hammer2 - Refactor frontend part 14/many
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35/*
36 * This subsystem implements most of the core support functions for
37 * the hammer2_chain structure.
38 *
39 * Chains are the in-memory version on media objects (volume header, inodes,
40 * indirect blocks, data blocks, etc). Chains represent a portion of the
41 * HAMMER2 topology.
42 *
43 * Chains are no-longer delete-duplicated. Instead, the original in-memory
44 * chain will be moved along with its block reference (e.g. for things like
45 * renames, hardlink operations, modifications, etc), and will be indexed
46 * on a secondary list for flush handling instead of propagating a flag
47 * upward to the root.
48 *
49 * Concurrent front-end operations can still run against backend flushes
50 * as long as they do not cross the current flush boundary. An operation
51 * running above the current flush (in areas not yet flushed) can become
52 * part of the current flush while ano peration running below the current
53 * flush can become part of the next flush.
54 */
55#include <sys/cdefs.h>
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/types.h>
59#include <sys/lock.h>
60#include <sys/kern_syscall.h>
61#include <sys/uuid.h>
62
63#include <crypto/sha2/sha2.h>
64
65#include "hammer2.h"
66
67static int hammer2_indirect_optimize; /* XXX SYSCTL */
68
69static hammer2_chain_t *hammer2_chain_create_indirect(
70 hammer2_chain_t *parent,
71 hammer2_key_t key, int keybits, int for_type, int *errorp);
72static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
73static hammer2_chain_t *hammer2_combined_find(
74 hammer2_chain_t *parent,
75 hammer2_blockref_t *base, int count,
76 int *cache_indexp, hammer2_key_t *key_nextp,
77 hammer2_key_t key_beg, hammer2_key_t key_end,
78 hammer2_blockref_t **bresp);
79
80/*
81 * Basic RBTree for chains (core->rbtree and core->dbtree). Chains cannot
82 * overlap in the RB trees. Deleted chains are moved from rbtree to either
83 * dbtree or to dbq.
84 *
85 * Chains in delete-duplicate sequences can always iterate through core_entry
86 * to locate the live version of the chain.
87 */
88RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
89
90int
91hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
92{
93 hammer2_key_t c1_beg;
94 hammer2_key_t c1_end;
95 hammer2_key_t c2_beg;
96 hammer2_key_t c2_end;
97
98 /*
99 * Compare chains. Overlaps are not supposed to happen and catch
100 * any software issues early we count overlaps as a match.
101 */
102 c1_beg = chain1->bref.key;
103 c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
104 c2_beg = chain2->bref.key;
105 c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
106
107 if (c1_end < c2_beg) /* fully to the left */
108 return(-1);
109 if (c1_beg > c2_end) /* fully to the right */
110 return(1);
111 return(0); /* overlap (must not cross edge boundary) */
112}
113
114static __inline
115int
116hammer2_isclusterable(hammer2_chain_t *chain)
117{
118 if (hammer2_cluster_enable) {
119 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
120 chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
121 chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
122 return(1);
123 }
124 }
125 return(0);
126}
127
128/*
129 * Make a chain visible to the flusher. The flusher needs to be able to
130 * do flushes of subdirectory chains or single files so it does a top-down
131 * recursion using the ONFLUSH flag for the recursion. It locates MODIFIED
132 * or UPDATE chains and flushes back up the chain to the volume root.
133 *
134 * This routine sets ONFLUSH upward until it hits the volume root. For
135 * simplicity we ignore PFSROOT boundaries whos rules can be complex.
136 * Extra ONFLUSH flagging doesn't hurt the filesystem.
137 */
138void
139hammer2_chain_setflush(hammer2_chain_t *chain)
140{
141 hammer2_chain_t *parent;
142
143 if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
144 hammer2_spin_sh(&chain->core.spin);
145 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
146 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
147 if ((parent = chain->parent) == NULL)
148 break;
149 hammer2_spin_sh(&parent->core.spin);
150 hammer2_spin_unsh(&chain->core.spin);
151 chain = parent;
152 }
153 hammer2_spin_unsh(&chain->core.spin);
154 }
155}
156
157/*
158 * Allocate a new disconnected chain element representing the specified
159 * bref. chain->refs is set to 1 and the passed bref is copied to
160 * chain->bref. chain->bytes is derived from the bref.
161 *
162 * chain->pmp inherits pmp unless the chain is an inode (other than the
163 * super-root inode).
164 *
165 * NOTE: Returns a referenced but unlocked (because there is no core) chain.
166 */
167hammer2_chain_t *
168hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
169 hammer2_blockref_t *bref)
170{
171 hammer2_chain_t *chain;
172 u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
173
174 /*
175 * Construct the appropriate system structure.
176 */
177 switch(bref->type) {
178 case HAMMER2_BREF_TYPE_INODE:
179 case HAMMER2_BREF_TYPE_INDIRECT:
180 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
181 case HAMMER2_BREF_TYPE_DATA:
182 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
183 /*
184 * Chain's are really only associated with the hmp but we
185 * maintain a pmp association for per-mount memory tracking
186 * purposes. The pmp can be NULL.
187 */
188 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
189 break;
190 case HAMMER2_BREF_TYPE_VOLUME:
191 case HAMMER2_BREF_TYPE_FREEMAP:
192 chain = NULL;
193 panic("hammer2_chain_alloc volume type illegal for op");
194 default:
195 chain = NULL;
196 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
197 bref->type);
198 }
199
200 /*
201 * Initialize the new chain structure. pmp must be set to NULL for
202 * chains belonging to the super-root topology of a device mount.
203 */
204 if (pmp == hmp->spmp)
205 chain->pmp = NULL;
206 else
207 chain->pmp = pmp;
208 chain->hmp = hmp;
209 chain->bref = *bref;
210 chain->bytes = bytes;
211 chain->refs = 1;
212 chain->flags = HAMMER2_CHAIN_ALLOCATED;
213
214 /*
215 * Set the PFS boundary flag if this chain represents a PFS root.
216 */
217 if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
218 chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
219 hammer2_chain_core_init(chain);
220
221 return (chain);
222}
223
224/*
225 * Initialize a chain's core structure. This structure used to be allocated
226 * but is now embedded.
227 *
228 * The core is not locked. No additional refs on the chain are made.
229 * (trans) must not be NULL if (core) is not NULL.
230 */
231void
232hammer2_chain_core_init(hammer2_chain_t *chain)
233{
234 /*
235 * Fresh core under nchain (no multi-homing of ochain's
236 * sub-tree).
237 */
238 RB_INIT(&chain->core.rbtree); /* live chains */
239 hammer2_mtx_init(&chain->lock, "h2chain");
240}
241
242/*
243 * Add a reference to a chain element, preventing its destruction.
244 *
245 * (can be called with spinlock held)
246 */
247void
248hammer2_chain_ref(hammer2_chain_t *chain)
249{
250 atomic_add_int(&chain->refs, 1);
251#if 0
252 kprintf("REFC %p %d %08x\n", chain, chain->refs - 1, chain->flags);
253 print_backtrace(8);
254#endif
255}
256
257/*
258 * Insert the chain in the core rbtree.
259 *
260 * Normal insertions are placed in the live rbtree. Insertion of a deleted
261 * chain is a special case used by the flush code that is placed on the
262 * unstaged deleted list to avoid confusing the live view.
263 */
264#define HAMMER2_CHAIN_INSERT_SPIN 0x0001
265#define HAMMER2_CHAIN_INSERT_LIVE 0x0002
266#define HAMMER2_CHAIN_INSERT_RACE 0x0004
267
268static
269int
270hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
271 int flags, int generation)
272{
273 hammer2_chain_t *xchain;
274 int error = 0;
275
276 if (flags & HAMMER2_CHAIN_INSERT_SPIN)
277 hammer2_spin_ex(&parent->core.spin);
278
279 /*
280 * Interlocked by spinlock, check for race
281 */
282 if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
283 parent->core.generation != generation) {
284 error = EAGAIN;
285 goto failed;
286 }
287
288 /*
289 * Insert chain
290 */
291 xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
292 KASSERT(xchain == NULL,
293 ("hammer2_chain_insert: collision %p %p", chain, xchain));
294 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
295 chain->parent = parent;
296 ++parent->core.chain_count;
297 ++parent->core.generation; /* XXX incs for _get() too, XXX */
298
299 /*
300 * We have to keep track of the effective live-view blockref count
301 * so the create code knows when to push an indirect block.
302 */
303 if (flags & HAMMER2_CHAIN_INSERT_LIVE)
304 atomic_add_int(&parent->core.live_count, 1);
305failed:
306 if (flags & HAMMER2_CHAIN_INSERT_SPIN)
307 hammer2_spin_unex(&parent->core.spin);
308 return error;
309}
310
311/*
312 * Drop the caller's reference to the chain. When the ref count drops to
313 * zero this function will try to disassociate the chain from its parent and
314 * deallocate it, then recursely drop the parent using the implied ref
315 * from the chain's chain->parent.
316 */
317static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
318
319void
320hammer2_chain_drop(hammer2_chain_t *chain)
321{
322 u_int refs;
323 u_int need = 0;
324
325 if (hammer2_debug & 0x200000)
326 Debugger("drop");
327#if 0
328 kprintf("DROP %p %d %08x\n", chain, chain->refs - 1, chain->flags);
329 print_backtrace(8);
330#endif
331
332 if (chain->flags & HAMMER2_CHAIN_UPDATE)
333 ++need;
334 if (chain->flags & HAMMER2_CHAIN_MODIFIED)
335 ++need;
336 KKASSERT(chain->refs > need);
337
338 while (chain) {
339 refs = chain->refs;
340 cpu_ccfence();
341 KKASSERT(refs > 0);
342
343 if (refs == 1) {
344 chain = hammer2_chain_lastdrop(chain);
345 } else {
346 if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
347 break;
348 /* retry the same chain */
349 }
350 }
351}
352
353/*
354 * Safe handling of the 1->0 transition on chain. Returns a chain for
355 * recursive drop or NULL, possibly returning the same chain if the atomic
356 * op fails.
357 *
358 * Whem two chains need to be recursively dropped we use the chain
359 * we would otherwise free to placehold the additional chain. It's a bit
360 * convoluted but we can't just recurse without potentially blowing out
361 * the kernel stack.
362 *
363 * The chain cannot be freed if it has any children.
364 *
365 * The core spinlock is allowed nest child-to-parent (not parent-to-child).
366 */
367static
368hammer2_chain_t *
369hammer2_chain_lastdrop(hammer2_chain_t *chain)
370{
371 hammer2_pfs_t *pmp;
372 hammer2_dev_t *hmp;
373 hammer2_chain_t *parent;
374 hammer2_chain_t *rdrop;
375
376 /*
377 * Spinlock the core and check to see if it is empty. If it is
378 * not empty we leave chain intact with refs == 0. The elements
379 * in core->rbtree are associated with other chains contemporary
380 * with ours but not with our chain directly.
381 */
382 hammer2_spin_ex(&chain->core.spin);
383
384 /*
385 * We can't free non-stale chains with children until we are
386 * able to free the children because there might be a flush
387 * dependency. Flushes of stale children (which should also
388 * have their deleted flag set) short-cut recursive flush
389 * dependencies and can be freed here. Any flushes which run
390 * through stale children due to the flush synchronization
391 * point should have a FLUSH_* bit set in the chain and not
392 * reach lastdrop at this time.
393 *
394 * NOTE: We return (chain) on failure to retry.
395 */
396 if (chain->core.chain_count) {
397 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
398 hammer2_spin_unex(&chain->core.spin);
399 chain = NULL; /* success */
400 } else {
401 hammer2_spin_unex(&chain->core.spin);
402 }
403 return(chain);
404 }
405 /* no chains left under us */
406
407 /*
408 * chain->core has no children left so no accessors can get to our
409 * chain from there. Now we have to lock the parent core to interlock
410 * remaining possible accessors that might bump chain's refs before
411 * we can safely drop chain's refs with intent to free the chain.
412 */
413 hmp = chain->hmp;
414 pmp = chain->pmp; /* can be NULL */
415 rdrop = NULL;
416
417 /*
418 * Spinlock the parent and try to drop the last ref on chain.
419 * On success remove chain from its parent, otherwise return NULL.
420 *
421 * (normal core locks are top-down recursive but we define core
422 * spinlocks as bottom-up recursive, so this is safe).
423 */
424 if ((parent = chain->parent) != NULL) {
425 hammer2_spin_ex(&parent->core.spin);
426 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
427 /* 1->0 transition failed */
428 hammer2_spin_unex(&parent->core.spin);
429 hammer2_spin_unex(&chain->core.spin);
430 return(chain); /* retry */
431 }
432
433 /*
434 * 1->0 transition successful, remove chain from its
435 * above core.
436 */
437 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
438 RB_REMOVE(hammer2_chain_tree,
439 &parent->core.rbtree, chain);
440 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
441 --parent->core.chain_count;
442 chain->parent = NULL;
443 }
444
445 /*
446 * If our chain was the last chain in the parent's core the
447 * core is now empty and its parent might have to be
448 * re-dropped if it has 0 refs.
449 */
450 if (parent->core.chain_count == 0) {
451 rdrop = parent;
452 if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0) {
453 rdrop = NULL;
454 }
455 }
456 hammer2_spin_unex(&parent->core.spin);
457 parent = NULL; /* safety */
458 }
459
460 /*
461 * Successful 1->0 transition and the chain can be destroyed now.
462 *
463 * We still have the core spinlock, and core's chain_count is 0.
464 * Any parent spinlock is gone.
465 */
466 hammer2_spin_unex(&chain->core.spin);
467 KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
468 chain->core.chain_count == 0);
469
470 /*
471 * All spin locks are gone, finish freeing stuff.
472 */
473 KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
474 HAMMER2_CHAIN_MODIFIED)) == 0);
475 hammer2_chain_drop_data(chain, 1);
476
477 KKASSERT(chain->dio == NULL);
478
479 /*
480 * Once chain resources are gone we can use the now dead chain
481 * structure to placehold what might otherwise require a recursive
482 * drop, because we have potentially two things to drop and can only
483 * return one directly.
484 */
485 if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
486 chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
487 chain->hmp = NULL;
488 kfree(chain, hmp->mchain);
489 }
490
491 /*
492 * Possible chaining loop when parent re-drop needed.
493 */
494 return(rdrop);
495}
496
497/*
498 * On either last lock release or last drop
499 */
500static void
501hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
502{
503 /*hammer2_dev_t *hmp = chain->hmp;*/
504
505 switch(chain->bref.type) {
506 case HAMMER2_BREF_TYPE_VOLUME:
507 case HAMMER2_BREF_TYPE_FREEMAP:
508 if (lastdrop)
509 chain->data = NULL;
510 break;
511 default:
512 KKASSERT(chain->data == NULL);
513 break;
514 }
515}
516
517/*
518 * Lock a referenced chain element, acquiring its data with I/O if necessary,
519 * and specify how you would like the data to be resolved.
520 *
521 * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
522 *
523 * The lock is allowed to recurse, multiple locking ops will aggregate
524 * the requested resolve types. Once data is assigned it will not be
525 * removed until the last unlock.
526 *
527 * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
528 * (typically used to avoid device/logical buffer
529 * aliasing for data)
530 *
531 * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
532 * the INITIAL-create state (indirect blocks only).
533 *
534 * Do not resolve data elements for DATA chains.
535 * (typically used to avoid device/logical buffer
536 * aliasing for data)
537 *
538 * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
539 *
540 * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
541 * it will be locked exclusive.
542 *
543 * NOTE: Embedded elements (volume header, inodes) are always resolved
544 * regardless.
545 *
546 * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
547 * element will instantiate and zero its buffer, and flush it on
548 * release.
549 *
550 * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
551 * so as not to instantiate a device buffer, which could alias against
552 * a logical file buffer. However, if ALWAYS is specified the
553 * device buffer will be instantiated anyway.
554 *
555 * WARNING! This function blocks on I/O if data needs to be fetched. This
556 * blocking can run concurrent with other compatible lock holders
557 * who do not need data returning. The lock is not upgraded to
558 * exclusive during a data fetch, a separate bit is used to
559 * interlock I/O. However, an exclusive lock holder can still count
560 * on being interlocked against an I/O fetch managed by a shared
561 * lock holder.
