Disconnect hostapd from building in base
[dragonfly.git] / contrib / hostapd / src / crypto / crypto_openssl.c
CommitLineData
ebfa2275 1/*
4781064b
JM
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
ebfa2275 4 *
4781064b
JM
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
ebfa2275
SZ
7 */
8
9#include "includes.h"
10#include <openssl/opensslv.h>
4781064b 11#include <openssl/err.h>
ebfa2275
SZ
12#include <openssl/des.h>
13#include <openssl/aes.h>
a875087d
JL
14#include <openssl/bn.h>
15#include <openssl/evp.h>
4781064b
JM
16#include <openssl/dh.h>
17#include <openssl/hmac.h>
18#include <openssl/rand.h>
19#ifdef CONFIG_OPENSSL_CMAC
20#include <openssl/cmac.h>
21#endif /* CONFIG_OPENSSL_CMAC */
22#ifdef CONFIG_ECC
23#include <openssl/ec.h>
24#endif /* CONFIG_ECC */
ebfa2275
SZ
25
26#include "common.h"
4781064b
JM
27#include "wpabuf.h"
28#include "dh_group5.h"
29#include "sha1.h"
30#include "sha256.h"
ebfa2275
SZ
31#include "crypto.h"
32
33#if OPENSSL_VERSION_NUMBER < 0x00907000
34#define DES_key_schedule des_key_schedule
35#define DES_cblock des_cblock
36#define DES_set_key(key, schedule) des_set_key((key), *(schedule))
37#define DES_ecb_encrypt(input, output, ks, enc) \
38 des_ecb_encrypt((input), (output), *(ks), (enc))
39#endif /* openssl < 0.9.7 */
40
4781064b
JM
41static BIGNUM * get_group5_prime(void)
42{
43#if OPENSSL_VERSION_NUMBER < 0x00908000
44 static const unsigned char RFC3526_PRIME_1536[] = {
45 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
46 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
47 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
48 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
49 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
50 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
51 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
52 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
53 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
54 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
55 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
56 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
57 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
58 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
59 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
60 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
61 };
62 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
63#else /* openssl < 0.9.8 */
64 return get_rfc3526_prime_1536(NULL);
65#endif /* openssl < 0.9.8 */
66}
67
68#if OPENSSL_VERSION_NUMBER < 0x00908000
69#ifndef OPENSSL_NO_SHA256
70#ifndef OPENSSL_FIPS
71#define NO_SHA256_WRAPPER
72#endif
73#endif
74
75#endif /* openssl < 0.9.8 */
76
77#ifdef OPENSSL_NO_SHA256
78#define NO_SHA256_WRAPPER
79#endif
ebfa2275 80
4781064b
JM
81static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
82 const u8 *addr[], const size_t *len, u8 *mac)
ebfa2275 83{
4781064b 84 EVP_MD_CTX ctx;
ebfa2275 85 size_t i;
4781064b 86 unsigned int mac_len;
ebfa2275 87
4781064b
JM
88 EVP_MD_CTX_init(&ctx);
89 if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
90 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
91 ERR_error_string(ERR_get_error(), NULL));
92 return -1;
93 }
94 for (i = 0; i < num_elem; i++) {
95 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
96 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
97 "failed: %s",
98 ERR_error_string(ERR_get_error(), NULL));
99 return -1;
100 }
101 }
102 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
103 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
104 ERR_error_string(ERR_get_error(), NULL));
105 return -1;
106 }
107
108 return 0;
