drm: Use an include directory hierarchy similar to the Linux one
[dragonfly.git] / sys / dev / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/intel_display.c,v 1.2 2012/05/24 19:13:54 dim Exp $
27  */
28
29 #include <ddb/ddb.h>
30 #include <sys/limits.h>
31
32 #include <drm/drmP.h>
33 #include <drm/drm_edid.h>
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include <drm/drm_dp_helper.h>
38 #include <drm/drm_crtc_helper.h>
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 typedef struct {
48         /* given values */
49         int n;
50         int m1, m2;
51         int p1, p2;
52         /* derived values */
53         int     dot;
54         int     vco;
55         int     m;
56         int     p;
57 } intel_clock_t;
58
59 typedef struct {
60         int     min, max;
61 } intel_range_t;
62
63 typedef struct {
64         int     dot_limit;
65         int     p2_slow, p2_fast;
66 } intel_p2_t;
67
68 #define INTEL_P2_NUM                  2
69 typedef struct intel_limit intel_limit_t;
70 struct intel_limit {
71         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
72         intel_p2_t          p2;
73         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
74                         int, int, intel_clock_t *, intel_clock_t *);
75 };
76
77 /* FDI */
78 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
79
80 static bool
81 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
82                     int target, int refclk, intel_clock_t *match_clock,
83                     intel_clock_t *best_clock);
84 static bool
85 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                         int target, int refclk, intel_clock_t *match_clock,
87                         intel_clock_t *best_clock);
88
89 static bool
90 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91                       int target, int refclk, intel_clock_t *match_clock,
92                       intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                            int target, int refclk, intel_clock_t *match_clock,
96                            intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101         if (IS_GEN5(dev)) {
102                 struct drm_i915_private *dev_priv = dev->dev_private;
103                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104         } else
105                 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 2 },
119         .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123         .dot = { .min = 25000, .max = 350000 },
124         .vco = { .min = 930000, .max = 1400000 },
125         .n = { .min = 3, .max = 16 },
126         .m = { .min = 96, .max = 140 },
127         .m1 = { .min = 18, .max = 26 },
128         .m2 = { .min = 6, .max = 16 },
129         .p = { .min = 4, .max = 128 },
130         .p1 = { .min = 1, .max = 6 },
131         .p2 = { .dot_limit = 165000,
132                 .p2_slow = 14, .p2_fast = 7 },
133         .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 10, .max = 22 },
142         .m2 = { .min = 5, .max = 9 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147         .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151         .dot = { .min = 20000, .max = 400000 },
152         .vco = { .min = 1400000, .max = 2800000 },
153         .n = { .min = 1, .max = 6 },
154         .m = { .min = 70, .max = 120 },
155         .m1 = { .min = 10, .max = 22 },
156         .m2 = { .min = 5, .max = 9 },
157         .p = { .min = 7, .max = 98 },
158         .p1 = { .min = 1, .max = 8 },
159         .p2 = { .dot_limit = 112000,
160                 .p2_slow = 14, .p2_fast = 7 },
161         .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166         .dot = { .min = 25000, .max = 270000 },
167         .vco = { .min = 1750000, .max = 3500000},
168         .n = { .min = 1, .max = 4 },
169         .m = { .min = 104, .max = 138 },
170         .m1 = { .min = 17, .max = 23 },
171         .m2 = { .min = 5, .max = 11 },
172         .p = { .min = 10, .max = 30 },
173         .p1 = { .min = 1, .max = 3},
174         .p2 = { .dot_limit = 270000,
175                 .p2_slow = 10,
176                 .p2_fast = 10
177         },
178         .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182         .dot = { .min = 22000, .max = 400000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 16, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 5, .max = 80 },
189         .p1 = { .min = 1, .max = 8},
190         .p2 = { .dot_limit = 165000,
191                 .p2_slow = 10, .p2_fast = 5 },
192         .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196         .dot = { .min = 20000, .max = 115000 },
197         .vco = { .min = 1750000, .max = 3500000 },
198         .n = { .min = 1, .max = 3 },
199         .m = { .min = 104, .max = 138 },
200         .m1 = { .min = 17, .max = 23 },
201         .m2 = { .min = 5, .max = 11 },
202         .p = { .min = 28, .max = 112 },
203         .p1 = { .min = 2, .max = 8 },
204         .p2 = { .dot_limit = 0,
205                 .p2_slow = 14, .p2_fast = 14
206         },
207         .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211         .dot = { .min = 80000, .max = 224000 },
212         .vco = { .min = 1750000, .max = 3500000 },
213         .n = { .min = 1, .max = 3 },
214         .m = { .min = 104, .max = 138 },
215         .m1 = { .min = 17, .max = 23 },
216         .m2 = { .min = 5, .max = 11 },
217         .p = { .min = 14, .max = 42 },
218         .p1 = { .min = 2, .max = 6 },
219         .p2 = { .dot_limit = 0,
220                 .p2_slow = 7, .p2_fast = 7
221         },
222         .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226         .dot = { .min = 161670, .max = 227000 },
227         .vco = { .min = 1750000, .max = 3500000},
228         .n = { .min = 1, .max = 2 },
229         .m = { .min = 97, .max = 108 },
230         .m1 = { .min = 0x10, .max = 0x12 },
231         .m2 = { .min = 0x05, .max = 0x06 },
232         .p = { .min = 10, .max = 20 },
233         .p1 = { .min = 1, .max = 2},
234         .p2 = { .dot_limit = 0,
235                 .p2_slow = 10, .p2_fast = 10 },
236         .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240         .dot = { .min = 20000, .max = 400000},
241         .vco = { .min = 1700000, .max = 3500000 },
242         /* Pineview's Ncounter is a ring counter */
243         .n = { .min = 3, .max = 6 },
244         .m = { .min = 2, .max = 256 },
245         /* Pineview only has one combined m divider, which we treat as m2. */
246         .m1 = { .min = 0, .max = 0 },
247         .m2 = { .min = 0, .max = 254 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8 },
250         .p2 = { .dot_limit = 200000,
251                 .p2_slow = 10, .p2_fast = 5 },
252         .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1700000, .max = 3500000 },
258         .n = { .min = 3, .max = 6 },
259         .m = { .min = 2, .max = 256 },
260         .m1 = { .min = 0, .max = 0 },
261         .m2 = { .min = 0, .max = 254 },
262         .p = { .min = 7, .max = 112 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 14 },
266         .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270  *
271  * We calculate clock using (register_value + 2) for N/M1/M2, so here
272  * the range value for them is (actual_value - 2).
273  */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 5 },
278         .m = { .min = 79, .max = 127 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 10, .p2_fast = 5 },
285         .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 1760000, .max = 3510000 },
291         .n = { .min = 1, .max = 3 },
292         .m = { .min = 79, .max = 118 },
293         .m1 = { .min = 12, .max = 22 },
294         .m2 = { .min = 5, .max = 9 },
295         .p = { .min = 28, .max = 112 },
296         .p1 = { .min = 2, .max = 8 },
297         .p2 = { .dot_limit = 225000,
298                 .p2_slow = 14, .p2_fast = 14 },
299         .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 56 },
310         .p1 = { .min = 2, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313         .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 2 },
321         .m = { .min = 79, .max = 126 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328         .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 126 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 42 },
339         .p1 = { .min = 2, .max = 6 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342         .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000},
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 81, .max = 90 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 10, .max = 20 },
353         .p1 = { .min = 1, .max = 2},
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 10, .p2_fast = 10 },
356         .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360                                                 int refclk)
361 {
362         struct drm_device *dev = crtc->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         const intel_limit_t *limit;
365
366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368                     LVDS_CLKB_POWER_UP) {
369                         /* LVDS dual channel */
370                         if (refclk == 100000)
371                                 limit = &intel_limits_ironlake_dual_lvds_100m;
372                         else
373                                 limit = &intel_limits_ironlake_dual_lvds;
374                 } else {
375                         if (refclk == 100000)
376                                 limit = &intel_limits_ironlake_single_lvds_100m;
377                         else
378                                 limit = &intel_limits_ironlake_single_lvds;
379                 }
380         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381                         HAS_eDP)
382                 limit = &intel_limits_ironlake_display_port;
383         else
384                 limit = &intel_limits_ironlake_dac;
385
386         return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391         struct drm_device *dev = crtc->dev;
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         const intel_limit_t *limit;
394
395         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397                     LVDS_CLKB_POWER_UP)
398                         /* LVDS with dual channel */
399                         limit = &intel_limits_g4x_dual_channel_lvds;
400                 else
401                         /* LVDS with dual channel */
402                         limit = &intel_limits_g4x_single_channel_lvds;
403         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405                 limit = &intel_limits_g4x_hdmi;
406         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407                 limit = &intel_limits_g4x_sdvo;
408         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409                 limit = &intel_limits_g4x_display_port;
410         } else /* The option is for other outputs */
411                 limit = &intel_limits_i9xx_sdvo;
412
413         return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418         struct drm_device *dev = crtc->dev;
419         const intel_limit_t *limit;
420
421         if (HAS_PCH_SPLIT(dev))
422                 limit = intel_ironlake_limit(crtc, refclk);
423         else if (IS_G4X(dev)) {
424                 limit = intel_g4x_limit(crtc);
425         } else if (IS_PINEVIEW(dev)) {
426                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427                         limit = &intel_limits_pineview_lvds;
428                 else
429                         limit = &intel_limits_pineview_sdvo;
430         } else if (!IS_GEN2(dev)) {
431                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432                         limit = &intel_limits_i9xx_lvds;
433                 else
434                         limit = &intel_limits_i9xx_sdvo;
435         } else {
436                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437                         limit = &intel_limits_i8xx_lvds;
438                 else
439                         limit = &intel_limits_i8xx_dvo;
440         }
441         return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447         clock->m = clock->m2 + 2;
448         clock->p = clock->p1 * clock->p2;
449         clock->vco = refclk * clock->m / clock->n;
450         clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455         if (IS_PINEVIEW(dev)) {
456                 pineview_clock(refclk, clock);
457                 return;
458         }
459         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460         clock->p = clock->p1 * clock->p2;
461         clock->vco = refclk * clock->m / (clock->n + 2);
462         clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466  * Returns whether any output on the specified pipe is of the specified type
467  */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470         struct drm_device *dev = crtc->dev;
471         struct drm_mode_config *mode_config = &dev->mode_config;
472         struct intel_encoder *encoder;
473
474         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475                 if (encoder->base.crtc == crtc && encoder->type == type)
476                         return true;
477
478         return false;
479 }
480
481 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483  * Returns whether the given set of divisors are valid for a given refclk with
484  * the given connectors.
485  */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488                                const intel_limit_t *limit,
489                                const intel_clock_t *clock)
490 {
491         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
492                 INTELPllInvalid("p1 out of range\n");
493         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
494                 INTELPllInvalid("p out of range\n");
495         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
496                 INTELPllInvalid("m2 out of range\n");
497         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
498                 INTELPllInvalid("m1 out of range\n");
499         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500                 INTELPllInvalid("m1 <= m2\n");
501         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
502                 INTELPllInvalid("m out of range\n");
503         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
504                 INTELPllInvalid("n out of range\n");
505         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506                 INTELPllInvalid("vco out of range\n");
507         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508          * connector, etc., rather than just a single range.
509          */
510         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511                 INTELPllInvalid("dot out of range\n");
512
513         return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518                     int target, int refclk, intel_clock_t *match_clock,
519                     intel_clock_t *best_clock)
520
521 {
522         struct drm_device *dev = crtc->dev;
523         struct drm_i915_private *dev_priv = dev->dev_private;
524         intel_clock_t clock;
525         int err = target;
526
527         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
528             (I915_READ(LVDS)) != 0) {
529                 /*
530                  * For LVDS, if the panel is on, just rely on its current
531                  * settings for dual-channel.  We haven't figured out how to
532                  * reliably set up different single/dual channel state, if we
533                  * even can.
534                  */
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         clock.p2 = limit->p2.p2_fast;
538                 else
539                         clock.p2 = limit->p2.p2_slow;
540         } else {
541                 if (target < limit->p2.dot_limit)
542                         clock.p2 = limit->p2.p2_slow;
543                 else
544                         clock.p2 = limit->p2.p2_fast;
545         }
546
547         memset(best_clock, 0, sizeof(*best_clock));
548
549         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
550              clock.m1++) {
551                 for (clock.m2 = limit->m2.min;
552                      clock.m2 <= limit->m2.max; clock.m2++) {
553                         /* m1 is always 0 in Pineview */
554                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
555                                 break;
556                         for (clock.n = limit->n.min;
557                              clock.n <= limit->n.max; clock.n++) {
558                                 for (clock.p1 = limit->p1.min;
559                                         clock.p1 <= limit->p1.max; clock.p1++) {
560                                         int this_err;
561
562                                         intel_clock(dev, refclk, &clock);
563                                         if (!intel_PLL_is_valid(dev, limit,
564                                                                 &clock))
565                                                 continue;
566                                         if (match_clock &&
567                                             clock.p != match_clock->p)
568                                                 continue;
569
570                                         this_err = abs(clock.dot - target);
571                                         if (this_err < err) {
572                                                 *best_clock = clock;
573                                                 err = this_err;
574                                         }
575                                 }
576                         }
577                 }
578         }
579
580         return (err != target);
581 }
582
583 static bool
584 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
585                         int target, int refclk, intel_clock_t *match_clock,
586                         intel_clock_t *best_clock)
587 {
588         struct drm_device *dev = crtc->dev;
589         struct drm_i915_private *dev_priv = dev->dev_private;
590         intel_clock_t clock;
591         int max_n;
592         bool found;
593         /* approximately equals target * 0.00585 */
594         int err_most = (target >> 8) + (target >> 9);
595         found = false;
596
597         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
598                 int lvds_reg;
599
600                 if (HAS_PCH_SPLIT(dev))
601                         lvds_reg = PCH_LVDS;
602                 else
603                         lvds_reg = LVDS;
604                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
605                     LVDS_CLKB_POWER_UP)
606                         clock.p2 = limit->p2.p2_fast;
607                 else
608                         clock.p2 = limit->p2.p2_slow;
609         } else {
610                 if (target < limit->p2.dot_limit)
611                         clock.p2 = limit->p2.p2_slow;
612                 else
613                         clock.p2 = limit->p2.p2_fast;
614         }
615
616         memset(best_clock, 0, sizeof(*best_clock));
617         max_n = limit->n.max;
618         /* based on hardware requirement, prefer smaller n to precision */
619         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
620                 /* based on hardware requirement, prefere larger m1,m2 */
621                 for (clock.m1 = limit->m1.max;
622                      clock.m1 >= limit->m1.min; clock.m1--) {
623                         for (clock.m2 = limit->m2.max;
624                              clock.m2 >= limit->m2.min; clock.m2--) {
625                                 for (clock.p1 = limit->p1.max;
626                                      clock.p1 >= limit->p1.min; clock.p1--) {
627                                         int this_err;
628
629                                         intel_clock(dev, refclk, &clock);
630                                         if (!intel_PLL_is_valid(dev, limit,
631                                                                 &clock))
632                                                 continue;
633                                         if (match_clock &&
634                                             clock.p != match_clock->p)
635                                                 continue;
636
637                                         this_err = abs(clock.dot - target);
638                                         if (this_err < err_most) {
639                                                 *best_clock = clock;
640                                                 err_most = this_err;
641                                                 max_n = clock.n;
642                                                 found = true;
643                                         }
644                                 }
645                         }
646                 }
647         }
648         return found;
649 }
650
651 static bool
652 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
653                            int target, int refclk, intel_clock_t *match_clock,
654                            intel_clock_t *best_clock)
655 {
656         struct drm_device *dev = crtc->dev;
657         intel_clock_t clock;
658
659         if (target < 200000) {
660                 clock.n = 1;
661                 clock.p1 = 2;
662                 clock.p2 = 10;
663                 clock.m1 = 12;
664                 clock.m2 = 9;
665         } else {
666                 clock.n = 2;
667                 clock.p1 = 1;
668                 clock.p2 = 10;
669                 clock.m1 = 14;
670                 clock.m2 = 8;
671         }
672         intel_clock(dev, refclk, &clock);
673         memcpy(best_clock, &clock, sizeof(intel_clock_t));
674         return true;
675 }
676
677 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
678 static bool
679 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
680                       int target, int refclk, intel_clock_t *match_clock,
681                       intel_clock_t *best_clock)
682 {
683         intel_clock_t clock;
684         if (target < 200000) {
685                 clock.p1 = 2;
686                 clock.p2 = 10;
687                 clock.n = 2;
688                 clock.m1 = 23;
689                 clock.m2 = 8;
690         } else {
691                 clock.p1 = 1;
692                 clock.p2 = 10;
693                 clock.n = 1;
694                 clock.m1 = 14;
695                 clock.m2 = 2;
696         }
697         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
698         clock.p = (clock.p1 * clock.p2);
699         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
700         clock.vco = 0;
701         memcpy(best_clock, &clock, sizeof(intel_clock_t));
702         return true;
703 }
704
705 /**
706  * intel_wait_for_vblank - wait for vblank on a given pipe
707  * @dev: drm device
708  * @pipe: pipe to wait for
709  *
710  * Wait for vblank to occur on a given pipe.  Needed for various bits of
711  * mode setting code.
712  */
713 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
714 {
715         struct drm_i915_private *dev_priv = dev->dev_private;
716         int pipestat_reg = PIPESTAT(pipe);
717
718         /* Clear existing vblank status. Note this will clear any other
719          * sticky status fields as well.
720          *
721          * This races with i915_driver_irq_handler() with the result
722          * that either function could miss a vblank event.  Here it is not
723          * fatal, as we will either wait upon the next vblank interrupt or
724          * timeout.  Generally speaking intel_wait_for_vblank() is only
725          * called during modeset at which time the GPU should be idle and
726          * should *not* be performing page flips and thus not waiting on
727          * vblanks...
728          * Currently, the result of us stealing a vblank from the irq
729          * handler is that a single frame will be skipped during swapbuffers.
730          */
731         I915_WRITE(pipestat_reg,
732                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
733
734         /* Wait for vblank interrupt bit to set */
735         if (_intel_wait_for(dev,
736             I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS,
737             50, 1, "915vbl"))
738                 DRM_DEBUG_KMS("vblank wait timed out\n");
739 }
740
741 /*
742  * intel_wait_for_pipe_off - wait for pipe to turn off
743  * @dev: drm device
744  * @pipe: pipe to wait for
745  *
746  * After disabling a pipe, we can't wait for vblank in the usual way,
747  * spinning on the vblank interrupt status bit, since we won't actually
748  * see an interrupt when the pipe is disabled.
749  *
750  * On Gen4 and above:
751  *   wait for the pipe register state bit to turn off
752  *
753  * Otherwise:
754  *   wait for the display line value to settle (it usually
755  *   ends up stopping at the start of the next frame).
756  *
757  */
758 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
759 {
760         struct drm_i915_private *dev_priv = dev->dev_private;
761
762         if (INTEL_INFO(dev)->gen >= 4) {
763                 int reg = PIPECONF(pipe);
764
765                 /* Wait for the Pipe State to go off */
766                 if (_intel_wait_for(dev,
767                     (I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100,
768                     1, "915pip"))
769                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
770         } else {
771                 u32 last_line;
772                 int reg = PIPEDSL(pipe);
773                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
774
775                 /* Wait for the display line to settle */
776                 do {
777                         last_line = I915_READ(reg) & DSL_LINEMASK;
778                         DELAY(5000);
779                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
780                          time_after(timeout, jiffies));
781                 if (time_after(jiffies, timeout))
782                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
783         }
784 }
785
786 static const char *state_string(bool enabled)
787 {
788         return enabled ? "on" : "off";
789 }
790
791 /* Only for pre-ILK configs */
792 static void assert_pll(struct drm_i915_private *dev_priv,
793                        enum i915_pipe pipe, bool state)
794 {
795         int reg;
796         u32 val;
797         bool cur_state;
798
799         reg = DPLL(pipe);
800         val = I915_READ(reg);
801         cur_state = !!(val & DPLL_VCO_ENABLE);
802         if (cur_state != state)
803                 kprintf("PLL state assertion failure (expected %s, current %s)\n",
804                     state_string(state), state_string(cur_state));
805 }
806 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
807 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
808
809 /* For ILK+ */
810 static void assert_pch_pll(struct drm_i915_private *dev_priv,
811                            enum i915_pipe pipe, bool state)
812 {
813         int reg;
814         u32 val;
815         bool cur_state;
816
817         if (HAS_PCH_CPT(dev_priv->dev)) {
818                 u32 pch_dpll;
819
820                 pch_dpll = I915_READ(PCH_DPLL_SEL);
821
822                 /* Make sure the selected PLL is enabled to the transcoder */
823                 KASSERT(((pch_dpll >> (4 * pipe)) & 8) != 0,
824                     ("transcoder %d PLL not enabled\n", pipe));
825
826                 /* Convert the transcoder pipe number to a pll pipe number */
827                 pipe = (pch_dpll >> (4 * pipe)) & 1;
828         }
829
830         reg = PCH_DPLL(pipe);
831         val = I915_READ(reg);
832         cur_state = !!(val & DPLL_VCO_ENABLE);
833         if (cur_state != state)
834                 kprintf("PCH PLL state assertion failure (expected %s, current %s)\n",
835                     state_string(state), state_string(cur_state));
836 }
837 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
838 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
839
840 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
841                           enum i915_pipe pipe, bool state)
842 {
843         int reg;
844         u32 val;
845         bool cur_state;
846
847         reg = FDI_TX_CTL(pipe);
848         val = I915_READ(reg);
849         cur_state = !!(val & FDI_TX_ENABLE);
850         if (cur_state != state)
851                 kprintf("FDI TX state assertion failure (expected %s, current %s)\n",
852                     state_string(state), state_string(cur_state));
853 }
854 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
855 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
856
857 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
858                           enum i915_pipe pipe, bool state)
859 {
860         int reg;
861         u32 val;
862         bool cur_state;
863
864         reg = FDI_RX_CTL(pipe);
865         val = I915_READ(reg);
866         cur_state = !!(val & FDI_RX_ENABLE);
867         if (cur_state != state)
868                 kprintf("FDI RX state assertion failure (expected %s, current %s)\n",
869                     state_string(state), state_string(cur_state));
870 }
871 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
872 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
873
874 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
875                                       enum i915_pipe pipe)
876 {
877         int reg;
878         u32 val;
879
880         /* ILK FDI PLL is always enabled */
881         if (dev_priv->info->gen == 5)
882                 return;
883
884         reg = FDI_TX_CTL(pipe);
885         val = I915_READ(reg);
886         if (!(val & FDI_TX_PLL_ENABLE))
887                 kprintf("FDI TX PLL assertion failure, should be active but is disabled\n");
888 }
889
890 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
891                                       enum i915_pipe pipe)
892 {
893         int reg;
894         u32 val;
895
896         reg = FDI_RX_CTL(pipe);
897         val = I915_READ(reg);
898         if (!(val & FDI_RX_PLL_ENABLE))
899                 kprintf("FDI RX PLL assertion failure, should be active but is disabled\n");
900 }
901
902 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
903                                   enum i915_pipe pipe)
904 {
905         int pp_reg, lvds_reg;
906         u32 val;
907         enum i915_pipe panel_pipe = PIPE_A;
908         bool locked = true;
909
910         if (HAS_PCH_SPLIT(dev_priv->dev)) {
911                 pp_reg = PCH_PP_CONTROL;
912                 lvds_reg = PCH_LVDS;
913         } else {
914                 pp_reg = PP_CONTROL;
915                 lvds_reg = LVDS;
916         }
917
918         val = I915_READ(pp_reg);
919         if (!(val & PANEL_POWER_ON) ||
920             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
921                 locked = false;
922
923         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
924                 panel_pipe = PIPE_B;
925
926         if (panel_pipe == pipe && locked)
927                 kprintf("panel assertion failure, pipe %c regs locked\n",
928              pipe_name(pipe));
929 }
930
931 void assert_pipe(struct drm_i915_private *dev_priv,
932                  enum i915_pipe pipe, bool state)
933 {
934         int reg;
935         u32 val;
936         bool cur_state;
937
938         /* if we need the pipe A quirk it must be always on */
939         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
940                 state = true;
941
942         reg = PIPECONF(pipe);
943         val = I915_READ(reg);
944         cur_state = !!(val & PIPECONF_ENABLE);
945         if (cur_state != state)
946                 kprintf("pipe %c assertion failure (expected %s, current %s)\n",
947                     pipe_name(pipe), state_string(state), state_string(cur_state));
948 }
949
950 static void assert_plane(struct drm_i915_private *dev_priv,
951                          enum plane plane, bool state)
952 {
953         int reg;
954         u32 val;
955         bool cur_state;
956
957         reg = DSPCNTR(plane);
958         val = I915_READ(reg);
959         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
960         if (cur_state != state)
961                 kprintf("plane %c assertion failure, (expected %s, current %s)\n",
962                        plane_name(plane), state_string(state), state_string(cur_state));
963 }
964
965 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
966 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
967
968 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
969                                    enum i915_pipe pipe)
970 {
971         int reg, i;
972         u32 val;
973         int cur_pipe;
974
975         /* Planes are fixed to pipes on ILK+ */
976         if (HAS_PCH_SPLIT(dev_priv->dev)) {
977                 reg = DSPCNTR(pipe);
978                 val = I915_READ(reg);
979                 if ((val & DISPLAY_PLANE_ENABLE) != 0)
980                         kprintf("plane %c assertion failure, should be disabled but not\n",
981                                plane_name(pipe));
982                 return;
983         }
984
985         /* Need to check both planes against the pipe */
986         for (i = 0; i < 2; i++) {
987                 reg = DSPCNTR(i);
988                 val = I915_READ(reg);
989                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
990                         DISPPLANE_SEL_PIPE_SHIFT;
991                 if ((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe)
992                         kprintf("plane %c assertion failure, should be off on pipe %c but is still active\n",
993                      plane_name(i), pipe_name(pipe));
994         }
995 }
996
997 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
998 {
999         u32 val;
1000         bool enabled;
1001
1002         val = I915_READ(PCH_DREF_CONTROL);
1003         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1004                             DREF_SUPERSPREAD_SOURCE_MASK));
1005         if (!enabled)
1006                 kprintf("PCH refclk assertion failure, should be active but is disabled\n");
1007 }
1008
1009 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1010                                        enum i915_pipe pipe)
1011 {
1012         int reg;
1013         u32 val;
1014         bool enabled;
1015
1016         reg = TRANSCONF(pipe);
1017         val = I915_READ(reg);
1018         enabled = !!(val & TRANS_ENABLE);
1019         if (enabled)
1020                 kprintf("transcoder assertion failed, should be off on pipe %c but is still active\n",
1021              pipe_name(pipe));
1022 }
1023
1024 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1025                               enum i915_pipe pipe, u32 val)
1026 {
1027         if ((val & PORT_ENABLE) == 0)
1028                 return false;
1029
1030         if (HAS_PCH_CPT(dev_priv->dev)) {
1031                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1032                         return false;
1033         } else {
1034                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1035                         return false;
1036         }
1037         return true;
1038 }
1039
1040 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1041                               enum i915_pipe pipe, u32 val)
1042 {
1043         if ((val & LVDS_PORT_EN) == 0)
1044                 return false;
1045
1046         if (HAS_PCH_CPT(dev_priv->dev)) {
1047                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1048                         return false;
1049         } else {
1050                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1051                         return false;
1052         }
1053         return true;
1054 }
1055
1056 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1057                               enum i915_pipe pipe, u32 val)
1058 {
1059         if ((val & ADPA_DAC_ENABLE) == 0)
1060                 return false;
1061         if (HAS_PCH_CPT(dev_priv->dev)) {
1062                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1063                         return false;
1064         } else {
1065                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1066                         return false;
1067         }
1068         return true;
1069 }
1070
1071 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1072                             enum i915_pipe pipe, u32 port_sel, u32 val)
1073 {
1074         if ((val & DP_PORT_EN) == 0)
1075                 return false;
1076
1077         if (HAS_PCH_CPT(dev_priv->dev)) {
1078                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1079                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1080                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1081                         return false;
1082         } else {
1083                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1084                         return false;
1085         }
1086         return true;
1087 }
1088
1089 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1090                                    enum i915_pipe pipe, int reg, u32 port_sel)
1091 {
1092         u32 val = I915_READ(reg);
1093         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val))
1094                 kprintf("PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1095              reg, pipe_name(pipe));
1096 }
1097
1098 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1099                                      enum i915_pipe pipe, int reg)
1100 {
1101         u32 val = I915_READ(reg);
1102         if (hdmi_pipe_enabled(dev_priv, val, pipe))
1103                 kprintf("PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1104              reg, pipe_name(pipe));
1105 }
1106
1107 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1108                                       enum i915_pipe pipe)
1109 {
1110         int reg;
1111         u32 val;
1112
1113         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1114         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1115         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1116
1117         reg = PCH_ADPA;
1118         val = I915_READ(reg);
1119         if (adpa_pipe_enabled(dev_priv, val, pipe))
1120                 kprintf("PCH VGA enabled on transcoder %c, should be disabled\n",
1121              pipe_name(pipe));
1122
1123         reg = PCH_LVDS;
1124         val = I915_READ(reg);
1125         if (lvds_pipe_enabled(dev_priv, val, pipe))
1126                 kprintf("PCH LVDS enabled on transcoder %c, should be disabled\n",
1127              pipe_name(pipe));
1128
1129         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1130         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1131         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1132 }
1133
1134 /**
1135  * intel_enable_pll - enable a PLL
1136  * @dev_priv: i915 private structure
1137  * @pipe: pipe PLL to enable
1138  *
1139  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1140  * make sure the PLL reg is writable first though, since the panel write
1141  * protect mechanism may be enabled.