562 */
563void
564hammer2_chain_lock(hammer2_chain_t *chain, int how)
565{
566 /*
567 * Ref and lock the element. Recursive locks are allowed.
568 */
569 KKASSERT(chain->refs > 0);
570 atomic_add_int(&chain->lockcnt, 1);
571
572 /*
573 * Get the appropriate lock.
574 */
575 if (how & HAMMER2_RESOLVE_SHARED)
576 hammer2_mtx_sh(&chain->lock);
577 else
578 hammer2_mtx_ex(&chain->lock);
579
580 /*
581 * If we already have a valid data pointer no further action is
582 * necessary.
583 */
584 if (chain->data)
585 return;
586
587 /*
588 * Do we have to resolve the data?
589 */
590 switch(how & HAMMER2_RESOLVE_MASK) {
591 case HAMMER2_RESOLVE_NEVER:
592 return;
593 case HAMMER2_RESOLVE_MAYBE:
594 if (chain->flags & HAMMER2_CHAIN_INITIAL)
595 return;
596 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
597 return;
598#if 0
599 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
600 return;
601 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
602 return;
603#endif
604 /* fall through */
605 case HAMMER2_RESOLVE_ALWAYS:
606 break;
607 }
608
609 /*
610 * Caller requires data
611 */
612 hammer2_chain_load_data(chain);
613}
614
615/*
616 * Issue I/O and install chain->data. Caller must hold a chain lock, lock
617 * may be of any type.
618 *
619 * Once chain->data is set it cannot be disposed of until all locks are
620 * released.
621 */
622void
623hammer2_chain_load_data(hammer2_chain_t *chain)
624{
625 hammer2_blockref_t *bref;
626 hammer2_dev_t *hmp;
627 char *bdata;
628 int error;
629
630 /*
631 * Degenerate case, data already present.
632 */
633 if (chain->data)
634 return;
635
636 hmp = chain->hmp;
637 KKASSERT(hmp != NULL);
638
639 /*
640 * Gain the IOINPROG bit, interlocked block.
641 */
642 for (;;) {
643 u_int oflags;
644 u_int nflags;
645
646 oflags = chain->flags;
647 cpu_ccfence();
648 if (oflags & HAMMER2_CHAIN_IOINPROG) {
649 nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
650 tsleep_interlock(&chain->flags, 0);
651 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
652 tsleep(&chain->flags, PINTERLOCKED,
653 "h2iocw", 0);
654 }
655 /* retry */
656 } else {
657 nflags = oflags | HAMMER2_CHAIN_IOINPROG;
658 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
659 break;
660 }
661 /* retry */
662 }
663 }
664
665 /*
666 * We own CHAIN_IOINPROG
667 *
668 * Degenerate case if we raced another load.
669 */
670 if (chain->data)
671 goto done;
672
673 /*
674 * We must resolve to a device buffer, either by issuing I/O or
675 * by creating a zero-fill element. We do not mark the buffer
676 * dirty when creating a zero-fill element (the hammer2_chain_modify()
677 * API must still be used to do that).
678 *
679 * The device buffer is variable-sized in powers of 2 down
680 * to HAMMER2_MIN_ALLOC (typically 1K). A 64K physical storage
681 * chunk always contains buffers of the same size. (XXX)
682 *
683 * The minimum physical IO size may be larger than the variable
684 * block size.
685 */
686 bref = &chain->bref;
687
688 /*
689 * The getblk() optimization can only be used on newly created
690 * elements if the physical block size matches the request.
691 */
692 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
693 error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
694 &chain->dio);
695 } else {
696 error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
697 &chain->dio);
698 hammer2_adjreadcounter(&chain->bref, chain->bytes);
699 }
700 if (error) {
701 chain->error = HAMMER2_ERROR_IO;
702 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
703 (intmax_t)bref->data_off, error);
704 hammer2_io_bqrelse(&chain->dio);
705 goto done;
706 }
707 chain->error = 0;
708
709 /*
710 * NOTE: A locked chain's data cannot be modified without first
711 * calling hammer2_chain_modify().
712 */
713
714 /*
715 * Clear INITIAL. In this case we used io_new() and the buffer has
716 * been zero'd and marked dirty.
717 */
718 bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
719 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
720 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
721 chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
722 } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
723 /*
724 * check data not currently synchronized due to
725 * modification. XXX assumes data stays in the buffer
726 * cache, which might not be true (need biodep on flush
727 * to calculate crc? or simple crc?).
728 */
729 } else {
730 if (hammer2_chain_testcheck(chain, bdata) == 0) {
731 kprintf("chain %016jx.%02x meth=%02x "
732 "CHECK FAIL %08x (flags=%08x)\n",
733 chain->bref.data_off,
734 chain->bref.type,
735 chain->bref.methods,
736 hammer2_icrc32(bdata, chain->bytes),
737 chain->flags);
738 chain->error = HAMMER2_ERROR_CHECK;
739 }
740 }
741
742 /*
743 * Setup the data pointer, either pointing it to an embedded data
744 * structure and copying the data from the buffer, or pointing it
745 * into the buffer.
746 *
747 * The buffer is not retained when copying to an embedded data
748 * structure in order to avoid potential deadlocks or recursions
749 * on the same physical buffer.
750 *
751 * WARNING! Other threads can start using the data the instant we
752 * set chain->data non-NULL.
753 */
754 switch (bref->type) {
755 case HAMMER2_BREF_TYPE_VOLUME:
756 case HAMMER2_BREF_TYPE_FREEMAP:
757 /*
758 * Copy data from bp to embedded buffer
759 */
760 panic("hammer2_chain_lock: called on unresolved volume header");
761 break;
762 case HAMMER2_BREF_TYPE_INODE:
763 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
764 case HAMMER2_BREF_TYPE_INDIRECT:
765 case HAMMER2_BREF_TYPE_DATA:
766 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
767 default:
768 /*
769 * Point data at the device buffer and leave dio intact.
770 */
771 chain->data = (void *)bdata;
772 break;
773 }
774
775 /*
776 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
777 */
778done:
779 for (;;) {
780 u_int oflags;
781 u_int nflags;
782
783 oflags = chain->flags;
784 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
785 HAMMER2_CHAIN_IOSIGNAL);
786 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
787 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
788 if (oflags & HAMMER2_CHAIN_IOSIGNAL)
789 wakeup(&chain->flags);
790 break;
791 }
792 }
793}
794
795/*
796 * Unlock and deref a chain element.
797 *
798 * On the last lock release any non-embedded data (chain->dio) will be
799 * retired.
800 */
801void
802hammer2_chain_unlock(hammer2_chain_t *chain)
803{
804 hammer2_mtx_state_t ostate;
805 long *counterp;
806 u_int lockcnt;
807
808 /*
809 * If multiple locks are present (or being attempted) on this
810 * particular chain we can just unlock, drop refs, and return.
811 *
812 * Otherwise fall-through on the 1->0 transition.
813 */
814 for (;;) {
815 lockcnt = chain->lockcnt;
816 KKASSERT(lockcnt > 0);
817 cpu_ccfence();
818 if (lockcnt > 1) {
819 if (atomic_cmpset_int(&chain->lockcnt,
820 lockcnt, lockcnt - 1)) {
821 hammer2_mtx_unlock(&chain->lock);
822 return;
823 }
824 } else {
825 if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
826 break;
827 }
828 /* retry */
829 }
830
831 /*
832 * On the 1->0 transition we upgrade the core lock (if necessary)
833 * to exclusive for terminal processing. If after upgrading we find
834 * that lockcnt is non-zero, another thread is racing us and will
835 * handle the unload for us later on, so just cleanup and return
836 * leaving the data/io intact
837 *
838 * Otherwise if lockcnt is still 0 it is possible for it to become
839 * non-zero and race, but since we hold the core->lock exclusively
840 * all that will happen is that the chain will be reloaded after we
841 * unload it.
842 */
843 ostate = hammer2_mtx_upgrade(&chain->lock);
844 if (chain->lockcnt) {
845 hammer2_mtx_unlock(&chain->lock);
846 return;
847 }
848
849 /*
850 * Shortcut the case if the data is embedded or not resolved.
851 *
852 * Do NOT NULL out chain->data (e.g. inode data), it might be
853 * dirty.
854 */
855 if (chain->dio == NULL) {
856 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
857 hammer2_chain_drop_data(chain, 0);
858 hammer2_mtx_unlock(&chain->lock);
859 return;
860 }
861
862 /*
863 * Statistics
864 */
865 if (hammer2_io_isdirty(chain->dio) == 0) {
866 ;
867 } else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
868 switch(chain->bref.type) {
869 case HAMMER2_BREF_TYPE_DATA:
870 counterp = &hammer2_ioa_file_write;
871 break;
872 case HAMMER2_BREF_TYPE_INODE:
873 counterp = &hammer2_ioa_meta_write;
874 break;
875 case HAMMER2_BREF_TYPE_INDIRECT:
876 counterp = &hammer2_ioa_indr_write;
877 break;
878 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
879 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
880 counterp = &hammer2_ioa_fmap_write;
881 break;
882 default:
883 counterp = &hammer2_ioa_volu_write;
884 break;
885 }
886 *counterp += chain->bytes;
887 } else {
888 switch(chain->bref.type) {
889 case HAMMER2_BREF_TYPE_DATA:
890 counterp = &hammer2_iod_file_write;
891 break;
892 case HAMMER2_BREF_TYPE_INODE:
893 counterp = &hammer2_iod_meta_write;
894 break;
895 case HAMMER2_BREF_TYPE_INDIRECT:
896 counterp = &hammer2_iod_indr_write;
897 break;
898 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
899 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
900 counterp = &hammer2_iod_fmap_write;
901 break;
902 default:
903 counterp = &hammer2_iod_volu_write;
904 break;
905 }
906 *counterp += chain->bytes;
907 }
908
909 /*
910 * Clean out the dio.
911 *
912 * If a device buffer was used for data be sure to destroy the
913 * buffer when we are done to avoid aliases (XXX what about the
914 * underlying VM pages?).
915 *
916 * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
917 * is possible.
918 *
919 * NOTE: The isdirty check tracks whether we have to bdwrite() the
920 * buffer or not. The buffer might already be dirty. The
921 * flag is re-set when chain_modify() is called, even if
922 * MODIFIED is already set, allowing the OS to retire the
923 * buffer independent of a hammer2 flush.
924 */
925 chain->data = NULL;
926 if ((chain->flags & HAMMER2_CHAIN_IOFLUSH) &&
927 hammer2_io_isdirty(chain->dio)) {
928 hammer2_io_bawrite(&chain->dio);
929 } else {
930 hammer2_io_bqrelse(&chain->dio);
931 }
932 hammer2_mtx_unlock(&chain->lock);
933}
934
935/*
936 * This counts the number of live blockrefs in a block array and
937 * also calculates the point at which all remaining blockrefs are empty.
938 * This routine can only be called on a live chain (DUPLICATED flag not set).
939 *
940 * NOTE: Flag is not set until after the count is complete, allowing
941 * callers to test the flag without holding the spinlock.
942 *
943 * NOTE: If base is NULL the related chain is still in the INITIAL
944 * state and there are no blockrefs to count.
945 *
946 * NOTE: live_count may already have some counts accumulated due to
947 * creation and deletion and could even be initially negative.
948 */
949void
950hammer2_chain_countbrefs(hammer2_chain_t *chain,
951 hammer2_blockref_t *base, int count)
952{
953 hammer2_spin_ex(&chain->core.spin);
954 if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
955 if (base) {
956 while (--count >= 0) {
957 if (base[count].type)
958 break;
959 }
960 chain->core.live_zero = count + 1;
961 while (count >= 0) {
962 if (base[count].type)
963 atomic_add_int(&chain->core.live_count,
964 1);
965 --count;
966 }
967 } else {
968 chain->core.live_zero = 0;
969 }
970 /* else do not modify live_count */
971 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
972 }
973 hammer2_spin_unex(&chain->core.spin);
974}
975
976/*
977 * Resize the chain's physical storage allocation in-place. This function does
978 * not adjust the data pointer and must be followed by (typically) a
979 * hammer2_chain_modify() call to copy any old data over and adjust the
980 * data pointer.
981 *
982 * Chains can be resized smaller without reallocating the storage. Resizing
983 * larger will reallocate the storage. Excess or prior storage is reclaimed
984 * asynchronously at a later time.
985 *
986 * Must be passed an exclusively locked parent and chain.
987 *
988 * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
989 * to avoid instantiating a device buffer that conflicts with the vnode data
990 * buffer. However, because H2 can compress or encrypt data, the chain may
991 * have a dio assigned to it in those situations, and they do not conflict.
992 *
993 * XXX return error if cannot resize.
994 */
995void
996hammer2_chain_resize(hammer2_inode_t *ip,
997 hammer2_chain_t *parent, hammer2_chain_t *chain,
998 int nradix, int flags)
999{
1000 hammer2_dev_t *hmp;
1001 size_t obytes;
1002 size_t nbytes;
1003
1004 hmp = chain->hmp;
1005
1006 /*
1007 * Only data and indirect blocks can be resized for now.
1008 * (The volu root, inodes, and freemap elements use a fixed size).
1009 */
1010 KKASSERT(chain != &hmp->vchain);
1011 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1012 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
1013
1014 /*
1015 * Nothing to do if the element is already the proper size
1016 */
1017 obytes = chain->bytes;
1018 nbytes = 1U << nradix;
1019 if (obytes == nbytes)
1020 return;
1021
1022 /*
1023 * Make sure the old data is instantiated so we can copy it. If this
1024 * is a data block, the device data may be superfluous since the data
1025 * might be in a logical block, but compressed or encrypted data is
1026 * another matter.
1027 *
1028 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1029 */
1030 hammer2_chain_modify(chain, 0);
1031
1032 /*
1033 * Relocate the block, even if making it smaller (because different
1034 * block sizes may be in different regions).
1035 *
1036 * (data blocks only, we aren't copying the storage here).
1037 */
1038 hammer2_freemap_alloc(chain, nbytes);
1039 chain->bytes = nbytes;
1040 /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1041
1042 /*
1043 * We don't want the followup chain_modify() to try to copy data
1044 * from the old (wrong-sized) buffer. It won't know how much to
1045 * copy. This case should only occur during writes when the
1046 * originator already has the data to write in-hand.
1047 */
1048 if (chain->dio) {
1049 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA);
1050 hammer2_io_brelse(&chain->dio);
1051 chain->data = NULL;
1052 }
1053}
1054
1055void
1056hammer2_chain_modify(hammer2_chain_t *chain, int flags)
1057{
1058 hammer2_blockref_t obref;
1059 hammer2_dev_t *hmp;
1060 hammer2_io_t *dio;
1061 int error;
1062 int wasinitial;
1063 int newmod;
1064 char *bdata;
1065
1066 hmp = chain->hmp;
1067 obref = chain->bref;
1068 KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1069
1070 /*
1071 * Data is not optional for freemap chains (we must always be sure
1072 * to copy the data on COW storage allocations).
1073 */
1074 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1075 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1076 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1077 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1078 }
1079
1080 /*
1081 * Data must be resolved if already assigned, unless explicitly
1082 * flagged otherwise.
1083 */
1084 if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1085 (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1086 hammer2_chain_load_data(chain);
1087 }
1088
1089 /*
1090 * Set MODIFIED to indicate that the chain has been modified.
1091 * Set UPDATE to ensure that the blockref is updated in the parent.
1092 */
1093 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1094 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1095 hammer2_chain_ref(chain);
1096 hammer2_pfs_memory_inc(chain->pmp); /* can be NULL */
1097 newmod = 1;
1098 } else {
1099 newmod = 0;
1100 }
1101 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1102 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1103 hammer2_chain_ref(chain);
1104 }
1105
1106 /*
1107 * The modification or re-modification requires an allocation and
1108 * possible COW.
1109 *
1110 * We normally always allocate new storage here. If storage exists
1111 * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1112 */
1113 if (chain != &hmp->vchain && chain != &hmp->fchain) {
1114 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1115 ((flags & HAMMER2_MODIFY_NOREALLOC) == 0 && newmod)
1116 ) {
1117 hammer2_freemap_alloc(chain, chain->bytes);
1118 /* XXX failed allocation */
1119 }
1120 }
1121
1122 /*
1123 * Update mirror_tid and modify_tid. modify_tid is only updated
1124 * automatically by this function when used from the frontend.