109}
110
111
112int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
113{
114 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
ebfa2275
SZ
115}
116
117
118void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
119{
120 u8 pkey[8], next, tmp;
121 int i;
122 DES_key_schedule ks;
123
124 /* Add parity bits to the key */
125 next = 0;
126 for (i = 0; i < 7; i++) {
127 tmp = key[i];
128 pkey[i] = (tmp >> i) | next | 1;
129 next = tmp << (7 - i);
130 }
131 pkey[i] = next | 1;
132
133 DES_set_key(&pkey, &ks);
134 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
135 DES_ENCRYPT);
136}
137
138
4781064b
JM
139int rc4_skip(const u8 *key, size_t keylen, size_t skip,
140 u8 *data, size_t data_len)
ebfa2275 141{
4781064b
JM
142#ifdef OPENSSL_NO_RC4
143 return -1;
144#else /* OPENSSL_NO_RC4 */
145 EVP_CIPHER_CTX ctx;
146 int outl;
147 int res = -1;
148 unsigned char skip_buf[16];
ebfa2275 149
4781064b
JM
150 EVP_CIPHER_CTX_init(&ctx);
151 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
152 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
153 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
154 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
155 goto out;
ebfa2275 156
4781064b
JM
157 while (skip >= sizeof(skip_buf)) {
158 size_t len = skip;
159 if (len > sizeof(skip_buf))
160 len = sizeof(skip_buf);
161 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
162 goto out;
163 skip -= len;
164 }
ebfa2275 165
4781064b
JM
166 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
167 res = 0;
ebfa2275 168
4781064b
JM
169out:
170 EVP_CIPHER_CTX_cleanup(&ctx);
171 return res;
172#endif /* OPENSSL_NO_RC4 */
ebfa2275
SZ
173}
174
175
4781064b 176int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
ebfa2275 177{
4781064b 178 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
ebfa2275
SZ
179}
180
181
4781064b 182int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
ebfa2275 183{
4781064b
JM
184 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
185}
ebfa2275 186
ebfa2275 187
4781064b
JM
188#ifndef NO_SHA256_WRAPPER
189int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
190 u8 *mac)
191{
192 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
193}
194#endif /* NO_SHA256_WRAPPER */
ebfa2275 195
ebfa2275 196
4781064b
JM
197static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
198{
199 switch (keylen) {
200 case 16:
201 return EVP_aes_128_ecb();
202 case 24:
203 return EVP_aes_192_ecb();
204 case 32:
205 return EVP_aes_256_ecb();
ebfa2275
SZ
206 }
207
4781064b 208 return NULL;
ebfa2275
SZ
209}
210
211
212void * aes_encrypt_init(const u8 *key, size_t len)
213{
4781064b
JM
214 EVP_CIPHER_CTX *ctx;
215 const EVP_CIPHER *type;
216
217 type = aes_get_evp_cipher(len);
218 if (type == NULL)
219 return NULL;
220
221 ctx = os_malloc(sizeof(*ctx));
222 if (ctx == NULL)
ebfa2275 223 return NULL;
4781064b
JM
224 EVP_CIPHER_CTX_init(ctx);
225 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
226 os_free(ctx);
ebfa2275
SZ
227 return NULL;
228 }
4781064b
JM
229 EVP_CIPHER_CTX_set_padding(ctx, 0);
230 return ctx;
ebfa2275
SZ
231}
232
233
234void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
235{
4781064b
JM
236 EVP_CIPHER_CTX *c = ctx;
237 int clen = 16;
238 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
239 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
240 ERR_error_string(ERR_get_error(), NULL));
241 }
ebfa2275
SZ
242}
243
244
245void aes_encrypt_deinit(void *ctx)
246{
4781064b
JM
247 EVP_CIPHER_CTX *c = ctx;
248 u8 buf[16];
249 int len = sizeof(buf);
250 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
251 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