1142  *
1143  * Note!  This is for pre-ILK only.
1144  */
1145 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1146 {
1147         int reg;
1148         u32 val;
1149
1150         /* No really, not for ILK+ */
1151         KASSERT(dev_priv->info->gen < 5, ("Wrong device gen"));
1152
1153         /* PLL is protected by panel, make sure we can write it */
1154         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1155                 assert_panel_unlocked(dev_priv, pipe);
1156
1157         reg = DPLL(pipe);
1158         val = I915_READ(reg);
1159         val |= DPLL_VCO_ENABLE;
1160
1161         /* We do this three times for luck */
1162         I915_WRITE(reg, val);
1163         POSTING_READ(reg);
1164         DELAY(150); /* wait for warmup */
1165         I915_WRITE(reg, val);
1166         POSTING_READ(reg);
1167         DELAY(150); /* wait for warmup */
1168         I915_WRITE(reg, val);
1169         POSTING_READ(reg);
1170         DELAY(150); /* wait for warmup */
1171 }
1172
1173 /**
1174  * intel_disable_pll - disable a PLL
1175  * @dev_priv: i915 private structure
1176  * @pipe: pipe PLL to disable
1177  *
1178  * Disable the PLL for @pipe, making sure the pipe is off first.
1179  *
1180  * Note!  This is for pre-ILK only.
1181  */
1182 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1183 {
1184         int reg;
1185         u32 val;
1186
1187         /* Don't disable pipe A or pipe A PLLs if needed */
1188         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1189                 return;
1190
1191         /* Make sure the pipe isn't still relying on us */
1192         assert_pipe_disabled(dev_priv, pipe);
1193
1194         reg = DPLL(pipe);
1195         val = I915_READ(reg);
1196         val &= ~DPLL_VCO_ENABLE;
1197         I915_WRITE(reg, val);
1198         POSTING_READ(reg);
1199 }
1200
1201 /**
1202  * intel_enable_pch_pll - enable PCH PLL
1203  * @dev_priv: i915 private structure
1204  * @pipe: pipe PLL to enable
1205  *
1206  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1207  * drives the transcoder clock.
1208  */
1209 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1210                                  enum i915_pipe pipe)
1211 {
1212         int reg;
1213         u32 val;
1214
1215         if (pipe > 1)
1216                 return;
1217
1218         /* PCH only available on ILK+ */
1219         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1220
1221         /* PCH refclock must be enabled first */
1222         assert_pch_refclk_enabled(dev_priv);
1223
1224         reg = PCH_DPLL(pipe);
1225         val = I915_READ(reg);
1226         val |= DPLL_VCO_ENABLE;
1227         I915_WRITE(reg, val);
1228         POSTING_READ(reg);
1229         DELAY(200);
1230 }
1231
1232 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1233                                   enum i915_pipe pipe)
1234 {
1235         int reg;
1236         u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1237                 pll_sel = TRANSC_DPLL_ENABLE;
1238
1239         if (pipe > 1)
1240                 return;
1241
1242         /* PCH only available on ILK+ */
1243         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1244
1245         /* Make sure transcoder isn't still depending on us */
1246         assert_transcoder_disabled(dev_priv, pipe);
1247
1248         if (pipe == 0)
1249                 pll_sel |= TRANSC_DPLLA_SEL;
1250         else if (pipe == 1)
1251                 pll_sel |= TRANSC_DPLLB_SEL;
1252
1253
1254         if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1255                 return;
1256
1257         reg = PCH_DPLL(pipe);
1258         val = I915_READ(reg);
1259         val &= ~DPLL_VCO_ENABLE;
1260         I915_WRITE(reg, val);
1261         POSTING_READ(reg);
1262         DELAY(200);
1263 }
1264
1265 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1266                                     enum i915_pipe pipe)
1267 {
1268         int reg;
1269         u32 val, pipeconf_val;
1270         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1271
1272         /* PCH only available on ILK+ */
1273         KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1274
1275         /* Make sure PCH DPLL is enabled */
1276         assert_pch_pll_enabled(dev_priv, pipe);
1277
1278         /* FDI must be feeding us bits for PCH ports */
1279         assert_fdi_tx_enabled(dev_priv, pipe);
1280         assert_fdi_rx_enabled(dev_priv, pipe);
1281
1282
1283         reg = TRANSCONF(pipe);
1284         val = I915_READ(reg);
1285         pipeconf_val = I915_READ(PIPECONF(pipe));
1286
1287         if (HAS_PCH_IBX(dev_priv->dev)) {
1288                 /*
1289                  * make the BPC in transcoder be consistent with
1290                  * that in pipeconf reg.
1291                  */
1292                 val &= ~PIPE_BPC_MASK;
1293                 val |= pipeconf_val & PIPE_BPC_MASK;
1294         }
1295
1296         val &= ~TRANS_INTERLACE_MASK;
1297         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1298                 if (HAS_PCH_IBX(dev_priv->dev) &&
1299                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1300                         val |= TRANS_LEGACY_INTERLACED_ILK;
1301                 else
1302                         val |= TRANS_INTERLACED;
1303         else
1304                 val |= TRANS_PROGRESSIVE;
1305
1306         I915_WRITE(reg, val | TRANS_ENABLE);
1307         if (_intel_wait_for(dev_priv->dev, I915_READ(reg) & TRANS_STATE_ENABLE,
1308             100, 1, "915trc"))
1309                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1310 }
1311
1312 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1313                                      enum i915_pipe pipe)
1314 {
1315         int reg;
1316         u32 val;
1317
1318         /* FDI relies on the transcoder */
1319         assert_fdi_tx_disabled(dev_priv, pipe);
1320         assert_fdi_rx_disabled(dev_priv, pipe);
1321
1322         /* Ports must be off as well */
1323         assert_pch_ports_disabled(dev_priv, pipe);
1324
1325         reg = TRANSCONF(pipe);
1326         val = I915_READ(reg);
1327         val &= ~TRANS_ENABLE;
1328         I915_WRITE(reg, val);
1329         /* wait for PCH transcoder off, transcoder state */
1330         if (_intel_wait_for(dev_priv->dev,
1331             (I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50,
1332             1, "915trd"))
1333                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1334 }
1335
1336 /**
1337  * intel_enable_pipe - enable a pipe, asserting requirements
1338  * @dev_priv: i915 private structure
1339  * @pipe: pipe to enable
1340  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1341  *
1342  * Enable @pipe, making sure that various hardware specific requirements
1343  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1344  *
1345  * @pipe should be %PIPE_A or %PIPE_B.
1346  *
1347  * Will wait until the pipe is actually running (i.e. first vblank) before
1348  * returning.
1349  */
1350 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
1351                               bool pch_port)
1352 {
1353         int reg;
1354         u32 val;
1355
1356         /*
1357          * A pipe without a PLL won't actually be able to drive bits from
1358          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1359          * need the check.
1360          */
1361         if (!HAS_PCH_SPLIT(dev_priv->dev))
1362                 assert_pll_enabled(dev_priv, pipe);
1363         else {
1364                 if (pch_port) {
1365                         /* if driving the PCH, we need FDI enabled */
1366                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1367                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1368                 }
1369                 /* FIXME: assert CPU port conditions for SNB+ */
1370         }
1371
1372         reg = PIPECONF(pipe);
1373         val = I915_READ(reg);
1374         if (val & PIPECONF_ENABLE)
1375                 return;
1376
1377         I915_WRITE(reg, val | PIPECONF_ENABLE);
1378         intel_wait_for_vblank(dev_priv->dev, pipe);
1379 }
1380
1381 /**
1382  * intel_disable_pipe - disable a pipe, asserting requirements
1383  * @dev_priv: i915 private structure
1384  * @pipe: pipe to disable
1385  *
1386  * Disable @pipe, making sure that various hardware specific requirements
1387  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1388  *
1389  * @pipe should be %PIPE_A or %PIPE_B.
1390  *
1391  * Will wait until the pipe has shut down before returning.
1392  */
1393 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1394                                enum i915_pipe pipe)
1395 {
1396         int reg;
1397         u32 val;
1398
1399         /*
1400          * Make sure planes won't keep trying to pump pixels to us,
1401          * or we might hang the display.
1402          */
1403         assert_planes_disabled(dev_priv, pipe);
1404
1405         /* Don't disable pipe A or pipe A PLLs if needed */
1406         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1407                 return;
1408
1409         reg = PIPECONF(pipe);
1410         val = I915_READ(reg);
1411         if ((val & PIPECONF_ENABLE) == 0)
1412                 return;
1413
1414         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1415         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1416 }
1417
1418 /*
1419  * Plane regs are double buffered, going from enabled->disabled needs a
1420  * trigger in order to latch.  The display address reg provides this.
1421  */
1422 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1423                                       enum plane plane)
1424 {
1425         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1426         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1427 }
1428
1429 /**
1430  * intel_enable_plane - enable a display plane on a given pipe
1431  * @dev_priv: i915 private structure
1432  * @plane: plane to enable
1433  * @pipe: pipe being fed
1434  *
1435  * Enable @plane on @pipe, making sure that @pipe is running first.
1436  */
1437 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1438                                enum plane plane, enum i915_pipe pipe)
1439 {
1440         int reg;
1441         u32 val;
1442
1443         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1444         assert_pipe_enabled(dev_priv, pipe);
1445
1446         reg = DSPCNTR(plane);
1447         val = I915_READ(reg);
1448         if (val & DISPLAY_PLANE_ENABLE)
1449                 return;
1450
1451         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1452         intel_flush_display_plane(dev_priv, plane);
1453         intel_wait_for_vblank(dev_priv->dev, pipe);
1454 }
1455
1456 /**
1457  * intel_disable_plane - disable a display plane
1458  * @dev_priv: i915 private structure
1459  * @plane: plane to disable
1460  * @pipe: pipe consuming the data
1461  *
1462  * Disable @plane; should be an independent operation.
1463  */
1464 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1465                                 enum plane plane, enum i915_pipe pipe)
1466 {
1467         int reg;
1468         u32 val;
1469
1470         reg = DSPCNTR(plane);
1471         val = I915_READ(reg);
1472         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1473                 return;
1474
1475         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1476         intel_flush_display_plane(dev_priv, plane);
1477         intel_wait_for_vblank(dev_priv->dev, pipe);
1478 }
1479
1480 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1481                            enum i915_pipe pipe, int reg, u32 port_sel)
1482 {
1483         u32 val = I915_READ(reg);
1484         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1485                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1486                 I915_WRITE(reg, val & ~DP_PORT_EN);
1487         }
1488 }
1489
1490 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1491                              enum i915_pipe pipe, int reg)
1492 {
1493         u32 val = I915_READ(reg);
1494         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1495                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1496                               reg, pipe);
1497                 I915_WRITE(reg, val & ~PORT_ENABLE);
1498         }
1499 }
1500
1501 /* Disable any ports connected to this transcoder */
1502 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1503                                     enum i915_pipe pipe)
1504 {
1505         u32 reg, val;
1506
1507         val = I915_READ(PCH_PP_CONTROL);
1508         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1509
1510         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1511         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1512         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1513
1514         reg = PCH_ADPA;
1515         val = I915_READ(reg);
1516         if (adpa_pipe_enabled(dev_priv, val, pipe))
1517                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1518
1519         reg = PCH_LVDS;
1520         val = I915_READ(reg);
1521         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1522                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1523                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1524                 POSTING_READ(reg);
1525                 DELAY(100);
1526         }
1527
1528         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1529         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1530         disable_pch_hdmi(dev_priv, pipe, HDMID);
1531 }
1532
1533 static void i8xx_disable_fbc(struct drm_device *dev)
1534 {
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536         u32 fbc_ctl;
1537
1538         /* Disable compression */
1539         fbc_ctl = I915_READ(FBC_CONTROL);
1540         if ((fbc_ctl & FBC_CTL_EN) == 0)
1541                 return;
1542
1543         fbc_ctl &= ~FBC_CTL_EN;
1544         I915_WRITE(FBC_CONTROL, fbc_ctl);
1545
1546         /* Wait for compressing bit to clear */
1547         if (_intel_wait_for(dev,
1548             (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
1549             1, "915fbd")) {
1550                 DRM_DEBUG_KMS("FBC idle timed out\n");
1551                 return;
1552         }
1553
1554         DRM_DEBUG_KMS("disabled FBC\n");
1555 }
1556
1557 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558 {
1559         struct drm_device *dev = crtc->dev;
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_framebuffer *fb = crtc->fb;
1562         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563         struct drm_i915_gem_object *obj = intel_fb->obj;
1564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565         int cfb_pitch;
1566         int plane, i;
1567         u32 fbc_ctl, fbc_ctl2;
1568
1569         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1570         if (fb->pitches[0] < cfb_pitch)
1571                 cfb_pitch = fb->pitches[0];
1572
1573         /* FBC_CTL wants 64B units */
1574         cfb_pitch = (cfb_pitch / 64) - 1;
1575         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1576
1577         /* Clear old tags */
1578         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1579                 I915_WRITE(FBC_TAG + (i * 4), 0);
1580
1581         /* Set it up... */
1582         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1583         fbc_ctl2 |= plane;
1584         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1585         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1586
1587         /* enable it... */
1588         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1589         if (IS_I945GM(dev))
1590                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1591         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1592         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1593         fbc_ctl |= obj->fence_reg;
1594         I915_WRITE(FBC_CONTROL, fbc_ctl);
1595
1596         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1597                       cfb_pitch, crtc->y, intel_crtc->plane);
1598 }
1599
1600 static bool i8xx_fbc_enabled(struct drm_device *dev)
1601 {
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603
1604         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1605 }
1606
1607 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1608 {
1609         struct drm_device *dev = crtc->dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         struct drm_framebuffer *fb = crtc->fb;
1612         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1613         struct drm_i915_gem_object *obj = intel_fb->obj;
1614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1615         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1616         unsigned long stall_watermark = 200;
1617         u32 dpfc_ctl;
1618
1619         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1620         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1621         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1622
1623         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1624                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1625                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1626         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1627
1628         /* enable it... */
1629         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1630
1631         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1632 }
1633
1634 static void g4x_disable_fbc(struct drm_device *dev)
1635 {
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         u32 dpfc_ctl;
1638
1639         /* Disable compression */
1640         dpfc_ctl = I915_READ(DPFC_CONTROL);
1641         if (dpfc_ctl & DPFC_CTL_EN) {
1642                 dpfc_ctl &= ~DPFC_CTL_EN;
1643                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1644
1645                 DRM_DEBUG_KMS("disabled FBC\n");
1646         }
1647 }
1648
1649 static bool g4x_fbc_enabled(struct drm_device *dev)
1650 {
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652
1653         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1654 }
1655
1656 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1657 {
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659         u32 blt_ecoskpd;
1660
1661         /* Make sure blitter notifies FBC of writes */
1662         gen6_gt_force_wake_get(dev_priv);
1663         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1664         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1665                 GEN6_BLITTER_LOCK_SHIFT;
1666         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1667         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1668         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1669         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1670                          GEN6_BLITTER_LOCK_SHIFT);
1671         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1672         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1673         gen6_gt_force_wake_put(dev_priv);
1674 }
1675
1676 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1677 {
1678         struct drm_device *dev = crtc->dev;
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680         struct drm_framebuffer *fb = crtc->fb;
1681         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1682         struct drm_i915_gem_object *obj = intel_fb->obj;
1683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1684         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1685         unsigned long stall_watermark = 200;
1686         u32 dpfc_ctl;
1687
1688         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1689         dpfc_ctl &= DPFC_RESERVED;
1690         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1691         /* Set persistent mode for front-buffer rendering, ala X. */
1692         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1693         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1694         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1695
1696         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1697                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1698                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1699         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1700         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1701         /* enable it... */
1702         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1703
1704         if (IS_GEN6(dev)) {
1705                 I915_WRITE(SNB_DPFC_CTL_SA,
1706                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1707                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1708                 sandybridge_blit_fbc_update(dev);
1709         }
1710
1711         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1712 }
1713
1714 static void ironlake_disable_fbc(struct drm_device *dev)
1715 {
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717         u32 dpfc_ctl;
1718
1719         /* Disable compression */
1720         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1721         if (dpfc_ctl & DPFC_CTL_EN) {
1722                 dpfc_ctl &= ~DPFC_CTL_EN;
1723                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1724
1725                 DRM_DEBUG_KMS("disabled FBC\n");
1726         }
1727 }
1728
1729 static bool ironlake_fbc_enabled(struct drm_device *dev)
1730 {
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732
1733         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1734 }
1735
1736 bool intel_fbc_enabled(struct drm_device *dev)
1737 {
1738         struct drm_i915_private *dev_priv = dev->dev_private;
1739
1740         if (!dev_priv->display.fbc_enabled)
1741                 return false;
1742
1743         return dev_priv->display.fbc_enabled(dev);
1744 }
1745
1746 static void intel_fbc_work_fn(void *arg, int pending)
1747 {
1748         struct intel_fbc_work *work = arg;
1749         struct drm_device *dev = work->crtc->dev;
1750         struct drm_i915_private *dev_priv = dev->dev_private;
1751
1752         DRM_LOCK(dev);
1753         if (work == dev_priv->fbc_work) {
1754                 /* Double check that we haven't switched fb without cancelling
1755                  * the prior work.
1756                  */
1757                 if (work->crtc->fb == work->fb) {
1758                         dev_priv->display.enable_fbc(work->crtc,
1759                                                      work->interval);
1760
1761                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1762                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1763                         dev_priv->cfb_y = work->crtc->y;
1764                 }
1765
1766                 dev_priv->fbc_work = NULL;
1767         }
1768         DRM_UNLOCK(dev);
1769
1770         drm_free(work, DRM_MEM_KMS);
1771 }
1772
1773 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1774 {
1775         u_int pending;
1776
1777         if (dev_priv->fbc_work == NULL)
1778                 return;
1779
1780         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1781
1782         /* Synchronisation is provided by struct_mutex and checking of
1783          * dev_priv->fbc_work, so we can perform the cancellation
1784          * entirely asynchronously.
1785          */
1786         if (taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->fbc_work->task,
1787             &pending) == 0)
1788                 /* tasklet was killed before being run, clean up */
1789                 drm_free(dev_priv->fbc_work, DRM_MEM_KMS);
1790
1791         /* Mark the work as no longer wanted so that if it does
1792          * wake-up (because the work was already running and waiting
1793          * for our mutex), it will discover that is no longer
1794          * necessary to run.
1795          */
1796         dev_priv->fbc_work = NULL;
1797 }
1798
1799 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1800 {
1801         struct intel_fbc_work *work;
1802         struct drm_device *dev = crtc->dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804
1805         if (!dev_priv->display.enable_fbc)
1806                 return;
1807
1808         intel_cancel_fbc_work(dev_priv);
1809
1810         work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
1811         work->crtc = crtc;
1812         work->fb = crtc->fb;
1813         work->interval = interval;
1814         TIMEOUT_TASK_INIT(dev_priv->tq, &work->task, 0, intel_fbc_work_fn,
1815             work);
1816
1817         dev_priv->fbc_work = work;
1818
1819         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1820
1821         /* Delay the actual enabling to let pageflipping cease and the
1822          * display to settle before starting the compression. Note that
1823          * this delay also serves a second purpose: it allows for a
1824          * vblank to pass after disabling the FBC before we attempt
1825          * to modify the control registers.
1826          *
1827          * A more complicated solution would involve tracking vblanks
1828          * following the termination of the page-flipping sequence
1829          * and indeed performing the enable as a co-routine and not
1830          * waiting synchronously upon the vblank.
1831          */
1832         taskqueue_enqueue_timeout(dev_priv->tq, &work->task,
1833             msecs_to_jiffies(50));
1834 }
1835
1836 void intel_disable_fbc(struct drm_device *dev)
1837 {
1838         struct drm_i915_private *dev_priv = dev->dev_private;
1839
1840         intel_cancel_fbc_work(dev_priv);
1841
1842         if (!dev_priv->display.disable_fbc)
1843                 return;
1844
1845         dev_priv->display.disable_fbc(dev);
1846         dev_priv->cfb_plane = -1;
1847 }
1848
1849 /**
1850  * intel_update_fbc - enable/disable FBC as needed
1851  * @dev: the drm_device
1852  *
1853  * Set up the framebuffer compression hardware at mode set time.  We
1854  * enable it if possible:
1855  *   - plane A only (on pre-965)
1856  *   - no pixel mulitply/line duplication
1857  *   - no alpha buffer discard
1858  *   - no dual wide
1859  *   - framebuffer <= 2048 in width, 1536 in height
1860  *
1861  * We can't assume that any compression will take place (worst case),
1862  * so the compressed buffer has to be the same size as the uncompressed
1863  * one.  It also must reside (along with the line length buffer) in
1864  * stolen memory.
1865  *
1866  * We need to enable/disable FBC on a global basis.
1867  */
1868 static void intel_update_fbc(struct drm_device *dev)
1869 {
1870         struct drm_i915_private *dev_priv = dev->dev_private;
1871         struct drm_crtc *crtc = NULL, *tmp_crtc;
1872         struct intel_crtc *intel_crtc;
1873         struct drm_framebuffer *fb;
1874         struct intel_framebuffer *intel_fb;
1875         struct drm_i915_gem_object *obj;
1876         int enable_fbc;
1877
1878         DRM_DEBUG_KMS("\n");
1879
1880         if (!i915_powersave)
1881                 return;
1882
1883         if (!I915_HAS_FBC(dev))
1884                 return;
1885
1886         /*
1887          * If FBC is already on, we just have to verify that we can
1888          * keep it that way...
1889          * Need to disable if:
1890          *   - more than one pipe is active
1891          *   - changing FBC params (stride, fence, mode)
1892          *   - new fb is too large to fit in compressed buffer
1893          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1894          */
1895         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1896                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1897                         if (crtc) {
1898                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1899                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1900                                 goto out_disable;
1901                         }
1902                         crtc = tmp_crtc;
1903                 }
1904         }
1905
1906         if (!crtc || crtc->fb == NULL) {
1907                 DRM_DEBUG_KMS("no output, disabling\n");
1908                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1909                 goto out_disable;
1910         }
1911
1912         intel_crtc = to_intel_crtc(crtc);
1913         fb = crtc->fb;
1914         intel_fb = to_intel_framebuffer(fb);
1915         obj = intel_fb->obj;
1916
1917         enable_fbc = i915_enable_fbc;
1918         if (enable_fbc < 0) {
1919                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1920                 enable_fbc = 1;
1921                 if (INTEL_INFO(dev)->gen <= 6)
1922                         enable_fbc = 0;
1923         }
1924         if (!enable_fbc) {
1925                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1926                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1927                 goto out_disable;
1928         }
1929         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1930                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1931                               "compression\n");
1932                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1933                 goto out_disable;
1934         }
1935         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1936             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1937                 DRM_DEBUG_KMS("mode incompatible with compression, "
1938                               "disabling\n");
1939                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1940                 goto out_disable;
1941         }
1942         if ((crtc->mode.hdisplay > 2048) ||
1943             (crtc->mode.vdisplay > 1536)) {
1944                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1945                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1946                 goto out_disable;
1947         }
1948         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1949                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1950                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1951                 goto out_disable;
1952         }
1953         if (obj->tiling_mode != I915_TILING_X ||
1954             obj->fence_reg == I915_FENCE_REG_NONE) {
1955                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1956                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1957                 goto out_disable;
1958         }
1959
1960 #ifdef DDB
1961         /* If the kernel debugger is active, always disable compression */
1962         if (db_active)
1963                 goto out_disable;
1964 #endif
1965
1966         /* If the scanout has not changed, don't modify the FBC settings.
1967          * Note that we make the fundamental assumption that the fb->obj
1968          * cannot be unpinned (and have its GTT offset and fence revoked)
1969          * without first being decoupled from the scanout and FBC disabled.
1970          */
1971         if (dev_priv->cfb_plane == intel_crtc->plane &&
1972             dev_priv->cfb_fb == fb->base.id &&
1973             dev_priv->cfb_y == crtc->y)
1974                 return;
1975
1976         if (intel_fbc_enabled(dev)) {
1977                 /* We update FBC along two paths, after changing fb/crtc
1978                  * configuration (modeswitching) and after page-flipping
1979                  * finishes. For the latter, we know that not only did
1980                  * we disable the FBC at the start of the page-flip
1981                  * sequence, but also more than one vblank has passed.
1982                  *
1983                  * For the former case of modeswitching, it is possible
1984                  * to switch between two FBC valid configurations
1985                  * instantaneously so we do need to disable the FBC
1986                  * before we can modify its control registers. We also
1987                  * have to wait for the next vblank for that to take
1988                  * effect. However, since we delay enabling FBC we can
1989                  * assume that a vblank has passed since disabling and
1990                  * that we can safely alter the registers in the deferred
1991                  * callback.