1125 * Flushes and synchronization adjust the flag manually.
1126 *
1127 * NOTE: chain->pmp could be the device spmp.
1128 */
1129 chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1130 if (chain->pmp && (flags & HAMMER2_MODIFY_KEEPMODIFY) == 0) {
1131 /* XXX HAMMER2_TRANS_ISFLUSH */
1132 chain->bref.modify_tid = chain->pmp->modify_tid;
1133 }
1134
1135 /*
1136 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1137 * requires updating as well as to tell the delete code that the
1138 * chain's blockref might not exactly match (in terms of physical size
1139 * or block offset) the one in the parent's blocktable. The base key
1140 * of course will still match.
1141 */
1142 if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1143 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1144
1145 /*
1146 * Short-cut data blocks which the caller does not need an actual
1147 * data reference to (aka OPTDATA), as long as the chain does not
1148 * already have a data pointer to the data. This generally means
1149 * that the modifications are being done via the logical buffer cache.
1150 * The INITIAL flag relates only to the device data buffer and thus
1151 * remains unchange in this situation.
1152 */
1153 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1154 (flags & HAMMER2_MODIFY_OPTDATA) &&
1155 chain->data == NULL) {
1156 goto skip2;
1157 }
1158
1159 /*
1160 * Clearing the INITIAL flag (for indirect blocks) indicates that
1161 * we've processed the uninitialized storage allocation.
1162 *
1163 * If this flag is already clear we are likely in a copy-on-write
1164 * situation but we have to be sure NOT to bzero the storage if
1165 * no data is present.
1166 */
1167 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1168 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1169 wasinitial = 1;
1170 } else {
1171 wasinitial = 0;
1172 }
1173
1174 /*
1175 * Instantiate data buffer and possibly execute COW operation
1176 */
1177 switch(chain->bref.type) {
1178 case HAMMER2_BREF_TYPE_VOLUME:
1179 case HAMMER2_BREF_TYPE_FREEMAP:
1180 /*
1181 * The data is embedded, no copy-on-write operation is
1182 * needed.
1183 */
1184 KKASSERT(chain->dio == NULL);
1185 break;
1186 case HAMMER2_BREF_TYPE_INODE:
1187 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1188 case HAMMER2_BREF_TYPE_DATA:
1189 case HAMMER2_BREF_TYPE_INDIRECT:
1190 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1191 /*
1192 * Perform the copy-on-write operation
1193 *
1194 * zero-fill or copy-on-write depending on whether
1195 * chain->data exists or not and set the dirty state for
1196 * the new buffer. hammer2_io_new() will handle the
1197 * zero-fill.
1198 */
1199 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1200
1201 if (wasinitial) {
1202 error = hammer2_io_new(hmp, chain->bref.data_off,
1203 chain->bytes, &dio);
1204 } else {
1205 error = hammer2_io_bread(hmp, chain->bref.data_off,
1206 chain->bytes, &dio);
1207 }
1208 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1209
1210 /*
1211 * If an I/O error occurs make sure callers cannot accidently
1212 * modify the old buffer's contents and corrupt the filesystem.
1213 */
1214 if (error) {
1215 kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1216 hmp);
1217 chain->error = HAMMER2_ERROR_IO;
1218 hammer2_io_brelse(&dio);
1219 hammer2_io_brelse(&chain->dio);
1220 chain->data = NULL;
1221 break;
1222 }
1223 chain->error = 0;
1224 bdata = hammer2_io_data(dio, chain->bref.data_off);
1225
1226 if (chain->data) {
1227 KKASSERT(chain->dio != NULL);
1228 if (chain->data != (void *)bdata) {
1229 bcopy(chain->data, bdata, chain->bytes);
1230 }
1231 } else if (wasinitial == 0) {
1232 /*
1233 * We have a problem. We were asked to COW but
1234 * we don't have any data to COW with!
1235 */
1236 panic("hammer2_chain_modify: having a COW %p\n",
1237 chain);
1238 }
1239
1240 /*
1241 * Retire the old buffer, replace with the new. Dirty or
1242 * redirty the new buffer.
1243 *
1244 * WARNING! The system buffer cache may have already flushed
1245 * the buffer, so we must be sure to [re]dirty it
1246 * for further modification.
1247 */
1248 if (chain->dio)
1249 hammer2_io_brelse(&chain->dio);
1250 chain->data = (void *)bdata;
1251 chain->dio = dio;
1252 hammer2_io_setdirty(dio); /* modified by bcopy above */
1253 break;
1254 default:
1255 panic("hammer2_chain_modify: illegal non-embedded type %d",
1256 chain->bref.type);
1257 break;
1258
1259 }
1260skip2:
1261 /*
1262 * setflush on parent indicating that the parent must recurse down
1263 * to us. Do not call on chain itself which might already have it
1264 * set.
1265 */
1266 if (chain->parent)
1267 hammer2_chain_setflush(chain->parent);
1268}
1269
1270/*
1271 * Modify the chain associated with an inode.
1272 */
1273void
1274hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain, int flags)
1275{
1276 hammer2_inode_modify(ip);
1277 hammer2_chain_modify(chain, flags);
1278}
1279
1280/*
1281 * Volume header data locks
1282 */
1283void
1284hammer2_voldata_lock(hammer2_dev_t *hmp)
1285{
1286 lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1287}
1288
1289void
1290hammer2_voldata_unlock(hammer2_dev_t *hmp)
1291{
1292 lockmgr(&hmp->vollk, LK_RELEASE);
1293}
1294
1295void
1296hammer2_voldata_modify(hammer2_dev_t *hmp)
1297{
1298 if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1299 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1300 hammer2_chain_ref(&hmp->vchain);
1301 hammer2_pfs_memory_inc(hmp->vchain.pmp);
1302 }
1303}
1304
1305/*
1306 * This function returns the chain at the nearest key within the specified
1307 * range. The returned chain will be referenced but not locked.
1308 *
1309 * This function will recurse through chain->rbtree as necessary and will
1310 * return a *key_nextp suitable for iteration. *key_nextp is only set if
1311 * the iteration value is less than the current value of *key_nextp.
1312 *
1313 * The caller should use (*key_nextp) to calculate the actual range of
1314 * the returned element, which will be (key_beg to *key_nextp - 1), because
1315 * there might be another element which is superior to the returned element
1316 * and overlaps it.
1317 *
1318 * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1319 * chains continue to be returned. On EOF (*key_nextp) may overflow since
1320 * it will wind up being (key_end + 1).
1321 *
1322 * WARNING! Must be called with child's spinlock held. Spinlock remains
1323 * held through the operation.
1324 */
1325struct hammer2_chain_find_info {
1326 hammer2_chain_t *best;
1327 hammer2_key_t key_beg;
1328 hammer2_key_t key_end;
1329 hammer2_key_t key_next;
1330};
1331
1332static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1333static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1334
1335static
1336hammer2_chain_t *
1337hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1338 hammer2_key_t key_beg, hammer2_key_t key_end)
1339{
1340 struct hammer2_chain_find_info info;
1341
1342 info.best = NULL;
1343 info.key_beg = key_beg;
1344 info.key_end = key_end;
1345 info.key_next = *key_nextp;
1346
1347 RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1348 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1349 &info);
1350 *key_nextp = info.key_next;
1351#if 0
1352 kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1353 parent, key_beg, key_end, *key_nextp);
1354#endif
1355
1356 return (info.best);
1357}
1358
1359static
1360int
1361hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1362{
1363 struct hammer2_chain_find_info *info = data;
1364 hammer2_key_t child_beg;
1365 hammer2_key_t child_end;
1366
1367 child_beg = child->bref.key;
1368 child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1369
1370 if (child_end < info->key_beg)
1371 return(-1);
1372 if (child_beg > info->key_end)
1373 return(1);
1374 return(0);
1375}
1376
1377static
1378int
1379hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1380{
1381 struct hammer2_chain_find_info *info = data;
1382 hammer2_chain_t *best;
1383 hammer2_key_t child_end;
1384
1385 /*
1386 * WARNING! Do not discard DUPLICATED chains, it is possible that
1387 * we are catching an insertion half-way done. If a
1388 * duplicated chain turns out to be the best choice the
1389 * caller will re-check its flags after locking it.
1390 *
1391 * WARNING! Layerq is scanned forwards, exact matches should keep
1392 * the existing info->best.
1393 */
1394 if ((best = info->best) == NULL) {
1395 /*
1396 * No previous best. Assign best
1397 */
1398 info->best = child;
1399 } else if (best->bref.key <= info->key_beg &&
1400 child->bref.key <= info->key_beg) {
1401 /*
1402 * Illegal overlap.
1403 */
1404 KKASSERT(0);
1405 /*info->best = child;*/
1406 } else if (child->bref.key < best->bref.key) {
1407 /*
1408 * Child has a nearer key and best is not flush with key_beg.
1409 * Set best to child. Truncate key_next to the old best key.
1410 */
1411 info->best = child;
1412 if (info->key_next > best->bref.key || info->key_next == 0)
1413 info->key_next = best->bref.key;
1414 } else if (child->bref.key == best->bref.key) {
1415 /*
1416 * If our current best is flush with the child then this
1417 * is an illegal overlap.
1418 *
1419 * key_next will automatically be limited to the smaller of
1420 * the two end-points.
1421 */
1422 KKASSERT(0);
1423 info->best = child;
1424 } else {
1425 /*
1426 * Keep the current best but truncate key_next to the child's
1427 * base.
1428 *
1429 * key_next will also automatically be limited to the smaller
1430 * of the two end-points (probably not necessary for this case
1431 * but we do it anyway).
1432 */
1433 if (info->key_next > child->bref.key || info->key_next == 0)
1434 info->key_next = child->bref.key;
1435 }
1436
1437 /*
1438 * Always truncate key_next based on child's end-of-range.
1439 */
1440 child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1441 if (child_end && (info->key_next > child_end || info->key_next == 0))
1442 info->key_next = child_end;
1443
1444 return(0);
1445}
1446
1447/*
1448 * Retrieve the specified chain from a media blockref, creating the
1449 * in-memory chain structure which reflects it.
1450 *
1451 * To handle insertion races pass the INSERT_RACE flag along with the
1452 * generation number of the core. NULL will be returned if the generation
1453 * number changes before we have a chance to insert the chain. Insert
1454 * races can occur because the parent might be held shared.
1455 *
1456 * Caller must hold the parent locked shared or exclusive since we may
1457 * need the parent's bref array to find our block.
1458 *
1459 * WARNING! chain->pmp is always set to NULL for any chain representing
1460 * part of the super-root topology.
1461 */
1462hammer2_chain_t *
1463hammer2_chain_get(hammer2_chain_t *parent, int generation,
1464 hammer2_blockref_t *bref)
1465{
1466 hammer2_dev_t *hmp = parent->hmp;
1467 hammer2_chain_t *chain;
1468 int error;
1469
1470 /*
1471 * Allocate a chain structure representing the existing media
1472 * entry. Resulting chain has one ref and is not locked.
1473 */
1474 if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1475 chain = hammer2_chain_alloc(hmp, NULL, bref);
1476 else
1477 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
1478 /* ref'd chain returned */
1479
1480 /*
1481 * Flag that the chain is in the parent's blockmap so delete/flush
1482 * knows what to do with it.
1483 */
1484 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1485
1486 /*
1487 * Link the chain into its parent. A spinlock is required to safely
1488 * access the RBTREE, and it is possible to collide with another
1489 * hammer2_chain_get() operation because the caller might only hold
1490 * a shared lock on the parent.
1491 */
1492 KKASSERT(parent->refs > 0);
1493 error = hammer2_chain_insert(parent, chain,
1494 HAMMER2_CHAIN_INSERT_SPIN |
1495 HAMMER2_CHAIN_INSERT_RACE,
1496 generation);
1497 if (error) {
1498 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
1499 kprintf("chain %p get race\n", chain);
1500 hammer2_chain_drop(chain);
1501 chain = NULL;
1502 } else {
1503 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1504 }
1505
1506 /*
1507 * Return our new chain referenced but not locked, or NULL if
1508 * a race occurred.
1509 */
1510 return (chain);
1511}
1512
1513/*
1514 * Lookup initialization/completion API
1515 */
1516hammer2_chain_t *
1517hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1518{
1519 hammer2_chain_ref(parent);
1520 if (flags & HAMMER2_LOOKUP_SHARED) {
1521 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1522 HAMMER2_RESOLVE_SHARED);
1523 } else {
1524 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1525 }
1526 return (parent);
1527}
1528
1529void
1530hammer2_chain_lookup_done(hammer2_chain_t *parent)
1531{
1532 if (parent) {
1533 hammer2_chain_unlock(parent);
1534 hammer2_chain_drop(parent);
1535 }
1536}
1537
1538hammer2_chain_t *
1539hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1540{
1541 hammer2_chain_t *oparent;
1542 hammer2_chain_t *nparent;
1543
1544 /*
1545 * Be careful of order, oparent must be unlocked before nparent
1546 * is locked below to avoid a deadlock.
1547 */
1548 oparent = *parentp;
1549 hammer2_spin_ex(&oparent->core.spin);
1550 nparent = oparent->parent;
1551 hammer2_chain_ref(nparent);
1552 hammer2_spin_unex(&oparent->core.spin);
1553 if (oparent) {
1554 hammer2_chain_unlock(oparent);
1555 hammer2_chain_drop(oparent);
1556 oparent = NULL;
1557 }
1558
1559 hammer2_chain_lock(nparent, how);
1560 *parentp = nparent;
1561
1562 return (nparent);
1563}
1564
1565/*
1566 * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1567 * (*parentp) typically points to an inode but can also point to a related
1568 * indirect block and this function will recurse upwards and find the inode
1569 * again.
1570 *
1571 * (*parentp) must be exclusively locked and referenced and can be an inode
1572 * or an existing indirect block within the inode.
1573 *
1574 * On return (*parentp) will be modified to point at the deepest parent chain
1575 * element encountered during the search, as a helper for an insertion or
1576 * deletion. The new (*parentp) will be locked and referenced and the old
1577 * will be unlocked and dereferenced (no change if they are both the same).
1578 *
1579 * The matching chain will be returned exclusively locked. If NOLOCK is
1580 * requested the chain will be returned only referenced. Note that the
1581 * parent chain must always be locked shared or exclusive, matching the
1582 * HAMMER2_LOOKUP_SHARED flag. We can conceivably lock it SHARED temporarily
1583 * when NOLOCK is specified but that complicates matters if *parentp must
1584 * inherit the chain.
1585 *
1586 * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
1587 * data pointer or can otherwise be in flux.
1588 *
1589 * NULL is returned if no match was found, but (*parentp) will still
1590 * potentially be adjusted.
1591 *
1592 * If a fatal error occurs (typically an I/O error), a dummy chain is
1593 * returned with chain->error and error-identifying information set. This
1594 * chain will assert if you try to do anything fancy with it.
1595 *
1596 * XXX Depending on where the error occurs we should allow continued iteration.
1597 *
1598 * On return (*key_nextp) will point to an iterative value for key_beg.
1599 * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
1600 *
1601 * This function will also recurse up the chain if the key is not within the
1602 * current parent's range. (*parentp) can never be set to NULL. An iteration
1603 * can simply allow (*parentp) to float inside the loop.
1604 *
1605 * NOTE! chain->data is not always resolved. By default it will not be
1606 * resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF. Use
1607 * HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1608 * BREF_TYPE_DATA as the device buffer can alias the logical file
1609 * buffer).
1610 */
1611hammer2_chain_t *
1612hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1613 hammer2_key_t key_beg, hammer2_key_t key_end,
1614 int *cache_indexp, int flags)
1615{
1616 hammer2_dev_t *hmp;
1617 hammer2_chain_t *parent;
1618 hammer2_chain_t *chain;
1619 hammer2_blockref_t *base;
1620 hammer2_blockref_t *bref;
1621 hammer2_blockref_t bcopy;
1622 hammer2_key_t scan_beg;
1623 hammer2_key_t scan_end;
1624 int count = 0;
1625 int how_always = HAMMER2_RESOLVE_ALWAYS;
1626 int how_maybe = HAMMER2_RESOLVE_MAYBE;
1627 int how;
1628 int generation;
1629 int maxloops = 300000;
1630
1631 if (flags & HAMMER2_LOOKUP_ALWAYS) {
1632 how_maybe = how_always;
1633 how = HAMMER2_RESOLVE_ALWAYS;
1634 } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1635 how = HAMMER2_RESOLVE_NEVER;
1636 } else {
1637 how = HAMMER2_RESOLVE_MAYBE;
1638 }
1639 if (flags & HAMMER2_LOOKUP_SHARED) {
1640 how_maybe |= HAMMER2_RESOLVE_SHARED;
1641 how_always |= HAMMER2_RESOLVE_SHARED;
1642 how |= HAMMER2_RESOLVE_SHARED;
1643 }
1644
1645 /*
1646 * Recurse (*parentp) upward if necessary until the parent completely
1647 * encloses the key range or we hit the inode.