252 "%s", ERR_error_string(ERR_get_error(), NULL));
253 }
254 if (len != 0) {
255 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
256 "in AES encrypt", len);
257 }
258 EVP_CIPHER_CTX_cleanup(c);
259 os_free(c);
ebfa2275
SZ
260}
261
262
263void * aes_decrypt_init(const u8 *key, size_t len)
264{
4781064b
JM
265 EVP_CIPHER_CTX *ctx;
266 const EVP_CIPHER *type;
267
268 type = aes_get_evp_cipher(len);
269 if (type == NULL)
ebfa2275 270 return NULL;
4781064b
JM
271
272 ctx = os_malloc(sizeof(*ctx));
273 if (ctx == NULL)
274 return NULL;
275 EVP_CIPHER_CTX_init(ctx);
276 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
277 os_free(ctx);
ebfa2275
SZ
278 return NULL;
279 }
4781064b
JM
280 EVP_CIPHER_CTX_set_padding(ctx, 0);
281 return ctx;
ebfa2275
SZ
282}
283
284
285void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
286{
4781064b
JM
287 EVP_CIPHER_CTX *c = ctx;
288 int plen = 16;
289 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
290 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
291 ERR_error_string(ERR_get_error(), NULL));
292 }
ebfa2275
SZ
293}
294
295
296void aes_decrypt_deinit(void *ctx)
297{
4781064b
JM
298 EVP_CIPHER_CTX *c = ctx;
299 u8 buf[16];
300 int len = sizeof(buf);
301 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
302 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
303 "%s", ERR_error_string(ERR_get_error(), NULL));
304 }
305 if (len != 0) {
306 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
307 "in AES decrypt", len);
308 }
309 EVP_CIPHER_CTX_cleanup(c);
ebfa2275
SZ
310 os_free(ctx);
311}
a875087d
JL
312
313
314int crypto_mod_exp(const u8 *base, size_t base_len,
315 const u8 *power, size_t power_len,
316 const u8 *modulus, size_t modulus_len,
317 u8 *result, size_t *result_len)
318{
319 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
320 int ret = -1;
321 BN_CTX *ctx;
322
323 ctx = BN_CTX_new();
324 if (ctx == NULL)
325 return -1;
326
327 bn_base = BN_bin2bn(base, base_len, NULL);
328 bn_exp = BN_bin2bn(power, power_len, NULL);
329 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
330 bn_result = BN_new();
331
332 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
333 bn_result == NULL)
334 goto error;
335
336 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
337 goto error;
338
339 *result_len = BN_bn2bin(bn_result, result);
340 ret = 0;
341
342error:
343 BN_free(bn_base);
344 BN_free(bn_exp);
345 BN_free(bn_modulus);
346 BN_free(bn_result);
347 BN_CTX_free(ctx);
348 return ret;
349}
350
351
352struct crypto_cipher {
353 EVP_CIPHER_CTX enc;
354 EVP_CIPHER_CTX dec;
355};
356
357
358struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
359 const u8 *iv, const u8 *key,
360 size_t key_len)
361{
362 struct crypto_cipher *ctx;
363 const EVP_CIPHER *cipher;
364
365 ctx = os_zalloc(sizeof(*ctx));
366 if (ctx == NULL)
367 return NULL;
368
369 switch (alg) {
370#ifndef OPENSSL_NO_RC4
371 case CRYPTO_CIPHER_ALG_RC4:
372 cipher = EVP_rc4();
373 break;
374#endif /* OPENSSL_NO_RC4 */
375#ifndef OPENSSL_NO_AES
376 case CRYPTO_CIPHER_ALG_AES:
377 switch (key_len) {
378 case 16:
379 cipher = EVP_aes_128_cbc();
380 break;
381 case 24:
382 cipher = EVP_aes_192_cbc();
383 break;
384 case 32:
385 cipher = EVP_aes_256_cbc();
386 break;
387 default:
388 os_free(ctx);
389 return NULL;
390 }
391 break;
392#endif /* OPENSSL_NO_AES */
393#ifndef OPENSSL_NO_DES
394 case CRYPTO_CIPHER_ALG_3DES:
395 cipher = EVP_des_ede3_cbc();
396 break;
397 case CRYPTO_CIPHER_ALG_DES:
398 cipher = EVP_des_cbc();
399 break;
400#endif /* OPENSSL_NO_DES */
401#ifndef OPENSSL_NO_RC2
402 case CRYPTO_CIPHER_ALG_RC2:
403 cipher = EVP_rc2_ecb();