1992                  *
1993                  * In the scenario that we go from a valid to invalid
1994                  * and then back to valid FBC configuration we have
1995                  * no strict enforcement that a vblank occurred since
1996                  * disabling the FBC. However, along all current pipe
1997                  * disabling paths we do need to wait for a vblank at
1998                  * some point. And we wait before enabling FBC anyway.
1999                  */
2000                 DRM_DEBUG_KMS("disabling active FBC for update\n");
2001                 intel_disable_fbc(dev);
2002         }
2003
2004         intel_enable_fbc(crtc, 500);
2005         return;
2006
2007 out_disable:
2008         /* Multiple disables should be harmless */
2009         if (intel_fbc_enabled(dev)) {
2010                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2011                 intel_disable_fbc(dev);
2012         }
2013 }
2014
2015 int
2016 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2017                            struct drm_i915_gem_object *obj,
2018                            struct intel_ring_buffer *pipelined)
2019 {
2020         struct drm_i915_private *dev_priv = dev->dev_private;
2021         u32 alignment;
2022         int ret;
2023
2024         alignment = 0; /* shut gcc */
2025         switch (obj->tiling_mode) {
2026         case I915_TILING_NONE:
2027                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2028                         alignment = 128 * 1024;
2029                 else if (INTEL_INFO(dev)->gen >= 4)
2030                         alignment = 4 * 1024;
2031                 else
2032                         alignment = 64 * 1024;
2033                 break;
2034         case I915_TILING_X:
2035                 /* pin() will align the object as required by fence */
2036                 alignment = 0;
2037                 break;
2038         case I915_TILING_Y:
2039                 /* FIXME: Is this true? */
2040                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2041                 return -EINVAL;
2042         default:
2043                 KASSERT(0, ("Wrong tiling for fb obj"));
2044         }
2045
2046         dev_priv->mm.interruptible = false;
2047         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2048         if (ret)
2049                 goto err_interruptible;
2050
2051         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2052          * fence, whereas 965+ only requires a fence if using
2053          * framebuffer compression.  For simplicity, we always install
2054          * a fence as the cost is not that onerous.
2055          */
2056         if (obj->tiling_mode != I915_TILING_NONE) {
2057                 ret = i915_gem_object_get_fence(obj, pipelined);
2058                 if (ret)
2059                         goto err_unpin;
2060
2061                 i915_gem_object_pin_fence(obj);
2062         }
2063
2064         dev_priv->mm.interruptible = true;
2065         return 0;
2066
2067 err_unpin:
2068         i915_gem_object_unpin(obj);
2069 err_interruptible:
2070         dev_priv->mm.interruptible = true;
2071         return ret;
2072 }
2073
2074 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2075 {
2076         i915_gem_object_unpin_fence(obj);
2077         i915_gem_object_unpin(obj);
2078 }
2079
2080 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2081                              int x, int y)
2082 {
2083         struct drm_device *dev = crtc->dev;
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2086         struct intel_framebuffer *intel_fb;
2087         struct drm_i915_gem_object *obj;
2088         int plane = intel_crtc->plane;
2089         unsigned long Start, Offset;
2090         u32 dspcntr;
2091         u32 reg;
2092
2093         switch (plane) {
2094         case 0:
2095         case 1:
2096                 break;
2097         default:
2098                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2099                 return -EINVAL;
2100         }
2101
2102         intel_fb = to_intel_framebuffer(fb);
2103         obj = intel_fb->obj;
2104
2105         reg = DSPCNTR(plane);
2106         dspcntr = I915_READ(reg);
2107         /* Mask out pixel format bits in case we change it */
2108         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2109         switch (fb->bits_per_pixel) {
2110         case 8:
2111                 dspcntr |= DISPPLANE_8BPP;
2112                 break;
2113         case 16:
2114                 if (fb->depth == 15)
2115                         dspcntr |= DISPPLANE_15_16BPP;
2116                 else
2117                         dspcntr |= DISPPLANE_16BPP;
2118                 break;
2119         case 24:
2120         case 32:
2121                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2122                 break;
2123         default:
2124                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2125                 return -EINVAL;
2126         }
2127         if (INTEL_INFO(dev)->gen >= 4) {
2128                 if (obj->tiling_mode != I915_TILING_NONE)
2129                         dspcntr |= DISPPLANE_TILED;
2130                 else
2131                         dspcntr &= ~DISPPLANE_TILED;
2132         }
2133
2134         I915_WRITE(reg, dspcntr);
2135
2136         Start = obj->gtt_offset;
2137         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2138
2139         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2140                       Start, Offset, x, y, fb->pitches[0]);
2141         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2142         if (INTEL_INFO(dev)->gen >= 4) {
2143                 I915_WRITE(DSPSURF(plane), Start);
2144                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2145                 I915_WRITE(DSPADDR(plane), Offset);
2146         } else
2147                 I915_WRITE(DSPADDR(plane), Start + Offset);
2148         POSTING_READ(reg);
2149
2150         return (0);
2151 }
2152
2153 static int ironlake_update_plane(struct drm_crtc *crtc,
2154                                  struct drm_framebuffer *fb, int x, int y)
2155 {
2156         struct drm_device *dev = crtc->dev;
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159         struct intel_framebuffer *intel_fb;
2160         struct drm_i915_gem_object *obj;
2161         int plane = intel_crtc->plane;
2162         unsigned long Start, Offset;
2163         u32 dspcntr;
2164         u32 reg;
2165
2166         switch (plane) {
2167         case 0:
2168         case 1:
2169         case 2:
2170                 break;
2171         default:
2172                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2173                 return -EINVAL;
2174         }
2175
2176         intel_fb = to_intel_framebuffer(fb);
2177         obj = intel_fb->obj;
2178
2179         reg = DSPCNTR(plane);
2180         dspcntr = I915_READ(reg);
2181         /* Mask out pixel format bits in case we change it */
2182         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2183         switch (fb->bits_per_pixel) {
2184         case 8:
2185                 dspcntr |= DISPPLANE_8BPP;
2186                 break;
2187         case 16:
2188                 if (fb->depth != 16) {
2189                         DRM_ERROR("bpp 16, depth %d\n", fb->depth);
2190                         return -EINVAL;
2191                 }
2192
2193                 dspcntr |= DISPPLANE_16BPP;
2194                 break;
2195         case 24:
2196         case 32:
2197                 if (fb->depth == 24)
2198                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2199                 else if (fb->depth == 30)
2200                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2201                 else {
2202                         DRM_ERROR("bpp %d depth %d\n", fb->bits_per_pixel,
2203                             fb->depth);
2204                         return -EINVAL;
2205                 }
2206                 break;
2207         default:
2208                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2209                 return -EINVAL;
2210         }
2211
2212         if (obj->tiling_mode != I915_TILING_NONE)
2213                 dspcntr |= DISPPLANE_TILED;
2214         else
2215                 dspcntr &= ~DISPPLANE_TILED;
2216
2217         /* must disable */
2218         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2219
2220         I915_WRITE(reg, dspcntr);
2221
2222         Start = obj->gtt_offset;
2223         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2224
2225         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2226                       Start, Offset, x, y, fb->pitches[0]);
2227         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2228         I915_WRITE(DSPSURF(plane), Start);
2229         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2230         I915_WRITE(DSPADDR(plane), Offset);
2231         POSTING_READ(reg);
2232
2233         return 0;
2234 }
2235
2236 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2237 static int
2238 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2239                            int x, int y, enum mode_set_atomic state)
2240 {
2241         struct drm_device *dev = crtc->dev;
2242         struct drm_i915_private *dev_priv = dev->dev_private;
2243         int ret;
2244
2245         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2246         if (ret)
2247                 return ret;
2248
2249         intel_update_fbc(dev);
2250         intel_increase_pllclock(crtc);
2251
2252         return 0;
2253 }
2254
2255 static int
2256 intel_finish_fb(struct drm_framebuffer *old_fb)
2257 {
2258         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2259         struct drm_device *dev = obj->base.dev;
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         bool was_interruptible = dev_priv->mm.interruptible;
2262         int ret;
2263
2264         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2265         while (!atomic_load_acq_int(&dev_priv->mm.wedged) &&
2266             atomic_load_acq_int(&obj->pending_flip) != 0) {
2267                 lksleep(&obj->pending_flip, &dev->event_lock,
2268                     0, "915flp", 0);
2269         }
2270         lockmgr(&dev->event_lock, LK_RELEASE);
2271
2272         /* Big Hammer, we also need to ensure that any pending
2273          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2274          * current scanout is retired before unpinning the old
2275          * framebuffer.
2276          *
2277          * This should only fail upon a hung GPU, in which case we
2278          * can safely continue.
2279          */
2280         dev_priv->mm.interruptible = false;
2281         ret = i915_gem_object_finish_gpu(obj);
2282         dev_priv->mm.interruptible = was_interruptible;
2283         return ret;
2284 }
2285
2286 static int
2287 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2288                     struct drm_framebuffer *old_fb)
2289 {
2290         struct drm_device *dev = crtc->dev;
2291 #if 0
2292         struct drm_i915_master_private *master_priv;
2293 #else
2294         drm_i915_private_t *dev_priv = dev->dev_private;
2295 #endif
2296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297         int ret;
2298
2299         /* no fb bound */
2300         if (!crtc->fb) {
2301                 DRM_ERROR("No FB bound\n");
2302                 return 0;
2303         }
2304
2305         switch (intel_crtc->plane) {
2306         case 0:
2307         case 1:
2308                 break;
2309         case 2:
2310                 if (IS_IVYBRIDGE(dev))
2311                         break;
2312                 /* fall through otherwise */
2313         default:
2314                 DRM_ERROR("no plane for crtc\n");
2315                 return -EINVAL;
2316         }
2317
2318         DRM_LOCK(dev);
2319         ret = intel_pin_and_fence_fb_obj(dev,
2320                                          to_intel_framebuffer(crtc->fb)->obj,
2321                                          NULL);
2322         if (ret != 0) {
2323                 DRM_UNLOCK(dev);
2324                 DRM_ERROR("pin & fence failed\n");
2325                 return ret;
2326         }
2327
2328         if (old_fb)
2329                 intel_finish_fb(old_fb);
2330
2331         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2332                                          LEAVE_ATOMIC_MODE_SET);
2333         if (ret) {
2334                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2335                 DRM_UNLOCK(dev);
2336                 DRM_ERROR("failed to update base address\n");
2337                 return ret;
2338         }
2339
2340         if (old_fb) {
2341                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2342                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2343         }
2344
2345         DRM_UNLOCK(dev);
2346
2347 #if 0
2348         if (!dev->primary->master)
2349                 return 0;
2350
2351         master_priv = dev->primary->master->driver_priv;
2352         if (!master_priv->sarea_priv)
2353                 return 0;
2354
2355         if (intel_crtc->pipe) {
2356                 master_priv->sarea_priv->pipeB_x = x;
2357                 master_priv->sarea_priv->pipeB_y = y;
2358         } else {
2359                 master_priv->sarea_priv->pipeA_x = x;
2360                 master_priv->sarea_priv->pipeA_y = y;
2361         }
2362 #else
2363
2364         if (!dev_priv->sarea_priv)
2365                 return 0;
2366
2367         if (intel_crtc->pipe) {
2368                 dev_priv->sarea_priv->planeB_x = x;
2369                 dev_priv->sarea_priv->planeB_y = y;
2370         } else {
2371                 dev_priv->sarea_priv->planeA_x = x;
2372                 dev_priv->sarea_priv->planeA_y = y;
2373         }
2374 #endif
2375
2376         return 0;
2377 }
2378
2379 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2380 {
2381         struct drm_device *dev = crtc->dev;
2382         struct drm_i915_private *dev_priv = dev->dev_private;
2383         u32 dpa_ctl;
2384
2385         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2386         dpa_ctl = I915_READ(DP_A);
2387         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2388
2389         if (clock < 200000) {
2390                 u32 temp;
2391                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2392                 /* workaround for 160Mhz:
2393                    1) program 0x4600c bits 15:0 = 0x8124
2394                    2) program 0x46010 bit 0 = 1
2395                    3) program 0x46034 bit 24 = 1
2396                    4) program 0x64000 bit 14 = 1
2397                    */
2398                 temp = I915_READ(0x4600c);
2399                 temp &= 0xffff0000;
2400                 I915_WRITE(0x4600c, temp | 0x8124);
2401
2402                 temp = I915_READ(0x46010);
2403                 I915_WRITE(0x46010, temp | 1);
2404
2405                 temp = I915_READ(0x46034);
2406                 I915_WRITE(0x46034, temp | (1 << 24));
2407         } else {
2408                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2409         }
2410         I915_WRITE(DP_A, dpa_ctl);
2411
2412         POSTING_READ(DP_A);
2413         DELAY(500);
2414 }
2415
2416 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2417 {
2418         struct drm_device *dev = crtc->dev;
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2421         int pipe = intel_crtc->pipe;
2422         u32 reg, temp;
2423
2424         /* enable normal train */
2425         reg = FDI_TX_CTL(pipe);
2426         temp = I915_READ(reg);
2427         if (IS_IVYBRIDGE(dev)) {
2428                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2429                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2430         } else {
2431                 temp &= ~FDI_LINK_TRAIN_NONE;
2432                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2433         }
2434         I915_WRITE(reg, temp);
2435
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         if (HAS_PCH_CPT(dev)) {
2439                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2440                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2441         } else {
2442                 temp &= ~FDI_LINK_TRAIN_NONE;
2443                 temp |= FDI_LINK_TRAIN_NONE;
2444         }
2445         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2446
2447         /* wait one idle pattern time */
2448         POSTING_READ(reg);
2449         DELAY(1000);
2450
2451         /* IVB wants error correction enabled */
2452         if (IS_IVYBRIDGE(dev))
2453                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2454                            FDI_FE_ERRC_ENABLE);
2455 }
2456
2457 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2458 {
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460         u32 flags = I915_READ(SOUTH_CHICKEN1);
2461
2462         flags |= FDI_PHASE_SYNC_OVR(pipe);
2463         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2464         flags |= FDI_PHASE_SYNC_EN(pipe);
2465         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2466         POSTING_READ(SOUTH_CHICKEN1);
2467 }
2468
2469 /* The FDI link training functions for ILK/Ibexpeak. */
2470 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2471 {
2472         struct drm_device *dev = crtc->dev;
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2475         int pipe = intel_crtc->pipe;
2476         int plane = intel_crtc->plane;
2477         u32 reg, temp, tries;
2478
2479         /* FDI needs bits from pipe & plane first */
2480         assert_pipe_enabled(dev_priv, pipe);
2481         assert_plane_enabled(dev_priv, plane);
2482
2483         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2484            for train result */
2485         reg = FDI_RX_IMR(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~FDI_RX_SYMBOL_LOCK;
2488         temp &= ~FDI_RX_BIT_LOCK;
2489         I915_WRITE(reg, temp);
2490         I915_READ(reg);
2491         DELAY(150);
2492
2493         /* enable CPU FDI TX and PCH FDI RX */
2494         reg = FDI_TX_CTL(pipe);
2495         temp = I915_READ(reg);
2496         temp &= ~(7 << 19);
2497         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2501
2502         reg = FDI_RX_CTL(pipe);
2503         temp = I915_READ(reg);
2504         temp &= ~FDI_LINK_TRAIN_NONE;
2505         temp |= FDI_LINK_TRAIN_PATTERN_1;
2506         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2507
2508         POSTING_READ(reg);
2509         DELAY(150);
2510
2511         /* Ironlake workaround, enable clock pointer after FDI enable*/
2512         if (HAS_PCH_IBX(dev)) {
2513                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2514                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2515                            FDI_RX_PHASE_SYNC_POINTER_EN);
2516         }
2517
2518         reg = FDI_RX_IIR(pipe);
2519         for (tries = 0; tries < 5; tries++) {
2520                 temp = I915_READ(reg);
2521                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522
2523                 if ((temp & FDI_RX_BIT_LOCK)) {
2524                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2525                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2526                         break;
2527                 }
2528         }
2529         if (tries == 5)
2530                 DRM_ERROR("FDI train 1 fail!\n");
2531
2532         /* Train 2 */
2533         reg = FDI_TX_CTL(pipe);
2534         temp = I915_READ(reg);
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_2;
2537         I915_WRITE(reg, temp);
2538
2539         reg = FDI_RX_CTL(pipe);
2540         temp = I915_READ(reg);
2541         temp &= ~FDI_LINK_TRAIN_NONE;
2542         temp |= FDI_LINK_TRAIN_PATTERN_2;
2543         I915_WRITE(reg, temp);
2544
2545         POSTING_READ(reg);
2546         DELAY(150);
2547
2548         reg = FDI_RX_IIR(pipe);
2549         for (tries = 0; tries < 5; tries++) {
2550                 temp = I915_READ(reg);
2551                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2552
2553                 if (temp & FDI_RX_SYMBOL_LOCK) {
2554                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2555                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2556                         break;
2557                 }
2558         }
2559         if (tries == 5)
2560                 DRM_ERROR("FDI train 2 fail!\n");
2561
2562         DRM_DEBUG_KMS("FDI train done\n");
2563
2564 }
2565
2566 static const int snb_b_fdi_train_param[] = {
2567         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2568         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2569         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2570         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2571 };
2572
2573 /* The FDI link training functions for SNB/Cougarpoint. */
2574 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2575 {
2576         struct drm_device *dev = crtc->dev;
2577         struct drm_i915_private *dev_priv = dev->dev_private;
2578         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2579         int pipe = intel_crtc->pipe;
2580         u32 reg, temp, i;
2581
2582         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2583            for train result */
2584         reg = FDI_RX_IMR(pipe);
2585         temp = I915_READ(reg);
2586         temp &= ~FDI_RX_SYMBOL_LOCK;
2587         temp &= ~FDI_RX_BIT_LOCK;
2588         I915_WRITE(reg, temp);
2589
2590         POSTING_READ(reg);
2591         DELAY(150);
2592
2593         /* enable CPU FDI TX and PCH FDI RX */
2594         reg = FDI_TX_CTL(pipe);
2595         temp = I915_READ(reg);
2596         temp &= ~(7 << 19);
2597         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2598         temp &= ~FDI_LINK_TRAIN_NONE;
2599         temp |= FDI_LINK_TRAIN_PATTERN_1;
2600         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2601         /* SNB-B */
2602         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2603         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2604
2605         reg = FDI_RX_CTL(pipe);
2606         temp = I915_READ(reg);
2607         if (HAS_PCH_CPT(dev)) {
2608                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2609                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2610         } else {
2611                 temp &= ~FDI_LINK_TRAIN_NONE;
2612                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2613         }
2614         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2615
2616         POSTING_READ(reg);
2617         DELAY(150);
2618
2619         if (HAS_PCH_CPT(dev))
2620                 cpt_phase_pointer_enable(dev, pipe);
2621
2622         for (i = 0; i < 4; i++) {
2623                 reg = FDI_TX_CTL(pipe);
2624                 temp = I915_READ(reg);
2625                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2626                 temp |= snb_b_fdi_train_param[i];
2627                 I915_WRITE(reg, temp);
2628
2629                 POSTING_READ(reg);
2630                 DELAY(500);
2631
2632                 reg = FDI_RX_IIR(pipe);
2633                 temp = I915_READ(reg);
2634                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2635
2636                 if (temp & FDI_RX_BIT_LOCK) {
2637                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2638                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2639                         break;
2640                 }
2641         }
2642         if (i == 4)
2643                 DRM_ERROR("FDI train 1 fail!\n");
2644
2645         /* Train 2 */
2646         reg = FDI_TX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         temp &= ~FDI_LINK_TRAIN_NONE;
2649         temp |= FDI_LINK_TRAIN_PATTERN_2;
2650         if (IS_GEN6(dev)) {
2651                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652                 /* SNB-B */
2653                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         if (HAS_PCH_CPT(dev)) {
2660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662         } else {
2663                 temp &= ~FDI_LINK_TRAIN_NONE;
2664                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665         }
2666         I915_WRITE(reg, temp);
2667
2668         POSTING_READ(reg);
2669         DELAY(150);
2670
2671         for (i = 0; i < 4; i++) {
2672                 reg = FDI_TX_CTL(pipe);
2673                 temp = I915_READ(reg);
2674                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675                 temp |= snb_b_fdi_train_param[i];
2676                 I915_WRITE(reg, temp);
2677
2678                 POSTING_READ(reg);
2679                 DELAY(500);
2680
2681                 reg = FDI_RX_IIR(pipe);
2682                 temp = I915_READ(reg);
2683                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2684
2685                 if (temp & FDI_RX_SYMBOL_LOCK) {
2686                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2688                         break;
2689                 }
2690         }
2691         if (i == 4)
2692                 DRM_ERROR("FDI train 2 fail!\n");
2693
2694         DRM_DEBUG_KMS("FDI train done.\n");
2695 }
2696
2697 /* Manual link training for Ivy Bridge A0 parts */
2698 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2699 {
2700         struct drm_device *dev = crtc->dev;
2701         struct drm_i915_private *dev_priv = dev->dev_private;
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         int pipe = intel_crtc->pipe;
2704         u32 reg, temp, i;
2705
2706         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2707            for train result */
2708         reg = FDI_RX_IMR(pipe);
2709         temp = I915_READ(reg);
2710         temp &= ~FDI_RX_SYMBOL_LOCK;
2711         temp &= ~FDI_RX_BIT_LOCK;
2712         I915_WRITE(reg, temp);
2713
2714         POSTING_READ(reg);
2715         DELAY(150);
2716
2717         /* enable CPU FDI TX and PCH FDI RX */
2718         reg = FDI_TX_CTL(pipe);
2719         temp = I915_READ(reg);
2720         temp &= ~(7 << 19);
2721         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2722         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2723         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2724         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2725         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2726         temp |= FDI_COMPOSITE_SYNC;
2727         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2728
2729         reg = FDI_RX_CTL(pipe);
2730         temp = I915_READ(reg);
2731         temp &= ~FDI_LINK_TRAIN_AUTO;
2732         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2733         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2734         temp |= FDI_COMPOSITE_SYNC;
2735         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2736
2737         POSTING_READ(reg);
2738         DELAY(150);
2739
2740         for (i = 0; i < 4; i++) {
2741                 reg = FDI_TX_CTL(pipe);
2742                 temp = I915_READ(reg);
2743                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2744                 temp |= snb_b_fdi_train_param[i];
2745                 I915_WRITE(reg, temp);
2746
2747                 POSTING_READ(reg);
2748                 DELAY(500);
2749
2750                 reg = FDI_RX_IIR(pipe);
2751                 temp = I915_READ(reg);
2752                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2753
2754                 if (temp & FDI_RX_BIT_LOCK ||
2755                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2756                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2757                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2758                         break;
2759                 }
2760         }
2761         if (i == 4)
2762                 DRM_ERROR("FDI train 1 fail!\n");
2763
2764         /* Train 2 */
2765         reg = FDI_TX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2768         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2769         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2770         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2771         I915_WRITE(reg, temp);
2772
2773         reg = FDI_RX_CTL(pipe);
2774         temp = I915_READ(reg);
2775         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2776         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2777         I915_WRITE(reg, temp);
2778
2779         POSTING_READ(reg);
2780         DELAY(150);
2781
2782         for (i = 0; i < 4; i++ ) {
2783                 reg = FDI_TX_CTL(pipe);
2784                 temp = I915_READ(reg);
2785                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2786                 temp |= snb_b_fdi_train_param[i];
2787                 I915_WRITE(reg, temp);
2788
2789                 POSTING_READ(reg);
2790                 DELAY(500);
2791
2792                 reg = FDI_RX_IIR(pipe);
2793                 temp = I915_READ(reg);
2794                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2795
2796                 if (temp & FDI_RX_SYMBOL_LOCK) {
2797                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2798                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2799                         break;
2800                 }
2801         }
2802         if (i == 4)
2803                 DRM_ERROR("FDI train 2 fail!\n");
2804
2805         DRM_DEBUG_KMS("FDI train done.\n");
2806 }
2807
2808 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2809 {
2810         struct drm_device *dev = crtc->dev;
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2813         int pipe = intel_crtc->pipe;
2814         u32 reg, temp;
2815
2816         /* Write the TU size bits so error detection works */
2817         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2818                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2819
2820         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2821         reg = FDI_RX_CTL(pipe);
2822         temp = I915_READ(reg);
2823         temp &= ~((0x7 << 19) | (0x7 << 16));
2824         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2825         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2826         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2827
2828         POSTING_READ(reg);
2829         DELAY(200);
2830
2831         /* Switch from Rawclk to PCDclk */
2832         temp = I915_READ(reg);
2833         I915_WRITE(reg, temp | FDI_PCDCLK);
2834
2835         POSTING_READ(reg);
2836         DELAY(200);
2837
2838         /* Enable CPU FDI TX PLL, always on for Ironlake */
2839         reg = FDI_TX_CTL(pipe);
2840         temp = I915_READ(reg);
2841         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2842                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2843
2844                 POSTING_READ(reg);
2845                 DELAY(100);
2846         }
2847 }
2848
2849 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2850 {
2851         struct drm_i915_private *dev_priv = dev->dev_private;
2852         u32 flags = I915_READ(SOUTH_CHICKEN1);
2853
2854         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2855         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2856         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2857         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2858         POSTING_READ(SOUTH_CHICKEN1);
2859 }
2860
2861 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2862 {
2863         struct drm_device *dev = crtc->dev;
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2866         int pipe = intel_crtc->pipe;
2867         u32 reg, temp;
2868
2869         /* disable CPU FDI tx and PCH FDI rx */
2870         reg = FDI_TX_CTL(pipe);
2871         temp = I915_READ(reg);
2872         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2873         POSTING_READ(reg);
2874
2875         reg = FDI_RX_CTL(pipe);
2876         temp = I915_READ(reg);
2877         temp &= ~(0x7 << 16);
2878         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2879         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2880
2881         POSTING_READ(reg);
2882         DELAY(100);
2883
2884         /* Ironlake workaround, disable clock pointer after downing FDI */
2885         if (HAS_PCH_IBX(dev)) {
2886                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2887                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2888                            I915_READ(FDI_RX_CHICKEN(pipe) &
2889                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2890         } else if (HAS_PCH_CPT(dev)) {
2891                 cpt_phase_pointer_disable(dev, pipe);
2892         }
2893
2894         /* still set train pattern 1 */
2895         reg = FDI_TX_CTL(pipe);
2896         temp = I915_READ(reg);
2897         temp &= ~FDI_LINK_TRAIN_NONE;
2898         temp |= FDI_LINK_TRAIN_PATTERN_1;
2899         I915_WRITE(reg, temp);
2900
2901         reg = FDI_RX_CTL(pipe);
2902         temp = I915_READ(reg);
2903         if (HAS_PCH_CPT(dev)) {
2904                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2905                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2906         } else {
2907                 temp &= ~FDI_LINK_TRAIN_NONE;
2908                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2909         }
2910         /* BPC in FDI rx is consistent with that in PIPECONF */
2911         temp &= ~(0x07 << 16);
2912         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2913         I915_WRITE(reg, temp);
2914
2915         POSTING_READ(reg);
2916         DELAY(100);
2917 }
2918
2919 /*
2920  * When we disable a pipe, we need to clear any pending scanline wait events
2921  * to avoid hanging the ring, which we assume we are waiting on.