1648 *
1649 * This function handles races against the flusher doing a delete-
1650 * duplicate above us and re-homes the parent to the duplicate in
1651 * that case, otherwise we'd wind up recursing down a stale chain.
1652 */
1653 parent = *parentp;
1654 hmp = parent->hmp;
1655
1656 while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1657 parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1658 scan_beg = parent->bref.key;
1659 scan_end = scan_beg +
1660 ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1661 if (key_beg >= scan_beg && key_end <= scan_end)
1662 break;
1663 parent = hammer2_chain_getparent(parentp, how_maybe);
1664 }
1665
1666again:
1667 if (--maxloops == 0)
1668 panic("hammer2_chain_lookup: maxloops");
1669 /*
1670 * Locate the blockref array. Currently we do a fully associative
1671 * search through the array.
1672 */
1673 switch(parent->bref.type) {
1674 case HAMMER2_BREF_TYPE_INODE:
1675 /*
1676 * Special shortcut for embedded data returns the inode
1677 * itself. Callers must detect this condition and access
1678 * the embedded data (the strategy code does this for us).
1679 *
1680 * This is only applicable to regular files and softlinks.
1681 */
1682 if (parent->data->ipdata.meta.op_flags &
1683 HAMMER2_OPFLAG_DIRECTDATA) {
1684 if (flags & HAMMER2_LOOKUP_NODIRECT) {
1685 chain = NULL;
1686 *key_nextp = key_end + 1;
1687 goto done;
1688 }
1689 hammer2_chain_ref(parent);
1690 if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1691 hammer2_chain_lock(parent, how_always);
1692 *key_nextp = key_end + 1;
1693 return (parent);
1694 }
1695 base = &parent->data->ipdata.u.blockset.blockref[0];
1696 count = HAMMER2_SET_COUNT;
1697 break;
1698 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1699 case HAMMER2_BREF_TYPE_INDIRECT:
1700 /*
1701 * Handle MATCHIND on the parent
1702 */
1703 if (flags & HAMMER2_LOOKUP_MATCHIND) {
1704 scan_beg = parent->bref.key;
1705 scan_end = scan_beg +
1706 ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1707 if (key_beg == scan_beg && key_end == scan_end) {
1708 chain = parent;
1709 hammer2_chain_ref(chain);
1710 hammer2_chain_lock(chain, how_maybe);
1711 *key_nextp = scan_end + 1;
1712 goto done;
1713 }
1714 }
1715 /*
1716 * Optimize indirect blocks in the INITIAL state to avoid
1717 * I/O.
1718 */
1719 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1720 base = NULL;
1721 } else {
1722 if (parent->data == NULL)
1723 panic("parent->data is NULL");
1724 base = &parent->data->npdata[0];
1725 }
1726 count = parent->bytes / sizeof(hammer2_blockref_t);
1727 break;
1728 case HAMMER2_BREF_TYPE_VOLUME:
1729 base = &hmp->voldata.sroot_blockset.blockref[0];
1730 count = HAMMER2_SET_COUNT;
1731 break;
1732 case HAMMER2_BREF_TYPE_FREEMAP:
1733 base = &hmp->voldata.freemap_blockset.blockref[0];
1734 count = HAMMER2_SET_COUNT;
1735 break;
1736 default:
1737 kprintf("hammer2_chain_lookup: unrecognized "
1738 "blockref(B) type: %d",
1739 parent->bref.type);
1740 while (1)
1741 tsleep(&base, 0, "dead", 0);
1742 panic("hammer2_chain_lookup: unrecognized "
1743 "blockref(B) type: %d",
1744 parent->bref.type);
1745 base = NULL; /* safety */
1746 count = 0; /* safety */
1747 }
1748
1749 /*
1750 * Merged scan to find next candidate.
1751 *
1752 * hammer2_base_*() functions require the parent->core.live_* fields
1753 * to be synchronized.
1754 *
1755 * We need to hold the spinlock to access the block array and RB tree
1756 * and to interlock chain creation.
1757 */
1758 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
1759 hammer2_chain_countbrefs(parent, base, count);
1760
1761 /*
1762 * Combined search
1763 */
1764 hammer2_spin_ex(&parent->core.spin);
1765 chain = hammer2_combined_find(parent, base, count,
1766 cache_indexp, key_nextp,
1767 key_beg, key_end,
1768 &bref);
1769 generation = parent->core.generation;
1770
1771 /*
1772 * Exhausted parent chain, iterate.
1773 */
1774 if (bref == NULL) {
1775 hammer2_spin_unex(&parent->core.spin);
1776 if (key_beg == key_end) /* short cut single-key case */
1777 return (NULL);
1778
1779 /*
1780 * Stop if we reached the end of the iteration.
1781 */
1782 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1783 parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1784 return (NULL);
1785 }
1786
1787 /*
1788 * Calculate next key, stop if we reached the end of the
1789 * iteration, otherwise go up one level and loop.
1790 */
1791 key_beg = parent->bref.key +
1792 ((hammer2_key_t)1 << parent->bref.keybits);
1793 if (key_beg == 0 || key_beg > key_end)
1794 return (NULL);
1795 parent = hammer2_chain_getparent(parentp, how_maybe);
1796 goto again;
1797 }
1798
1799 /*
1800 * Selected from blockref or in-memory chain.
1801 */
1802 if (chain == NULL) {
1803 bcopy = *bref;
1804 hammer2_spin_unex(&parent->core.spin);
1805 chain = hammer2_chain_get(parent, generation,
1806 &bcopy);
1807 if (chain == NULL) {
1808 kprintf("retry lookup parent %p keys %016jx:%016jx\n",
1809 parent, key_beg, key_end);
1810 goto again;
1811 }
1812 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
1813 hammer2_chain_drop(chain);
1814 goto again;
1815 }
1816 } else {
1817 hammer2_chain_ref(chain);
1818 hammer2_spin_unex(&parent->core.spin);
1819 }
1820
1821 /*
1822 * chain is referenced but not locked. We must lock the chain
1823 * to obtain definitive DUPLICATED/DELETED state
1824 */
1825 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1826 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1827 hammer2_chain_lock(chain, how_maybe);
1828 } else {
1829 hammer2_chain_lock(chain, how);
1830 }
1831
1832 /*
1833 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
1834 *
1835 * NOTE: Chain's key range is not relevant as there might be
1836 * one-offs within the range that are not deleted.
1837 *
1838 * NOTE: Lookups can race delete-duplicate because
1839 * delete-duplicate does not lock the parent's core
1840 * (they just use the spinlock on the core). We must
1841 * check for races by comparing the DUPLICATED flag before
1842 * releasing the spinlock with the flag after locking the
1843 * chain.
1844 */
1845 if (chain->flags & HAMMER2_CHAIN_DELETED) {
1846 hammer2_chain_unlock(chain);
1847 hammer2_chain_drop(chain);
1848 key_beg = *key_nextp;
1849 if (key_beg == 0 || key_beg > key_end)
1850 return(NULL);
1851 goto again;
1852 }
1853
1854 /*
1855 * If the chain element is an indirect block it becomes the new
1856 * parent and we loop on it. We must maintain our top-down locks
1857 * to prevent the flusher from interfering (i.e. doing a
1858 * delete-duplicate and leaving us recursing down a deleted chain).
1859 *
1860 * The parent always has to be locked with at least RESOLVE_MAYBE
1861 * so we can access its data. It might need a fixup if the caller
1862 * passed incompatible flags. Be careful not to cause a deadlock
1863 * as a data-load requires an exclusive lock.
1864 *
1865 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1866 * range is within the requested key range we return the indirect
1867 * block and do NOT loop. This is usually only used to acquire
1868 * freemap nodes.
1869 */
1870 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1871 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1872 hammer2_chain_unlock(parent);
1873 hammer2_chain_drop(parent);
1874 *parentp = parent = chain;
1875 goto again;
1876 }
1877done:
1878 /*
1879 * All done, return the chain.
1880 *
1881 * If the caller does not want a locked chain, replace the lock with
1882 * a ref. Perhaps this can eventually be optimized to not obtain the
1883 * lock in the first place for situations where the data does not
1884 * need to be resolved.
1885 */
1886 if (chain) {
1887 if (flags & HAMMER2_LOOKUP_NOLOCK)
1888 hammer2_chain_unlock(chain);
1889 }
1890
1891 return (chain);
1892}
1893
1894/*
1895 * After having issued a lookup we can iterate all matching keys.
1896 *
1897 * If chain is non-NULL we continue the iteration from just after it's index.
1898 *
1899 * If chain is NULL we assume the parent was exhausted and continue the
1900 * iteration at the next parent.
1901 *
1902 * If a fatal error occurs (typically an I/O error), a dummy chain is
1903 * returned with chain->error and error-identifying information set. This
1904 * chain will assert if you try to do anything fancy with it.
1905 *
1906 * XXX Depending on where the error occurs we should allow continued iteration.
1907 *
1908 * parent must be locked on entry and remains locked throughout. chain's
1909 * lock status must match flags. Chain is always at least referenced.
1910 *
1911 * WARNING! The MATCHIND flag does not apply to this function.
1912 */
1913hammer2_chain_t *
1914hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1915 hammer2_key_t *key_nextp,
1916 hammer2_key_t key_beg, hammer2_key_t key_end,
1917 int *cache_indexp, int flags)
1918{
1919 hammer2_chain_t *parent;
1920 int how_maybe;
1921
1922 /*
1923 * Calculate locking flags for upward recursion.
1924 */
1925 how_maybe = HAMMER2_RESOLVE_MAYBE;
1926 if (flags & HAMMER2_LOOKUP_SHARED)
1927 how_maybe |= HAMMER2_RESOLVE_SHARED;
1928
1929 parent = *parentp;
1930
1931 /*
1932 * Calculate the next index and recalculate the parent if necessary.
1933 */
1934 if (chain) {
1935 key_beg = chain->bref.key +
1936 ((hammer2_key_t)1 << chain->bref.keybits);
1937 if ((flags & (HAMMER2_LOOKUP_NOLOCK |
1938 HAMMER2_LOOKUP_NOUNLOCK)) == 0) {
1939 hammer2_chain_unlock(chain);
1940 }
1941 hammer2_chain_drop(chain);
1942
1943 /*
1944 * chain invalid past this point, but we can still do a
1945 * pointer comparison w/parent.
1946 *
1947 * Any scan where the lookup returned degenerate data embedded
1948 * in the inode has an invalid index and must terminate.
1949 */
1950 if (chain == parent)
1951 return(NULL);
1952 if (key_beg == 0 || key_beg > key_end)
1953 return(NULL);
1954 chain = NULL;
1955 } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1956 parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1957 /*
1958 * We reached the end of the iteration.
1959 */
1960 return (NULL);
1961 } else {
1962 /*
1963 * Continue iteration with next parent unless the current
1964 * parent covers the range.
1965 */
1966 key_beg = parent->bref.key +
1967 ((hammer2_key_t)1 << parent->bref.keybits);
1968 if (key_beg == 0 || key_beg > key_end)
1969 return (NULL);
1970 parent = hammer2_chain_getparent(parentp, how_maybe);
1971 }
1972
1973 /*
1974 * And execute
1975 */
1976 return (hammer2_chain_lookup(parentp, key_nextp,
1977 key_beg, key_end,
1978 cache_indexp, flags));
1979}
1980
1981/*
1982 * The raw scan function is similar to lookup/next but does not seek to a key.
1983 * Blockrefs are iterated via first_chain = (parent, NULL) and
1984 * next_chain = (parent, chain).
1985 *
1986 * The passed-in parent must be locked and its data resolved. The returned
1987 * chain will be locked. Pass chain == NULL to acquire the first sub-chain
1988 * under parent and then iterate with the passed-in chain (which this
1989 * function will unlock).
1990 */
1991hammer2_chain_t *
1992hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t *chain,
1993 int *cache_indexp, int flags)
1994{
1995 hammer2_dev_t *hmp;
1996 hammer2_blockref_t *base;
1997 hammer2_blockref_t *bref;
1998 hammer2_blockref_t bcopy;
1999 hammer2_key_t key;
2000 hammer2_key_t next_key;
2001 int count = 0;
2002 int how_always = HAMMER2_RESOLVE_ALWAYS;
2003 int how_maybe = HAMMER2_RESOLVE_MAYBE;
2004 int how;
2005 int generation;
2006 int maxloops = 300000;
2007
2008 hmp = parent->hmp;
2009
2010 /*
2011 * Scan flags borrowed from lookup.
2012 */
2013 if (flags & HAMMER2_LOOKUP_ALWAYS) {
2014 how_maybe = how_always;
2015 how = HAMMER2_RESOLVE_ALWAYS;
2016 } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2017 how = HAMMER2_RESOLVE_NEVER;
2018 } else {
2019 how = HAMMER2_RESOLVE_MAYBE;
2020 }
2021 if (flags & HAMMER2_LOOKUP_SHARED) {
2022 how_maybe |= HAMMER2_RESOLVE_SHARED;
2023 how_always |= HAMMER2_RESOLVE_SHARED;
2024 how |= HAMMER2_RESOLVE_SHARED;
2025 }
2026
2027 /*
2028 * Calculate key to locate first/next element, unlocking the previous
2029 * element as we go. Be careful, the key calculation can overflow.
2030 */
2031 if (chain) {
2032 key = chain->bref.key +
2033 ((hammer2_key_t)1 << chain->bref.keybits);
2034 hammer2_chain_unlock(chain);
2035 hammer2_chain_drop(chain);
2036 chain = NULL;
2037 if (key == 0)
2038 goto done;
2039 } else {
2040 key = 0;
2041 }
2042
2043again:
2044 KKASSERT(parent->error == 0); /* XXX case not handled yet */
2045 if (--maxloops == 0)
2046 panic("hammer2_chain_scan: maxloops");
2047 /*
2048 * Locate the blockref array. Currently we do a fully associative
2049 * search through the array.
2050 */
2051 switch(parent->bref.type) {
2052 case HAMMER2_BREF_TYPE_INODE:
2053 /*
2054 * An inode with embedded data has no sub-chains.
2055 */
2056 if (parent->data->ipdata.meta.op_flags &
2057 HAMMER2_OPFLAG_DIRECTDATA) {
2058 goto done;
2059 }
2060 base = &parent->data->ipdata.u.blockset.blockref[0];
2061 count = HAMMER2_SET_COUNT;
2062 break;
2063 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2064 case HAMMER2_BREF_TYPE_INDIRECT:
2065 /*
2066 * Optimize indirect blocks in the INITIAL state to avoid
2067 * I/O.
2068 */
2069 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2070 base = NULL;
2071 } else {
2072 if (parent->data == NULL)
2073 panic("parent->data is NULL");
2074 base = &parent->data->npdata[0];
2075 }
2076 count = parent->bytes / sizeof(hammer2_blockref_t);
2077 break;
2078 case HAMMER2_BREF_TYPE_VOLUME:
2079 base = &hmp->voldata.sroot_blockset.blockref[0];
2080 count = HAMMER2_SET_COUNT;
2081 break;
2082 case HAMMER2_BREF_TYPE_FREEMAP:
2083 base = &hmp->voldata.freemap_blockset.blockref[0];
2084 count = HAMMER2_SET_COUNT;
2085 break;
2086 default:
2087 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2088 parent->bref.type);
2089 base = NULL; /* safety */
2090 count = 0; /* safety */
2091 }
2092
2093 /*
2094 * Merged scan to find next candidate.
2095 *
2096 * hammer2_base_*() functions require the parent->core.live_* fields
2097 * to be synchronized.
2098 *
2099 * We need to hold the spinlock to access the block array and RB tree
2100 * and to interlock chain creation.