404 break;
405#endif /* OPENSSL_NO_RC2 */
406 default:
407 os_free(ctx);
408 return NULL;
409 }
410
411 EVP_CIPHER_CTX_init(&ctx->enc);
412 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
413 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
414 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
4781064b 415 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
a875087d
JL
416 EVP_CIPHER_CTX_cleanup(&ctx->enc);
417 os_free(ctx);
418 return NULL;
419 }
420
421 EVP_CIPHER_CTX_init(&ctx->dec);
422 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
423 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
424 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
4781064b 425 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
a875087d
JL
426 EVP_CIPHER_CTX_cleanup(&ctx->enc);
427 EVP_CIPHER_CTX_cleanup(&ctx->dec);
428 os_free(ctx);
429 return NULL;
430 }
431
432 return ctx;
433}
434
435
436int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
437 u8 *crypt, size_t len)
438{
439 int outl;
440 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
441 return -1;
442 return 0;
443}
444
445
446int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
447 u8 *plain, size_t len)
448{
449 int outl;
450 outl = len;
451 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
452 return -1;
453 return 0;
454}
455
456
457void crypto_cipher_deinit(struct crypto_cipher *ctx)
458{
459 EVP_CIPHER_CTX_cleanup(&ctx->enc);
460 EVP_CIPHER_CTX_cleanup(&ctx->dec);
461 os_free(ctx);
462}
4781064b
JM
463
464
465void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
466{
467 DH *dh;
468 struct wpabuf *pubkey = NULL, *privkey = NULL;
469 size_t publen, privlen;
470
471 *priv = NULL;
472 *publ = NULL;
473
474 dh = DH_new();
475 if (dh == NULL)
476 return NULL;
477
478 dh->g = BN_new();
479 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
480 goto err;
481
482 dh->p = get_group5_prime();
483 if (dh->p == NULL)
484 goto err;
485
486 if (DH_generate_key(dh) != 1)
487 goto err;
488
489 publen = BN_num_bytes(dh->pub_key);
490 pubkey = wpabuf_alloc(publen);
491 if (pubkey == NULL)
492 goto err;
493 privlen = BN_num_bytes(dh->priv_key);
494 privkey = wpabuf_alloc(privlen);
495 if (privkey == NULL)
496 goto err;
497
498 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
499 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
500
501 *priv = privkey;
502 *publ = pubkey;
503 return dh;
504
505err:
506 wpabuf_free(pubkey);
507 wpabuf_free(privkey);
508 DH_free(dh);
509 return NULL;
510}
511
512
513void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
514{
515 DH *dh;
516
517 dh = DH_new();
518 if (dh == NULL)
519 return NULL;
520
521 dh->g = BN_new();
522 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
523 goto err;
524
525 dh->p = get_group5_prime();
526 if (dh->p == NULL)
527 goto err;
528
529 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
530 if (dh->priv_key == NULL)
531 goto err;
532
533 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
534 if (dh->pub_key == NULL)
535 goto err;
536
537 if (DH_generate_key(dh) != 1)
538 goto err;
539
540 return dh;
541
542err:
543 DH_free(dh);
544 return NULL;
545}
546
547
548struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
549 const struct wpabuf *own_private)
550{
551 BIGNUM *pub_key;
552 struct wpabuf *res = NULL;
553 size_t rlen;
554 DH *dh = ctx;
555 int keylen;
556
557 if (ctx == NULL)
558 return NULL;
559
560 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
561 NULL);
562 if (pub_key == NULL)
563 return NULL;
564
565 rlen = DH_size(dh);
566 res = wpabuf_alloc(rlen);
567 if (res == NULL)
568 goto err;
569