2922  */
2923 static void intel_clear_scanline_wait(struct drm_device *dev)
2924 {
2925         struct drm_i915_private *dev_priv = dev->dev_private;
2926         struct intel_ring_buffer *ring;
2927         u32 tmp;
2928
2929         if (IS_GEN2(dev))
2930                 /* Can't break the hang on i8xx */
2931                 return;
2932
2933         ring = LP_RING(dev_priv);
2934         tmp = I915_READ_CTL(ring);
2935         if (tmp & RING_WAIT)
2936                 I915_WRITE_CTL(ring, tmp);
2937 }
2938
2939 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2940 {
2941         struct drm_i915_gem_object *obj;
2942         struct drm_i915_private *dev_priv;
2943         struct drm_device *dev;
2944
2945         if (crtc->fb == NULL)
2946                 return;
2947
2948         obj = to_intel_framebuffer(crtc->fb)->obj;
2949         dev = crtc->dev;
2950         dev_priv = dev->dev_private;
2951         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2952         while (atomic_load_acq_int(&obj->pending_flip) != 0)
2953                 lksleep(&obj->pending_flip, &dev->event_lock, 0, "915wfl", 0);
2954         lockmgr(&dev->event_lock, LK_RELEASE);
2955 }
2956
2957 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2958 {
2959         struct drm_device *dev = crtc->dev;
2960         struct drm_mode_config *mode_config = &dev->mode_config;
2961         struct intel_encoder *encoder;
2962
2963         /*
2964          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2965          * must be driven by its own crtc; no sharing is possible.
2966          */
2967         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2968                 if (encoder->base.crtc != crtc)
2969                         continue;
2970
2971                 switch (encoder->type) {
2972                 case INTEL_OUTPUT_EDP:
2973                         if (!intel_encoder_is_pch_edp(&encoder->base))
2974                                 return false;
2975                         continue;
2976                 }
2977         }
2978
2979         return true;
2980 }
2981
2982 /*
2983  * Enable PCH resources required for PCH ports:
2984  *   - PCH PLLs
2985  *   - FDI training & RX/TX
2986  *   - update transcoder timings
2987  *   - DP transcoding bits
2988  *   - transcoder
2989  */
2990 static void ironlake_pch_enable(struct drm_crtc *crtc)
2991 {
2992         struct drm_device *dev = crtc->dev;
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995         int pipe = intel_crtc->pipe;
2996         u32 reg, temp, transc_sel;
2997
2998         /* For PCH output, training FDI link */
2999         dev_priv->display.fdi_link_train(crtc);
3000
3001         intel_enable_pch_pll(dev_priv, pipe);
3002
3003         if (HAS_PCH_CPT(dev)) {
3004                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3005                         TRANSC_DPLLB_SEL;
3006
3007                 /* Be sure PCH DPLL SEL is set */
3008                 temp = I915_READ(PCH_DPLL_SEL);
3009                 if (pipe == 0) {
3010                         temp &= ~(TRANSA_DPLLB_SEL);
3011                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3012                 } else if (pipe == 1) {
3013                         temp &= ~(TRANSB_DPLLB_SEL);
3014                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3015                 } else if (pipe == 2) {
3016                         temp &= ~(TRANSC_DPLLB_SEL);
3017                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3018                 }
3019                 I915_WRITE(PCH_DPLL_SEL, temp);
3020         }
3021
3022         /* set transcoder timing, panel must allow it */
3023         assert_panel_unlocked(dev_priv, pipe);
3024         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3025         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3026         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3027
3028         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3029         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3030         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3031         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3032
3033         intel_fdi_normal_train(crtc);
3034
3035         /* For PCH DP, enable TRANS_DP_CTL */
3036         if (HAS_PCH_CPT(dev) &&
3037             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3038              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3039                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3040                 reg = TRANS_DP_CTL(pipe);
3041                 temp = I915_READ(reg);
3042                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3043                           TRANS_DP_SYNC_MASK |
3044                           TRANS_DP_BPC_MASK);
3045                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3046                          TRANS_DP_ENH_FRAMING);
3047                 temp |= bpc << 9; /* same format but at 11:9 */
3048
3049                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3050                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3051                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3052                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3053
3054                 switch (intel_trans_dp_port_sel(crtc)) {
3055                 case PCH_DP_B:
3056                         temp |= TRANS_DP_PORT_SEL_B;
3057                         break;
3058                 case PCH_DP_C:
3059                         temp |= TRANS_DP_PORT_SEL_C;
3060                         break;
3061                 case PCH_DP_D:
3062                         temp |= TRANS_DP_PORT_SEL_D;
3063                         break;
3064                 default:
3065                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3066                         temp |= TRANS_DP_PORT_SEL_B;
3067                         break;
3068                 }
3069
3070                 I915_WRITE(reg, temp);
3071         }
3072
3073         intel_enable_transcoder(dev_priv, pipe);
3074 }
3075
3076 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3077 {
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3080         u32 temp;
3081
3082         temp = I915_READ(dslreg);
3083         DELAY(500);
3084         if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1, "915cp1")) {
3085                 /* Without this, mode sets may fail silently on FDI */
3086                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3087                 DELAY(250);
3088                 I915_WRITE(tc2reg, 0);
3089                 if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1,
3090                     "915cp2"))
3091                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3092         }
3093 }
3094
3095 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3096 {
3097         struct drm_device *dev = crtc->dev;
3098         struct drm_i915_private *dev_priv = dev->dev_private;
3099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3100         int pipe = intel_crtc->pipe;
3101         int plane = intel_crtc->plane;
3102         u32 temp;
3103         bool is_pch_port;
3104
3105         if (intel_crtc->active)
3106                 return;
3107
3108         intel_crtc->active = true;
3109         intel_update_watermarks(dev);
3110
3111         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3112                 temp = I915_READ(PCH_LVDS);
3113                 if ((temp & LVDS_PORT_EN) == 0)
3114                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3115         }
3116
3117         is_pch_port = intel_crtc_driving_pch(crtc);
3118
3119         if (is_pch_port)
3120                 ironlake_fdi_pll_enable(crtc);
3121         else
3122                 ironlake_fdi_disable(crtc);
3123
3124         /* Enable panel fitting for LVDS */
3125         if (dev_priv->pch_pf_size &&
3126             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3127                 /* Force use of hard-coded filter coefficients
3128                  * as some pre-programmed values are broken,
3129                  * e.g. x201.
3130                  */
3131                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3132                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3133                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3134         }
3135
3136         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3137         intel_enable_plane(dev_priv, plane, pipe);
3138
3139         if (is_pch_port)
3140                 ironlake_pch_enable(crtc);
3141
3142         intel_crtc_load_lut(crtc);
3143
3144         DRM_LOCK(dev);
3145         intel_update_fbc(dev);
3146         DRM_UNLOCK(dev);
3147
3148         intel_crtc_update_cursor(crtc, true);
3149 }
3150
3151 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3152 {
3153         struct drm_device *dev = crtc->dev;
3154         struct drm_i915_private *dev_priv = dev->dev_private;
3155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3156         int pipe = intel_crtc->pipe;
3157         int plane = intel_crtc->plane;
3158         u32 reg, temp;
3159
3160         if (!intel_crtc->active)
3161                 return;
3162
3163         intel_crtc_wait_for_pending_flips(crtc);
3164         drm_vblank_off(dev, pipe);
3165         intel_crtc_update_cursor(crtc, false);
3166
3167         intel_disable_plane(dev_priv, plane, pipe);
3168
3169         if (dev_priv->cfb_plane == plane)
3170                 intel_disable_fbc(dev);
3171
3172         intel_disable_pipe(dev_priv, pipe);
3173
3174         /* Disable PF */
3175         I915_WRITE(PF_CTL(pipe), 0);
3176         I915_WRITE(PF_WIN_SZ(pipe), 0);
3177
3178         ironlake_fdi_disable(crtc);
3179
3180         /* This is a horrible layering violation; we should be doing this in
3181          * the connector/encoder ->prepare instead, but we don't always have
3182          * enough information there about the config to know whether it will
3183          * actually be necessary or just cause undesired flicker.
3184          */
3185         intel_disable_pch_ports(dev_priv, pipe);
3186
3187         intel_disable_transcoder(dev_priv, pipe);
3188
3189         if (HAS_PCH_CPT(dev)) {
3190                 /* disable TRANS_DP_CTL */
3191                 reg = TRANS_DP_CTL(pipe);
3192                 temp = I915_READ(reg);
3193                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3194                 temp |= TRANS_DP_PORT_SEL_NONE;
3195                 I915_WRITE(reg, temp);
3196
3197                 /* disable DPLL_SEL */
3198                 temp = I915_READ(PCH_DPLL_SEL);
3199                 switch (pipe) {
3200                 case 0:
3201                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3202                         break;
3203                 case 1:
3204                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3205                         break;
3206                 case 2:
3207                         /* C shares PLL A or B */
3208                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3209                         break;
3210                 default:
3211                         KASSERT(1, ("Wrong pipe %d", pipe)); /* wtf */
3212                 }
3213                 I915_WRITE(PCH_DPLL_SEL, temp);
3214         }
3215
3216         /* disable PCH DPLL */
3217         if (!intel_crtc->no_pll)
3218                 intel_disable_pch_pll(dev_priv, pipe);
3219
3220         /* Switch from PCDclk to Rawclk */
3221         reg = FDI_RX_CTL(pipe);
3222         temp = I915_READ(reg);
3223         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3224
3225         /* Disable CPU FDI TX PLL */
3226         reg = FDI_TX_CTL(pipe);
3227         temp = I915_READ(reg);
3228         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3229
3230         POSTING_READ(reg);
3231         DELAY(100);
3232
3233         reg = FDI_RX_CTL(pipe);
3234         temp = I915_READ(reg);
3235         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3236
3237         /* Wait for the clocks to turn off. */
3238         POSTING_READ(reg);
3239         DELAY(100);
3240
3241         intel_crtc->active = false;
3242         intel_update_watermarks(dev);
3243
3244         DRM_LOCK(dev);
3245         intel_update_fbc(dev);
3246         intel_clear_scanline_wait(dev);
3247         DRM_UNLOCK(dev);
3248 }
3249
3250 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3251 {
3252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3253         int pipe = intel_crtc->pipe;
3254         int plane = intel_crtc->plane;
3255
3256         /* XXX: When our outputs are all unaware of DPMS modes other than off
3257          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3258          */
3259         switch (mode) {
3260         case DRM_MODE_DPMS_ON:
3261         case DRM_MODE_DPMS_STANDBY:
3262         case DRM_MODE_DPMS_SUSPEND:
3263                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3264                 ironlake_crtc_enable(crtc);
3265                 break;
3266
3267         case DRM_MODE_DPMS_OFF:
3268                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3269                 ironlake_crtc_disable(crtc);
3270                 break;
3271         }
3272 }
3273
3274 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3275 {
3276         if (!enable && intel_crtc->overlay) {
3277                 struct drm_device *dev = intel_crtc->base.dev;
3278                 struct drm_i915_private *dev_priv = dev->dev_private;
3279
3280                 DRM_LOCK(dev);
3281                 dev_priv->mm.interruptible = false;
3282                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3283                 dev_priv->mm.interruptible = true;
3284                 DRM_UNLOCK(dev);
3285         }
3286
3287         /* Let userspace switch the overlay on again. In most cases userspace
3288          * has to recompute where to put it anyway.
3289          */
3290 }
3291
3292 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3293 {
3294         struct drm_device *dev = crtc->dev;
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3297         int pipe = intel_crtc->pipe;
3298         int plane = intel_crtc->plane;
3299
3300         if (intel_crtc->active)
3301                 return;
3302
3303         intel_crtc->active = true;
3304         intel_update_watermarks(dev);
3305
3306         intel_enable_pll(dev_priv, pipe);
3307         intel_enable_pipe(dev_priv, pipe, false);
3308         intel_enable_plane(dev_priv, plane, pipe);
3309
3310         intel_crtc_load_lut(crtc);
3311         intel_update_fbc(dev);
3312
3313         /* Give the overlay scaler a chance to enable if it's on this pipe */
3314         intel_crtc_dpms_overlay(intel_crtc, true);
3315         intel_crtc_update_cursor(crtc, true);
3316 }
3317
3318 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3319 {
3320         struct drm_device *dev = crtc->dev;
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323         int pipe = intel_crtc->pipe;
3324         int plane = intel_crtc->plane;
3325
3326         if (!intel_crtc->active)
3327                 return;
3328
3329         /* Give the overlay scaler a chance to disable if it's on this pipe */
3330         intel_crtc_wait_for_pending_flips(crtc);
3331         drm_vblank_off(dev, pipe);
3332         intel_crtc_dpms_overlay(intel_crtc, false);
3333         intel_crtc_update_cursor(crtc, false);
3334
3335         if (dev_priv->cfb_plane == plane)
3336                 intel_disable_fbc(dev);
3337
3338         intel_disable_plane(dev_priv, plane, pipe);
3339         intel_disable_pipe(dev_priv, pipe);
3340         intel_disable_pll(dev_priv, pipe);
3341
3342         intel_crtc->active = false;
3343         intel_update_fbc(dev);
3344         intel_update_watermarks(dev);
3345         intel_clear_scanline_wait(dev);
3346 }
3347
3348 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3349 {
3350         /* XXX: When our outputs are all unaware of DPMS modes other than off
3351          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3352          */
3353         switch (mode) {
3354         case DRM_MODE_DPMS_ON:
3355         case DRM_MODE_DPMS_STANDBY:
3356         case DRM_MODE_DPMS_SUSPEND:
3357                 i9xx_crtc_enable(crtc);
3358                 break;
3359         case DRM_MODE_DPMS_OFF:
3360                 i9xx_crtc_disable(crtc);
3361                 break;
3362         }
3363 }
3364
3365 /**
3366  * Sets the power management mode of the pipe and plane.
3367  */
3368 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3369 {
3370         struct drm_device *dev = crtc->dev;
3371         struct drm_i915_private *dev_priv = dev->dev_private;
3372 #if 0
3373         struct drm_i915_master_private *master_priv;
3374 #endif
3375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3376         int pipe = intel_crtc->pipe;
3377         bool enabled;
3378
3379         if (intel_crtc->dpms_mode == mode)
3380                 return;
3381
3382         intel_crtc->dpms_mode = mode;
3383
3384         dev_priv->display.dpms(crtc, mode);
3385
3386 #if 0
3387         if (!dev->primary->master)
3388                 return;
3389
3390         master_priv = dev->primary->master->driver_priv;
3391         if (!master_priv->sarea_priv)
3392                 return;
3393 #else
3394         if (!dev_priv->sarea_priv)
3395                 return;
3396 #endif
3397
3398         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3399
3400         switch (pipe) {
3401         case 0:
3402 #if 0
3403                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3404                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3405 #else
3406                 dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
3407                 dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
3408 #endif
3409                 break;
3410         case 1:
3411 #if 0
3412                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3413                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3414 #else
3415                 dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
3416                 dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
3417 #endif
3418                 break;
3419         default:
3420                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3421                 break;
3422         }
3423 }
3424
3425 static void intel_crtc_disable(struct drm_crtc *crtc)
3426 {
3427         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3428         struct drm_device *dev = crtc->dev;
3429
3430         /* Flush any pending WAITs before we disable the pipe. Note that
3431          * we need to drop the struct_mutex in order to acquire it again
3432          * during the lowlevel dpms routines around a couple of the
3433          * operations. It does not look trivial nor desirable to move
3434          * that locking higher. So instead we leave a window for the
3435          * submission of further commands on the fb before we can actually
3436          * disable it. This race with userspace exists anyway, and we can
3437          * only rely on the pipe being disabled by userspace after it
3438          * receives the hotplug notification and has flushed any pending
3439          * batches.
3440          */
3441         if (crtc->fb) {
3442                 DRM_LOCK(dev);
3443                 intel_finish_fb(crtc->fb);
3444                 DRM_UNLOCK(dev);
3445         }
3446
3447         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3448         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3449         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3450
3451         if (crtc->fb) {
3452                 DRM_LOCK(dev);
3453                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3454                 DRM_UNLOCK(dev);
3455         }
3456 }
3457
3458 /* Prepare for a mode set.
3459  *
3460  * Note we could be a lot smarter here.  We need to figure out which outputs
3461  * will be enabled, which disabled (in short, how the config will changes)
3462  * and perform the minimum necessary steps to accomplish that, e.g. updating
3463  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3464  * panel fitting is in the proper state, etc.
3465  */
3466 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3467 {
3468         i9xx_crtc_disable(crtc);
3469 }
3470
3471 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3472 {
3473         i9xx_crtc_enable(crtc);
3474 }
3475
3476 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3477 {
3478         ironlake_crtc_disable(crtc);
3479 }
3480
3481 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3482 {
3483         ironlake_crtc_enable(crtc);
3484 }
3485
3486 void intel_encoder_prepare(struct drm_encoder *encoder)
3487 {
3488         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3489         /* lvds has its own version of prepare see intel_lvds_prepare */
3490         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3491 }
3492
3493 void intel_encoder_commit(struct drm_encoder *encoder)
3494 {
3495         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3496         struct drm_device *dev = encoder->dev;
3497         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3498         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3499
3500         /* lvds has its own version of commit see intel_lvds_commit */
3501         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3502
3503         if (HAS_PCH_CPT(dev))
3504                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3505 }
3506
3507 void intel_encoder_destroy(struct drm_encoder *encoder)
3508 {
3509         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3510
3511         drm_encoder_cleanup(encoder);
3512         drm_free(intel_encoder, DRM_MEM_KMS);
3513 }
3514
3515 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3516                                   const struct drm_display_mode *mode,
3517                                   struct drm_display_mode *adjusted_mode)
3518 {
3519         struct drm_device *dev = crtc->dev;
3520
3521         if (HAS_PCH_SPLIT(dev)) {
3522                 /* FDI link clock is fixed at 2.7G */
3523                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3524                         return false;
3525         }
3526
3527         /* All interlaced capable intel hw wants timings in frames. Note though
3528          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3529          * timings, so we need to be careful not to clobber these.*/
3530         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3531                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3532
3533         return true;
3534 }
3535
3536 static int i945_get_display_clock_speed(struct drm_device *dev)
3537 {
3538         return 400000;
3539 }
3540
3541 static int i915_get_display_clock_speed(struct drm_device *dev)
3542 {
3543         return 333000;
3544 }
3545
3546 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3547 {
3548         return 200000;
3549 }
3550
3551 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3552 {
3553         u16 gcfgc = 0;
3554
3555         gcfgc = pci_read_config(dev->device, GCFGC, 2);
3556
3557         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3558                 return 133000;
3559         else {
3560                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3561                 case GC_DISPLAY_CLOCK_333_MHZ:
3562                         return 333000;
3563                 default:
3564                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3565                         return 190000;
3566                 }
3567         }
3568 }
3569
3570 static int i865_get_display_clock_speed(struct drm_device *dev)
3571 {
3572         return 266000;
3573 }
3574
3575 static int i855_get_display_clock_speed(struct drm_device *dev)
3576 {
3577         u16 hpllcc = 0;
3578         /* Assume that the hardware is in the high speed state.  This
3579          * should be the default.
3580          */
3581         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3582         case GC_CLOCK_133_200:
3583         case GC_CLOCK_100_200:
3584                 return 200000;
3585         case GC_CLOCK_166_250:
3586                 return 250000;
3587         case GC_CLOCK_100_133:
3588                 return 133000;
3589         }
3590
3591         /* Shouldn't happen */
3592         return 0;
3593 }
3594
3595 static int i830_get_display_clock_speed(struct drm_device *dev)
3596 {
3597         return 133000;
3598 }
3599
3600 struct fdi_m_n {
3601         u32        tu;
3602         u32        gmch_m;
3603         u32        gmch_n;
3604         u32        link_m;
3605         u32        link_n;
3606 };
3607
3608 static void
3609 fdi_reduce_ratio(u32 *num, u32 *den)
3610 {
3611         while (*num > 0xffffff || *den > 0xffffff) {
3612                 *num >>= 1;
3613                 *den >>= 1;
3614         }
3615 }
3616
3617 static void
3618 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3619                      int link_clock, struct fdi_m_n *m_n)
3620 {
3621         m_n->tu = 64; /* default size */
3622
3623         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3624         m_n->gmch_m = bits_per_pixel * pixel_clock;
3625         m_n->gmch_n = link_clock * nlanes * 8;
3626         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3627
3628         m_n->link_m = pixel_clock;
3629         m_n->link_n = link_clock;
3630         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3631 }
3632
3633
3634 struct intel_watermark_params {
3635         unsigned long fifo_size;
3636         unsigned long max_wm;
3637         unsigned long default_wm;
3638         unsigned long guard_size;
3639         unsigned long cacheline_size;
3640 };
3641
3642 /* Pineview has different values for various configs */
3643 static const struct intel_watermark_params pineview_display_wm = {
3644         PINEVIEW_DISPLAY_FIFO,
3645         PINEVIEW_MAX_WM,
3646         PINEVIEW_DFT_WM,
3647         PINEVIEW_GUARD_WM,
3648         PINEVIEW_FIFO_LINE_SIZE
3649 };
3650 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3651         PINEVIEW_DISPLAY_FIFO,
3652         PINEVIEW_MAX_WM,
3653         PINEVIEW_DFT_HPLLOFF_WM,
3654         PINEVIEW_GUARD_WM,
3655         PINEVIEW_FIFO_LINE_SIZE
3656 };
3657 static const struct intel_watermark_params pineview_cursor_wm = {
3658         PINEVIEW_CURSOR_FIFO,
3659         PINEVIEW_CURSOR_MAX_WM,
3660         PINEVIEW_CURSOR_DFT_WM,
3661         PINEVIEW_CURSOR_GUARD_WM,
3662         PINEVIEW_FIFO_LINE_SIZE,
3663 };
3664 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3665         PINEVIEW_CURSOR_FIFO,
3666         PINEVIEW_CURSOR_MAX_WM,
3667         PINEVIEW_CURSOR_DFT_WM,
3668         PINEVIEW_CURSOR_GUARD_WM,
3669         PINEVIEW_FIFO_LINE_SIZE
3670 };
3671 static const struct intel_watermark_params g4x_wm_info = {
3672         G4X_FIFO_SIZE,
3673         G4X_MAX_WM,
3674         G4X_MAX_WM,
3675         2,
3676         G4X_FIFO_LINE_SIZE,
3677 };
3678 static const struct intel_watermark_params g4x_cursor_wm_info = {
3679         I965_CURSOR_FIFO,
3680         I965_CURSOR_MAX_WM,
3681         I965_CURSOR_DFT_WM,
3682         2,
3683         G4X_FIFO_LINE_SIZE,
3684 };
3685 static const struct intel_watermark_params i965_cursor_wm_info = {
3686         I965_CURSOR_FIFO,
3687         I965_CURSOR_MAX_WM,
3688         I965_CURSOR_DFT_WM,
3689         2,
3690         I915_FIFO_LINE_SIZE,
3691 };
3692 static const struct intel_watermark_params i945_wm_info = {
3693         I945_FIFO_SIZE,
3694         I915_MAX_WM,
3695         1,
3696         2,
3697         I915_FIFO_LINE_SIZE
3698 };
3699 static const struct intel_watermark_params i915_wm_info = {
3700         I915_FIFO_SIZE,
3701         I915_MAX_WM,
3702         1,
3703         2,
3704         I915_FIFO_LINE_SIZE
3705 };
3706 static const struct intel_watermark_params i855_wm_info = {
3707         I855GM_FIFO_SIZE,
3708         I915_MAX_WM,
3709         1,
3710         2,
3711         I830_FIFO_LINE_SIZE
3712 };
3713 static const struct intel_watermark_params i830_wm_info = {
3714         I830_FIFO_SIZE,
3715         I915_MAX_WM,
3716         1,
3717         2,
3718         I830_FIFO_LINE_SIZE
3719 };
3720
3721 static const struct intel_watermark_params ironlake_display_wm_info = {
3722         ILK_DISPLAY_FIFO,
3723         ILK_DISPLAY_MAXWM,
3724         ILK_DISPLAY_DFTWM,
3725         2,
3726         ILK_FIFO_LINE_SIZE
3727 };
3728 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3729         ILK_CURSOR_FIFO,
3730         ILK_CURSOR_MAXWM,
3731         ILK_CURSOR_DFTWM,
3732         2,
3733         ILK_FIFO_LINE_SIZE
3734 };
3735 static const struct intel_watermark_params ironlake_display_srwm_info = {
3736         ILK_DISPLAY_SR_FIFO,
3737         ILK_DISPLAY_MAX_SRWM,
3738         ILK_DISPLAY_DFT_SRWM,
3739         2,
3740         ILK_FIFO_LINE_SIZE
3741 };
3742 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3743         ILK_CURSOR_SR_FIFO,
3744         ILK_CURSOR_MAX_SRWM,
3745         ILK_CURSOR_DFT_SRWM,
3746         2,
3747         ILK_FIFO_LINE_SIZE
3748 };
3749
3750 static const struct intel_watermark_params sandybridge_display_wm_info = {
3751         SNB_DISPLAY_FIFO,
3752         SNB_DISPLAY_MAXWM,
3753         SNB_DISPLAY_DFTWM,
3754         2,
3755         SNB_FIFO_LINE_SIZE
3756 };
3757 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3758         SNB_CURSOR_FIFO,
3759         SNB_CURSOR_MAXWM,
3760         SNB_CURSOR_DFTWM,
3761         2,
3762         SNB_FIFO_LINE_SIZE
3763 };
3764 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3765         SNB_DISPLAY_SR_FIFO,
3766         SNB_DISPLAY_MAX_SRWM,
3767         SNB_DISPLAY_DFT_SRWM,
3768         2,
3769         SNB_FIFO_LINE_SIZE
3770 };
3771 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3772         SNB_CURSOR_SR_FIFO,
3773         SNB_CURSOR_MAX_SRWM,
3774         SNB_CURSOR_DFT_SRWM,
3775         2,
3776         SNB_FIFO_LINE_SIZE
3777 };
3778
3779
3780 /**
3781  * intel_calculate_wm - calculate watermark level
3782  * @clock_in_khz: pixel clock
3783  * @wm: chip FIFO params
3784  * @pixel_size: display pixel size
3785  * @latency_ns: memory latency for the platform
3786  *
3787  * Calculate the watermark level (the level at which the display plane will
3788  * start fetching from memory again).  Each chip has a different display
3789  * FIFO size and allocation, so the caller needs to figure that out and pass
3790  * in the correct intel_watermark_params structure.
3791  *
3792  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3793  * on the pixel size.  When it reaches the watermark level, it'll start
3794  * fetching FIFO line sized based chunks from memory until the FIFO fills
3795  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3796  * will occur, and a display engine hang could result.
3797  */
3798 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3799                                         const struct intel_watermark_params *wm,
3800                                         int fifo_size,
3801                                         int pixel_size,
3802                                         unsigned long latency_ns)
3803 {
3804         long entries_required, wm_size;
3805
3806         /*
3807          * Note: we need to make sure we don't overflow for various clock &
3808          * latency values.
3809          * clocks go from a few thousand to several hundred thousand.
