAP_POOLS_NR; i++) {
671 nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
672 if (nmd->lasterr)
673 goto error;
674 nmd->nm_totalsize += nmd->pools[i].memtotal;
675 }
676 /* buffers 0 and 1 are reserved */
677 nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
678 nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3;
679 nmd->flags |= NETMAP_MEM_FINALIZED;
680
681 D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
682 nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
683 nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
684 nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
685
686 D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
687
688
689 return 0;
690error:
691 netmap_mem_reset_all(nmd);
692 return nmd->lasterr;
693}
694
695
696
697void
698netmap_mem_private_delete(struct netmap_mem_d *nmd)
699{
700 if (nmd == NULL)
701 return;
702 D("deleting %p", nmd);
703 if (nmd->refcount > 0)
704 D("bug: deleting mem allocator with refcount=%d!", nmd->refcount);
705 D("done deleting %p", nmd);
706 NMA_LOCK_DESTROY(nmd);
ed9bd855 707 kfree(nmd, M_DEVBUF);
fb578518
FF
708}
709
710static int
711netmap_mem_private_config(struct netmap_mem_d *nmd)
712{
713 /* nothing to do, we are configured on creation
714 * and configuration never changes thereafter
715 */
716 return 0;
717}
718
719static int
720netmap_mem_private_finalize(struct netmap_mem_d *nmd)
721{
722 int err;
723 NMA_LOCK(nmd);
724 nmd->refcount++;
725 err = netmap_mem_finalize_all(nmd);
726 NMA_UNLOCK(nmd);
727 return err;
728
729}
730
731static void
732netmap_mem_private_deref(struct netmap_mem_d *nmd)
733{
734 NMA_LOCK(nmd);
735 if (--nmd->refcount <= 0)
736 netmap_mem_reset_all(nmd);
737 NMA_UNLOCK(nmd);
738}
739
740struct netmap_mem_d *
741netmap_mem_private_new(const char *name, u_int txr, u_int txd, u_int rxr, u_int rxd)
742{
743 struct netmap_mem_d *d = NULL;
744 struct netmap_obj_params p[NETMAP_POOLS_NR];
745 int i;
746 u_int maxd;
747
ed9bd855 748 d = kmalloc(sizeof(struct netmap_mem_d),
fb578518
FF
749 M_DEVBUF, M_NOWAIT | M_ZERO);
750 if (d == NULL)
751 return NULL;
752
753 *d = nm_blueprint;
754
755 /* XXX the rest of the code assumes the stack rings are alwasy present */
756 txr++;
757 rxr++;
758 p[NETMAP_IF_POOL].size = sizeof(struct netmap_if) +
759 sizeof(ssize_t) * (txr + rxr);
760 p[NETMAP_IF_POOL].num = 2;
761 maxd = (txd > rxd) ? txd : rxd;
762 p[NETMAP_RING_POOL].size = sizeof(struct netmap_ring) +
763 sizeof(struct netmap_slot) * maxd;
764 p[NETMAP_RING_POOL].num = txr + rxr;
765 p[NETMAP_BUF_POOL].size = 2048; /* XXX find a way to let the user choose this */
766 p[NETMAP_BUF_POOL].num = rxr * (rxd + 2) + txr * (txd + 2);
767
768 D("req if %d*%d ring %d*%d buf %d*%d",
769 p[NETMAP_IF_POOL].num,
770 p[NETMAP_IF_POOL].size,
771 p[NETMAP_RING_POOL].num,
772 p[NETMAP_RING_POOL].size,
773 p[NETMAP_BUF_POOL].num,
774 p[NETMAP_BUF_POOL].size);
775
776 for (i = 0; i < NETMAP_POOLS_NR; i++) {
ed9bd855 777 ksnprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
fb578518
FF
778 nm_blueprint.pools[i].name,
779 name);
780 if (netmap_config_obj_allocator(&d->pools[i],
781 p[i].num, p[i].size))
782 goto error;
783 }
784
785 d->flags &= ~NETMAP_MEM_FINALIZED;
786
787 NMA_LOCK_INIT(d);
788
789 return d;
790error:
791 netmap_mem_private_delete(d);
792 return NULL;
793}
794
795
796/* call with lock held */
797static int
798netmap_mem_global_config(struct netmap_mem_d *nmd)
799{
800 int i;
801
802 if (nmd->refcount)
803 /* already in use, we cannot change the configuration */
804 goto out;
805
806 if (!netmap_memory_config_changed(nmd))
807 goto out;
808
809 D("reconfiguring");
810
811 if (nmd->flags & NETMAP_MEM_FINALIZED) {
812 /* reset previous allocation */
813 for (i = 0; i < NETMAP_POOLS_NR; i++) {
814 netmap_reset_obj_allocator(&nmd->pools[i]);
815 }
816 nmd->flags &= ~NETMAP_MEM_FINALIZED;