570 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
571 if (keylen < 0)
572 goto err;
573 wpabuf_put(res, keylen);
574 BN_free(pub_key);
575
576 return res;
577
578err:
579 BN_free(pub_key);
580 wpabuf_free(res);
581 return NULL;
582}
583
584
585void dh5_free(void *ctx)
586{
587 DH *dh;
588 if (ctx == NULL)
589 return;
590 dh = ctx;
591 DH_free(dh);
592}
593
594
595struct crypto_hash {
596 HMAC_CTX ctx;
597};
598
599
600struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
601 size_t key_len)
602{
603 struct crypto_hash *ctx;
604 const EVP_MD *md;
605
606 switch (alg) {
607#ifndef OPENSSL_NO_MD5
608 case CRYPTO_HASH_ALG_HMAC_MD5:
609 md = EVP_md5();
610 break;
611#endif /* OPENSSL_NO_MD5 */
612#ifndef OPENSSL_NO_SHA
613 case CRYPTO_HASH_ALG_HMAC_SHA1:
614 md = EVP_sha1();
615 break;
616#endif /* OPENSSL_NO_SHA */
617#ifndef OPENSSL_NO_SHA256
618#ifdef CONFIG_SHA256
619 case CRYPTO_HASH_ALG_HMAC_SHA256:
620 md = EVP_sha256();
621 break;
622#endif /* CONFIG_SHA256 */
623#endif /* OPENSSL_NO_SHA256 */
624 default:
625 return NULL;
626 }
627
628 ctx = os_zalloc(sizeof(*ctx));
629 if (ctx == NULL)
630 return NULL;
631 HMAC_CTX_init(&ctx->ctx);
632
633#if OPENSSL_VERSION_NUMBER < 0x00909000
634 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
635#else /* openssl < 0.9.9 */
636 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
637 os_free(ctx);
638 return NULL;
639 }
640#endif /* openssl < 0.9.9 */
641
642 return ctx;
643}
644
645
646void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
647{
648 if (ctx == NULL)
649 return;
650 HMAC_Update(&ctx->ctx, data, len);
651}
652
653
654int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
655{
656 unsigned int mdlen;
657 int res;
658
659 if (ctx == NULL)
660 return -2;
661
662 if (mac == NULL || len == NULL) {
663 os_free(ctx);
664 return 0;
665 }
666
667 mdlen = *len;
668#if OPENSSL_VERSION_NUMBER < 0x00909000
669 HMAC_Final(&ctx->ctx, mac, &mdlen);
670 res = 1;
671#else /* openssl < 0.9.9 */
672 res = HMAC_Final(&ctx->ctx, mac, &mdlen);
673#endif /* openssl < 0.9.9 */
674 HMAC_CTX_cleanup(&ctx->ctx);
675 os_free(ctx);
676
677 if (res == 1) {
678 *len = mdlen;
679 return 0;
680 }
681
682 return -1;
683}
684
685
686int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
687 int iterations, u8 *buf, size_t buflen)
688{
689#if OPENSSL_VERSION_NUMBER < 0x00908000
690 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
691 (unsigned char *) ssid,
692 ssid_len, 4096, buflen, buf) != 1)
693 return -1;
694#else /* openssl < 0.9.8 */
695 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
696 ssid_len, 4096, buflen, buf) != 1)
697 return -1;
698#endif /* openssl < 0.9.8 */
699 return 0;
700}
701
702
703int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
704 const u8 *addr[], const size_t *len, u8 *mac)
705{
706 HMAC_CTX ctx;
707 size_t i;
708 unsigned int mdlen;
709 int res;
710
711 HMAC_CTX_init(&ctx);
712#if OPENSSL_VERSION_NUMBER < 0x00909000
713 HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
714#else /* openssl < 0.9.9 */
715 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
716 return -1;
717#endif /* openssl < 0.9.9 */
718
719 for (i = 0; i < num_elem; i++)
720 HMAC_Update(&ctx, addr[i], len[i]);
721
722 mdlen = 20;
723#if OPENSSL_VERSION_NUMBER < 0x00909000
724 HMAC_Final(&ctx, mac, &mdlen);
725 res = 1;
726#else /* openssl < 0.9.9 */
727 res = HMAC_Final(&ctx, mac, &mdlen);
728#endif /* openssl < 0.9.9 */
729 HMAC_CTX_cleanup(&ctx);
730
731 return res == 1 ? 0 : -1;
732}
733
734
735int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
736 u8 *mac)
737{
738 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
739}