3810          * latency is usually a few thousand
3811          */
3812         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3813                 1000;
3814         entries_required = howmany(entries_required, wm->cacheline_size);
3815
3816         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3817
3818         wm_size = fifo_size - (entries_required + wm->guard_size);
3819
3820         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3821
3822         /* Don't promote wm_size to unsigned... */
3823         if (wm_size > (long)wm->max_wm)
3824                 wm_size = wm->max_wm;
3825         if (wm_size <= 0)
3826                 wm_size = wm->default_wm;
3827         return wm_size;
3828 }
3829
3830 struct cxsr_latency {
3831         int is_desktop;
3832         int is_ddr3;
3833         unsigned long fsb_freq;
3834         unsigned long mem_freq;
3835         unsigned long display_sr;
3836         unsigned long display_hpll_disable;
3837         unsigned long cursor_sr;
3838         unsigned long cursor_hpll_disable;
3839 };
3840
3841 static const struct cxsr_latency cxsr_latency_table[] = {
3842         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3843         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3844         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3845         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3846         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3847
3848         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3849         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3850         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3851         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3852         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3853
3854         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3855         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3856         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3857         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3858         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3859
3860         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3861         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3862         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3863         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3864         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3865
3866         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3867         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3868         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3869         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3870         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3871
3872         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3873         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3874         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3875         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3876         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3877 };
3878
3879 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3880                                                          int is_ddr3,
3881                                                          int fsb,
3882                                                          int mem)
3883 {
3884         const struct cxsr_latency *latency;
3885         int i;
3886
3887         if (fsb == 0 || mem == 0)
3888                 return NULL;
3889
3890         for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
3891                 latency = &cxsr_latency_table[i];
3892                 if (is_desktop == latency->is_desktop &&
3893                     is_ddr3 == latency->is_ddr3 &&
3894                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3895                         return latency;
3896         }
3897
3898         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3899
3900         return NULL;
3901 }
3902
3903 static void pineview_disable_cxsr(struct drm_device *dev)
3904 {
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906
3907         /* deactivate cxsr */
3908         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3909 }
3910
3911 /*
3912  * Latency for FIFO fetches is dependent on several factors:
3913  *   - memory configuration (speed, channels)
3914  *   - chipset
3915  *   - current MCH state
3916  * It can be fairly high in some situations, so here we assume a fairly
3917  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3918  * set this value too high, the FIFO will fetch frequently to stay full)
3919  * and power consumption (set it too low to save power and we might see
3920  * FIFO underruns and display "flicker").
3921  *
3922  * A value of 5us seems to be a good balance; safe for very low end
3923  * platforms but not overly aggressive on lower latency configs.
3924  */
3925 static const int latency_ns = 5000;
3926
3927 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3928 {
3929         struct drm_i915_private *dev_priv = dev->dev_private;
3930         uint32_t dsparb = I915_READ(DSPARB);
3931         int size;
3932
3933         size = dsparb & 0x7f;
3934         if (plane)
3935                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3936
3937         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3938                       plane ? "B" : "A", size);
3939
3940         return size;
3941 }
3942
3943 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3944 {
3945         struct drm_i915_private *dev_priv = dev->dev_private;
3946         uint32_t dsparb = I915_READ(DSPARB);
3947         int size;
3948
3949         size = dsparb & 0x1ff;
3950         if (plane)
3951                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3952         size >>= 1; /* Convert to cachelines */
3953
3954         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3955                       plane ? "B" : "A", size);
3956
3957         return size;
3958 }
3959
3960 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3961 {
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         uint32_t dsparb = I915_READ(DSPARB);
3964         int size;
3965
3966         size = dsparb & 0x7f;
3967         size >>= 2; /* Convert to cachelines */
3968
3969         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3970                       plane ? "B" : "A",
3971                       size);
3972
3973         return size;
3974 }
3975
3976 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3977 {
3978         struct drm_i915_private *dev_priv = dev->dev_private;
3979         uint32_t dsparb = I915_READ(DSPARB);
3980         int size;
3981
3982         size = dsparb & 0x7f;
3983         size >>= 1; /* Convert to cachelines */
3984
3985         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3986                       plane ? "B" : "A", size);
3987
3988         return size;
3989 }
3990
3991 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3992 {
3993         struct drm_crtc *crtc, *enabled = NULL;
3994
3995         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3996                 if (crtc->enabled && crtc->fb) {
3997                         if (enabled)
3998                                 return NULL;
3999                         enabled = crtc;
4000                 }
4001         }
4002
4003         return enabled;
4004 }
4005
4006 static void pineview_update_wm(struct drm_device *dev)
4007 {
4008         struct drm_i915_private *dev_priv = dev->dev_private;
4009         struct drm_crtc *crtc;
4010         const struct cxsr_latency *latency;
4011         u32 reg;
4012         unsigned long wm;
4013
4014         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4015                                          dev_priv->fsb_freq, dev_priv->mem_freq);
4016         if (!latency) {
4017                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4018                 pineview_disable_cxsr(dev);
4019                 return;
4020         }
4021
4022         crtc = single_enabled_crtc(dev);
4023         if (crtc) {
4024                 int clock = crtc->mode.clock;
4025                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4026
4027                 /* Display SR */
4028                 wm = intel_calculate_wm(clock, &pineview_display_wm,
4029                                         pineview_display_wm.fifo_size,
4030                                         pixel_size, latency->display_sr);
4031                 reg = I915_READ(DSPFW1);
4032                 reg &= ~DSPFW_SR_MASK;
4033                 reg |= wm << DSPFW_SR_SHIFT;
4034                 I915_WRITE(DSPFW1, reg);
4035                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4036
4037                 /* cursor SR */
4038                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4039                                         pineview_display_wm.fifo_size,
4040                                         pixel_size, latency->cursor_sr);
4041                 reg = I915_READ(DSPFW3);
4042                 reg &= ~DSPFW_CURSOR_SR_MASK;
4043                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4044                 I915_WRITE(DSPFW3, reg);
4045
4046                 /* Display HPLL off SR */
4047                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4048                                         pineview_display_hplloff_wm.fifo_size,
4049                                         pixel_size, latency->display_hpll_disable);
4050                 reg = I915_READ(DSPFW3);
4051                 reg &= ~DSPFW_HPLL_SR_MASK;
4052                 reg |= wm & DSPFW_HPLL_SR_MASK;
4053                 I915_WRITE(DSPFW3, reg);
4054
4055                 /* cursor HPLL off SR */
4056                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4057                                         pineview_display_hplloff_wm.fifo_size,
4058                                         pixel_size, latency->cursor_hpll_disable);
4059                 reg = I915_READ(DSPFW3);
4060                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4061                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4062                 I915_WRITE(DSPFW3, reg);
4063                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4064
4065                 /* activate cxsr */
4066                 I915_WRITE(DSPFW3,
4067                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4068                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4069         } else {
4070                 pineview_disable_cxsr(dev);
4071                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4072         }
4073 }
4074
4075 static bool g4x_compute_wm0(struct drm_device *dev,
4076                             int plane,
4077                             const struct intel_watermark_params *display,
4078                             int display_latency_ns,
4079                             const struct intel_watermark_params *cursor,
4080                             int cursor_latency_ns,
4081                             int *plane_wm,
4082                             int *cursor_wm)
4083 {
4084         struct drm_crtc *crtc;
4085         int htotal, hdisplay, clock, pixel_size;
4086         int line_time_us, line_count;
4087         int entries, tlb_miss;
4088
4089         crtc = intel_get_crtc_for_plane(dev, plane);
4090         if (crtc->fb == NULL || !crtc->enabled) {
4091                 *cursor_wm = cursor->guard_size;
4092                 *plane_wm = display->guard_size;
4093                 return false;
4094         }
4095
4096         htotal = crtc->mode.htotal;
4097         hdisplay = crtc->mode.hdisplay;
4098         clock = crtc->mode.clock;
4099         pixel_size = crtc->fb->bits_per_pixel / 8;
4100
4101         /* Use the small buffer method to calculate plane watermark */
4102         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4103         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4104         if (tlb_miss > 0)
4105                 entries += tlb_miss;
4106         entries = howmany(entries, display->cacheline_size);
4107         *plane_wm = entries + display->guard_size;
4108         if (*plane_wm > (int)display->max_wm)
4109                 *plane_wm = display->max_wm;
4110
4111         /* Use the large buffer method to calculate cursor watermark */
4112         line_time_us = ((htotal * 1000) / clock);
4113         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4114         entries = line_count * 64 * pixel_size;
4115         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4116         if (tlb_miss > 0)
4117                 entries += tlb_miss;
4118         entries = howmany(entries, cursor->cacheline_size);
4119         *cursor_wm = entries + cursor->guard_size;
4120         if (*cursor_wm > (int)cursor->max_wm)
4121                 *cursor_wm = (int)cursor->max_wm;
4122
4123         return true;
4124 }
4125
4126 /*
4127  * Check the wm result.
4128  *
4129  * If any calculated watermark values is larger than the maximum value that
4130  * can be programmed into the associated watermark register, that watermark
4131  * must be disabled.
4132  */
4133 static bool g4x_check_srwm(struct drm_device *dev,
4134                            int display_wm, int cursor_wm,
4135                            const struct intel_watermark_params *display,
4136                            const struct intel_watermark_params *cursor)
4137 {
4138         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4139                       display_wm, cursor_wm);
4140
4141         if (display_wm > display->max_wm) {
4142                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4143                               display_wm, display->max_wm);
4144                 return false;
4145         }
4146
4147         if (cursor_wm > cursor->max_wm) {
4148                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4149                               cursor_wm, cursor->max_wm);
4150                 return false;
4151         }
4152
4153         if (!(display_wm || cursor_wm)) {
4154                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4155                 return false;
4156         }
4157
4158         return true;
4159 }
4160
4161 static bool g4x_compute_srwm(struct drm_device *dev,
4162                              int plane,
4163                              int latency_ns,
4164                              const struct intel_watermark_params *display,
4165                              const struct intel_watermark_params *cursor,
4166                              int *display_wm, int *cursor_wm)
4167 {
4168         struct drm_crtc *crtc;
4169         int hdisplay, htotal, pixel_size, clock;
4170         unsigned long line_time_us;
4171         int line_count, line_size;
4172         int small, large;
4173         int entries;
4174
4175         if (!latency_ns) {
4176                 *display_wm = *cursor_wm = 0;
4177                 return false;
4178         }
4179
4180         crtc = intel_get_crtc_for_plane(dev, plane);
4181         hdisplay = crtc->mode.hdisplay;
4182         htotal = crtc->mode.htotal;
4183         clock = crtc->mode.clock;
4184         pixel_size = crtc->fb->bits_per_pixel / 8;
4185
4186         line_time_us = (htotal * 1000) / clock;
4187         line_count = (latency_ns / line_time_us + 1000) / 1000;
4188         line_size = hdisplay * pixel_size;
4189
4190         /* Use the minimum of the small and large buffer method for primary */
4191         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4192         large = line_count * line_size;
4193
4194         entries = howmany(min(small, large), display->cacheline_size);
4195         *display_wm = entries + display->guard_size;
4196
4197         /* calculate the self-refresh watermark for display cursor */
4198         entries = line_count * pixel_size * 64;
4199         entries = howmany(entries, cursor->cacheline_size);
4200         *cursor_wm = entries + cursor->guard_size;
4201
4202         return g4x_check_srwm(dev,
4203                               *display_wm, *cursor_wm,
4204                               display, cursor);
4205 }
4206
4207 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
4208
4209 static void g4x_update_wm(struct drm_device *dev)
4210 {
4211         static const int sr_latency_ns = 12000;
4212         struct drm_i915_private *dev_priv = dev->dev_private;
4213         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4214         int plane_sr, cursor_sr;
4215         unsigned int enabled = 0;
4216
4217         if (g4x_compute_wm0(dev, 0,
4218                             &g4x_wm_info, latency_ns,
4219                             &g4x_cursor_wm_info, latency_ns,
4220                             &planea_wm, &cursora_wm))
4221                 enabled |= 1;
4222
4223         if (g4x_compute_wm0(dev, 1,
4224                             &g4x_wm_info, latency_ns,
4225                             &g4x_cursor_wm_info, latency_ns,
4226                             &planeb_wm, &cursorb_wm))
4227                 enabled |= 2;
4228
4229         plane_sr = cursor_sr = 0;
4230         if (single_plane_enabled(enabled) &&
4231             g4x_compute_srwm(dev, ffs(enabled) - 1,
4232                              sr_latency_ns,
4233                              &g4x_wm_info,
4234                              &g4x_cursor_wm_info,
4235                              &plane_sr, &cursor_sr))
4236                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4237         else
4238                 I915_WRITE(FW_BLC_SELF,
4239                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4240
4241         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4242                       planea_wm, cursora_wm,
4243                       planeb_wm, cursorb_wm,
4244                       plane_sr, cursor_sr);
4245
4246         I915_WRITE(DSPFW1,
4247                    (plane_sr << DSPFW_SR_SHIFT) |
4248                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4249                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4250                    planea_wm);
4251         I915_WRITE(DSPFW2,
4252                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4253                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4254         /* HPLL off in SR has some issues on G4x... disable it */
4255         I915_WRITE(DSPFW3,
4256                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4257                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4258 }
4259
4260 static void i965_update_wm(struct drm_device *dev)
4261 {
4262         struct drm_i915_private *dev_priv = dev->dev_private;
4263         struct drm_crtc *crtc;
4264         int srwm = 1;
4265         int cursor_sr = 16;
4266
4267         /* Calc sr entries for one plane configs */
4268         crtc = single_enabled_crtc(dev);
4269         if (crtc) {
4270                 /* self-refresh has much higher latency */
4271                 static const int sr_latency_ns = 12000;
4272                 int clock = crtc->mode.clock;
4273                 int htotal = crtc->mode.htotal;
4274                 int hdisplay = crtc->mode.hdisplay;
4275                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4276                 unsigned long line_time_us;
4277                 int entries;
4278
4279                 line_time_us = ((htotal * 1000) / clock);
4280
4281                 /* Use ns/us then divide to preserve precision */
4282                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4283                         pixel_size * hdisplay;
4284                 entries = howmany(entries, I915_FIFO_LINE_SIZE);
4285                 srwm = I965_FIFO_SIZE - entries;
4286                 if (srwm < 0)
4287                         srwm = 1;
4288                 srwm &= 0x1ff;
4289                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4290                               entries, srwm);
4291
4292                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4293                         pixel_size * 64;
4294                 entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
4295                 cursor_sr = i965_cursor_wm_info.fifo_size -
4296                         (entries + i965_cursor_wm_info.guard_size);
4297
4298                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4299                         cursor_sr = i965_cursor_wm_info.max_wm;
4300
4301                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4302                               "cursor %d\n", srwm, cursor_sr);
4303
4304                 if (IS_CRESTLINE(dev))
4305                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4306         } else {
4307                 /* Turn off self refresh if both pipes are enabled */
4308                 if (IS_CRESTLINE(dev))
4309                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4310                                    & ~FW_BLC_SELF_EN);
4311         }
4312
4313         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4314                       srwm);
4315
4316         /* 965 has limitations... */
4317         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4318                    (8 << 16) | (8 << 8) | (8 << 0));
4319         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4320         /* update cursor SR watermark */
4321         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4322 }
4323
4324 static void i9xx_update_wm(struct drm_device *dev)
4325 {
4326         struct drm_i915_private *dev_priv = dev->dev_private;
4327         const struct intel_watermark_params *wm_info;
4328         uint32_t fwater_lo;
4329         uint32_t fwater_hi;
4330         int cwm, srwm = 1;
4331         int fifo_size;
4332         int planea_wm, planeb_wm;
4333         struct drm_crtc *crtc, *enabled = NULL;
4334
4335         if (IS_I945GM(dev))
4336                 wm_info = &i945_wm_info;
4337         else if (!IS_GEN2(dev))
4338                 wm_info = &i915_wm_info;
4339         else
4340                 wm_info = &i855_wm_info;
4341
4342         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4343         crtc = intel_get_crtc_for_plane(dev, 0);
4344         if (crtc->enabled && crtc->fb) {
4345                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4346                                                wm_info, fifo_size,
4347                                                crtc->fb->bits_per_pixel / 8,
4348                                                latency_ns);
4349                 enabled = crtc;
4350         } else
4351                 planea_wm = fifo_size - wm_info->guard_size;
4352
4353         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4354         crtc = intel_get_crtc_for_plane(dev, 1);
4355         if (crtc->enabled && crtc->fb) {
4356                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4357                                                wm_info, fifo_size,
4358                                                crtc->fb->bits_per_pixel / 8,
4359                                                latency_ns);
4360                 if (enabled == NULL)
4361                         enabled = crtc;
4362                 else
4363                         enabled = NULL;
4364         } else
4365                 planeb_wm = fifo_size - wm_info->guard_size;
4366
4367         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4368
4369         /*
4370          * Overlay gets an aggressive default since video jitter is bad.
4371          */
4372         cwm = 2;
4373
4374         /* Play safe and disable self-refresh before adjusting watermarks. */
4375         if (IS_I945G(dev) || IS_I945GM(dev))
4376                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4377         else if (IS_I915GM(dev))
4378                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4379
4380         /* Calc sr entries for one plane configs */
4381         if (HAS_FW_BLC(dev) && enabled) {
4382                 /* self-refresh has much higher latency */
4383                 static const int sr_latency_ns = 6000;
4384                 int clock = enabled->mode.clock;
4385                 int htotal = enabled->mode.htotal;
4386                 int hdisplay = enabled->mode.hdisplay;
4387                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4388                 unsigned long line_time_us;
4389                 int entries;
4390
4391                 line_time_us = (htotal * 1000) / clock;
4392
4393                 /* Use ns/us then divide to preserve precision */
4394                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4395                         pixel_size * hdisplay;
4396                 entries = howmany(entries, wm_info->cacheline_size);
4397                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4398                 srwm = wm_info->fifo_size - entries;
4399                 if (srwm < 0)
4400                         srwm = 1;
4401
4402                 if (IS_I945G(dev) || IS_I945GM(dev))
4403                         I915_WRITE(FW_BLC_SELF,
4404                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4405                 else if (IS_I915GM(dev))
4406                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4407         }
4408
4409         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4410                       planea_wm, planeb_wm, cwm, srwm);
4411
4412         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4413         fwater_hi = (cwm & 0x1f);
4414
4415         /* Set request length to 8 cachelines per fetch */
4416         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4417         fwater_hi = fwater_hi | (1 << 8);
4418
4419         I915_WRITE(FW_BLC, fwater_lo);
4420         I915_WRITE(FW_BLC2, fwater_hi);
4421
4422         if (HAS_FW_BLC(dev)) {
4423                 if (enabled) {
4424                         if (IS_I945G(dev) || IS_I945GM(dev))
4425                                 I915_WRITE(FW_BLC_SELF,
4426                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4427                         else if (IS_I915GM(dev))
4428                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4429                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4430                 } else
4431                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4432         }
4433 }
4434
4435 static void i830_update_wm(struct drm_device *dev)
4436 {
4437         struct drm_i915_private *dev_priv = dev->dev_private;
4438         struct drm_crtc *crtc;
4439         uint32_t fwater_lo;
4440         int planea_wm;
4441
4442         crtc = single_enabled_crtc(dev);
4443         if (crtc == NULL)
4444                 return;
4445
4446         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4447                                        dev_priv->display.get_fifo_size(dev, 0),
4448                                        crtc->fb->bits_per_pixel / 8,
4449                                        latency_ns);
4450         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4451         fwater_lo |= (3<<8) | planea_wm;
4452
4453         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4454
4455         I915_WRITE(FW_BLC, fwater_lo);
4456 }
4457
4458 #define ILK_LP0_PLANE_LATENCY           700
4459 #define ILK_LP0_CURSOR_LATENCY          1300
4460
4461 /*
4462  * Check the wm result.
4463  *
4464  * If any calculated watermark values is larger than the maximum value that
4465  * can be programmed into the associated watermark register, that watermark
4466  * must be disabled.
4467  */
4468 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4469                                 int fbc_wm, int display_wm, int cursor_wm,
4470                                 const struct intel_watermark_params *display,
4471                                 const struct intel_watermark_params *cursor)
4472 {
4473         struct drm_i915_private *dev_priv = dev->dev_private;
4474
4475         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4476                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4477
4478         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4479                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4480                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4481
4482                 /* fbc has it's own way to disable FBC WM */
4483                 I915_WRITE(DISP_ARB_CTL,
4484                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4485                 return false;
4486         }
4487
4488         if (display_wm > display->max_wm) {
4489                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4490                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4491                 return false;
4492         }
4493
4494         if (cursor_wm > cursor->max_wm) {
4495                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4496                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4497                 return false;
4498         }
4499
4500         if (!(fbc_wm || display_wm || cursor_wm)) {
4501                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4502                 return false;
4503         }
4504
4505         return true;
4506 }
4507
4508 /*
4509  * Compute watermark values of WM[1-3],
4510  */
4511 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4512                                   int latency_ns,
4513                                   const struct intel_watermark_params *display,
4514                                   const struct intel_watermark_params *cursor,
4515                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4516 {
4517         struct drm_crtc *crtc;
4518         unsigned long line_time_us;
4519         int hdisplay, htotal, pixel_size, clock;
4520         int line_count, line_size;
4521         int small, large;
4522         int entries;
4523
4524         if (!latency_ns) {
4525                 *fbc_wm = *display_wm = *cursor_wm = 0;
4526                 return false;
4527         }
4528
4529         crtc = intel_get_crtc_for_plane(dev, plane);
4530         hdisplay = crtc->mode.hdisplay;
4531         htotal = crtc->mode.htotal;
4532         clock = crtc->mode.clock;
4533         pixel_size = crtc->fb->bits_per_pixel / 8;
4534
4535         line_time_us = (htotal * 1000) / clock;
4536         line_count = (latency_ns / line_time_us + 1000) / 1000;
4537         line_size = hdisplay * pixel_size;
4538
4539         /* Use the minimum of the small and large buffer method for primary */
4540         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4541         large = line_count * line_size;
4542
4543         entries = howmany(min(small, large), display->cacheline_size);
4544         *display_wm = entries + display->guard_size;
4545
4546         /*
4547          * Spec says:
4548          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4549          */
4550         *fbc_wm = howmany(*display_wm * 64, line_size) + 2;
4551
4552         /* calculate the self-refresh watermark for display cursor */
4553         entries = line_count * pixel_size * 64;
4554         entries = howmany(entries, cursor->cacheline_size);
4555         *cursor_wm = entries + cursor->guard_size;
4556
4557         return ironlake_check_srwm(dev, level,
4558                                    *fbc_wm, *display_wm, *cursor_wm,
4559                                    display, cursor);
4560 }
4561
4562 static void ironlake_update_wm(struct drm_device *dev)
4563 {
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         int fbc_wm, plane_wm, cursor_wm;
4566         unsigned int enabled;
4567
4568         enabled = 0;
4569         if (g4x_compute_wm0(dev, 0,
4570                             &ironlake_display_wm_info,
4571                             ILK_LP0_PLANE_LATENCY,
4572                             &ironlake_cursor_wm_info,
4573                             ILK_LP0_CURSOR_LATENCY,
4574                             &plane_wm, &cursor_wm)) {
4575                 I915_WRITE(WM0_PIPEA_ILK,
4576                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4577                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4578                               " plane %d, " "cursor: %d\n",
4579                               plane_wm, cursor_wm);
4580                 enabled |= 1;
4581         }
4582
4583         if (g4x_compute_wm0(dev, 1,
4584                             &ironlake_display_wm_info,
4585                             ILK_LP0_PLANE_LATENCY,
4586                             &ironlake_cursor_wm_info,
4587                             ILK_LP0_CURSOR_LATENCY,
4588                             &plane_wm, &cursor_wm)) {
4589                 I915_WRITE(WM0_PIPEB_ILK,
4590                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4591                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4592                               " plane %d, cursor: %d\n",
4593                               plane_wm, cursor_wm);
4594                 enabled |= 2;
4595         }
4596
4597         /*
4598          * Calculate and update the self-refresh watermark only when one
4599          * display plane is used.
4600          */
4601         I915_WRITE(WM3_LP_ILK, 0);
4602         I915_WRITE(WM2_LP_ILK, 0);
4603         I915_WRITE(WM1_LP_ILK, 0);
4604
4605         if (!single_plane_enabled(enabled))
4606                 return;
4607         enabled = ffs(enabled) - 1;
4608
4609         /* WM1 */
4610         if (!ironlake_compute_srwm(dev, 1, enabled,
4611                                    ILK_READ_WM1_LATENCY() * 500,
4612                                    &ironlake_display_srwm_info,
4613                                    &ironlake_cursor_srwm_info,
4614                                    &fbc_wm, &plane_wm, &cursor_wm))
4615                 return;
4616
4617         I915_WRITE(WM1_LP_ILK,
4618                    WM1_LP_SR_EN |
4619                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4620                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4621                    (plane_wm << WM1_LP_SR_SHIFT) |
4622                    cursor_wm);
4623
4624         /* WM2 */
4625         if (!ironlake_compute_srwm(dev, 2, enabled,
4626                                    ILK_READ_WM2_LATENCY() * 500,
4627                                    &ironlake_display_srwm_info,
4628                                    &ironlake_cursor_srwm_info,
4629                                    &fbc_wm, &plane_wm, &cursor_wm))
4630                 return;
4631
4632         I915_WRITE(WM2_LP_ILK,
4633                    WM2_LP_EN |
4634                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4635                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4636                    (plane_wm << WM1_LP_SR_SHIFT) |
4637                    cursor_wm);
4638
4639         /*
4640          * WM3 is unsupported on ILK, probably because we don't have latency
4641          * data for that power state
4642          */
4643 }
4644
4645 void sandybridge_update_wm(struct drm_device *dev)
4646 {
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4649         u32 val;
4650         int fbc_wm, plane_wm, cursor_wm;
4651         unsigned int enabled;
4652
4653         enabled = 0;
4654         if (g4x_compute_wm0(dev, 0,
4655                             &sandybridge_display_wm_info, latency,
4656                             &sandybridge_cursor_wm_info, latency,
4657                             &plane_wm, &cursor_wm)) {
4658                 val = I915_READ(WM0_PIPEA_ILK);
4659                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4660                 I915_WRITE(WM0_PIPEA_ILK, val |
4661                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4662                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4663                               " plane %d, " "cursor: %d\n",
4664                               plane_wm, cursor_wm);
4665                 enabled |= 1;
4666         }
4667
4668         if (g4x_compute_wm0(dev, 1,
4669                             &sandybridge_display_wm_info, latency,
4670                             &sandybridge_cursor_wm_info, latency,
4671                             &plane_wm, &cursor_wm)) {
4672                 val = I915_READ(WM0_PIPEB_ILK);
4673                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4674                 I915_WRITE(WM0_PIPEB_ILK, val |
4675                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4676                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4677                               " plane %d, cursor: %d\n",
4678                               plane_wm, cursor_wm);
4679                 enabled |= 2;
4680         }
4681
4682         /* IVB has 3 pipes */
4683         if (IS_IVYBRIDGE(dev) &&
4684             g4x_compute_wm0(dev, 2,
4685                             &sandybridge_display_wm_info, latency,
4686                             &sandybridge_cursor_wm_info, latency,
4687                             &plane_wm, &cursor_wm)) {
4688                 val = I915_READ(WM0_PIPEC_IVB);
4689                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4690                 I915_WRITE(WM0_PIPEC_IVB, val |
4691                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4692                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4693                               " plane %d, cursor: %d\n",
4694                               plane_wm, cursor_wm);
4695                 enabled |= 3;
4696         }
4697
4698         /*
4699          * Calculate and update the self-refresh watermark only when one
4700          * display plane is used.