817 }
818
819 for (i = 0; i < NETMAP_POOLS_NR; i++) {
820 nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
821 netmap_params[i].num, netmap_params[i].size);
822 if (nmd->lasterr)
823 goto out;
824 }
825
826out:
827
828 return nmd->lasterr;
829}
830
831static int
832netmap_mem_global_finalize(struct netmap_mem_d *nmd)
833{
834 int err;
835
836 NMA_LOCK(nmd);
837
838
839 /* update configuration if changed */
840 if (netmap_mem_global_config(nmd))
841 goto out;
842
843 nmd->refcount++;
844
845 if (nmd->flags & NETMAP_MEM_FINALIZED) {
846 /* may happen if config is not changed */
847 ND("nothing to do");
848 goto out;
849 }
850
851 if (netmap_mem_finalize_all(nmd))
852 goto out;
853
854 /* backward compatibility */
855 netmap_buf_size = nmd->pools[NETMAP_BUF_POOL]._objsize;
856 netmap_total_buffers = nmd->pools[NETMAP_BUF_POOL].objtotal;
857
858 netmap_buffer_lut = nmd->pools[NETMAP_BUF_POOL].lut;
859 netmap_buffer_base = nmd->pools[NETMAP_BUF_POOL].lut[0].vaddr;
860
861 nmd->lasterr = 0;
862
863out:
864 if (nmd->lasterr)
865 nmd->refcount--;
866 err = nmd->lasterr;
867
868 NMA_UNLOCK(nmd);
869
870 return err;
871
872}
873
874int
875netmap_mem_init(void)
876{
877 NMA_LOCK_INIT(&nm_mem);
878 return (0);
879}
880
881void
882netmap_mem_fini(void)
883{
884 int i;
885
886 for (i = 0; i < NETMAP_POOLS_NR; i++) {
887 netmap_destroy_obj_allocator(&nm_mem.pools[i]);
888 }
889 NMA_LOCK_DESTROY(&nm_mem);
890}
891
892static void
893netmap_free_rings(struct netmap_adapter *na)
894{
895 u_int i;
896 if (!na->tx_rings)
897 return;
898 for (i = 0; i < na->num_tx_rings + 1; i++) {
899 if (na->tx_rings[i].ring) {
900 netmap_ring_free(na->nm_mem, na->tx_rings[i].ring);
901 na->tx_rings[i].ring = NULL;
902 }
903 }
904 for (i = 0; i < na->num_rx_rings + 1; i++) {
905 if (na->rx_rings[i].ring) {
906 netmap_ring_free(na->nm_mem, na->rx_rings[i].ring);
907 na->rx_rings[i].ring = NULL;
908 }
909 }
910}
911
912/* call with NMA_LOCK held *
913 *
914 * Allocate netmap rings and buffers for this card
915 * The rings are contiguous, but have variable size.
916 */
917int
918netmap_mem_rings_create(struct netmap_adapter *na)
919{
920 struct netmap_ring *ring;
921 u_int len, ndesc;
922 struct netmap_kring *kring;
923
924 NMA_LOCK(na->nm_mem);
925
926 for (kring = na->tx_rings; kring != na->rx_rings; kring++) { /* Transmit rings */
927 ndesc = kring->nkr_num_slots;
928 len = sizeof(struct netmap_ring) +
929 ndesc * sizeof(struct netmap_slot);
930 ring = netmap_ring_malloc(na->nm_mem, len);
931 if (ring == NULL) {
932 D("Cannot allocate tx_ring");
933 goto cleanup;
934 }
935 ND("txring[%d] at %p ofs %d", i, ring);
936 kring->ring = ring;
937 *(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
938 *(ssize_t *)(uintptr_t)&ring->buf_ofs =
939 (na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
940 na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
941 netmap_ring_offset(na->nm_mem, ring);
942
943 ring->avail = kring->nr_hwavail;
944 ring->cur = kring->nr_hwcur;
945 *(uint16_t *)(uintptr_t)&ring->nr_buf_size =
946 NETMAP_BDG_BUF_SIZE(na->nm_mem);
947 ND("initializing slots for txring");
948 if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
949 D("Cannot allocate buffers for tx_ring");
950 goto cleanup;
951 }
952 }
953
954 for ( ; kring != na->tailroom; kring++) { /* Receive rings */
955 ndesc = kring->nkr_num_slots;
956 len = sizeof(struct netmap_ring) +
957 ndesc * sizeof(struct netmap_slot);
958 ring = netmap_ring_malloc(na->nm_mem, len);
959 if (ring == NULL) {
960 D("Cannot allocate rx_ring");
961 goto cleanup;
962 }
963 ND("rxring at %p ofs %d", ring);
964
965 kring->ring = ring;
966 *(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
967 *(ssize_t *)(uintptr_t)&ring->buf_ofs =
968 (na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
969 na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