740
741
742#ifdef CONFIG_SHA256
743
744int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
745 const u8 *addr[], const size_t *len, u8 *mac)
746{
747 HMAC_CTX ctx;
748 size_t i;
749 unsigned int mdlen;
750 int res;
751
752 HMAC_CTX_init(&ctx);
753#if OPENSSL_VERSION_NUMBER < 0x00909000
754 HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
755#else /* openssl < 0.9.9 */
756 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
757 return -1;
758#endif /* openssl < 0.9.9 */
759
760 for (i = 0; i < num_elem; i++)
761 HMAC_Update(&ctx, addr[i], len[i]);
762
763 mdlen = 32;
764#if OPENSSL_VERSION_NUMBER < 0x00909000
765 HMAC_Final(&ctx, mac, &mdlen);
766 res = 1;
767#else /* openssl < 0.9.9 */
768 res = HMAC_Final(&ctx, mac, &mdlen);
769#endif /* openssl < 0.9.9 */
770 HMAC_CTX_cleanup(&ctx);
771
772 return res == 1 ? 0 : -1;
773}
774
775
776int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
777 size_t data_len, u8 *mac)
778{
779 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
780}
781
782#endif /* CONFIG_SHA256 */
783
784
785int crypto_get_random(void *buf, size_t len)
786{
787 if (RAND_bytes(buf, len) != 1)
788 return -1;
789 return 0;
790}
791
792
793#ifdef CONFIG_OPENSSL_CMAC
794int omac1_aes_128_vector(const u8 *key, size_t num_elem,
795 const u8 *addr[], const size_t *len, u8 *mac)
796{
797 CMAC_CTX *ctx;
798 int ret = -1;
799 size_t outlen, i;
800
801 ctx = CMAC_CTX_new();
802 if (ctx == NULL)
803 return -1;
804
805 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
806 goto fail;
807 for (i = 0; i < num_elem; i++) {
808 if (!CMAC_Update(ctx, addr[i], len[i]))
809 goto fail;
810 }
811 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
812 goto fail;
813
814 ret = 0;
815fail:
816 CMAC_CTX_free(ctx);
817 return ret;
818}
819
820
821int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
822{
823 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
824}
825#endif /* CONFIG_OPENSSL_CMAC */
826
827
828struct crypto_bignum * crypto_bignum_init(void)
829{
830 return (struct crypto_bignum *) BN_new();
831}
832
833
834struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
835{
836 BIGNUM *bn = BN_bin2bn(buf, len, NULL);
837 return (struct crypto_bignum *) bn;
838}
839
840
841void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
842{
843 if (clear)
844 BN_clear_free((BIGNUM *) n);
845 else
846 BN_free((BIGNUM *) n);
847}
848
849
850int crypto_bignum_to_bin(const struct crypto_bignum *a,
851 u8 *buf, size_t buflen, size_t padlen)
852{
853 int num_bytes, offset;
854
855 if (padlen > buflen)
856 return -1;
857
858 num_bytes = BN_num_bytes((const BIGNUM *) a);
859 if ((size_t) num_bytes > buflen)
860 return -1;
861 if (padlen > (size_t) num_bytes)
862 offset = padlen - num_bytes;
863 else
864 offset = 0;
865
866 os_memset(buf, 0, offset);
867 BN_bn2bin((const BIGNUM *) a, buf + offset);
868
869 return num_bytes + offset;
870}
871
872
873int crypto_bignum_add(const struct crypto_bignum *a,
874 const struct crypto_bignum *b,
875 struct crypto_bignum *c)
876{
877 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
878 0 : -1;
879}
880
881
882int crypto_bignum_mod(const struct crypto_bignum *a,
883 const struct crypto_bignum *b,
884 struct crypto_bignum *c)
885{
886 int res;
887 BN_CTX *bnctx;
888
889 bnctx = BN_CTX_new();
890 if (bnctx == NULL)
891 return -1;
892 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
893 bnctx);
894 BN_CTX_free(bnctx);
895
896 return res ? 0 : -1;
897}
898
899
900int crypto_bignum_exptmod(const struct crypto_bignum *a,
901 const struct crypto_bignum *b,
902 const struct crypto_bignum *c,
903 struct crypto_bignum *d)
904{
905 int res;