2101 */
2102 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2103 hammer2_chain_countbrefs(parent, base, count);
2104
2105 next_key = 0;
2106 hammer2_spin_ex(&parent->core.spin);
2107 chain = hammer2_combined_find(parent, base, count,
2108 cache_indexp, &next_key,
2109 key, HAMMER2_KEY_MAX,
2110 &bref);
2111 generation = parent->core.generation;
2112
2113 /*
2114 * Exhausted parent chain, we're done.
2115 */
2116 if (bref == NULL) {
2117 hammer2_spin_unex(&parent->core.spin);
2118 KKASSERT(chain == NULL);
2119 goto done;
2120 }
2121
2122 /*
2123 * Selected from blockref or in-memory chain.
2124 */
2125 if (chain == NULL) {
2126 bcopy = *bref;
2127 hammer2_spin_unex(&parent->core.spin);
2128 chain = hammer2_chain_get(parent, generation, &bcopy);
2129 if (chain == NULL) {
2130 kprintf("retry scan parent %p keys %016jx\n",
2131 parent, key);
2132 goto again;
2133 }
2134 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2135 hammer2_chain_drop(chain);
2136 chain = NULL;
2137 goto again;
2138 }
2139 } else {
2140 hammer2_chain_ref(chain);
2141 hammer2_spin_unex(&parent->core.spin);
2142 }
2143
2144 /*
2145 * chain is referenced but not locked. We must lock the chain
2146 * to obtain definitive DUPLICATED/DELETED state
2147 */
2148 hammer2_chain_lock(chain, how);
2149
2150 /*
2151 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2152 *
2153 * NOTE: chain's key range is not relevant as there might be
2154 * one-offs within the range that are not deleted.
2155 *
2156 * NOTE: XXX this could create problems with scans used in
2157 * situations other than mount-time recovery.
2158 *
2159 * NOTE: Lookups can race delete-duplicate because
2160 * delete-duplicate does not lock the parent's core
2161 * (they just use the spinlock on the core). We must
2162 * check for races by comparing the DUPLICATED flag before
2163 * releasing the spinlock with the flag after locking the
2164 * chain.
2165 */
2166 if (chain->flags & HAMMER2_CHAIN_DELETED) {
2167 hammer2_chain_unlock(chain);
2168 hammer2_chain_drop(chain);
2169 chain = NULL;
2170
2171 key = next_key;
2172 if (key == 0)
2173 goto done;
2174 goto again;
2175 }
2176
2177done:
2178 /*
2179 * All done, return the chain or NULL
2180 */
2181 return (chain);
2182}
2183
2184/*
2185 * Create and return a new hammer2 system memory structure of the specified
2186 * key, type and size and insert it under (*parentp). This is a full
2187 * insertion, based on the supplied key/keybits, and may involve creating
2188 * indirect blocks and moving other chains around via delete/duplicate.
2189 *
2190 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2191 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2192 * FULL. This typically means that the caller is creating the chain after
2193 * doing a hammer2_chain_lookup().
2194 *
2195 * (*parentp) must be exclusive locked and may be replaced on return
2196 * depending on how much work the function had to do.
2197 *
2198 * (*parentp) must not be errored or this function will assert.
2199 *
2200 * (*chainp) usually starts out NULL and returns the newly created chain,
2201 * but if the caller desires the caller may allocate a disconnected chain
2202 * and pass it in instead.
2203 *
2204 * This function should NOT be used to insert INDIRECT blocks. It is
2205 * typically used to create/insert inodes and data blocks.
2206 *
2207 * Caller must pass-in an exclusively locked parent the new chain is to
2208 * be inserted under, and optionally pass-in a disconnected, exclusively
2209 * locked chain to insert (else we create a new chain). The function will
2210 * adjust (*parentp) as necessary, create or connect the chain, and
2211 * return an exclusively locked chain in *chainp.
2212 *
2213 * When creating a PFSROOT inode under the super-root, pmp is typically NULL
2214 * and will be reassigned.
2215 */
2216int
2217hammer2_chain_create(hammer2_chain_t **parentp,
2218 hammer2_chain_t **chainp, hammer2_pfs_t *pmp,
2219 hammer2_key_t key, int keybits, int type, size_t bytes,
2220 int flags)
2221{
2222 hammer2_dev_t *hmp;
2223 hammer2_chain_t *chain;
2224 hammer2_chain_t *parent;
2225 hammer2_blockref_t *base;
2226 hammer2_blockref_t dummy;
2227 int allocated = 0;
2228 int error = 0;
2229 int count;
2230 int maxloops = 300000;
2231
2232 /*
2233 * Topology may be crossing a PFS boundary.
2234 */
2235 parent = *parentp;
2236 KKASSERT(hammer2_mtx_owned(&parent->lock));
2237 KKASSERT(parent->error == 0);
2238 hmp = parent->hmp;
2239 chain = *chainp;
2240
2241 if (chain == NULL) {
2242 /*
2243 * First allocate media space and construct the dummy bref,
2244 * then allocate the in-memory chain structure. Set the
2245 * INITIAL flag for fresh chains which do not have embedded
2246 * data.
2247 */
2248 bzero(&dummy, sizeof(dummy));
2249 dummy.type = type;
2250 dummy.key = key;
2251 dummy.keybits = keybits;
2252 dummy.data_off = hammer2_getradix(bytes);
2253 dummy.methods = parent->bref.methods;
2254 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
2255
2256 /*
2257 * Lock the chain manually, chain_lock will load the chain
2258 * which we do NOT want to do. (note: chain->refs is set
2259 * to 1 by chain_alloc() for us, but lockcnt is not).
2260 */
2261 chain->lockcnt = 1;
2262 hammer2_mtx_ex(&chain->lock);
2263 allocated = 1;
2264
2265 /*
2266 * Set INITIAL to optimize I/O. The flag will generally be
2267 * processed when we call hammer2_chain_modify().
2268 *
2269 * Recalculate bytes to reflect the actual media block
2270 * allocation.
2271 */
2272 bytes = (hammer2_off_t)1 <<
2273 (int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2274 chain->bytes = bytes;
2275
2276 switch(type) {
2277 case HAMMER2_BREF_TYPE_VOLUME:
2278 case HAMMER2_BREF_TYPE_FREEMAP:
2279 panic("hammer2_chain_create: called with volume type");
2280 break;
2281 case HAMMER2_BREF_TYPE_INDIRECT:
2282 panic("hammer2_chain_create: cannot be used to"
2283 "create indirect block");
2284 break;
2285 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2286 panic("hammer2_chain_create: cannot be used to"
2287 "create freemap root or node");
2288 break;
2289 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2290 KKASSERT(bytes == sizeof(chain->data->bmdata));
2291 /* fall through */
2292 case HAMMER2_BREF_TYPE_INODE:
2293 case HAMMER2_BREF_TYPE_DATA:
2294 default:
2295 /*
2296 * leave chain->data NULL, set INITIAL
2297 */
2298 KKASSERT(chain->data == NULL);
2299 atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2300 break;
2301 }
2302 } else {
2303 /*
2304 * We are reattaching a previously deleted chain, possibly
2305 * under a new parent and possibly with a new key/keybits.
2306 * The chain does not have to be in a modified state. The
2307 * UPDATE flag will be set later on in this routine.
2308 *
2309 * Do NOT mess with the current state of the INITIAL flag.
2310 */
2311 chain->bref.key = key;
2312 chain->bref.keybits = keybits;
2313 if (chain->flags & HAMMER2_CHAIN_DELETED)
2314 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2315 KKASSERT(chain->parent == NULL);
2316 }
2317 if (flags & HAMMER2_INSERT_PFSROOT)
2318 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2319 else
2320 chain->bref.flags &= ~HAMMER2_BREF_FLAG_PFSROOT;
2321
2322 /*
2323 * Calculate how many entries we have in the blockref array and
2324 * determine if an indirect block is required.
2325 */
2326again:
2327 if (--maxloops == 0)
2328 panic("hammer2_chain_create: maxloops");
2329
2330 switch(parent->bref.type) {
2331 case HAMMER2_BREF_TYPE_INODE:
2332 KKASSERT((parent->data->ipdata.meta.op_flags &
2333 HAMMER2_OPFLAG_DIRECTDATA) == 0);
2334 KKASSERT(parent->data != NULL);
2335 base = &parent->data->ipdata.u.blockset.blockref[0];
2336 count = HAMMER2_SET_COUNT;
2337 break;
2338 case HAMMER2_BREF_TYPE_INDIRECT:
2339 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2340 if (parent->flags & HAMMER2_CHAIN_INITIAL)
2341 base = NULL;
2342 else
2343 base = &parent->data->npdata[0];
2344 count = parent->bytes / sizeof(hammer2_blockref_t);
2345 break;
2346 case HAMMER2_BREF_TYPE_VOLUME:
2347 KKASSERT(parent->data != NULL);
2348 base = &hmp->voldata.sroot_blockset.blockref[0];
2349 count = HAMMER2_SET_COUNT;
2350 break;
2351 case HAMMER2_BREF_TYPE_FREEMAP:
2352 KKASSERT(parent->data != NULL);
2353 base = &hmp->voldata.freemap_blockset.blockref[0];
2354 count = HAMMER2_SET_COUNT;
2355 break;
2356 default:
2357 panic("hammer2_chain_create: unrecognized blockref type: %d",
2358 parent->bref.type);
2359 base = NULL;
2360 count = 0;
2361 break;
2362 }
2363
2364 /*
2365 * Make sure we've counted the brefs
2366 */
2367 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2368 hammer2_chain_countbrefs(parent, base, count);
2369
2370 KKASSERT(parent->core.live_count >= 0 &&
2371 parent->core.live_count <= count);
2372
2373 /*
2374 * If no free blockref could be found we must create an indirect
2375 * block and move a number of blockrefs into it. With the parent
2376 * locked we can safely lock each child in order to delete+duplicate
2377 * it without causing a deadlock.
2378 *
2379 * This may return the new indirect block or the old parent depending
2380 * on where the key falls. NULL is returned on error.
2381 */
2382 if (parent->core.live_count == count) {
2383 hammer2_chain_t *nparent;
2384
2385 nparent = hammer2_chain_create_indirect(parent, key, keybits,
2386 type, &error);
2387 if (nparent == NULL) {
2388 if (allocated)
2389 hammer2_chain_drop(chain);
2390 chain = NULL;
2391 goto done;
2392 }
2393 if (parent != nparent) {
2394 hammer2_chain_unlock(parent);
2395 hammer2_chain_drop(parent);
2396 parent = *parentp = nparent;
2397 }
2398 goto again;
2399 }
2400
2401 /*
2402 * Link the chain into its parent.
2403 */
2404 if (chain->parent != NULL)
2405 panic("hammer2: hammer2_chain_create: chain already connected");
2406 KKASSERT(chain->parent == NULL);
2407 hammer2_chain_insert(parent, chain,
2408 HAMMER2_CHAIN_INSERT_SPIN |
2409 HAMMER2_CHAIN_INSERT_LIVE,
2410 0);
2411
2412 if (allocated) {
2413 /*
2414 * Mark the newly created chain modified. This will cause
2415 * UPDATE to be set and process the INITIAL flag.
2416 *
2417 * Device buffers are not instantiated for DATA elements
2418 * as these are handled by logical buffers.
2419 *
2420 * Indirect and freemap node indirect blocks are handled
2421 * by hammer2_chain_create_indirect() and not by this
2422 * function.
2423 *
2424 * Data for all other bref types is expected to be
2425 * instantiated (INODE, LEAF).
2426 */
2427 switch(chain->bref.type) {
2428 case HAMMER2_BREF_TYPE_DATA:
2429 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2430 case HAMMER2_BREF_TYPE_INODE:
2431 hammer2_chain_modify(chain, HAMMER2_MODIFY_OPTDATA);
2432 break;
2433 default:
2434 /*
2435 * Remaining types are not supported by this function.
2436 * In particular, INDIRECT and LEAF_NODE types are
2437 * handled by create_indirect().
2438 */
2439 panic("hammer2_chain_create: bad type: %d",
2440 chain->bref.type);
2441 /* NOT REACHED */
2442 break;
2443 }
2444 } else {
2445 /*
2446 * When reconnecting a chain we must set UPDATE and
2447 * setflush so the flush recognizes that it must update
2448 * the bref in the parent.
2449 */
2450 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
2451 hammer2_chain_ref(chain);
2452 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
2453 }
2454 }
2455
2456 /*
2457 * We must setflush(parent) to ensure that it recurses through to
2458 * chain. setflush(chain) might not work because ONFLUSH is possibly
2459 * already set in the chain (so it won't recurse up to set it in the
2460 * parent).
2461 */
2462 hammer2_chain_setflush(parent);
2463
2464done:
2465 *chainp = chain;
2466
2467 return (error);
2468}
2469
2470/*
2471 * Move the chain from its old parent to a new parent. The chain must have
2472 * already been deleted or already disconnected (or never associated) with
2473 * a parent. The chain is reassociated with the new parent and the deleted
2474 * flag will be cleared (no longer deleted). The chain's modification state
2475 * is not altered.
2476 *
2477 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
2478 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2479 * FULL. This typically means that the caller is creating the chain after
2480 * doing a hammer2_chain_lookup().
2481 *
2482 * A non-NULL bref is typically passed when key and keybits must be overridden.
2483 * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2484 * from a passed-in bref and uses the old chain's bref for everything else.
2485 *
2486 * Neither (parent) or (chain) can be errored.
2487 *
2488 * If (parent) is non-NULL then the new duplicated chain is inserted under
2489 * the parent.
2490 *
2491 * If (parent) is NULL then the newly duplicated chain is not inserted
2492 * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2493 * passing into hammer2_chain_create() after this function returns).
2494 *
2495 * WARNING! This function calls create which means it can insert indirect
2496 * blocks. This can cause other unrelated chains in the parent to
2497 * be moved to a newly inserted indirect block in addition to the
2498 * specific chain.
2499 */
2500void
2501hammer2_chain_rename(hammer2_blockref_t *bref,
2502 hammer2_chain_t **parentp, hammer2_chain_t *chain,
2503 int flags)
2504{
2505 hammer2_dev_t *hmp;
2506 hammer2_chain_t *parent;
2507 size_t bytes;
2508
2509 /*
2510 * WARNING! We should never resolve DATA to device buffers
2511 * (XXX allow it if the caller did?), and since
2512 * we currently do not have the logical buffer cache
2513 * buffer in-hand to fix its cached physical offset
2514 * we also force the modify code to not COW it. XXX
2515 */
2516 hmp = chain->hmp;
2517 KKASSERT(chain->parent == NULL);
2518 KKASSERT(chain->error == 0);
2519
2520 /*
2521 * Now create a duplicate of the chain structure, associating
2522 * it with the same core, making it the same size, pointing it
2523 * to the same bref (the same media block).
2524 */
2525 if (bref == NULL)
2526 bref = &chain->bref;
2527 bytes = (hammer2_off_t)1 <<
2528 (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2529
2530 /*
2531 * If parent is not NULL the duplicated chain will be entered under
2532 * the parent and the UPDATE bit set to tell flush to update
2533 * the blockref.
2534 *
2535 * We must setflush(parent) to ensure that it recurses through to
2536 * chain. setflush(chain) might not work because ONFLUSH is possibly
2537 * already set in the chain (so it won't recurse up to set it in the
2538 * parent).
2539 *
2540 * Having both chains locked is extremely important for atomicy.
2541 */
2542 if (parentp && (parent = *parentp) != NULL) {
2543 KKASSERT(hammer2_mtx_owned(&parent->lock));
2544 KKASSERT(parent->refs > 0);
2545 KKASSERT(parent->error == 0);
2546
2547 hammer2_chain_create(parentp, &chain, chain->pmp,
2548 bref->key, bref->keybits, bref->type,
2549 chain->bytes, flags);
2550 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
2551 hammer2_chain_setflush(*parentp);
2552 }
2553}
2554
2555/*
2556 * Helper function for deleting chains.
2557 *
2558 * The chain is removed from the live view (the RBTREE) as well as the parent's
2559 * blockmap. Both chain and its parent must be locked.
2560 *
2561 * parent may not be errored. chain can be errored.