4701          *
4702          * SNB support 3 levels of watermark.
4703          *
4704          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4705          * and disabled in the descending order
4706          *
4707          */
4708         I915_WRITE(WM3_LP_ILK, 0);
4709         I915_WRITE(WM2_LP_ILK, 0);
4710         I915_WRITE(WM1_LP_ILK, 0);
4711
4712         if (!single_plane_enabled(enabled) ||
4713             dev_priv->sprite_scaling_enabled)
4714                 return;
4715         enabled = ffs(enabled) - 1;
4716
4717         /* WM1 */
4718         if (!ironlake_compute_srwm(dev, 1, enabled,
4719                                    SNB_READ_WM1_LATENCY() * 500,
4720                                    &sandybridge_display_srwm_info,
4721                                    &sandybridge_cursor_srwm_info,
4722                                    &fbc_wm, &plane_wm, &cursor_wm))
4723                 return;
4724
4725         I915_WRITE(WM1_LP_ILK,
4726                    WM1_LP_SR_EN |
4727                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4728                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4729                    (plane_wm << WM1_LP_SR_SHIFT) |
4730                    cursor_wm);
4731
4732         /* WM2 */
4733         if (!ironlake_compute_srwm(dev, 2, enabled,
4734                                    SNB_READ_WM2_LATENCY() * 500,
4735                                    &sandybridge_display_srwm_info,
4736                                    &sandybridge_cursor_srwm_info,
4737                                    &fbc_wm, &plane_wm, &cursor_wm))
4738                 return;
4739
4740         I915_WRITE(WM2_LP_ILK,
4741                    WM2_LP_EN |
4742                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4743                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4744                    (plane_wm << WM1_LP_SR_SHIFT) |
4745                    cursor_wm);
4746
4747         /* WM3 */
4748         if (!ironlake_compute_srwm(dev, 3, enabled,
4749                                    SNB_READ_WM3_LATENCY() * 500,
4750                                    &sandybridge_display_srwm_info,
4751                                    &sandybridge_cursor_srwm_info,
4752                                    &fbc_wm, &plane_wm, &cursor_wm))
4753                 return;
4754
4755         I915_WRITE(WM3_LP_ILK,
4756                    WM3_LP_EN |
4757                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4758                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4759                    (plane_wm << WM1_LP_SR_SHIFT) |
4760                    cursor_wm);
4761 }
4762
4763 static bool
4764 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4765                               uint32_t sprite_width, int pixel_size,
4766                               const struct intel_watermark_params *display,
4767                               int display_latency_ns, int *sprite_wm)
4768 {
4769         struct drm_crtc *crtc;
4770         int clock;
4771         int entries, tlb_miss;
4772
4773         crtc = intel_get_crtc_for_plane(dev, plane);
4774         if (crtc->fb == NULL || !crtc->enabled) {
4775                 *sprite_wm = display->guard_size;
4776                 return false;
4777         }
4778
4779         clock = crtc->mode.clock;
4780
4781         /* Use the small buffer method to calculate the sprite watermark */
4782         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4783         tlb_miss = display->fifo_size*display->cacheline_size -
4784                 sprite_width * 8;
4785         if (tlb_miss > 0)
4786                 entries += tlb_miss;
4787         entries = howmany(entries, display->cacheline_size);
4788         *sprite_wm = entries + display->guard_size;
4789         if (*sprite_wm > (int)display->max_wm)
4790                 *sprite_wm = display->max_wm;
4791
4792         return true;
4793 }
4794
4795 static bool
4796 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4797                                 uint32_t sprite_width, int pixel_size,
4798                                 const struct intel_watermark_params *display,
4799                                 int latency_ns, int *sprite_wm)
4800 {
4801         struct drm_crtc *crtc;
4802         unsigned long line_time_us;
4803         int clock;
4804         int line_count, line_size;
4805         int small, large;
4806         int entries;
4807
4808         if (!latency_ns) {
4809                 *sprite_wm = 0;
4810                 return false;
4811         }
4812
4813         crtc = intel_get_crtc_for_plane(dev, plane);
4814         clock = crtc->mode.clock;
4815         if (!clock) {
4816                 *sprite_wm = 0;
4817                 return false;
4818         }
4819
4820         line_time_us = (sprite_width * 1000) / clock;
4821         if (!line_time_us) {
4822                 *sprite_wm = 0;
4823                 return false;
4824         }
4825
4826         line_count = (latency_ns / line_time_us + 1000) / 1000;
4827         line_size = sprite_width * pixel_size;
4828
4829         /* Use the minimum of the small and large buffer method for primary */
4830         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4831         large = line_count * line_size;
4832
4833         entries = howmany(min(small, large), display->cacheline_size);
4834         *sprite_wm = entries + display->guard_size;
4835
4836         return *sprite_wm > 0x3ff ? false : true;
4837 }
4838
4839 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4840                                          uint32_t sprite_width, int pixel_size)
4841 {
4842         struct drm_i915_private *dev_priv = dev->dev_private;
4843         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4844         u32 val;
4845         int sprite_wm, reg;
4846         int ret;
4847
4848         switch (pipe) {
4849         case 0:
4850                 reg = WM0_PIPEA_ILK;
4851                 break;
4852         case 1:
4853                 reg = WM0_PIPEB_ILK;
4854                 break;
4855         case 2:
4856                 reg = WM0_PIPEC_IVB;
4857                 break;
4858         default:
4859                 return; /* bad pipe */
4860         }
4861
4862         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4863                                             &sandybridge_display_wm_info,
4864                                             latency, &sprite_wm);
4865         if (!ret) {
4866                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4867                               pipe);
4868                 return;
4869         }
4870
4871         val = I915_READ(reg);
4872         val &= ~WM0_PIPE_SPRITE_MASK;
4873         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4874         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4875
4876
4877         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4878                                               pixel_size,
4879                                               &sandybridge_display_srwm_info,
4880                                               SNB_READ_WM1_LATENCY() * 500,
4881                                               &sprite_wm);
4882         if (!ret) {
4883                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4884                               pipe);
4885                 return;
4886         }
4887         I915_WRITE(WM1S_LP_ILK, sprite_wm);
4888
4889         /* Only IVB has two more LP watermarks for sprite */
4890         if (!IS_IVYBRIDGE(dev))
4891                 return;
4892
4893         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4894                                               pixel_size,
4895                                               &sandybridge_display_srwm_info,
4896                                               SNB_READ_WM2_LATENCY() * 500,
4897                                               &sprite_wm);
4898         if (!ret) {
4899                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4900                               pipe);
4901                 return;
4902         }
4903         I915_WRITE(WM2S_LP_IVB, sprite_wm);
4904
4905         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4906                                               pixel_size,
4907                                               &sandybridge_display_srwm_info,
4908                                               SNB_READ_WM3_LATENCY() * 500,
4909                                               &sprite_wm);
4910         if (!ret) {
4911                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4912                               pipe);
4913                 return;
4914         }
4915         I915_WRITE(WM3S_LP_IVB, sprite_wm);
4916 }
4917
4918 /**
4919  * intel_update_watermarks - update FIFO watermark values based on current modes
4920  *
4921  * Calculate watermark values for the various WM regs based on current mode
4922  * and plane configuration.
4923  *
4924  * There are several cases to deal with here:
4925  *   - normal (i.e. non-self-refresh)
4926  *   - self-refresh (SR) mode
4927  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4928  *   - lines are small relative to FIFO size (buffer can hold more than 2
4929  *     lines), so need to account for TLB latency
4930  *
4931  *   The normal calculation is:
4932  *     watermark = dotclock * bytes per pixel * latency
4933  *   where latency is platform & configuration dependent (we assume pessimal
4934  *   values here).
4935  *
4936  *   The SR calculation is:
4937  *     watermark = (trunc(latency/line time)+1) * surface width *
4938  *       bytes per pixel
4939  *   where
4940  *     line time = htotal / dotclock
4941  *     surface width = hdisplay for normal plane and 64 for cursor
4942  *   and latency is assumed to be high, as above.
4943  *
4944  * The final value programmed to the register should always be rounded up,
4945  * and include an extra 2 entries to account for clock crossings.
4946  *
4947  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4948  * to set the non-SR watermarks to 8.
4949  */
4950 static void intel_update_watermarks(struct drm_device *dev)
4951 {
4952         struct drm_i915_private *dev_priv = dev->dev_private;
4953
4954         if (dev_priv->display.update_wm)
4955                 dev_priv->display.update_wm(dev);
4956 }
4957
4958 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4959                                     uint32_t sprite_width, int pixel_size)
4960 {
4961         struct drm_i915_private *dev_priv = dev->dev_private;
4962
4963         if (dev_priv->display.update_sprite_wm)
4964                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4965                                                    pixel_size);
4966 }
4967
4968 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4969 {
4970         if (i915_panel_use_ssc >= 0)
4971                 return i915_panel_use_ssc != 0;
4972         return dev_priv->lvds_use_ssc
4973                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4974 }
4975
4976 /**
4977  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4978  * @crtc: CRTC structure
4979  * @mode: requested mode
4980  *
4981  * A pipe may be connected to one or more outputs.  Based on the depth of the
4982  * attached framebuffer, choose a good color depth to use on the pipe.
4983  *
4984  * If possible, match the pipe depth to the fb depth.  In some cases, this
4985  * isn't ideal, because the connected output supports a lesser or restricted
4986  * set of depths.  Resolve that here:
4987  *    LVDS typically supports only 6bpc, so clamp down in that case
4988  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4989  *    Displays may support a restricted set as well, check EDID and clamp as
4990  *      appropriate.
4991  *    DP may want to dither down to 6bpc to fit larger modes
4992  *
4993  * RETURNS:
4994  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4995  * true if they don't match).
4996  */
4997 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4998                                          unsigned int *pipe_bpp,
4999                                          struct drm_display_mode *mode)
5000 {
5001         struct drm_device *dev = crtc->dev;
5002         struct drm_i915_private *dev_priv = dev->dev_private;
5003         struct drm_encoder *encoder;
5004         struct drm_connector *connector;
5005         unsigned int display_bpc = UINT_MAX, bpc;
5006
5007         /* Walk the encoders & connectors on this crtc, get min bpc */
5008         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5009                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5010
5011                 if (encoder->crtc != crtc)
5012                         continue;
5013
5014                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5015                         unsigned int lvds_bpc;
5016
5017                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5018                             LVDS_A3_POWER_UP)
5019                                 lvds_bpc = 8;
5020                         else
5021                                 lvds_bpc = 6;
5022
5023                         if (lvds_bpc < display_bpc) {
5024                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5025                                 display_bpc = lvds_bpc;
5026                         }
5027                         continue;
5028                 }
5029
5030                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5031                         /* Use VBT settings if we have an eDP panel */
5032                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5033
5034                         if (edp_bpc < display_bpc) {
5035                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5036                                 display_bpc = edp_bpc;
5037                         }
5038                         continue;
5039                 }
5040
5041                 /* Not one of the known troublemakers, check the EDID */
5042                 list_for_each_entry(connector, &dev->mode_config.connector_list,
5043                                     head) {
5044                         if (connector->encoder != encoder)
5045                                 continue;
5046
5047                         /* Don't use an invalid EDID bpc value */
5048                         if (connector->display_info.bpc &&
5049                             connector->display_info.bpc < display_bpc) {
5050                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5051                                 display_bpc = connector->display_info.bpc;
5052                         }
5053                 }
5054
5055                 /*
5056                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5057                  * through, clamp it down.  (Note: >12bpc will be caught below.)
5058                  */
5059                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5060                         if (display_bpc > 8 && display_bpc < 12) {
5061                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5062                                 display_bpc = 12;
5063                         } else {
5064                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5065                                 display_bpc = 8;
5066                         }
5067                 }
5068         }
5069
5070         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5071                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5072                 display_bpc = 6;
5073         }
5074
5075         /*
5076          * We could just drive the pipe at the highest bpc all the time and
5077          * enable dithering as needed, but that costs bandwidth.  So choose
5078          * the minimum value that expresses the full color range of the fb but
5079          * also stays within the max display bpc discovered above.
5080          */
5081
5082         switch (crtc->fb->depth) {
5083         case 8:
5084                 bpc = 8; /* since we go through a colormap */
5085                 break;
5086         case 15:
5087         case 16:
5088                 bpc = 6; /* min is 18bpp */
5089                 break;
5090         case 24:
5091                 bpc = 8;
5092                 break;
5093         case 30:
5094                 bpc = 10;
5095                 break;
5096         case 48:
5097                 bpc = 12;
5098                 break;
5099         default:
5100                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5101                 bpc = min((unsigned int)8, display_bpc);
5102                 break;
5103         }
5104
5105         display_bpc = min(display_bpc, bpc);
5106
5107         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5108                          bpc, display_bpc);
5109
5110         *pipe_bpp = display_bpc * 3;
5111
5112         return display_bpc != bpc;
5113 }
5114
5115 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5116 {
5117         struct drm_device *dev = crtc->dev;
5118         struct drm_i915_private *dev_priv = dev->dev_private;
5119         int refclk;
5120
5121         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5122             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5123                 refclk = dev_priv->lvds_ssc_freq * 1000;
5124                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5125                               refclk / 1000);
5126         } else if (!IS_GEN2(dev)) {
5127                 refclk = 96000;
5128         } else {
5129                 refclk = 48000;
5130         }
5131
5132         return refclk;
5133 }
5134
5135 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5136                                       intel_clock_t *clock)
5137 {
5138         /* SDVO TV has fixed PLL values depend on its clock range,
5139            this mirrors vbios setting. */
5140         if (adjusted_mode->clock >= 100000
5141             && adjusted_mode->clock < 140500) {
5142                 clock->p1 = 2;
5143                 clock->p2 = 10;
5144                 clock->n = 3;
5145                 clock->m1 = 16;
5146                 clock->m2 = 8;
5147         } else if (adjusted_mode->clock >= 140500
5148                    && adjusted_mode->clock <= 200000) {
5149                 clock->p1 = 1;
5150                 clock->p2 = 10;
5151                 clock->n = 6;
5152                 clock->m1 = 12;
5153                 clock->m2 = 8;
5154         }
5155 }
5156
5157 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5158                                      intel_clock_t *clock,
5159                                      intel_clock_t *reduced_clock)
5160 {
5161         struct drm_device *dev = crtc->dev;
5162         struct drm_i915_private *dev_priv = dev->dev_private;
5163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5164         int pipe = intel_crtc->pipe;
5165         u32 fp, fp2 = 0;
5166
5167         if (IS_PINEVIEW(dev)) {
5168                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5169                 if (reduced_clock)
5170                         fp2 = (1 << reduced_clock->n) << 16 |
5171                                 reduced_clock->m1 << 8 | reduced_clock->m2;
5172         } else {
5173                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5174                 if (reduced_clock)
5175                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5176                                 reduced_clock->m2;
5177         }
5178
5179         I915_WRITE(FP0(pipe), fp);
5180
5181         intel_crtc->lowfreq_avail = false;
5182         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5183             reduced_clock && i915_powersave) {
5184                 I915_WRITE(FP1(pipe), fp2);
5185                 intel_crtc->lowfreq_avail = true;
5186         } else {
5187                 I915_WRITE(FP1(pipe), fp);
5188         }
5189 }
5190
5191 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5192                               struct drm_display_mode *mode,
5193                               struct drm_display_mode *adjusted_mode,
5194                               int x, int y,
5195                               struct drm_framebuffer *old_fb)
5196 {
5197         struct drm_device *dev = crtc->dev;
5198         struct drm_i915_private *dev_priv = dev->dev_private;
5199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5200         int pipe = intel_crtc->pipe;
5201         int plane = intel_crtc->plane;
5202         int refclk, num_connectors = 0;
5203         intel_clock_t clock, reduced_clock;
5204         u32 dpll, dspcntr, pipeconf, vsyncshift;
5205         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5206         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5207         struct drm_mode_config *mode_config = &dev->mode_config;
5208         struct intel_encoder *encoder;
5209         const intel_limit_t *limit;
5210         int ret;
5211         u32 temp;
5212         u32 lvds_sync = 0;
5213
5214         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5215                 if (encoder->base.crtc != crtc)
5216                         continue;
5217
5218                 switch (encoder->type) {
5219                 case INTEL_OUTPUT_LVDS:
5220                         is_lvds = true;
5221                         break;
5222                 case INTEL_OUTPUT_SDVO:
5223                 case INTEL_OUTPUT_HDMI:
5224                         is_sdvo = true;
5225                         if (encoder->needs_tv_clock)
5226                                 is_tv = true;
5227                         break;
5228                 case INTEL_OUTPUT_DVO:
5229                         is_dvo = true;
5230                         break;
5231                 case INTEL_OUTPUT_TVOUT:
5232                         is_tv = true;
5233                         break;
5234                 case INTEL_OUTPUT_ANALOG:
5235                         is_crt = true;
5236                         break;
5237                 case INTEL_OUTPUT_DISPLAYPORT:
5238                         is_dp = true;
5239                         break;
5240                 }
5241
5242                 num_connectors++;
5243         }
5244
5245         refclk = i9xx_get_refclk(crtc, num_connectors);
5246
5247         /*
5248          * Returns a set of divisors for the desired target clock with the given
5249          * refclk, or false.  The returned values represent the clock equation:
5250          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5251          */
5252         limit = intel_limit(crtc, refclk);
5253         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5254                              &clock);
5255         if (!ok) {
5256                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5257                 return -EINVAL;
5258         }
5259
5260         /* Ensure that the cursor is valid for the new mode before changing... */
5261         intel_crtc_update_cursor(crtc, true);
5262
5263         if (is_lvds && dev_priv->lvds_downclock_avail) {
5264                 /*
5265                  * Ensure we match the reduced clock's P to the target clock.
5266                  * If the clocks don't match, we can't switch the display clock
5267                  * by using the FP0/FP1. In such case we will disable the LVDS
5268                  * downclock feature.
5269                 */
5270                 has_reduced_clock = limit->find_pll(limit, crtc,
5271                                                     dev_priv->lvds_downclock,
5272                                                     refclk,
5273                                                     &clock,
5274                                                     &reduced_clock);
5275         }
5276
5277         if (is_sdvo && is_tv)
5278                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5279
5280         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5281                                  &reduced_clock : NULL);
5282
5283         dpll = DPLL_VGA_MODE_DIS;
5284
5285         if (!IS_GEN2(dev)) {
5286                 if (is_lvds)
5287                         dpll |= DPLLB_MODE_LVDS;
5288                 else
5289                         dpll |= DPLLB_MODE_DAC_SERIAL;
5290                 if (is_sdvo) {
5291                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5292                         if (pixel_multiplier > 1) {
5293                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5294                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5295                         }
5296                         dpll |= DPLL_DVO_HIGH_SPEED;
5297                 }
5298                 if (is_dp)
5299                         dpll |= DPLL_DVO_HIGH_SPEED;
5300
5301                 /* compute bitmask from p1 value */
5302                 if (IS_PINEVIEW(dev))
5303                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5304                 else {
5305                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5306                         if (IS_G4X(dev) && has_reduced_clock)
5307                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5308                 }
5309                 switch (clock.p2) {
5310                 case 5:
5311                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5312                         break;
5313                 case 7:
5314                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5315                         break;
5316                 case 10:
5317                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5318                         break;
5319                 case 14:
5320                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5321                         break;
5322                 }
5323                 if (INTEL_INFO(dev)->gen >= 4)
5324                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5325         } else {
5326                 if (is_lvds) {
5327                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5328                 } else {
5329                         if (clock.p1 == 2)
5330                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
5331                         else
5332                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5333                         if (clock.p2 == 4)
5334                                 dpll |= PLL_P2_DIVIDE_BY_4;
5335                 }
5336         }
5337
5338         if (is_sdvo && is_tv)
5339                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5340         else if (is_tv)
5341                 /* XXX: just matching BIOS for now */
5342                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5343                 dpll |= 3;
5344         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5345                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5346         else
5347                 dpll |= PLL_REF_INPUT_DREFCLK;
5348
5349         /* setup pipeconf */
5350         pipeconf = I915_READ(PIPECONF(pipe));
5351
5352         /* Set up the display plane register */
5353         dspcntr = DISPPLANE_GAMMA_ENABLE;
5354
5355         if (pipe == 0)
5356                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5357         else
5358                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5359
5360         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5361                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5362                  * core speed.
5363                  *
5364                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5365                  * pipe == 0 check?
5366                  */
5367                 if (mode->clock >
5368                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5369                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5370                 else
5371                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5372         }
5373
5374         /* default to 8bpc */
5375         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5376         if (is_dp) {
5377                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5378                         pipeconf |= PIPECONF_BPP_6 |
5379                                     PIPECONF_DITHER_EN |
5380                                     PIPECONF_DITHER_TYPE_SP;
5381                 }
5382         }
5383
5384         dpll |= DPLL_VCO_ENABLE;
5385
5386         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5387         drm_mode_debug_printmodeline(mode);
5388
5389         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5390
5391         POSTING_READ(DPLL(pipe));
5392         DELAY(150);
5393
5394         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5395          * This is an exception to the general rule that mode_set doesn't turn
5396          * things on.
5397          */
5398         if (is_lvds) {
5399                 temp = I915_READ(LVDS);
5400                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5401                 if (pipe == 1) {
5402                         temp |= LVDS_PIPEB_SELECT;
5403                 } else {
5404                         temp &= ~LVDS_PIPEB_SELECT;
5405                 }
5406                 /* set the corresponsding LVDS_BORDER bit */
5407                 temp |= dev_priv->lvds_border_bits;
5408                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5409                  * set the DPLLs for dual-channel mode or not.
5410                  */
5411                 if (clock.p2 == 7)
5412                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5413                 else
5414                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5415
5416                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5417                  * appropriately here, but we need to look more thoroughly into how
5418                  * panels behave in the two modes.
5419                  */
5420                 /* set the dithering flag on LVDS as needed */
5421                 if (INTEL_INFO(dev)->gen >= 4) {
5422                         if (dev_priv->lvds_dither)
5423                                 temp |= LVDS_ENABLE_DITHER;
5424                         else
5425                                 temp &= ~LVDS_ENABLE_DITHER;
5426                 }
5427                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5428                         lvds_sync |= LVDS_HSYNC_POLARITY;
5429                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5430                         lvds_sync |= LVDS_VSYNC_POLARITY;
5431                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5432                     != lvds_sync) {
5433                         char flags[2] = "-+";
5434                         DRM_INFO("Changing LVDS panel from "
5435                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5436                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5437                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5438                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5439                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5440                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5441                         temp |= lvds_sync;
5442                 }
5443                 I915_WRITE(LVDS, temp);
5444         }
5445
5446         if (is_dp) {
5447                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5448         }
5449
5450         I915_WRITE(DPLL(pipe), dpll);
5451
5452         /* Wait for the clocks to stabilize. */
5453         POSTING_READ(DPLL(pipe));
5454         DELAY(150);
5455
5456         if (INTEL_INFO(dev)->gen >= 4) {
5457                 temp = 0;
5458                 if (is_sdvo) {
5459                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5460                         if (temp > 1)
5461                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5462                         else
5463                                 temp = 0;
5464                 }
5465                 I915_WRITE(DPLL_MD(pipe), temp);
5466         } else {
5467                 /* The pixel multiplier can only be updated once the
5468                  * DPLL is enabled and the clocks are stable.
5469                  *
5470                  * So write it again.
5471                  */
5472                 I915_WRITE(DPLL(pipe), dpll);
5473         }
5474
5475         if (HAS_PIPE_CXSR(dev)) {
5476                 if (intel_crtc->lowfreq_avail) {
5477                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5478                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5479                 } else {
5480                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5481                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5482                 }
5483         }
5484
5485         pipeconf &= ~PIPECONF_INTERLACE_MASK;
5486         if (!IS_GEN2(dev) &&
5487             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5488                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5489                 /* the chip adds 2 halflines automatically */
5490                 adjusted_mode->crtc_vtotal -= 1;
5491                 adjusted_mode->crtc_vblank_end -= 1;
5492                 vsyncshift = adjusted_mode->crtc_hsync_start
5493                              - adjusted_mode->crtc_htotal/2;
5494         } else {
5495                 pipeconf |= PIPECONF_PROGRESSIVE;
5496                 vsyncshift = 0;
5497         }
5498
5499         if (!IS_GEN3(dev))
5500                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5501
5502         I915_WRITE(HTOTAL(pipe),
5503                    (adjusted_mode->crtc_hdisplay - 1) |
5504                    ((adjusted_mode->crtc_htotal - 1) << 16));
5505         I915_WRITE(HBLANK(pipe),
5506                    (adjusted_mode->crtc_hblank_start - 1) |
5507                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5508         I915_WRITE(HSYNC(pipe),
5509                    (adjusted_mode->crtc_hsync_start - 1) |
5510                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5511
5512         I915_WRITE(VTOTAL(pipe),
5513                    (adjusted_mode->crtc_vdisplay - 1) |
5514                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5515         I915_WRITE(VBLANK(pipe),
5516                    (adjusted_mode->crtc_vblank_start - 1) |
5517                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5518         I915_WRITE(VSYNC(pipe),
5519                    (adjusted_mode->crtc_vsync_start - 1) |
5520                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5521
5522         /* pipesrc and dspsize control the size that is scaled from,
5523          * which should always be the user's requested size.
5524          */
5525         I915_WRITE(DSPSIZE(plane),
5526                    ((mode->vdisplay - 1) << 16) |
5527                    (mode->hdisplay - 1));
5528         I915_WRITE(DSPPOS(plane), 0);
5529         I915_WRITE(PIPESRC(pipe),
5530                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5531
5532         I915_WRITE(PIPECONF(pipe), pipeconf);
5533         POSTING_READ(PIPECONF(pipe));
5534         intel_enable_pipe(dev_priv, pipe, false);
5535
5536         intel_wait_for_vblank(dev, pipe);
5537
5538         I915_WRITE(DSPCNTR(plane), dspcntr);
5539         POSTING_READ(DSPCNTR(plane));
5540         intel_enable_plane(dev_priv, plane, pipe);
5541
5542         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5543
5544         intel_update_watermarks(dev);
5545
5546         return ret;
5547 }
5548
5549 /*
5550  * Initialize reference clocks when the driver loads
5551  */
5552 void ironlake_init_pch_refclk(struct drm_device *dev)
5553 {
5554         struct drm_i915_private *dev_priv = dev->dev_private;
5555         struct drm_mode_config *mode_config = &dev->mode_config;
5556         struct intel_encoder *encoder;
5557         u32 temp;
5558         bool has_lvds = false;
5559         bool has_cpu_edp = false;
5560         bool has_pch_edp = false;
5561         bool has_panel = false;
5562         bool has_ck505 = false;
5563         bool can_ssc = false;
5564
5565         /* We need to take the global config into account */
5566         list_for_each_entry(encoder, &mode_config->encoder_list,
5567                             base.head) {
5568                 switch (encoder->type) {
5569                 case INTEL_OUTPUT_LVDS:
5570                         has_panel = true;
5571                         has_lvds = true;
5572                         break;
5573                 case INTEL_OUTPUT_EDP:
5574                         has_panel = true;
5575                         if (intel_encoder_is_pch_edp(&encoder->base))
5576                                 has_pch_edp = true;
5577                         else
5578                                 has_cpu_edp = true;
5579                         break;
5580                 }
5581         }
5582
5583         if (HAS_PCH_IBX(dev)) {
5584                 has_ck505 = dev_priv->display_clock_mode;
5585                 can_ssc = has_ck505;
5586         } else {
5587                 has_ck505 = false;
5588                 can_ssc = true;
5589         }
5590
5591         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5592                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5593                       has_ck505);
5594
5595         /* Ironlake: try to setup display ref clock before DPLL
5596          * enabling. This is only under driver's control after
5597          * PCH B stepping, previous chipset stepping should be
5598          * ignoring this setting.