906 BN_CTX *bnctx;
907
908 bnctx = BN_CTX_new();
909 if (bnctx == NULL)
910 return -1;
911 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
912 (const BIGNUM *) c, bnctx);
913 BN_CTX_free(bnctx);
914
915 return res ? 0 : -1;
916}
917
918
919int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
920 struct crypto_bignum *b)
921{
922 return BN_rshift((BIGNUM *) b, (const BIGNUM *) a, n) ? 0 : -1;
923}
924
925
926int crypto_bignum_inverse(const struct crypto_bignum *a,
927 const struct crypto_bignum *b,
928 struct crypto_bignum *c)
929{
930 BIGNUM *res;
931 BN_CTX *bnctx;
932
933 bnctx = BN_CTX_new();
934 if (bnctx == NULL)
935 return -1;
936 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
937 (const BIGNUM *) b, bnctx);
938 BN_CTX_free(bnctx);
939
940 return res ? 0 : -1;
941}
942
943
944int crypto_bignum_sub(const struct crypto_bignum *a,
945 const struct crypto_bignum *b,
946 struct crypto_bignum *c)
947{
948 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
949 0 : -1;
950}
951
952
953int crypto_bignum_div(const struct crypto_bignum *a,
954 const struct crypto_bignum *b,
955 struct crypto_bignum *c)
956{
957 int res;
958
959 BN_CTX *bnctx;
960
961 bnctx = BN_CTX_new();
962 if (bnctx == NULL)
963 return -1;
964 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
965 (const BIGNUM *) b, bnctx);
966 BN_CTX_free(bnctx);
967
968 return res ? 0 : -1;
969}
970
971
972int crypto_bignum_mulmod(const struct crypto_bignum *a,
973 const struct crypto_bignum *b,
974 const struct crypto_bignum *c,
975 struct crypto_bignum *d)
976{
977 int res;
978
979 BN_CTX *bnctx;
980
981 bnctx = BN_CTX_new();
982 if (bnctx == NULL)
983 return -1;
984 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
985 (const BIGNUM *) c, bnctx);
986 BN_CTX_free(bnctx);
987
988 return res ? 0 : -1;
989}
990
991
992int crypto_bignum_cmp(const struct crypto_bignum *a,
993 const struct crypto_bignum *b)
994{
995 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
996}
997
998
999int crypto_bignum_bits(const struct crypto_bignum *a)
1000{
1001 return BN_num_bits((const BIGNUM *) a);
1002}
1003
1004
1005int crypto_bignum_is_zero(const struct crypto_bignum *a)
1006{
1007 return BN_is_zero((const BIGNUM *) a);
1008}
1009
1010
1011int crypto_bignum_is_one(const struct crypto_bignum *a)
1012{
1013 return BN_is_one((const BIGNUM *) a);
1014}
1015
1016
1017#ifdef CONFIG_ECC
1018
1019struct crypto_ec {
1020 EC_GROUP *group;
1021 BN_CTX *bnctx;
1022 BIGNUM *prime;
1023 BIGNUM *order;
1024};
1025
1026struct crypto_ec * crypto_ec_init(int group)
1027{
1028 struct crypto_ec *e;
1029 int nid;
1030
1031 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1032 switch (group) {
1033 case 19:
1034 nid = NID_X9_62_prime256v1;
1035 break;
1036 case 20:
1037 nid = NID_secp384r1;
1038 break;
1039 case 21:
1040 nid = NID_secp521r1;
1041 break;
1042 case 25:
1043 nid = NID_X9_62_prime192v1;
1044 break;
1045 case 26:
1046 nid = NID_secp224r1;
1047 break;
1048 default:
1049 return NULL;
1050 }
1051
1052 e = os_zalloc(sizeof(*e));
1053 if (e == NULL)
1054 return NULL;
1055
1056 e->bnctx = BN_CTX_new();
1057 e->group = EC_GROUP_new_by_curve_name(nid);
1058 e->prime = BN_new();
1059 e->order = BN_new();
1060 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1061 e->order == NULL ||
1062 !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1063 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1064 crypto_ec_deinit(e);
1065 e = NULL;
1066 }
1067
1068 return e;
1069}
1070
1071
1072void crypto_ec_deinit(struct crypto_ec *e)
1073{
1074 if (e == NULL)
1075 return;
1076 BN_free(e->order);
1077 EC_GROUP_free(e->group);
1078 BN_CTX_free(e->bnctx);