2562 */
2563static void
2564_hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
2565 int flags)
2566{
2567 hammer2_dev_t *hmp;
2568
2569 KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
2570 HAMMER2_CHAIN_FICTITIOUS)) == 0);
2571 hmp = chain->hmp;
2572
2573 if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2574 /*
2575 * Chain is blockmapped, so there must be a parent.
2576 * Atomically remove the chain from the parent and remove
2577 * the blockmap entry.
2578 */
2579 hammer2_blockref_t *base;
2580 int count;
2581
2582 KKASSERT(parent != NULL);
2583 KKASSERT(parent->error == 0);
2584 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
2585 hammer2_chain_modify(parent, HAMMER2_MODIFY_OPTDATA);
2586
2587 /*
2588 * Calculate blockmap pointer
2589 */
2590 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2591 hammer2_spin_ex(&parent->core.spin);
2592
2593 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2594 atomic_add_int(&parent->core.live_count, -1);
2595 ++parent->core.generation;
2596 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2597 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2598 --parent->core.chain_count;
2599 chain->parent = NULL;
2600
2601 switch(parent->bref.type) {
2602 case HAMMER2_BREF_TYPE_INODE:
2603 /*
2604 * Access the inode's block array. However, there
2605 * is no block array if the inode is flagged
2606 * DIRECTDATA. The DIRECTDATA case typicaly only
2607 * occurs when a hardlink has been shifted up the
2608 * tree and the original inode gets replaced with
2609 * an OBJTYPE_HARDLINK placeholding inode.
2610 */
2611 if (parent->data &&
2612 (parent->data->ipdata.meta.op_flags &
2613 HAMMER2_OPFLAG_DIRECTDATA) == 0) {
2614 base =
2615 &parent->data->ipdata.u.blockset.blockref[0];
2616 } else {
2617 base = NULL;
2618 }
2619 count = HAMMER2_SET_COUNT;
2620 break;
2621 case HAMMER2_BREF_TYPE_INDIRECT:
2622 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2623 if (parent->data)
2624 base = &parent->data->npdata[0];
2625 else
2626 base = NULL;
2627 count = parent->bytes / sizeof(hammer2_blockref_t);
2628 break;
2629 case HAMMER2_BREF_TYPE_VOLUME:
2630 base = &hmp->voldata.sroot_blockset.blockref[0];
2631 count = HAMMER2_SET_COUNT;
2632 break;
2633 case HAMMER2_BREF_TYPE_FREEMAP:
2634 base = &parent->data->npdata[0];
2635 count = HAMMER2_SET_COUNT;
2636 break;
2637 default:
2638 base = NULL;
2639 count = 0;
2640 panic("hammer2_flush_pass2: "
2641 "unrecognized blockref type: %d",
2642 parent->bref.type);
2643 }
2644
2645 /*
2646 * delete blockmapped chain from its parent.
2647 *
2648 * The parent is not affected by any statistics in chain
2649 * which are pending synchronization. That is, there is
2650 * nothing to undo in the parent since they have not yet
2651 * been incorporated into the parent.
2652 *
2653 * The parent is affected by statistics stored in inodes.
2654 * Those have already been synchronized, so they must be
2655 * undone. XXX split update possible w/delete in middle?
2656 */
2657 if (base) {
2658 int cache_index = -1;
2659 hammer2_base_delete(parent, base, count,
2660 &cache_index, chain);
2661 }
2662 hammer2_spin_unex(&parent->core.spin);
2663 } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
2664 /*
2665 * Chain is not blockmapped but a parent is present.
2666 * Atomically remove the chain from the parent. There is
2667 * no blockmap entry to remove.
2668 *
2669 * Because chain was associated with a parent but not
2670 * synchronized, the chain's *_count_up fields contain
2671 * inode adjustment statistics which must be undone.
2672 */
2673 hammer2_spin_ex(&parent->core.spin);
2674 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2675 atomic_add_int(&parent->core.live_count, -1);
2676 ++parent->core.generation;
2677 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2678 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2679 --parent->core.chain_count;
2680 chain->parent = NULL;
2681 hammer2_spin_unex(&parent->core.spin);
2682 } else {
2683 /*
2684 * Chain is not blockmapped and has no parent. This
2685 * is a degenerate case.
2686 */
2687 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2688 }
2689}
2690
2691/*
2692 * Create an indirect block that covers one or more of the elements in the
2693 * current parent. Either returns the existing parent with no locking or
2694 * ref changes or returns the new indirect block locked and referenced
2695 * and leaving the original parent lock/ref intact as well.
2696 *
2697 * If an error occurs, NULL is returned and *errorp is set to the error.
2698 *
2699 * The returned chain depends on where the specified key falls.
2700 *
2701 * The key/keybits for the indirect mode only needs to follow three rules:
2702 *
2703 * (1) That all elements underneath it fit within its key space and
2704 *
2705 * (2) That all elements outside it are outside its key space.
2706 *
2707 * (3) When creating the new indirect block any elements in the current
2708 * parent that fit within the new indirect block's keyspace must be
2709 * moved into the new indirect block.
2710 *
2711 * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2712 * keyspace the the current parent, but lookup/iteration rules will
2713 * ensure (and must ensure) that rule (2) for all parents leading up
2714 * to the nearest inode or the root volume header is adhered to. This
2715 * is accomplished by always recursing through matching keyspaces in
2716 * the hammer2_chain_lookup() and hammer2_chain_next() API.
2717 *
2718 * The current implementation calculates the current worst-case keyspace by
2719 * iterating the current parent and then divides it into two halves, choosing
2720 * whichever half has the most elements (not necessarily the half containing
2721 * the requested key).
2722 *
2723 * We can also opt to use the half with the least number of elements. This
2724 * causes lower-numbered keys (aka logical file offsets) to recurse through
2725 * fewer indirect blocks and higher-numbered keys to recurse through more.
2726 * This also has the risk of not moving enough elements to the new indirect
2727 * block and being forced to create several indirect blocks before the element
2728 * can be inserted.
2729 *
2730 * Must be called with an exclusively locked parent.
2731 */
2732static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
2733 hammer2_key_t *keyp, int keybits,
2734 hammer2_blockref_t *base, int count);
2735static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
2736 hammer2_key_t *keyp, int keybits,
2737 hammer2_blockref_t *base, int count);
2738static
2739hammer2_chain_t *
2740hammer2_chain_create_indirect(hammer2_chain_t *parent,
2741 hammer2_key_t create_key, int create_bits,
2742 int for_type, int *errorp)
2743{
2744 hammer2_dev_t *hmp;
2745 hammer2_blockref_t *base;
2746 hammer2_blockref_t *bref;
2747 hammer2_blockref_t bcopy;
2748 hammer2_chain_t *chain;
2749 hammer2_chain_t *ichain;
2750 hammer2_chain_t dummy;
2751 hammer2_key_t key = create_key;
2752 hammer2_key_t key_beg;
2753 hammer2_key_t key_end;
2754 hammer2_key_t key_next;
2755 int keybits = create_bits;
2756 int count;
2757 int nbytes;
2758 int cache_index;
2759 int loops;
2760 int reason;
2761 int generation;
2762 int maxloops = 300000;
2763
2764 /*
2765 * Calculate the base blockref pointer or NULL if the chain
2766 * is known to be empty. We need to calculate the array count
2767 * for RB lookups either way.
2768 */
2769 hmp = parent->hmp;
2770 *errorp = 0;
2771 KKASSERT(hammer2_mtx_owned(&parent->lock));
2772
2773 /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
2774 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2775 base = NULL;
2776
2777 switch(parent->bref.type) {
2778 case HAMMER2_BREF_TYPE_INODE:
2779 count = HAMMER2_SET_COUNT;
2780 break;
2781 case HAMMER2_BREF_TYPE_INDIRECT:
2782 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2783 count = parent->bytes / sizeof(hammer2_blockref_t);
2784 break;
2785 case HAMMER2_BREF_TYPE_VOLUME:
2786 count = HAMMER2_SET_COUNT;
2787 break;
2788 case HAMMER2_BREF_TYPE_FREEMAP:
2789 count = HAMMER2_SET_COUNT;
2790 break;
2791 default:
2792 panic("hammer2_chain_create_indirect: "
2793 "unrecognized blockref type: %d",
2794 parent->bref.type);
2795 count = 0;
2796 break;
2797 }
2798 } else {
2799 switch(parent->bref.type) {
2800 case HAMMER2_BREF_TYPE_INODE:
2801 base = &parent->data->ipdata.u.blockset.blockref[0];
2802 count = HAMMER2_SET_COUNT;
2803 break;
2804 case HAMMER2_BREF_TYPE_INDIRECT:
2805 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2806 base = &parent->data->npdata[0];
2807 count = parent->bytes / sizeof(hammer2_blockref_t);
2808 break;
2809 case HAMMER2_BREF_TYPE_VOLUME:
2810 base = &hmp->voldata.sroot_blockset.blockref[0];
2811 count = HAMMER2_SET_COUNT;
2812 break;
2813 case HAMMER2_BREF_TYPE_FREEMAP:
2814 base = &hmp->voldata.freemap_blockset.blockref[0];
2815 count = HAMMER2_SET_COUNT;
2816 break;
2817 default:
2818 panic("hammer2_chain_create_indirect: "
2819 "unrecognized blockref type: %d",
2820 parent->bref.type);
2821 count = 0;
2822 break;
2823 }
2824 }
2825
2826 /*
2827 * dummy used in later chain allocation (no longer used for lookups).
2828 */
2829 bzero(&dummy, sizeof(dummy));
2830
2831 /*
2832 * When creating an indirect block for a freemap node or leaf
2833 * the key/keybits must be fitted to static radix levels because
2834 * particular radix levels use particular reserved blocks in the
2835 * related zone.
2836 *
2837 * This routine calculates the key/radix of the indirect block
2838 * we need to create, and whether it is on the high-side or the
2839 * low-side.
2840 */
2841 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2842 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2843 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
2844 base, count);
2845 } else {
2846 keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
2847 base, count);
2848 }
2849
2850 /*
2851 * Normalize the key for the radix being represented, keeping the
2852 * high bits and throwing away the low bits.
2853 */
2854 key &= ~(((hammer2_key_t)1 << keybits) - 1);
2855
2856 /*
2857 * How big should our new indirect block be? It has to be at least
2858 * as large as its parent.
2859 *
2860 * The freemap uses a specific indirect block size.
2861 *
2862 * The first indirect block level down from an inode typically
2863 * uses LBUFSIZE (16384), else it uses PBUFSIZE (65536).
2864 */
2865 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2866 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2867 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
2868 } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
2869 nbytes = HAMMER2_IND_BYTES_MIN;
2870 } else {
2871 nbytes = HAMMER2_IND_BYTES_MAX;
2872 }
2873 if (nbytes < count * sizeof(hammer2_blockref_t)) {
2874 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
2875 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
2876 nbytes = count * sizeof(hammer2_blockref_t);
2877 }
2878
2879 /*
2880 * Ok, create our new indirect block
2881 */
2882 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2883 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2884 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
2885 } else {
2886 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
2887 }
2888 dummy.bref.key = key;
2889 dummy.bref.keybits = keybits;
2890 dummy.bref.data_off = hammer2_getradix(nbytes);
2891 dummy.bref.methods = parent->bref.methods;
2892
2893 ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
2894 atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
2895 hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
2896 /* ichain has one ref at this point */
2897
2898 /*
2899 * We have to mark it modified to allocate its block, but use
2900 * OPTDATA to allow it to remain in the INITIAL state. Otherwise
2901 * it won't be acted upon by the flush code.
2902 */
2903 hammer2_chain_modify(ichain, HAMMER2_MODIFY_OPTDATA);
2904
2905 /*
2906 * Iterate the original parent and move the matching brefs into
2907 * the new indirect block.
2908 *
2909 * XXX handle flushes.
2910 */
2911 key_beg = 0;
2912 key_end = HAMMER2_KEY_MAX;
2913 cache_index = 0;
2914 hammer2_spin_ex(&parent->core.spin);
2915 loops = 0;
2916 reason = 0;
2917
2918 for (;;) {
2919 if (++loops > 100000) {
2920 hammer2_spin_unex(&parent->core.spin);
2921 panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
2922 reason, parent, base, count, key_next);
2923 }
2924
2925 /*
2926 * NOTE: spinlock stays intact, returned chain (if not NULL)
2927 * is not referenced or locked which means that we
2928 * cannot safely check its flagged / deletion status
2929 * until we lock it.
2930 */
2931 chain = hammer2_combined_find(parent, base, count,
2932 &cache_index, &key_next,
2933 key_beg, key_end,
2934 &bref);
2935 generation = parent->core.generation;
2936 if (bref == NULL)
2937 break;
2938 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
2939
2940 /*
2941 * Skip keys that are not within the key/radix of the new
2942 * indirect block. They stay in the parent.
2943 */
2944 if ((~(((hammer2_key_t)1 << keybits) - 1) &
2945 (key ^ bref->key)) != 0) {
2946 goto next_key_spinlocked;
2947 }
2948
2949 /*
2950 * Load the new indirect block by acquiring the related
2951 * chains (potentially from media as it might not be
2952 * in-memory). Then move it to the new parent (ichain)
2953 * via DELETE-DUPLICATE.
2954 *
2955 * chain is referenced but not locked. We must lock the
2956 * chain to obtain definitive DUPLICATED/DELETED state
2957 */
2958 if (chain) {
2959 /*
2960 * Use chain already present in the RBTREE
2961 */
2962 hammer2_chain_ref(chain);
2963 hammer2_spin_unex(&parent->core.spin);
2964 hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
2965 } else {
2966 /*
2967 * Get chain for blockref element. _get returns NULL
2968 * on insertion race.
2969 */
2970 bcopy = *bref;
2971 hammer2_spin_unex(&parent->core.spin);
2972 chain = hammer2_chain_get(parent, generation, &bcopy);
2973 if (chain == NULL) {
2974 reason = 1;
2975 hammer2_spin_ex(&parent->core.spin);
2976 continue;
2977 }
2978 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2979 kprintf("REASON 2\n");
2980 reason = 2;
2981 hammer2_chain_drop(chain);
2982 hammer2_spin_ex(&parent->core.spin);
2983 continue;
2984 }
2985 hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
2986 }
2987
2988 /*
2989 * This is always live so if the chain has been deleted
2990 * we raced someone and we have to retry.
2991 *
2992 * NOTE: Lookups can race delete-duplicate because
2993 * delete-duplicate does not lock the parent's core
2994 * (they just use the spinlock on the core). We must
2995 * check for races by comparing the DUPLICATED flag before
2996 * releasing the spinlock with the flag after locking the
2997 * chain.
2998 *
2999 * (note reversed logic for this one)
3000 */
3001 if (chain->flags & HAMMER2_CHAIN_DELETED) {
3002 hammer2_chain_unlock(chain);
3003 hammer2_chain_drop(chain);
3004 goto next_key;
3005 }
3006
3007 /*
3008 * Shift the chain to the indirect block.
3009 *
3010 * WARNING! No reason for us to load chain data, pass NOSTATS
3011 * to prevent delete/insert from trying to access
3012 * inode stats (and thus asserting if there is no
3013 * chain->data loaded).
3014 */
3015 hammer2_chain_delete(parent, chain,
3016 HAMMER2_DELETE_NOSTATS);
3017 hammer2_chain_rename(NULL, &ichain, chain,
3018 HAMMER2_INSERT_NOSTATS);
3019 hammer2_chain_unlock(chain);
3020 hammer2_chain_drop(chain);
3021 KKASSERT(parent->refs > 0);
3022 chain = NULL;
3023next_key:
3024 hammer2_spin_ex(&parent->core.spin);
3025next_key_spinlocked:
3026 if (--maxloops == 0)
3027 panic("hammer2_chain_create_indirect: maxloops");
3028 reason = 4;
3029 if (key_next == 0 || key_next > key_end)
3030 break;
3031 key_beg = key_next;
3032 /* loop */
3033 }
3034 hammer2_spin_unex(&parent->core.spin);
3035
3036 /*
3037 * Insert the new indirect block into the parent now that we've
3038 * cleared out some entries in the parent. We calculated a good
3039 * insertion index in the loop above (ichain->index).
3040 *
3041 * We don't have to set UPDATE here because we mark ichain
3042 * modified down below (so the normal modified -> flush -> set-moved
3043 * sequence applies).
3044 *
3045 * The insertion shouldn't race as this is a completely new block
3046 * and the parent is locked.