5599          */
5600         temp = I915_READ(PCH_DREF_CONTROL);
5601         /* Always enable nonspread source */
5602         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5603
5604         if (has_ck505)
5605                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5606         else
5607                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5608
5609         if (has_panel) {
5610                 temp &= ~DREF_SSC_SOURCE_MASK;
5611                 temp |= DREF_SSC_SOURCE_ENABLE;
5612
5613                 /* SSC must be turned on before enabling the CPU output  */
5614                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5615                         DRM_DEBUG_KMS("Using SSC on panel\n");
5616                         temp |= DREF_SSC1_ENABLE;
5617                 } else
5618                         temp &= ~DREF_SSC1_ENABLE;
5619
5620                 /* Get SSC going before enabling the outputs */
5621                 I915_WRITE(PCH_DREF_CONTROL, temp);
5622                 POSTING_READ(PCH_DREF_CONTROL);
5623                 DELAY(200);
5624
5625                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5626
5627                 /* Enable CPU source on CPU attached eDP */
5628                 if (has_cpu_edp) {
5629                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5630                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5631                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5632                         }
5633                         else
5634                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5635                 } else
5636                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5637
5638                 I915_WRITE(PCH_DREF_CONTROL, temp);
5639                 POSTING_READ(PCH_DREF_CONTROL);
5640                 DELAY(200);
5641         } else {
5642                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5643
5644                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5645
5646                 /* Turn off CPU output */
5647                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5648
5649                 I915_WRITE(PCH_DREF_CONTROL, temp);
5650                 POSTING_READ(PCH_DREF_CONTROL);
5651                 DELAY(200);
5652
5653                 /* Turn off the SSC source */
5654                 temp &= ~DREF_SSC_SOURCE_MASK;
5655                 temp |= DREF_SSC_SOURCE_DISABLE;
5656
5657                 /* Turn off SSC1 */
5658                 temp &= ~ DREF_SSC1_ENABLE;
5659
5660                 I915_WRITE(PCH_DREF_CONTROL, temp);
5661                 POSTING_READ(PCH_DREF_CONTROL);
5662                 DELAY(200);
5663         }
5664 }
5665
5666 static int ironlake_get_refclk(struct drm_crtc *crtc)
5667 {
5668         struct drm_device *dev = crtc->dev;
5669         struct drm_i915_private *dev_priv = dev->dev_private;
5670         struct intel_encoder *encoder;
5671         struct drm_mode_config *mode_config = &dev->mode_config;
5672         struct intel_encoder *edp_encoder = NULL;
5673         int num_connectors = 0;
5674         bool is_lvds = false;
5675
5676         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5677                 if (encoder->base.crtc != crtc)
5678                         continue;
5679
5680                 switch (encoder->type) {
5681                 case INTEL_OUTPUT_LVDS:
5682                         is_lvds = true;
5683                         break;
5684                 case INTEL_OUTPUT_EDP:
5685                         edp_encoder = encoder;
5686                         break;
5687                 }
5688                 num_connectors++;
5689         }
5690
5691         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5692                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5693                               dev_priv->lvds_ssc_freq);
5694                 return dev_priv->lvds_ssc_freq * 1000;
5695         }
5696
5697         return 120000;
5698 }
5699
5700 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5701                                   struct drm_display_mode *mode,
5702                                   struct drm_display_mode *adjusted_mode,
5703                                   int x, int y,
5704                                   struct drm_framebuffer *old_fb)
5705 {
5706         struct drm_device *dev = crtc->dev;
5707         struct drm_i915_private *dev_priv = dev->dev_private;
5708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5709         int pipe = intel_crtc->pipe;
5710         int plane = intel_crtc->plane;
5711         int refclk, num_connectors = 0;
5712         intel_clock_t clock, reduced_clock;
5713         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5714         bool ok, has_reduced_clock = false, is_sdvo = false;
5715         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5716         struct intel_encoder *has_edp_encoder = NULL;
5717         struct drm_mode_config *mode_config = &dev->mode_config;
5718         struct intel_encoder *encoder;
5719         const intel_limit_t *limit;
5720         int ret;
5721         struct fdi_m_n m_n = {0};
5722         u32 temp;
5723         u32 lvds_sync = 0;
5724         int target_clock, pixel_multiplier, lane, link_bw, factor;
5725         unsigned int pipe_bpp;
5726         bool dither;
5727
5728         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5729                 if (encoder->base.crtc != crtc)
5730                         continue;
5731
5732                 switch (encoder->type) {
5733                 case INTEL_OUTPUT_LVDS:
5734                         is_lvds = true;
5735                         break;
5736                 case INTEL_OUTPUT_SDVO:
5737                 case INTEL_OUTPUT_HDMI:
5738                         is_sdvo = true;
5739                         if (encoder->needs_tv_clock)
5740                                 is_tv = true;
5741                         break;
5742                 case INTEL_OUTPUT_TVOUT:
5743                         is_tv = true;
5744                         break;
5745                 case INTEL_OUTPUT_ANALOG:
5746                         is_crt = true;
5747                         break;
5748                 case INTEL_OUTPUT_DISPLAYPORT:
5749                         is_dp = true;
5750                         break;
5751                 case INTEL_OUTPUT_EDP:
5752                         has_edp_encoder = encoder;
5753                         break;
5754                 }
5755
5756                 num_connectors++;
5757         }
5758
5759         refclk = ironlake_get_refclk(crtc);
5760
5761         /*
5762          * Returns a set of divisors for the desired target clock with the given
5763          * refclk, or false.  The returned values represent the clock equation:
5764          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5765          */
5766         limit = intel_limit(crtc, refclk);
5767         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5768                              &clock);
5769         if (!ok) {
5770                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5771                 return -EINVAL;
5772         }
5773
5774         /* Ensure that the cursor is valid for the new mode before changing... */
5775         intel_crtc_update_cursor(crtc, true);
5776
5777         if (is_lvds && dev_priv->lvds_downclock_avail) {
5778                 /*
5779                  * Ensure we match the reduced clock's P to the target clock.
5780                  * If the clocks don't match, we can't switch the display clock
5781                  * by using the FP0/FP1. In such case we will disable the LVDS
5782                  * downclock feature.
5783                 */
5784                 has_reduced_clock = limit->find_pll(limit, crtc,
5785                                                     dev_priv->lvds_downclock,
5786                                                     refclk,
5787                                                     &clock,
5788                                                     &reduced_clock);
5789         }
5790         /* SDVO TV has fixed PLL values depend on its clock range,
5791            this mirrors vbios setting. */
5792         if (is_sdvo && is_tv) {
5793                 if (adjusted_mode->clock >= 100000
5794                     && adjusted_mode->clock < 140500) {
5795                         clock.p1 = 2;
5796                         clock.p2 = 10;
5797                         clock.n = 3;
5798                         clock.m1 = 16;
5799                         clock.m2 = 8;
5800                 } else if (adjusted_mode->clock >= 140500
5801                            && adjusted_mode->clock <= 200000) {
5802                         clock.p1 = 1;
5803                         clock.p2 = 10;
5804                         clock.n = 6;
5805                         clock.m1 = 12;
5806                         clock.m2 = 8;
5807                 }
5808         }
5809
5810         /* FDI link */
5811         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5812         lane = 0;
5813         /* CPU eDP doesn't require FDI link, so just set DP M/N
5814            according to current link config */
5815         if (has_edp_encoder &&
5816             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5817                 target_clock = mode->clock;
5818                 intel_edp_link_config(has_edp_encoder,
5819                                       &lane, &link_bw);
5820         } else {
5821                 /* [e]DP over FDI requires target mode clock
5822                    instead of link clock */
5823                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5824                         target_clock = mode->clock;
5825                 else
5826                         target_clock = adjusted_mode->clock;
5827
5828                 /* FDI is a binary signal running at ~2.7GHz, encoding
5829                  * each output octet as 10 bits. The actual frequency
5830                  * is stored as a divider into a 100MHz clock, and the
5831                  * mode pixel clock is stored in units of 1KHz.
5832                  * Hence the bw of each lane in terms of the mode signal
5833                  * is:
5834                  */
5835                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5836         }
5837
5838         /* determine panel color depth */
5839         temp = I915_READ(PIPECONF(pipe));
5840         temp &= ~PIPE_BPC_MASK;
5841         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5842         switch (pipe_bpp) {
5843         case 18:
5844                 temp |= PIPE_6BPC;
5845                 break;
5846         case 24:
5847                 temp |= PIPE_8BPC;
5848                 break;
5849         case 30:
5850                 temp |= PIPE_10BPC;
5851                 break;
5852         case 36:
5853                 temp |= PIPE_12BPC;
5854                 break;
5855         default:
5856                 kprintf("intel_choose_pipe_bpp returned invalid value %d\n",
5857                         pipe_bpp);
5858                 temp |= PIPE_8BPC;
5859                 pipe_bpp = 24;
5860                 break;
5861         }
5862
5863         intel_crtc->bpp = pipe_bpp;
5864         I915_WRITE(PIPECONF(pipe), temp);
5865
5866         if (!lane) {
5867                 /*
5868                  * Account for spread spectrum to avoid
5869                  * oversubscribing the link. Max center spread
5870                  * is 2.5%; use 5% for safety's sake.
5871                  */
5872                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5873                 lane = bps / (link_bw * 8) + 1;
5874         }
5875
5876         intel_crtc->fdi_lanes = lane;
5877
5878         if (pixel_multiplier > 1)
5879                 link_bw *= pixel_multiplier;
5880         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5881                              &m_n);
5882
5883         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5884         if (has_reduced_clock)
5885                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5886                         reduced_clock.m2;
5887
5888         /* Enable autotuning of the PLL clock (if permissible) */
5889         factor = 21;
5890         if (is_lvds) {
5891                 if ((intel_panel_use_ssc(dev_priv) &&
5892                      dev_priv->lvds_ssc_freq == 100) ||
5893                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5894                         factor = 25;
5895         } else if (is_sdvo && is_tv)
5896                 factor = 20;
5897
5898         if (clock.m < factor * clock.n)
5899                 fp |= FP_CB_TUNE;
5900
5901         dpll = 0;
5902
5903         if (is_lvds)
5904                 dpll |= DPLLB_MODE_LVDS;
5905         else
5906                 dpll |= DPLLB_MODE_DAC_SERIAL;
5907         if (is_sdvo) {
5908                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5909                 if (pixel_multiplier > 1) {
5910                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5911                 }
5912                 dpll |= DPLL_DVO_HIGH_SPEED;
5913         }
5914         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5915                 dpll |= DPLL_DVO_HIGH_SPEED;
5916
5917         /* compute bitmask from p1 value */
5918         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5919         /* also FPA1 */
5920         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5921
5922         switch (clock.p2) {
5923         case 5:
5924                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5925                 break;
5926         case 7:
5927                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5928                 break;
5929         case 10:
5930                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5931                 break;
5932         case 14:
5933                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5934                 break;
5935         }
5936
5937         if (is_sdvo && is_tv)
5938                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5939         else if (is_tv)
5940                 /* XXX: just matching BIOS for now */
5941                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5942                 dpll |= 3;
5943         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5944                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5945         else
5946                 dpll |= PLL_REF_INPUT_DREFCLK;
5947
5948         /* setup pipeconf */
5949         pipeconf = I915_READ(PIPECONF(pipe));
5950
5951         /* Set up the display plane register */
5952         dspcntr = DISPPLANE_GAMMA_ENABLE;
5953
5954         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5955         drm_mode_debug_printmodeline(mode);
5956
5957         /* PCH eDP needs FDI, but CPU eDP does not */
5958         if (!intel_crtc->no_pll) {
5959                 if (!has_edp_encoder ||
5960                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5961                         I915_WRITE(PCH_FP0(pipe), fp);
5962                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5963
5964                         POSTING_READ(PCH_DPLL(pipe));
5965                         DELAY(150);
5966                 }
5967         } else {
5968                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5969                     fp == I915_READ(PCH_FP0(0))) {
5970                         intel_crtc->use_pll_a = true;
5971                         DRM_DEBUG_KMS("using pipe a dpll\n");
5972                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5973                            fp == I915_READ(PCH_FP0(1))) {
5974                         intel_crtc->use_pll_a = false;
5975                         DRM_DEBUG_KMS("using pipe b dpll\n");
5976                 } else {
5977                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5978                         return -EINVAL;
5979                 }
5980         }
5981
5982         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5983          * This is an exception to the general rule that mode_set doesn't turn
5984          * things on.
5985          */
5986         if (is_lvds) {
5987                 temp = I915_READ(PCH_LVDS);
5988                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5989                 if (HAS_PCH_CPT(dev)) {
5990                         temp &= ~PORT_TRANS_SEL_MASK;
5991                         temp |= PORT_TRANS_SEL_CPT(pipe);
5992                 } else {
5993                         if (pipe == 1)
5994                                 temp |= LVDS_PIPEB_SELECT;
5995                         else
5996                                 temp &= ~LVDS_PIPEB_SELECT;
5997                 }
5998
5999                 /* set the corresponsding LVDS_BORDER bit */
6000                 temp |= dev_priv->lvds_border_bits;
6001                 /* Set the B0-B3 data pairs corresponding to whether we're going to
6002                  * set the DPLLs for dual-channel mode or not.
6003                  */
6004                 if (clock.p2 == 7)
6005                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6006                 else
6007                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6008
6009                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6010                  * appropriately here, but we need to look more thoroughly into how
6011                  * panels behave in the two modes.
6012                  */
6013                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6014                         lvds_sync |= LVDS_HSYNC_POLARITY;
6015                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6016                         lvds_sync |= LVDS_VSYNC_POLARITY;
6017                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6018                     != lvds_sync) {
6019                         char flags[2] = "-+";
6020                         DRM_INFO("Changing LVDS panel from "
6021                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6022                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
6023                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
6024                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6025                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6026                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6027                         temp |= lvds_sync;
6028                 }
6029                 I915_WRITE(PCH_LVDS, temp);
6030         }
6031
6032         pipeconf &= ~PIPECONF_DITHER_EN;
6033         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6034         if ((is_lvds && dev_priv->lvds_dither) || dither) {
6035                 pipeconf |= PIPECONF_DITHER_EN;
6036                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6037         }
6038         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6039                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6040         } else {
6041                 /* For non-DP output, clear any trans DP clock recovery setting.*/
6042                 I915_WRITE(TRANSDATA_M1(pipe), 0);
6043                 I915_WRITE(TRANSDATA_N1(pipe), 0);
6044                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6045                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6046         }
6047
6048         if (!intel_crtc->no_pll &&
6049             (!has_edp_encoder ||
6050              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6051                 I915_WRITE(PCH_DPLL(pipe), dpll);
6052
6053                 /* Wait for the clocks to stabilize. */
6054                 POSTING_READ(PCH_DPLL(pipe));
6055                 DELAY(150);
6056
6057                 /* The pixel multiplier can only be updated once the
6058                  * DPLL is enabled and the clocks are stable.
6059                  *
6060                  * So write it again.
6061                  */
6062                 I915_WRITE(PCH_DPLL(pipe), dpll);
6063         }
6064
6065         intel_crtc->lowfreq_avail = false;
6066         if (!intel_crtc->no_pll) {
6067                 if (is_lvds && has_reduced_clock && i915_powersave) {
6068                         I915_WRITE(PCH_FP1(pipe), fp2);
6069                         intel_crtc->lowfreq_avail = true;
6070                         if (HAS_PIPE_CXSR(dev)) {
6071                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6072                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6073                         }
6074                 } else {
6075                         I915_WRITE(PCH_FP1(pipe), fp);
6076                         if (HAS_PIPE_CXSR(dev)) {
6077                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6078                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6079                         }
6080                 }
6081         }
6082
6083         pipeconf &= ~PIPECONF_INTERLACE_MASK;
6084         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6085                 pipeconf |= PIPECONF_INTERLACED_ILK;
6086                 /* the chip adds 2 halflines automatically */
6087                 adjusted_mode->crtc_vtotal -= 1;
6088                 adjusted_mode->crtc_vblank_end -= 1;
6089                 I915_WRITE(VSYNCSHIFT(pipe),
6090                            adjusted_mode->crtc_hsync_start
6091                            - adjusted_mode->crtc_htotal/2);
6092         } else {
6093                 pipeconf |= PIPECONF_PROGRESSIVE;
6094                 I915_WRITE(VSYNCSHIFT(pipe), 0);
6095         }
6096
6097         I915_WRITE(HTOTAL(pipe),
6098                    (adjusted_mode->crtc_hdisplay - 1) |
6099                    ((adjusted_mode->crtc_htotal - 1) << 16));
6100         I915_WRITE(HBLANK(pipe),
6101                    (adjusted_mode->crtc_hblank_start - 1) |
6102                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6103         I915_WRITE(HSYNC(pipe),
6104                    (adjusted_mode->crtc_hsync_start - 1) |
6105                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6106
6107         I915_WRITE(VTOTAL(pipe),
6108                    (adjusted_mode->crtc_vdisplay - 1) |
6109                    ((adjusted_mode->crtc_vtotal - 1) << 16));
6110         I915_WRITE(VBLANK(pipe),
6111                    (adjusted_mode->crtc_vblank_start - 1) |
6112                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
6113         I915_WRITE(VSYNC(pipe),
6114                    (adjusted_mode->crtc_vsync_start - 1) |
6115                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6116
6117         /* pipesrc controls the size that is scaled from, which should
6118          * always be the user's requested size.
6119          */
6120         I915_WRITE(PIPESRC(pipe),
6121                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6122
6123         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6124         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6125         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6126         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6127
6128         if (has_edp_encoder &&
6129             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6130                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6131         }
6132
6133         I915_WRITE(PIPECONF(pipe), pipeconf);
6134         POSTING_READ(PIPECONF(pipe));
6135
6136         intel_wait_for_vblank(dev, pipe);
6137
6138         I915_WRITE(DSPCNTR(plane), dspcntr);
6139         POSTING_READ(DSPCNTR(plane));
6140
6141         ret = intel_pipe_set_base(crtc, x, y, old_fb);
6142
6143         intel_update_watermarks(dev);
6144
6145         return ret;
6146 }
6147
6148 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6149                                struct drm_display_mode *mode,
6150                                struct drm_display_mode *adjusted_mode,
6151                                int x, int y,
6152                                struct drm_framebuffer *old_fb)
6153 {
6154         struct drm_device *dev = crtc->dev;
6155         struct drm_i915_private *dev_priv = dev->dev_private;
6156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157         int pipe = intel_crtc->pipe;
6158         int ret;
6159
6160         drm_vblank_pre_modeset(dev, pipe);
6161
6162         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6163                                               x, y, old_fb);
6164         drm_vblank_post_modeset(dev, pipe);
6165
6166         if (ret)
6167                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6168         else
6169                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6170
6171         return ret;
6172 }
6173
6174 static bool intel_eld_uptodate(struct drm_connector *connector,
6175                                int reg_eldv, uint32_t bits_eldv,
6176                                int reg_elda, uint32_t bits_elda,
6177                                int reg_edid)
6178 {
6179         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6180         uint8_t *eld = connector->eld;
6181         uint32_t i;
6182
6183         i = I915_READ(reg_eldv);
6184         i &= bits_eldv;
6185
6186         if (!eld[0])
6187                 return !i;
6188
6189         if (!i)
6190                 return false;
6191
6192         i = I915_READ(reg_elda);
6193         i &= ~bits_elda;
6194         I915_WRITE(reg_elda, i);
6195
6196         for (i = 0; i < eld[2]; i++)
6197                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6198                         return false;
6199
6200         return true;
6201 }
6202
6203 static void g4x_write_eld(struct drm_connector *connector,
6204                           struct drm_crtc *crtc)
6205 {
6206         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6207         uint8_t *eld = connector->eld;
6208         uint32_t eldv;
6209         uint32_t len;
6210         uint32_t i;
6211
6212         i = I915_READ(G4X_AUD_VID_DID);
6213
6214         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6215                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6216         else
6217                 eldv = G4X_ELDV_DEVCTG;
6218
6219         if (intel_eld_uptodate(connector,
6220                                G4X_AUD_CNTL_ST, eldv,
6221                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6222                                G4X_HDMIW_HDMIEDID))
6223                 return;
6224
6225         i = I915_READ(G4X_AUD_CNTL_ST);
6226         i &= ~(eldv | G4X_ELD_ADDR);
6227         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6228         I915_WRITE(G4X_AUD_CNTL_ST, i);
6229
6230         if (!eld[0])
6231                 return;
6232
6233         if (eld[2] < (uint8_t)len)
6234                 len = eld[2];
6235         DRM_DEBUG_KMS("ELD size %d\n", len);
6236         for (i = 0; i < len; i++)
6237                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6238
6239         i = I915_READ(G4X_AUD_CNTL_ST);
6240         i |= eldv;
6241         I915_WRITE(G4X_AUD_CNTL_ST, i);
6242 }
6243
6244 static void ironlake_write_eld(struct drm_connector *connector,
6245                                      struct drm_crtc *crtc)
6246 {
6247         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6248         uint8_t *eld = connector->eld;
6249         uint32_t eldv;
6250         uint32_t i;
6251         int len;
6252         int hdmiw_hdmiedid;
6253         int aud_config;
6254         int aud_cntl_st;
6255         int aud_cntrl_st2;
6256
6257         if (HAS_PCH_IBX(connector->dev)) {
6258                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6259                 aud_config = IBX_AUD_CONFIG_A;
6260                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6261                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6262         } else {
6263                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6264                 aud_config = CPT_AUD_CONFIG_A;
6265                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6266                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6267         }
6268
6269         i = to_intel_crtc(crtc)->pipe;
6270         hdmiw_hdmiedid += i * 0x100;
6271         aud_cntl_st += i * 0x100;
6272         aud_config += i * 0x100;
6273
6274         DRM_DEBUG_KMS("ELD on pipe %c\n", pipe_name(i));
6275
6276         i = I915_READ(aud_cntl_st);
6277         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
6278         if (!i) {
6279                 DRM_DEBUG_KMS("Audio directed to unknown port\n");
6280                 /* operate blindly on all ports */
6281                 eldv = IBX_ELD_VALIDB;
6282                 eldv |= IBX_ELD_VALIDB << 4;
6283                 eldv |= IBX_ELD_VALIDB << 8;
6284         } else {
6285                 DRM_DEBUG_KMS("ELD on port %c\n", 'A' + i);
6286                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6287         }
6288
6289         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6290                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6291                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6292                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6293         } else
6294                 I915_WRITE(aud_config, 0);
6295
6296         if (intel_eld_uptodate(connector,
6297                                aud_cntrl_st2, eldv,
6298                                aud_cntl_st, IBX_ELD_ADDRESS,
6299                                hdmiw_hdmiedid))
6300                 return;
6301
6302         i = I915_READ(aud_cntrl_st2);
6303         i &= ~eldv;
6304         I915_WRITE(aud_cntrl_st2, i);
6305
6306         if (!eld[0])
6307                 return;
6308
6309         i = I915_READ(aud_cntl_st);
6310         i &= ~IBX_ELD_ADDRESS;
6311         I915_WRITE(aud_cntl_st, i);
6312
6313         /* 84 bytes of hw ELD buffer */
6314         len = 21;
6315         if (eld[2] < (uint8_t)len)
6316                 len = eld[2];
6317         DRM_DEBUG_KMS("ELD size %d\n", len);
6318         for (i = 0; i < len; i++)
6319                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6320
6321         i = I915_READ(aud_cntrl_st2);
6322         i |= eldv;
6323         I915_WRITE(aud_cntrl_st2, i);
6324 }
6325
6326 void intel_write_eld(struct drm_encoder *encoder,
6327                      struct drm_display_mode *mode)
6328 {
6329         struct drm_crtc *crtc = encoder->crtc;
6330         struct drm_connector *connector;
6331         struct drm_device *dev = encoder->dev;
6332         struct drm_i915_private *dev_priv = dev->dev_private;
6333
6334         connector = drm_select_eld(encoder, mode);
6335         if (!connector)
6336                 return;
6337
6338         DRM_DEBUG_KMS("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6339                          connector->base.id,
6340                          drm_get_connector_name(connector),
6341                          connector->encoder->base.id,
6342                          drm_get_encoder_name(connector->encoder));
6343
6344         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6345
6346         if (dev_priv->display.write_eld)
6347                 dev_priv->display.write_eld(connector, crtc);
6348 }
6349
6350 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6351 void intel_crtc_load_lut(struct drm_crtc *crtc)
6352 {
6353         struct drm_device *dev = crtc->dev;
6354         struct drm_i915_private *dev_priv = dev->dev_private;
6355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6356         int palreg = PALETTE(intel_crtc->pipe);
6357         int i;
6358
6359         /* The clocks have to be on to load the palette. */
6360         if (!crtc->enabled || !intel_crtc->active)
6361                 return;
6362
6363         /* use legacy palette for Ironlake */
6364         if (HAS_PCH_SPLIT(dev))
6365                 palreg = LGC_PALETTE(intel_crtc->pipe);
6366
6367         for (i = 0; i < 256; i++) {
6368                 I915_WRITE(palreg + 4 * i,
6369                            (intel_crtc->lut_r[i] << 16) |
6370                            (intel_crtc->lut_g[i] << 8) |
6371                            intel_crtc->lut_b[i]);
6372         }
6373 }
6374
6375 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6376 {
6377         struct drm_device *dev = crtc->dev;
6378         struct drm_i915_private *dev_priv = dev->dev_private;
6379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6380         bool visible = base != 0;
6381         u32 cntl;
6382
6383         if (intel_crtc->cursor_visible == visible)
6384                 return;
6385
6386         cntl = I915_READ(_CURACNTR);
6387         if (visible) {
6388                 /* On these chipsets we can only modify the base whilst
6389                  * the cursor is disabled.