1079 os_free(e);
1080}
1081
1082
1083struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1084{
1085 if (e == NULL)
1086 return NULL;
1087 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1088}
1089
1090
1091size_t crypto_ec_prime_len(struct crypto_ec *e)
1092{
1093 return BN_num_bytes(e->prime);
1094}
1095
1096
1097size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1098{
1099 return BN_num_bits(e->prime);
1100}
1101
1102
1103const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1104{
1105 return (const struct crypto_bignum *) e->prime;
1106}
1107
1108
1109const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1110{
1111 return (const struct crypto_bignum *) e->order;
1112}
1113
1114
1115void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1116{
1117 if (clear)
1118 EC_POINT_clear_free((EC_POINT *) p);
1119 else
1120 EC_POINT_free((EC_POINT *) p);
1121}
1122
1123
1124int crypto_ec_point_to_bin(struct crypto_ec *e,
1125 const struct crypto_ec_point *point, u8 *x, u8 *y)
1126{
1127 BIGNUM *x_bn, *y_bn;
1128 int ret = -1;
1129 int len = BN_num_bytes(e->prime);
1130
1131 x_bn = BN_new();
1132 y_bn = BN_new();
1133
1134 if (x_bn && y_bn &&
1135 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1136 x_bn, y_bn, e->bnctx)) {
1137 if (x) {
1138 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1139 x, len, len);
1140 }
1141 if (y) {
1142 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1143 y, len, len);
1144 }
1145 ret = 0;
1146 }
1147
1148 BN_free(x_bn);
1149 BN_free(y_bn);
1150 return ret;
1151}
1152
1153
1154struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1155 const u8 *val)
1156{
1157 BIGNUM *x, *y;
1158 EC_POINT *elem;
1159 int len = BN_num_bytes(e->prime);
1160
1161 x = BN_bin2bn(val, len, NULL);
1162 y = BN_bin2bn(val + len, len, NULL);
1163 elem = EC_POINT_new(e->group);
1164 if (x == NULL || y == NULL || elem == NULL) {
1165 BN_free(x);
1166 BN_free(y);
1167 EC_POINT_free(elem);
1168 return NULL;
1169 }
1170
1171 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1172 e->bnctx)) {
1173 EC_POINT_free(elem);
1174 elem = NULL;
1175 }
1176
1177 BN_free(x);
1178 BN_free(y);
1179
1180 return (struct crypto_ec_point *) elem;
1181}
1182
1183
1184int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1185 const struct crypto_ec_point *b,
1186 struct crypto_ec_point *c)
1187{
1188 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1189 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1190}
1191
1192
1193int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1194 const struct crypto_bignum *b,
1195 struct crypto_ec_point *res)
1196{
1197 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1198 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1199 ? 0 : -1;
1200}
1201
1202
1203int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1204{
1205 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1206}
1207
1208
1209int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1210 struct crypto_ec_point *p,
1211 const struct crypto_bignum *x, int y_bit)
1212{
1213 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1214 (const BIGNUM *) x, y_bit,
1215 e->bnctx) ||
1216 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1217 return -1;
1218 return 0;
1219}
1220
1221
1222int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1223 const struct crypto_ec_point *p)
1224{
1225 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1226}
1227
1228
1229int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1230 const struct crypto_ec_point *p)
1231{
1232 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1233}
1234
1235#endif /* CONFIG_ECC */