970 netmap_ring_offset(na->nm_mem, ring);
971
972 ring->cur = kring->nr_hwcur;
973 ring->avail = kring->nr_hwavail;
974 *(int *)(uintptr_t)&ring->nr_buf_size =
975 NETMAP_BDG_BUF_SIZE(na->nm_mem);
976 ND("initializing slots for rxring[%d]", i);
977 if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
978 D("Cannot allocate buffers for rx_ring");
979 goto cleanup;
980 }
981 }
982
983 NMA_UNLOCK(na->nm_mem);
984
985 return 0;
986
987cleanup:
988 netmap_free_rings(na);
989
990 NMA_UNLOCK(na->nm_mem);
991
992 return ENOMEM;
993}
994
995void
996netmap_mem_rings_delete(struct netmap_adapter *na)
997{
998 /* last instance, release bufs and rings */
999 u_int i, lim;
1000 struct netmap_kring *kring;
1001 struct netmap_ring *ring;
1002
1003 NMA_LOCK(na->nm_mem);
1004
1005 for (kring = na->tx_rings; kring != na->tailroom; kring++) {
1006 ring = kring->ring;
1007 if (ring == NULL)
1008 continue;
1009 lim = kring->nkr_num_slots;
1010 for (i = 0; i < lim; i++)
1011 netmap_free_buf(na->nm_mem, ring->slot[i].buf_idx);
1012 }
1013 netmap_free_rings(na);
1014
1015 NMA_UNLOCK(na->nm_mem);
1016}
1017
1018
1019/* call with NMA_LOCK held */
1020/*
1021 * Allocate the per-fd structure netmap_if.
1022 *
1023 * We assume that the configuration stored in na
1024 * (number of tx/rx rings and descs) does not change while
1025 * the interface is in netmap mode.
1026 */
1027struct netmap_if *
1028netmap_mem_if_new(const char *ifname, struct netmap_adapter *na)
1029{
1030 struct netmap_if *nifp;
1031 ssize_t base; /* handy for relative offsets between rings and nifp */
1032 u_int i, len, ntx, nrx;
1033
1034 /*
1035 * verify whether virtual port need the stack ring
1036 */
1037 ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
1038 nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
1039 /*
1040 * the descriptor is followed inline by an array of offsets
1041 * to the tx and rx rings in the shared memory region.
1042 * For virtual rx rings we also allocate an array of
1043 * pointers to assign to nkr_leases.
1044 */
1045
1046 NMA_LOCK(na->nm_mem);
1047
1048 len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
1049 nifp = netmap_if_malloc(na->nm_mem, len);
1050 if (nifp == NULL) {
1051 NMA_UNLOCK(na->nm_mem);
1052 return NULL;
1053 }
1054
1055 /* initialize base fields -- override const */
1056 *(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
1057 *(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
1058 strncpy(nifp->ni_name, ifname, (size_t)IFNAMSIZ);
1059
1060 /*
1061 * fill the slots for the rx and tx rings. They contain the offset
1062 * between the ring and nifp, so the information is usable in
1063 * userspace to reach the ring from the nifp.
1064 */
1065 base = netmap_if_offset(na->nm_mem, nifp);
1066 for (i = 0; i < ntx; i++) {
1067 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
1068 netmap_ring_offset(na->nm_mem, na->tx_rings[i].ring) - base;
1069 }
1070 for (i = 0; i < nrx; i++) {
1071 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
1072 netmap_ring_offset(na->nm_mem, na->rx_rings[i].ring) - base;
1073 }
1074
1075 NMA_UNLOCK(na->nm_mem);
1076
1077 return (nifp);
1078}
1079
1080void
1081netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
1082{
1083 if (nifp == NULL)
1084 /* nothing to do */
1085 return;
1086 NMA_LOCK(na->nm_mem);
1087
1088 netmap_if_free(na->nm_mem, nifp);
1089
1090 NMA_UNLOCK(na->nm_mem);
1091}
1092
1093static void
1094netmap_mem_global_deref(struct netmap_mem_d *nmd)
1095{
1096 NMA_LOCK(nmd);
1097
1098 nmd->refcount--;
1099 if (netmap_verbose)
1100 D("refcount = %d", nmd->refcount);
1101
1102 NMA_UNLOCK(nmd);
1103}
1104
1105int
1106netmap_mem_finalize(struct netmap_mem_d *nmd)
1107{
1108 return nmd->finalize(nmd);
1109}
1110
1111void
1112netmap_mem_deref(struct netmap_mem_d *nmd)
1113{
1114 return nmd->deref(nmd);
1115}