3047 */
3048 KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3049 hammer2_chain_insert(parent, ichain,
3050 HAMMER2_CHAIN_INSERT_SPIN |
3051 HAMMER2_CHAIN_INSERT_LIVE,
3052 0);
3053
3054 /*
3055 * Make sure flushes propogate after our manual insertion.
3056 */
3057 hammer2_chain_setflush(ichain);
3058 hammer2_chain_setflush(parent);
3059
3060 /*
3061 * Figure out what to return.
3062 */
3063 if (~(((hammer2_key_t)1 << keybits) - 1) &
3064 (create_key ^ key)) {
3065 /*
3066 * Key being created is outside the key range,
3067 * return the original parent.
3068 */
3069 hammer2_chain_unlock(ichain);
3070 hammer2_chain_drop(ichain);
3071 } else {
3072 /*
3073 * Otherwise its in the range, return the new parent.
3074 * (leave both the new and old parent locked).
3075 */
3076 parent = ichain;
3077 }
3078
3079 return(parent);
3080}
3081
3082/*
3083 * Calculate the keybits and highside/lowside of the freemap node the
3084 * caller is creating.
3085 *
3086 * This routine will specify the next higher-level freemap key/radix
3087 * representing the lowest-ordered set. By doing so, eventually all
3088 * low-ordered sets will be moved one level down.
3089 *
3090 * We have to be careful here because the freemap reserves a limited
3091 * number of blocks for a limited number of levels. So we can't just
3092 * push indiscriminately.
3093 */
3094int
3095hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3096 int keybits, hammer2_blockref_t *base, int count)
3097{
3098 hammer2_chain_t *chain;
3099 hammer2_blockref_t *bref;
3100 hammer2_key_t key;
3101 hammer2_key_t key_beg;
3102 hammer2_key_t key_end;
3103 hammer2_key_t key_next;
3104 int cache_index;
3105 int locount;
3106 int hicount;
3107 int maxloops = 300000;
3108
3109 key = *keyp;
3110 locount = 0;
3111 hicount = 0;
3112 keybits = 64;
3113
3114 /*
3115 * Calculate the range of keys in the array being careful to skip
3116 * slots which are overridden with a deletion.
3117 */
3118 key_beg = 0;
3119 key_end = HAMMER2_KEY_MAX;
3120 cache_index = 0;
3121 hammer2_spin_ex(&parent->core.spin);
3122
3123 for (;;) {
3124 if (--maxloops == 0) {
3125 panic("indkey_freemap shit %p %p:%d\n",
3126 parent, base, count);
3127 }
3128 chain = hammer2_combined_find(parent, base, count,
3129 &cache_index, &key_next,
3130 key_beg, key_end,
3131 &bref);
3132
3133 /*
3134 * Exhausted search
3135 */
3136 if (bref == NULL)
3137 break;
3138
3139 /*
3140 * Skip deleted chains.
3141 */
3142 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3143 if (key_next == 0 || key_next > key_end)
3144 break;
3145 key_beg = key_next;
3146 continue;
3147 }
3148
3149 /*
3150 * Use the full live (not deleted) element for the scan
3151 * iteration. HAMMER2 does not allow partial replacements.
3152 *
3153 * XXX should be built into hammer2_combined_find().
3154 */
3155 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3156
3157 if (keybits > bref->keybits) {
3158 key = bref->key;
3159 keybits = bref->keybits;
3160 } else if (keybits == bref->keybits && bref->key < key) {
3161 key = bref->key;
3162 }
3163 if (key_next == 0)
3164 break;
3165 key_beg = key_next;
3166 }
3167 hammer2_spin_unex(&parent->core.spin);
3168
3169 /*
3170 * Return the keybits for a higher-level FREEMAP_NODE covering
3171 * this node.
3172 */
3173 switch(keybits) {
3174 case HAMMER2_FREEMAP_LEVEL0_RADIX:
3175 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3176 break;
3177 case HAMMER2_FREEMAP_LEVEL1_RADIX:
3178 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3179 break;
3180 case HAMMER2_FREEMAP_LEVEL2_RADIX:
3181 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3182 break;
3183 case HAMMER2_FREEMAP_LEVEL3_RADIX:
3184 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3185 break;
3186 case HAMMER2_FREEMAP_LEVEL4_RADIX:
3187 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
3188 break;
3189 case HAMMER2_FREEMAP_LEVEL5_RADIX:
3190 panic("hammer2_chain_indkey_freemap: level too high");
3191 break;
3192 default:
3193 panic("hammer2_chain_indkey_freemap: bad radix");
3194 break;
3195 }
3196 *keyp = key;
3197
3198 return (keybits);
3199}
3200
3201/*
3202 * Calculate the keybits and highside/lowside of the indirect block the
3203 * caller is creating.
3204 */
3205static int
3206hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3207 int keybits, hammer2_blockref_t *base, int count)
3208{
3209 hammer2_blockref_t *bref;
3210 hammer2_chain_t *chain;
3211 hammer2_key_t key_beg;
3212 hammer2_key_t key_end;
3213 hammer2_key_t key_next;
3214 hammer2_key_t key;
3215 int nkeybits;
3216 int locount;
3217 int hicount;
3218 int cache_index;
3219 int maxloops = 300000;
3220
3221 key = *keyp;
3222 locount = 0;
3223 hicount = 0;
3224
3225 /*
3226 * Calculate the range of keys in the array being careful to skip
3227 * slots which are overridden with a deletion. Once the scan
3228 * completes we will cut the key range in half and shift half the
3229 * range into the new indirect block.
3230 */
3231 key_beg = 0;
3232 key_end = HAMMER2_KEY_MAX;
3233 cache_index = 0;
3234 hammer2_spin_ex(&parent->core.spin);
3235
3236 for (;;) {
3237 if (--maxloops == 0) {
3238 panic("indkey_freemap shit %p %p:%d\n",
3239 parent, base, count);
3240 }
3241 chain = hammer2_combined_find(parent, base, count,
3242 &cache_index, &key_next,
3243 key_beg, key_end,
3244 &bref);
3245
3246 /*
3247 * Exhausted search
3248 */
3249 if (bref == NULL)
3250 break;
3251
3252 /*
3253 * NOTE: No need to check DUPLICATED here because we do
3254 * not release the spinlock.
3255 */
3256 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3257 if (key_next == 0 || key_next > key_end)
3258 break;
3259 key_beg = key_next;
3260 continue;
3261 }
3262
3263 /*
3264 * Use the full live (not deleted) element for the scan
3265 * iteration. HAMMER2 does not allow partial replacements.
3266 *
3267 * XXX should be built into hammer2_combined_find().
3268 */
3269 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3270
3271 /*
3272 * Expand our calculated key range (key, keybits) to fit
3273 * the scanned key. nkeybits represents the full range
3274 * that we will later cut in half (two halves @ nkeybits - 1).
3275 */
3276 nkeybits = keybits;
3277 if (nkeybits < bref->keybits) {
3278 if (bref->keybits > 64) {
3279 kprintf("bad bref chain %p bref %p\n",
3280 chain, bref);
3281 Debugger("fubar");
3282 }
3283 nkeybits = bref->keybits;
3284 }
3285 while (nkeybits < 64 &&
3286 (~(((hammer2_key_t)1 << nkeybits) - 1) &
3287 (key ^ bref->key)) != 0) {
3288 ++nkeybits;
3289 }
3290
3291 /*
3292 * If the new key range is larger we have to determine
3293 * which side of the new key range the existing keys fall
3294 * under by checking the high bit, then collapsing the
3295 * locount into the hicount or vise-versa.
3296 */
3297 if (keybits != nkeybits) {
3298 if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3299 hicount += locount;
3300 locount = 0;
3301 } else {
3302 locount += hicount;
3303 hicount = 0;
3304 }
3305 keybits = nkeybits;
3306 }
3307
3308 /*
3309 * The newly scanned key will be in the lower half or the
3310 * upper half of the (new) key range.
3311 */
3312 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3313 ++hicount;
3314 else
3315 ++locount;
3316
3317 if (key_next == 0)
3318 break;
3319 key_beg = key_next;
3320 }
3321 hammer2_spin_unex(&parent->core.spin);
3322 bref = NULL; /* now invalid (safety) */
3323
3324 /*
3325 * Adjust keybits to represent half of the full range calculated
3326 * above (radix 63 max)
3327 */
3328 --keybits;
3329
3330 /*
3331 * Select whichever half contains the most elements. Theoretically
3332 * we can select either side as long as it contains at least one
3333 * element (in order to ensure that a free slot is present to hold
3334 * the indirect block).
3335 */
3336 if (hammer2_indirect_optimize) {
3337 /*
3338 * Insert node for least number of keys, this will arrange
3339 * the first few blocks of a large file or the first few
3340 * inodes in a directory with fewer indirect blocks when
3341 * created linearly.
3342 */
3343 if (hicount < locount && hicount != 0)
3344 key |= (hammer2_key_t)1 << keybits;
3345 else
3346 key &= ~(hammer2_key_t)1 << keybits;
3347 } else {
3348 /*
3349 * Insert node for most number of keys, best for heavily
3350 * fragmented files.
3351 */
3352 if (hicount > locount)
3353 key |= (hammer2_key_t)1 << keybits;
3354 else
3355 key &= ~(hammer2_key_t)1 << keybits;
3356 }
3357 *keyp = key;
3358
3359 return (keybits);
3360}
3361
3362/*
3363 * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
3364 * it exists.
3365 *
3366 * Both parent and chain must be locked exclusively.
3367 *
3368 * This function will modify the parent if the blockref requires removal
3369 * from the parent's block table.
3370 *
3371 * This function is NOT recursive. Any entity already pushed into the
3372 * chain (such as an inode) may still need visibility into its contents,
3373 * as well as the ability to read and modify the contents. For example,
3374 * for an unlinked file which is still open.
3375 */
3376void
3377hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
3378 int flags)
3379{
3380 KKASSERT(hammer2_mtx_owned(&chain->lock));
3381
3382 /*
3383 * Nothing to do if already marked.
3384 *
3385 * We need the spinlock on the core whos RBTREE contains chain
3386 * to protect against races.
3387 */
3388 if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
3389 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
3390 chain->parent == parent);
3391 _hammer2_chain_delete_helper(parent, chain, flags);
3392 }
3393
3394 /*
3395 * To avoid losing track of a permanent deletion we add the chain
3396 * to the delayed flush queue. If were to flush it right now the
3397 * parent would end up in a modified state and generate I/O.
3398 * The delayed queue gives the parent a chance to be deleted to
3399 * (e.g. rm -rf).
3400 */
3401 if (flags & HAMMER2_DELETE_PERMANENT) {
3402 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
3403 hammer2_delayed_flush(chain);
3404 } else {
3405 /* XXX might not be needed */
3406 hammer2_chain_setflush(chain);
3407 }
3408}
3409
3410/*
3411 * Returns the index of the nearest element in the blockref array >= elm.
3412 * Returns (count) if no element could be found.
3413 *
3414 * Sets *key_nextp to the next key for loop purposes but does not modify
3415 * it if the next key would be higher than the current value of *key_nextp.
3416 * Note that *key_nexp can overflow to 0, which should be tested by the
3417 * caller.
3418 *
3419 * (*cache_indexp) is a heuristic and can be any value without effecting
3420 * the result.
3421 *
3422 * WARNING! Must be called with parent's spinlock held. Spinlock remains
3423 * held through the operation.
3424 */
3425static int
3426hammer2_base_find(hammer2_chain_t *parent,
3427 hammer2_blockref_t *base, int count,
3428 int *cache_indexp, hammer2_key_t *key_nextp,
3429 hammer2_key_t key_beg, hammer2_key_t key_end)
3430{
3431 hammer2_blockref_t *scan;
3432 hammer2_key_t scan_end;
3433 int i;
3434 int limit;
3435
3436 /*
3437 * Require the live chain's already have their core's counted
3438 * so we can optimize operations.
3439 */
3440 KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
3441
3442 /*
3443 * Degenerate case
3444 */
3445 if (count == 0 || base == NULL)
3446 return(count);
3447
3448 /*
3449 * Sequential optimization using *cache_indexp. This is the most
3450 * likely scenario.
3451 *
3452 * We can avoid trailing empty entries on live chains, otherwise
3453 * we might have to check the whole block array.
3454 */
3455 i = *cache_indexp;
3456 cpu_ccfence();
3457 limit = parent->core.live_zero;
3458 if (i >= limit)
3459 i = limit - 1;
3460 if (i < 0)
3461 i = 0;
3462 KKASSERT(i < count);
3463
3464 /*
3465 * Search backwards
3466 */
3467 scan = &base[i];
3468 while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3469 --scan;
3470 --i;
3471 }
3472 *cache_indexp = i;
3473
3474 /*
3475 * Search forwards, stop when we find a scan element which
3476 * encloses the key or until we know that there are no further
3477 * elements.
3478 */
3479 while (i < count) {
3480 if (scan->type != 0) {
3481 scan_end = scan->key +
3482 ((hammer2_key_t)1 << scan->keybits) - 1;
3483 if (scan->key > key_beg || scan_end >= key_beg)
3484 break;
3485 }
3486 if (i >= limit)
3487 return (count);
3488 ++scan;
3489 ++i;
3490 }
3491 if (i != count) {
3492 *cache_indexp = i;
3493 if (i >= limit) {
3494 i = count;
3495 } else {
3496 scan_end = scan->key +
3497 ((hammer2_key_t)1 << scan->keybits);
3498 if (scan_end && (*key_nextp > scan_end ||
3499 *key_nextp == 0)) {
3500 *key_nextp = scan_end;
3501 }
3502 }
3503 }
3504 return (i);
3505}
3506
3507/*
3508 * Do a combined search and return the next match either from the blockref
3509 * array or from the in-memory chain. Sets *bresp to the returned bref in
3510 * both cases, or sets it to NULL if the search exhausted. Only returns
3511 * a non-NULL chain if the search matched from the in-memory chain.
3512 *
3513 * When no in-memory chain has been found and a non-NULL bref is returned
3514 * in *bresp.
3515 *
3516 *
3517 * The returned chain is not locked or referenced. Use the returned bref
3518 * to determine if the search exhausted or not. Iterate if the base find
3519 * is chosen but matches a deleted chain.
3520 *
3521 * WARNING! Must be called with parent's spinlock held. Spinlock remains
3522 * held through the operation.
3523 */
3524static hammer2_chain_t *
3525hammer2_combined_find(hammer2_chain_t *parent,
3526 hammer2_blockref_t *base, int count,
3527 int *cache_indexp, hammer2_key_t *key_nextp,
3528 hammer2_key_t key_beg, hammer2_key_t key_end,
3529 hammer2_blockref_t **bresp)
3530{
3531 hammer2_blockref_t *bref;
3532 hammer2_chain_t *chain;
3533 int i;
3534
3535 /*
3536 * Lookup in block array and in rbtree.
3537 */
3538 *key_nextp = key_end + 1;
3539 i = hammer2_base_find(parent, base, count, cache_indexp,
3540 key_nextp, key_beg, key_end);
3541 chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3542
3543 /*
3544 * Neither matched
3545 */
3546 if (i == count && chain == NULL) {
3547 *bresp = NULL;
3548 return(NULL);
3549 }
3550
3551 /*
3552 * Only chain matched.
3553 */
3554 if (i == count) {
3555 bref = &chain->bref;
3556 goto found;
3557 }
3558
3559 /*
3560 * Only blockref matched.
3561 */
3562 if (chain == NULL) {
3563 bref = &base[i];
3564 goto found;
3565 }
3566
3567 /*
3568 * Both in-memory and blockref matched, select the nearer element.
3569 *
3570 * If both are flush with the left-hand side or both are the
3571 * same distance away, select the chain. In this situation the
3572 * chain must have been loaded from the matching blockmap.
3573 */
3574 if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
3575 chain->bref.key == base[i].key) {
3576 KKASSERT(chain->bref.key == base[i].key);
3577 bref = &chain->bref;
3578 goto found;
3579 }
3580
3581 /*
3582 * Select the nearer key
3583 */
3584 if (chain->bref.key < base[i].key) {
3585 bref = &chain->bref;
3586 } else {
3587 bref = &base[i];
3588 chain = NULL;
3589 }
3590
3591 /*
3592 * If the bref is out of bounds we've exhausted our search.
3593 */
3594found:
3595 if (bref->key > key_end) {
3596 *bresp = NULL;
3597 chain = NULL;
3598 } else {
3599 *bresp = bref;
3600 }
3601 return(chain);
3602}
3603
3604/*
3605 * Locate the specified block array element and delete it. The element
3606 * must exist.
3607 *
3608 * The spin lock on the related chain must be held.
3609 *
3610 * NOTE: live_count was adjusted when the chain was deleted, so it does not
3611 * need to be adjusted when we commit the media change.
3612 */
3613void
3614hammer2_base_delete(hammer2_chain_t *parent,
3615 hammer2_blockref_t *base, int count,
3616 int *cache_indexp, hammer2_chain_t *chain)
3617{
3618 hammer2_blockref_t *elm = &chain->bref;
3619 hammer2_key_t key_next;
3620 int i;
3621
3622 /*
3623 * Delete element. Expect the element to exist.
3624 *
3625 * XXX see caller, flush code not yet sophisticated enough to prevent
3626 * re-flushed in some cases.
3627 */
3628 key_next = 0; /* max range */
3629 i = hammer2_base_find(parent, base, count, cache_indexp,
3630 &key_next, elm->key, elm->key);
3631 if (i == count || base[i].type == 0 ||
3632 base[i].key != elm->key ||
3633 ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
3634 base[i].keybits != elm->keybits)) {
3635 hammer2_spin_unex(&parent->core.spin);
3636 panic("delete base %p element not found at %d/%d elm %p\n",
3637 base, i, count, elm);
3638 return;
3639 }
3640
3641 /*
3642 * Update stats and zero the entry
3643 */
3644 parent->bref.data_count -= base[i].data_count;
3645 parent->bref.data_count -= (hammer2_off_t)1 <<
3646 (int)(base[i].data_off & HAMMER2_OFF_MASK_RADIX);
3647 parent->bref.inode_count -= base[i].inode_count;
3648 if (base[i].type == HAMMER2_BREF_TYPE_INODE)
3649 parent->bref.inode_count -= 1;
3650
3651 bzero(&base[i], sizeof(*base));
3652
3653 /*
3654 * We can only optimize parent->core.live_zero for live chains.
3655 */
3656 if (parent->core.live_zero == i + 1) {
3657 while (--i >= 0 && base[i].type == 0)
3658 ;
3659 parent->core.live_zero = i + 1;
3660 }
3661
3662 /*
3663 * Clear appropriate blockmap flags in chain.
3664 */
3665 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
3666 HAMMER2_CHAIN_BMAPUPD);
3667}
3668
3669/*
3670 * Insert the specified element. The block array must not already have the
3671 * element and must have space available for the insertion.
3672 *
3673 * The spin lock on the related chain must be held.
3674 *
3675 * NOTE: live_count was adjusted when the chain was deleted, so it does not
3676 * need to be adjusted when we commit the media change.
3677 */
3678void
3679hammer2_base_insert(hammer2_chain_t *parent,
3680 hammer2_blockref_t *base, int count,
3681 int *cache_indexp, hammer2_chain_t *chain)
3682{
3683 hammer2_blockref_t *elm = &chain->bref;
3684 hammer2_key_t key_next;
3685 hammer2_key_t xkey;
3686 int i;
3687 int j;
3688 int k;
3689 int l;
3690 int u = 1;
3691
3692 /*
3693 * Insert new element. Expect the element to not already exist
3694 * unless we are replacing it.
3695 *
3696 * XXX see caller, flush code not yet sophisticated enough to prevent
3697 * re-flushed in some cases.
3698 */
3699 key_next = 0; /* max range */
3700 i = hammer2_base_find(parent, base, count, cache_indexp,
3701 &key_next, elm->key, elm->key);
3702
3703 /*
3704 * Shortcut fill optimization, typical ordered insertion(s) may not
3705 * require a search.
3706 */
3707 KKASSERT(i >= 0 && i <= count);
3708
3709 /*
3710 * Set appropriate blockmap flags in chain.
3711 */
3712 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
3713
3714 /*
3715 * Update stats and zero the entry
3716 */
3717 parent->bref.data_count += elm->data_count;
3718 parent->bref.data_count += (hammer2_off_t)1 <<
3719 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
3720 parent->bref.inode_count += elm->inode_count;
3721 if (elm->type == HAMMER2_BREF_TYPE_INODE)
3722 parent->bref.inode_count += 1;
3723
3724
3725 /*
3726 * We can only optimize parent->core.live_zero for live chains.
3727 */
3728 if (i == count && parent->core.live_zero < count) {
3729 i = parent->core.live_zero++;
3730 base[i] = *elm;
3731 return;
3732 }
3733
3734 xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
3735 if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
3736 hammer2_spin_unex(&parent->core.spin);
3737 panic("insert base %p overlapping elements at %d elm %p\n",
3738 base, i, elm);
3739 }
3740
3741 /*
3742 * Try to find an empty slot before or after.
3743 */
3744 j = i;
3745 k = i;
3746 while (j > 0 || k < count) {
3747 --j;
3748 if (j >= 0 && base[j].type == 0) {
3749 if (j == i - 1) {
3750 base[j] = *elm;
3751 } else {
3752 bcopy(&base[j+1], &base[j],
3753 (i - j - 1) * sizeof(*base));
3754 base[i - 1] = *elm;
3755 }
3756 goto validate;
3757 }
3758 ++k;
3759 if (k < count && base[k].type == 0) {
3760 bcopy(&base[i], &base[i+1],
3761 (k - i) * sizeof(hammer2_blockref_t));
3762 base[i] = *elm;
3763
3764 /*
3765 * We can only update parent->core.live_zero for live
3766 * chains.
3767 */
3768 if (parent->core.live_zero <= k)
3769 parent->core.live_zero = k + 1;
3770 u = 2;
3771 goto validate;
3772 }
3773 }
3774 panic("hammer2_base_insert: no room!");
3775
3776 /*
3777 * Debugging
3778 */
3779validate:
3780 key_next = 0;
3781 for (l = 0; l < count; ++l) {
3782 if (base[l].type) {
3783 key_next = base[l].key +
3784 ((hammer2_key_t)1 << base[l].keybits) - 1;
3785 break;
3786 }
3787 }
3788 while (++l < count) {
3789 if (base[l].type) {
3790 if (base[l].key <= key_next)
3791 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
3792 key_next = base[l].key +
3793 ((hammer2_key_t)1 << base[l].keybits) - 1;
3794
3795 }
3796 }
3797
3798}
3799
3800#if 0
3801
3802/*
3803 * Sort the blockref array for the chain. Used by the flush code to
3804 * sort the blockref[] array.
3805 *
3806 * The chain must be exclusively locked AND spin-locked.
3807 */
3808typedef hammer2_blockref_t *hammer2_blockref_p;
3809
3810static
3811int
3812hammer2_base_sort_callback(const void *v1, const void *v2)
3813{
3814 hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
3815 hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
3816
3817 /*
3818 * Make sure empty elements are placed at the end of the array
3819 */
3820 if (bref1->type == 0) {
3821 if (bref2->type == 0)
3822 return(0);
3823 return(1);
3824 } else if (bref2->type == 0) {
3825 return(-1);
3826 }
3827
3828 /*
3829 * Sort by key
3830 */
3831 if (bref1->key < bref2->key)
3832 return(-1);
3833 if (bref1->key > bref2->key)
3834 return(1);
3835 return(0);
3836}
3837
3838void
3839hammer2_base_sort(hammer2_chain_t *chain)
3840{
3841 hammer2_blockref_t *base;
3842 int count;
3843
3844 switch(chain->bref.type) {
3845 case HAMMER2_BREF_TYPE_INODE:
3846 /*
3847 * Special shortcut for embedded data returns the inode
3848 * itself. Callers must detect this condition and access
3849 * the embedded data (the strategy code does this for us).
3850 *
3851 * This is only applicable to regular files and softlinks.
3852 */
3853 if (chain->data->ipdata.meta.op_flags &
3854 HAMMER2_OPFLAG_DIRECTDATA) {
3855 return;
3856 }
3857 base = &chain->data->ipdata.u.blockset.blockref[0];
3858 count = HAMMER2_SET_COUNT;
3859 break;
3860 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3861 case HAMMER2_BREF_TYPE_INDIRECT:
3862 /*
3863 * Optimize indirect blocks in the INITIAL state to avoid
3864 * I/O.
3865 */
3866 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
3867 base = &chain->data->npdata[0];
3868 count = chain->bytes / sizeof(hammer2_blockref_t);
3869 break;
3870 case HAMMER2_BREF_TYPE_VOLUME:
3871 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
3872 count = HAMMER2_SET_COUNT;
3873 break;
3874 case HAMMER2_BREF_TYPE_FREEMAP:
3875 base = &chain->hmp->voldata.freemap_blockset.blockref[0];
3876 count = HAMMER2_SET_COUNT;
3877 break;
3878 default:
3879 kprintf("hammer2_chain_lookup: unrecognized "
3880 "blockref(A) type: %d",
3881 chain->bref.type);
3882 while (1)
3883 tsleep(&base, 0, "dead", 0);
3884 panic("hammer2_chain_lookup: unrecognized "
3885 "blockref(A) type: %d",
3886 chain->bref.type);
3887 base = NULL; /* safety */
3888 count = 0; /* safety */
3889 }
3890 kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
3891}
3892
3893#endif
3894
3895/*
3896 * Chain memory management
3897 */
3898void
3899hammer2_chain_wait(hammer2_chain_t *chain)
3900{
3901 tsleep(chain, 0, "chnflw", 1);
3902}
3903
3904const hammer2_media_data_t *
3905hammer2_chain_rdata(hammer2_chain_t *chain)
3906{
3907 KKASSERT(chain->data != NULL);
3908 return (chain->data);
3909}
3910
3911hammer2_media_data_t *
3912hammer2_chain_wdata(hammer2_chain_t *chain)
3913{
3914 KKASSERT(chain->data != NULL);
3915 return (chain->data);
3916}
3917
3918/*
3919 * Set the check data for a chain. This can be a heavy-weight operation
3920 * and typically only runs on-flush. For file data check data is calculated
3921 * when the logical buffers are flushed.
3922 */
3923void
3924hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
3925{
3926 chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
3927
3928 switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3929 case HAMMER2_CHECK_NONE:
3930 break;
3931 case HAMMER2_CHECK_DISABLED:
3932 break;
3933 case HAMMER2_CHECK_ISCSI32:
3934 chain->bref.check.iscsi32.value =
3935 hammer2_icrc32(bdata, chain->bytes);
3936 break;
3937 case HAMMER2_CHECK_CRC64:
3938 chain->bref.check.crc64.value = 0;
3939 /* XXX */
3940 break;
3941 case HAMMER2_CHECK_SHA192:
3942 {
3943 SHA256_CTX hash_ctx;
3944 union {
3945 uint8_t digest[SHA256_DIGEST_LENGTH];
3946 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3947 } u;
3948
3949 SHA256_Init(&hash_ctx);
3950 SHA256_Update(&hash_ctx, bdata, chain->bytes);
3951 SHA256_Final(u.digest, &hash_ctx);
3952 u.digest64[2] ^= u.digest64[3];
3953 bcopy(u.digest,
3954 chain->bref.check.sha192.data,
3955 sizeof(chain->bref.check.sha192.data));
3956 }
3957 break;
3958 case HAMMER2_CHECK_FREEMAP:
3959 chain->bref.check.freemap.icrc32 =
3960 hammer2_icrc32(bdata, chain->bytes);
3961 break;
3962 default:
3963 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3964 chain->bref.methods);
3965 break;
3966 }
3967}
3968
3969int
3970hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
3971{
3972 int r;
3973
3974 if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
3975 return 1;
3976
3977 switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3978 case HAMMER2_CHECK_NONE:
3979 r = 1;
3980 break;
3981 case HAMMER2_CHECK_DISABLED:
3982 r = 1;
3983 break;
3984 case HAMMER2_CHECK_ISCSI32:
3985 r = (chain->bref.check.iscsi32.value ==
3986 hammer2_icrc32(bdata, chain->bytes));
3987 break;
3988 case HAMMER2_CHECK_CRC64:
3989 r = (chain->bref.check.crc64.value == 0);
3990 /* XXX */
3991 break;
3992 case HAMMER2_CHECK_SHA192:
3993 {
3994 SHA256_CTX hash_ctx;
3995 union {
3996 uint8_t digest[SHA256_DIGEST_LENGTH];
3997 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3998 } u;
3999
4000 SHA256_Init(&hash_ctx);
4001 SHA256_Update(&hash_ctx, bdata, chain->bytes);
4002 SHA256_Final(u.digest, &hash_ctx);
4003 u.digest64[2] ^= u.digest64[3];
4004 if (bcmp(u.digest,
4005 chain->bref.check.sha192.data,
4006 sizeof(chain->bref.check.sha192.data)) == 0) {
4007 r = 1;
4008 } else {
4009 r = 0;
4010 }
4011 }
4012 break;
4013 case HAMMER2_CHECK_FREEMAP:
4014 r = (chain->bref.check.freemap.icrc32 ==
4015 hammer2_icrc32(bdata, chain->bytes));
4016 if (r == 0) {
4017 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
4018 chain->bref.check.freemap.icrc32,
4019 hammer2_icrc32(bdata, chain->bytes), chain->bytes);
4020 if (chain->dio)
4021 kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
4022 chain->dio, chain->dio->bp->b_loffset, chain->dio->bp->b_bufsize, bdata, chain->dio->bp->b_data);
4023 }
4024
4025 break;
4026 default:
4027 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4028 chain->bref.methods);
4029 r = 1;
4030 break;
4031 }
4032 return r;
4033}
4034
4035/*
4036 * The caller presents a shared-locked (parent, chain) where the chain
4037 * is of type HAMMER2_OBJTYPE_HARDLINK. The caller must hold the ip
4038 * structure representing the inode locked to prevent
4039 * consolidation/deconsolidation races.
4040 *
4041 * We locate the hardlink in the current or a common parent directory.
4042 *
4043 * If we are unable to locate the hardlink, EIO is returned and
4044 * (*chainp) is unlocked and dropped.
4045 */
4046int
4047hammer2_chain_hardlink_find(hammer2_inode_t *dip,
4048 hammer2_chain_t **parentp,
4049 hammer2_chain_t **chainp,
4050 int flags)
4051{
4052 hammer2_chain_t *parent;
4053 hammer2_chain_t *rchain;
4054 hammer2_key_t key_dummy;
4055 hammer2_key_t lhc;
4056 int cache_index = -1;
4057
4058 /*
4059 * Obtain the key for the hardlink from *chainp.
4060 */
4061 rchain = *chainp;
4062 lhc = rchain->data->ipdata.meta.inum;
4063 hammer2_chain_unlock(rchain);
4064 hammer2_chain_drop(rchain);
4065 rchain = NULL;
4066
4067 for (;;) {
4068 int nloops;
4069 rchain = hammer2_chain_lookup(parentp, &key_dummy,
4070 lhc, lhc,
4071 &cache_index, flags);
4072 if (rchain)
4073 break;
4074
4075 /*
4076 * Iterate parents, handle parent rename races by retrying
4077 * the operation.
4078 */
4079 nloops = -1;
4080 while (nloops) {
4081 --nloops;
4082 parent = *parentp;
4083 if (nloops < 0 &&
4084 parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4085 nloops = 1;
4086 }
4087 if (parent->bref.flags & HAMMER2_BREF_FLAG_PFSROOT)
4088 goto done;
4089 if (parent->parent == NULL)
4090 goto done;
4091 parent = parent->parent;
4092 hammer2_chain_ref(parent);
4093 hammer2_chain_unlock(*parentp);
4094 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
4095 flags);
4096 if ((*parentp)->parent == parent) {
4097 hammer2_chain_drop(*parentp);
4098 *parentp = parent;
4099 } else {
4100 hammer2_chain_unlock(parent);
4101 hammer2_chain_drop(parent);
4102 hammer2_chain_lock(*parentp,
4103 HAMMER2_RESOLVE_ALWAYS |
4104 flags);
4105 parent = NULL; /* safety */
4106 /* retry */
4107 }
4108 }
4109 }
4110done:
4111
4112 *chainp = rchain;
4113 return (rchain ? EINVAL : 0);
4114}