6390                  */
6391                 I915_WRITE(_CURABASE, base);
6392
6393                 cntl &= ~(CURSOR_FORMAT_MASK);
6394                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6395                 cntl |= CURSOR_ENABLE |
6396                         CURSOR_GAMMA_ENABLE |
6397                         CURSOR_FORMAT_ARGB;
6398         } else
6399                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6400         I915_WRITE(_CURACNTR, cntl);
6401
6402         intel_crtc->cursor_visible = visible;
6403 }
6404
6405 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6406 {
6407         struct drm_device *dev = crtc->dev;
6408         struct drm_i915_private *dev_priv = dev->dev_private;
6409         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6410         int pipe = intel_crtc->pipe;
6411         bool visible = base != 0;
6412
6413         if (intel_crtc->cursor_visible != visible) {
6414                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6415                 if (base) {
6416                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6417                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6418                         cntl |= pipe << 28; /* Connect to correct pipe */
6419                 } else {
6420                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6421                         cntl |= CURSOR_MODE_DISABLE;
6422                 }
6423                 I915_WRITE(CURCNTR(pipe), cntl);
6424
6425                 intel_crtc->cursor_visible = visible;
6426         }
6427         /* and commit changes on next vblank */
6428         I915_WRITE(CURBASE(pipe), base);
6429 }
6430
6431 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6432 {
6433         struct drm_device *dev = crtc->dev;
6434         struct drm_i915_private *dev_priv = dev->dev_private;
6435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6436         int pipe = intel_crtc->pipe;
6437         bool visible = base != 0;
6438
6439         if (intel_crtc->cursor_visible != visible) {
6440                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6441                 if (base) {
6442                         cntl &= ~CURSOR_MODE;
6443                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6444                 } else {
6445                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6446                         cntl |= CURSOR_MODE_DISABLE;
6447                 }
6448                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6449
6450                 intel_crtc->cursor_visible = visible;
6451         }
6452         /* and commit changes on next vblank */
6453         I915_WRITE(CURBASE_IVB(pipe), base);
6454 }
6455
6456 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6457 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6458                                      bool on)
6459 {
6460         struct drm_device *dev = crtc->dev;
6461         struct drm_i915_private *dev_priv = dev->dev_private;
6462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6463         int pipe = intel_crtc->pipe;
6464         int x = intel_crtc->cursor_x;
6465         int y = intel_crtc->cursor_y;
6466         u32 base, pos;
6467         bool visible;
6468
6469         pos = 0;
6470
6471         if (on && crtc->enabled && crtc->fb) {
6472                 base = intel_crtc->cursor_addr;
6473                 if (x > (int) crtc->fb->width)
6474                         base = 0;
6475
6476                 if (y > (int) crtc->fb->height)
6477                         base = 0;
6478         } else
6479                 base = 0;
6480
6481         if (x < 0) {
6482                 if (x + intel_crtc->cursor_width < 0)
6483                         base = 0;
6484
6485                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6486                 x = -x;
6487         }
6488         pos |= x << CURSOR_X_SHIFT;
6489
6490         if (y < 0) {
6491                 if (y + intel_crtc->cursor_height < 0)
6492                         base = 0;
6493
6494                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6495                 y = -y;
6496         }
6497         pos |= y << CURSOR_Y_SHIFT;
6498
6499         visible = base != 0;
6500         if (!visible && !intel_crtc->cursor_visible)
6501                 return;
6502
6503         if (IS_IVYBRIDGE(dev)) {
6504                 I915_WRITE(CURPOS_IVB(pipe), pos);
6505                 ivb_update_cursor(crtc, base);
6506         } else {
6507                 I915_WRITE(CURPOS(pipe), pos);
6508                 if (IS_845G(dev) || IS_I865G(dev))
6509                         i845_update_cursor(crtc, base);
6510                 else
6511                         i9xx_update_cursor(crtc, base);
6512         }
6513
6514         if (visible)
6515                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6516 }
6517
6518 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6519                                  struct drm_file *file,
6520                                  uint32_t handle,
6521                                  uint32_t width, uint32_t height)
6522 {
6523         struct drm_device *dev = crtc->dev;
6524         struct drm_i915_private *dev_priv = dev->dev_private;
6525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6526         struct drm_i915_gem_object *obj;
6527         uint32_t addr;
6528         int ret;
6529
6530         DRM_DEBUG_KMS("\n");
6531
6532         /* if we want to turn off the cursor ignore width and height */
6533         if (!handle) {
6534                 DRM_DEBUG_KMS("cursor off\n");
6535                 addr = 0;
6536                 obj = NULL;
6537                 DRM_LOCK(dev);
6538                 goto finish;
6539         }
6540
6541         /* Currently we only support 64x64 cursors */
6542         if (width != 64 || height != 64) {
6543                 DRM_ERROR("we currently only support 64x64 cursors\n");
6544                 return -EINVAL;
6545         }
6546
6547         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6548         if (&obj->base == NULL)
6549                 return -ENOENT;
6550
6551         if (obj->base.size < width * height * 4) {
6552                 DRM_ERROR("buffer is to small\n");
6553                 ret = -ENOMEM;
6554                 goto fail;
6555         }
6556
6557         /* we only need to pin inside GTT if cursor is non-phy */
6558         DRM_LOCK(dev);
6559         if (!dev_priv->info->cursor_needs_physical) {
6560                 if (obj->tiling_mode) {
6561                         DRM_ERROR("cursor cannot be tiled\n");
6562                         ret = -EINVAL;
6563                         goto fail_locked;
6564                 }
6565
6566                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6567                 if (ret) {
6568                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6569                         goto fail_locked;
6570                 }
6571
6572                 ret = i915_gem_object_put_fence(obj);
6573                 if (ret) {
6574                         DRM_ERROR("failed to release fence for cursor\n");
6575                         goto fail_unpin;
6576                 }
6577
6578                 addr = obj->gtt_offset;
6579         } else {
6580                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6581                 ret = i915_gem_attach_phys_object(dev, obj,
6582                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6583                                                   align);
6584                 if (ret) {
6585                         DRM_ERROR("failed to attach phys object\n");
6586                         goto fail_locked;
6587                 }
6588                 addr = obj->phys_obj->handle->busaddr;
6589         }
6590
6591         if (IS_GEN2(dev))
6592                 I915_WRITE(CURSIZE, (height << 12) | width);
6593
6594  finish:
6595         if (intel_crtc->cursor_bo) {
6596                 if (dev_priv->info->cursor_needs_physical) {
6597                         if (intel_crtc->cursor_bo != obj)
6598                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6599                 } else
6600                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6601                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6602         }
6603
6604         DRM_UNLOCK(dev);
6605
6606         intel_crtc->cursor_addr = addr;
6607         intel_crtc->cursor_bo = obj;
6608         intel_crtc->cursor_width = width;
6609         intel_crtc->cursor_height = height;
6610
6611         intel_crtc_update_cursor(crtc, true);
6612
6613         return 0;
6614 fail_unpin:
6615         i915_gem_object_unpin(obj);
6616 fail_locked:
6617         DRM_UNLOCK(dev);
6618 fail:
6619         drm_gem_object_unreference_unlocked(&obj->base);
6620         return ret;
6621 }
6622
6623 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6624 {
6625         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6626
6627         intel_crtc->cursor_x = x;
6628         intel_crtc->cursor_y = y;
6629
6630         intel_crtc_update_cursor(crtc, true);
6631
6632         return 0;
6633 }
6634
6635 /** Sets the color ramps on behalf of RandR */
6636 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6637                                  u16 blue, int regno)
6638 {
6639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6640
6641         intel_crtc->lut_r[regno] = red >> 8;
6642         intel_crtc->lut_g[regno] = green >> 8;
6643         intel_crtc->lut_b[regno] = blue >> 8;
6644 }
6645
6646 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6647                              u16 *blue, int regno)
6648 {
6649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6650
6651         *red = intel_crtc->lut_r[regno] << 8;
6652         *green = intel_crtc->lut_g[regno] << 8;
6653         *blue = intel_crtc->lut_b[regno] << 8;
6654 }
6655
6656 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6657                                  u16 *blue, uint32_t start, uint32_t size)
6658 {
6659         int end = (start + size > 256) ? 256 : start + size, i;
6660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6661
6662         for (i = start; i < end; i++) {
6663                 intel_crtc->lut_r[i] = red[i] >> 8;
6664                 intel_crtc->lut_g[i] = green[i] >> 8;
6665                 intel_crtc->lut_b[i] = blue[i] >> 8;
6666         }
6667
6668         intel_crtc_load_lut(crtc);
6669 }
6670
6671 /**
6672  * Get a pipe with a simple mode set on it for doing load-based monitor
6673  * detection.
6674  *
6675  * It will be up to the load-detect code to adjust the pipe as appropriate for
6676  * its requirements.  The pipe will be connected to no other encoders.
6677  *
6678  * Currently this code will only succeed if there is a pipe with no encoders
6679  * configured for it.  In the future, it could choose to temporarily disable
6680  * some outputs to free up a pipe for its use.
6681  *
6682  * \return crtc, or NULL if no pipes are available.
6683  */
6684
6685 /* VESA 640x480x72Hz mode to set on the pipe */
6686 static struct drm_display_mode load_detect_mode = {
6687         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6688                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6689 };
6690
6691 static int
6692 intel_framebuffer_create(struct drm_device *dev,
6693     struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj,
6694      struct drm_framebuffer **res)
6695 {
6696         struct intel_framebuffer *intel_fb;
6697         int ret;
6698
6699         intel_fb = kmalloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
6700         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6701         if (ret) {
6702                 drm_gem_object_unreference_unlocked(&obj->base);
6703                 drm_free(intel_fb, DRM_MEM_KMS);
6704                 return (ret);
6705         }
6706
6707         *res = &intel_fb->base;
6708         return (0);
6709 }
6710
6711 static u32
6712 intel_framebuffer_pitch_for_width(int width, int bpp)
6713 {
6714         u32 pitch = howmany(width * bpp, 8);
6715         return roundup2(pitch, 64);
6716 }
6717
6718 static u32
6719 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6720 {
6721         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6722         return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
6723 }
6724
6725 static int
6726 intel_framebuffer_create_for_mode(struct drm_device *dev,
6727     struct drm_display_mode *mode, int depth, int bpp,
6728     struct drm_framebuffer **res)
6729 {
6730         struct drm_i915_gem_object *obj;
6731         struct drm_mode_fb_cmd2 mode_cmd;
6732
6733         obj = i915_gem_alloc_object(dev,
6734                                     intel_framebuffer_size_for_mode(mode, bpp));
6735         if (obj == NULL)
6736                 return (-ENOMEM);
6737
6738         mode_cmd.width = mode->hdisplay;
6739         mode_cmd.height = mode->vdisplay;
6740         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6741                                                                 bpp);
6742         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6743
6744         return (intel_framebuffer_create(dev, &mode_cmd, obj, res));
6745 }
6746
6747 static int
6748 mode_fits_in_fbdev(struct drm_device *dev,
6749     struct drm_display_mode *mode, struct drm_framebuffer **res)
6750 {
6751         struct drm_i915_private *dev_priv = dev->dev_private;
6752         struct drm_i915_gem_object *obj;
6753         struct drm_framebuffer *fb;
6754
6755         if (dev_priv->fbdev == NULL) {
6756                 *res = NULL;
6757                 return (0);
6758         }
6759
6760         obj = dev_priv->fbdev->ifb.obj;
6761         if (obj == NULL) {
6762                 *res = NULL;
6763                 return (0);
6764         }
6765
6766         fb = &dev_priv->fbdev->ifb.base;
6767         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6768             fb->bits_per_pixel)) {
6769                 *res = NULL;
6770                 return (0);
6771         }
6772
6773         if (obj->base.size < mode->vdisplay * fb->pitches[0]) {
6774                 *res = NULL;
6775                 return (0);
6776         }
6777
6778         *res = fb;
6779         return (0);
6780 }
6781
6782 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6783                                 struct drm_connector *connector,
6784                                 struct drm_display_mode *mode,
6785                                 struct intel_load_detect_pipe *old)
6786 {
6787         struct intel_crtc *intel_crtc;
6788         struct drm_crtc *possible_crtc;
6789         struct drm_encoder *encoder = &intel_encoder->base;
6790         struct drm_crtc *crtc = NULL;
6791         struct drm_device *dev = encoder->dev;
6792         struct drm_framebuffer *old_fb;
6793         int i = -1, r;
6794
6795         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6796                       connector->base.id, drm_get_connector_name(connector),
6797                       encoder->base.id, drm_get_encoder_name(encoder));
6798
6799         /*
6800          * Algorithm gets a little messy:
6801          *
6802          *   - if the connector already has an assigned crtc, use it (but make
6803          *     sure it's on first)
6804          *
6805          *   - try to find the first unused crtc that can drive this connector,
6806          *     and use that if we find one
6807          */
6808
6809         /* See if we already have a CRTC for this connector */
6810         if (encoder->crtc) {
6811                 crtc = encoder->crtc;
6812
6813                 intel_crtc = to_intel_crtc(crtc);
6814                 old->dpms_mode = intel_crtc->dpms_mode;
6815                 old->load_detect_temp = false;
6816
6817                 /* Make sure the crtc and connector are running */
6818                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6819                         struct drm_encoder_helper_funcs *encoder_funcs;
6820                         struct drm_crtc_helper_funcs *crtc_funcs;
6821
6822                         crtc_funcs = crtc->helper_private;
6823                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6824
6825                         encoder_funcs = encoder->helper_private;
6826                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6827                 }
6828
6829                 return true;
6830         }
6831
6832         /* Find an unused one (if possible) */
6833         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6834                 i++;
6835                 if (!(encoder->possible_crtcs & (1 << i)))
6836                         continue;
6837                 if (!possible_crtc->enabled) {
6838                         crtc = possible_crtc;
6839                         break;
6840                 }
6841         }
6842
6843         /*
6844          * If we didn't find an unused CRTC, don't use any.
6845          */
6846         if (!crtc) {
6847                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6848                 return false;
6849         }
6850
6851         encoder->crtc = crtc;
6852         connector->encoder = encoder;
6853
6854         intel_crtc = to_intel_crtc(crtc);
6855         old->dpms_mode = intel_crtc->dpms_mode;
6856         old->load_detect_temp = true;
6857         old->release_fb = NULL;
6858
6859         if (!mode)
6860                 mode = &load_detect_mode;
6861
6862         old_fb = crtc->fb;
6863
6864         /* We need a framebuffer large enough to accommodate all accesses
6865          * that the plane may generate whilst we perform load detection.
6866          * We can not rely on the fbcon either being present (we get called
6867          * during its initialisation to detect all boot displays, or it may
6868          * not even exist) or that it is large enough to satisfy the
6869          * requested mode.
6870          */
6871         r = mode_fits_in_fbdev(dev, mode, &crtc->fb);
6872         if (crtc->fb == NULL) {
6873                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6874                 r = intel_framebuffer_create_for_mode(dev, mode, 24, 32,
6875                     &crtc->fb);
6876                 old->release_fb = crtc->fb;
6877         } else
6878                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6879         if (r != 0) {
6880                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6881                 crtc->fb = old_fb;
6882                 return false;
6883         }
6884
6885         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6886                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6887                 if (old->release_fb)
6888                         old->release_fb->funcs->destroy(old->release_fb);
6889                 crtc->fb = old_fb;
6890                 return false;
6891         }
6892
6893         /* let the connector get through one full cycle before testing */
6894         intel_wait_for_vblank(dev, intel_crtc->pipe);
6895
6896         return true;
6897 }
6898
6899 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6900                                     struct drm_connector *connector,
6901                                     struct intel_load_detect_pipe *old)
6902 {
6903         struct drm_encoder *encoder = &intel_encoder->base;
6904         struct drm_device *dev = encoder->dev;
6905         struct drm_crtc *crtc = encoder->crtc;
6906         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6907         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6908
6909         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6910                       connector->base.id, drm_get_connector_name(connector),
6911                       encoder->base.id, drm_get_encoder_name(encoder));
6912
6913         if (old->load_detect_temp) {
6914                 connector->encoder = NULL;
6915                 drm_helper_disable_unused_functions(dev);
6916
6917                 if (old->release_fb)
6918                         old->release_fb->funcs->destroy(old->release_fb);
6919
6920                 return;
6921         }
6922
6923         /* Switch crtc and encoder back off if necessary */
6924         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6925                 encoder_funcs->dpms(encoder, old->dpms_mode);
6926                 crtc_funcs->dpms(crtc, old->dpms_mode);
6927         }
6928 }
6929
6930 /* Returns the clock of the currently programmed mode of the given pipe. */
6931 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6932 {
6933         struct drm_i915_private *dev_priv = dev->dev_private;
6934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935         int pipe = intel_crtc->pipe;
6936         u32 dpll = I915_READ(DPLL(pipe));
6937         u32 fp;
6938         intel_clock_t clock;
6939
6940         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6941                 fp = I915_READ(FP0(pipe));
6942         else
6943                 fp = I915_READ(FP1(pipe));
6944
6945         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6946         if (IS_PINEVIEW(dev)) {
6947                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6948                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6949         } else {
6950                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6951                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6952         }
6953
6954         if (!IS_GEN2(dev)) {
6955                 if (IS_PINEVIEW(dev))
6956                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6957                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6958                 else
6959                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6960                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6961
6962                 switch (dpll & DPLL_MODE_MASK) {
6963                 case DPLLB_MODE_DAC_SERIAL:
6964                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6965                                 5 : 10;
6966                         break;
6967                 case DPLLB_MODE_LVDS:
6968                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6969                                 7 : 14;
6970                         break;
6971                 default:
6972                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6973                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6974                         return 0;
6975                 }
6976
6977                 /* XXX: Handle the 100Mhz refclk */
6978                 intel_clock(dev, 96000, &clock);
6979         } else {
6980                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6981
6982                 if (is_lvds) {
6983                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6984                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6985                         clock.p2 = 14;
6986
6987                         if ((dpll & PLL_REF_INPUT_MASK) ==
6988                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6989                                 /* XXX: might not be 66MHz */
6990                                 intel_clock(dev, 66000, &clock);
6991                         } else
6992                                 intel_clock(dev, 48000, &clock);
6993                 } else {
6994                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6995                                 clock.p1 = 2;
6996                         else {
6997                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6998                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6999                         }
7000                         if (dpll & PLL_P2_DIVIDE_BY_4)
7001                                 clock.p2 = 4;
7002                         else
7003                                 clock.p2 = 2;
7004
7005                         intel_clock(dev, 48000, &clock);
7006                 }
7007         }
7008
7009         /* XXX: It would be nice to validate the clocks, but we can't reuse
7010          * i830PllIsValid() because it relies on the xf86_config connector
7011          * configuration being accurate, which it isn't necessarily.
7012          */
7013
7014         return clock.dot;
7015 }
7016
7017 /** Returns the currently programmed mode of the given pipe. */
7018 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7019                                              struct drm_crtc *crtc)
7020 {
7021         struct drm_i915_private *dev_priv = dev->dev_private;
7022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7023         int pipe = intel_crtc->pipe;
7024         struct drm_display_mode *mode;
7025         int htot = I915_READ(HTOTAL(pipe));
7026         int hsync = I915_READ(HSYNC(pipe));
7027         int vtot = I915_READ(VTOTAL(pipe));
7028         int vsync = I915_READ(VSYNC(pipe));
7029
7030         mode = kmalloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
7031
7032         mode->clock = intel_crtc_clock_get(dev, crtc);
7033         mode->hdisplay = (htot & 0xffff) + 1;
7034         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7035         mode->hsync_start = (hsync & 0xffff) + 1;
7036         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7037         mode->vdisplay = (vtot & 0xffff) + 1;
7038         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7039         mode->vsync_start = (vsync & 0xffff) + 1;
7040         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7041
7042         drm_mode_set_name(mode);
7043         drm_mode_set_crtcinfo(mode, 0);
7044
7045         return mode;
7046 }
7047
7048 #define GPU_IDLE_TIMEOUT (500 /* ms */ * 1000 / hz)
7049
7050 /* When this timer fires, we've been idle for awhile */
7051 static void intel_gpu_idle_timer(void *arg)
7052 {
7053         struct drm_device *dev = arg;
7054         drm_i915_private_t *dev_priv = dev->dev_private;
7055
7056         if (!list_empty(&dev_priv->mm.active_list)) {
7057                 /* Still processing requests, so just re-arm the timer. */
7058                 callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
7059                     i915_hangcheck_elapsed, dev);
7060                 return;
7061         }
7062
7063         dev_priv->busy = false;
7064         taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7065 }
7066
7067 #define CRTC_IDLE_TIMEOUT (1000 /* ms */ * 1000 / hz)
7068
7069 static void intel_crtc_idle_timer(void *arg)
7070 {
7071         struct intel_crtc *intel_crtc = arg;
7072         struct drm_crtc *crtc = &intel_crtc->base;
7073         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7074         struct intel_framebuffer *intel_fb;
7075
7076         intel_fb = to_intel_framebuffer(crtc->fb);
7077         if (intel_fb && intel_fb->obj->active) {
7078                 /* The framebuffer is still being accessed by the GPU. */
7079                 callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
7080                     i915_hangcheck_elapsed, crtc->dev);
7081                 return;
7082         }
7083
7084         intel_crtc->busy = false;
7085         taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7086 }
7087
7088 static void intel_increase_pllclock(struct drm_crtc *crtc)
7089 {
7090         struct drm_device *dev = crtc->dev;
7091         drm_i915_private_t *dev_priv = dev->dev_private;
7092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7093         int pipe = intel_crtc->pipe;
7094         int dpll_reg = DPLL(pipe);
7095         int dpll;
7096
7097         if (HAS_PCH_SPLIT(dev))
7098                 return;
7099
7100         if (!dev_priv->lvds_downclock_avail)
7101                 return;
7102
7103         dpll = I915_READ(dpll_reg);
7104         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7105                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7106
7107                 assert_panel_unlocked(dev_priv, pipe);
7108
7109                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7110                 I915_WRITE(dpll_reg, dpll);
7111                 intel_wait_for_vblank(dev, pipe);
7112
7113                 dpll = I915_READ(dpll_reg);
7114                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7115                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7116         }
7117
7118         /* Schedule downclock */
7119         callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
7120             intel_crtc_idle_timer, intel_crtc);
7121 }
7122
7123 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7124 {
7125         struct drm_device *dev = crtc->dev;
7126         drm_i915_private_t *dev_priv = dev->dev_private;
7127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7128
7129         if (HAS_PCH_SPLIT(dev))
7130                 return;
7131
7132         if (!dev_priv->lvds_downclock_avail)
7133                 return;
7134
7135         /*
7136          * Since this is called by a timer, we should never get here in
7137          * the manual case.
7138          */
7139         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7140                 int pipe = intel_crtc->pipe;
7141                 int dpll_reg = DPLL(pipe);
7142                 u32 dpll;
7143
7144                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7145
7146                 assert_panel_unlocked(dev_priv, pipe);
7147
7148                 dpll = I915_READ(dpll_reg);
7149                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7150                 I915_WRITE(dpll_reg, dpll);
7151                 intel_wait_for_vblank(dev, pipe);
7152                 dpll = I915_READ(dpll_reg);
7153                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7154                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7155         }
7156 }
7157
7158 /**
7159  * intel_idle_update - adjust clocks for idleness
7160  * @work: work struct
7161  *
7162  * Either the GPU or display (or both) went idle.  Check the busy status
7163  * here and adjust the CRTC and GPU clocks as necessary.
7164  */
7165 static void intel_idle_update(void *arg, int pending)
7166 {
7167         drm_i915_private_t *dev_priv = arg;
7168         struct drm_device *dev = dev_priv->dev;
7169         struct drm_crtc *crtc;
7170         struct intel_crtc *intel_crtc;
7171
7172         if (!i915_powersave)
7173                 return;
7174
7175         DRM_LOCK(dev);
7176
7177         i915_update_gfx_val(dev_priv);
7178
7179         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7180                 /* Skip inactive CRTCs */
7181                 if (!crtc->fb)
7182                         continue;
7183
7184                 intel_crtc = to_intel_crtc(crtc);
7185                 if (!intel_crtc->busy)
7186                         intel_decrease_pllclock(crtc);
7187         }
7188
7189         DRM_UNLOCK(dev);
7190 }
7191
7192 /**
7193  * intel_mark_busy - mark the GPU and possibly the display busy
7194  * @dev: drm device
7195  * @obj: object we're operating on
7196  *
7197  * Callers can use this function to indicate that the GPU is busy processing
7198  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7199  * buffer), we'll also mark the display as busy, so we know to increase its
7200  * clock frequency.
7201  */
7202 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7203 {
7204         drm_i915_private_t *dev_priv = dev->dev_private;
7205         struct drm_crtc *crtc = NULL;
7206         struct intel_framebuffer *intel_fb;
7207         struct intel_crtc *intel_crtc;
7208
7209         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7210                 return;
7211
7212         if (!dev_priv->busy)
7213                 dev_priv->busy = true;
7214         else
7215                 callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
7216                     intel_gpu_idle_timer, dev);
7217
7218         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7219                 if (!crtc->fb)
7220                         continue;
7221
7222                 intel_crtc = to_intel_crtc(crtc);
7223                 intel_fb = to_intel_framebuffer(crtc->fb);
7224                 if (intel_fb->obj == obj) {
7225                         if (!intel_crtc->busy) {
7226                                 /* Non-busy -> busy, upclock */
7227                                 intel_increase_pllclock(crtc);
7228                                 intel_crtc->busy = true;
7229                         } else {
7230                                 /* Busy -> busy, put off timer */
7231                                 callout_reset(&intel_crtc->idle_callout, 
7232                                     CRTC_IDLE_TIMEOUT, intel_crtc_idle_timer,
7233                                     intel_crtc);
7234                         }
7235                 }
7236         }
7237 }
7238
7239 static void intel_crtc_destroy(struct drm_crtc *crtc)
7240 {
7241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7242         struct drm_device *dev = crtc->dev;
7243         struct drm_i915_private *dev_priv = dev->dev_private;
7244         struct intel_unpin_work *work;
7245
7246         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7247         work = intel_crtc->unpin_work;
7248         intel_crtc->unpin_work = NULL;
7249         lockmgr(&dev->event_lock, LK_RELEASE);
7250
7251         if (work) {
7252                 taskqueue_cancel(dev_priv->tq, &work->task, NULL);
7253                 taskqueue_drain(dev_priv->tq, &work->task);
7254                 drm_free(work, DRM_MEM_KMS);
7255         }
7256
7257         drm_crtc_cleanup(crtc);
7258
7259         drm_free(intel_crtc, DRM_MEM_KMS);
7260 }
7261
7262 static void intel_unpin_work_fn(void *arg, int pending)
7263 {
7264         struct intel_unpin_work *work = arg;
7265         struct drm_device *dev;
7266
7267         dev = work->dev;
7268         DRM_LOCK(dev);
7269         intel_unpin_fb_obj(work->old_fb_obj);
7270         drm_gem_object_unreference(&work->pending_flip_obj->base);
7271         drm_gem_object_unreference(&work->old_fb_obj->base);
7272
7273         intel_update_fbc(work->dev);
7274         DRM_UNLOCK(dev);
7275         drm_free(work, DRM_MEM_KMS);
7276 }
7277
7278 static void do_intel_finish_page_flip(struct drm_device *dev,
7279                                       struct drm_crtc *crtc)
7280 {
7281         drm_i915_private_t *dev_priv = dev->dev_private;
7282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7283         struct intel_unpin_work *work;
7284         struct drm_i915_gem_object *obj;
7285         struct drm_pending_vblank_event *e;
7286         struct timeval tnow, tvbl;
7287
7288         /* Ignore early vblank irqs */
7289         if (intel_crtc == NULL)
7290                 return;
7291
7292         microtime(&tnow);
7293
7294         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7295         work = intel_crtc->unpin_work;
7296         if (work == NULL || !work->pending) {
7297                 lockmgr(&dev->event_lock, LK_RELEASE);
7298                 return;
7299         }
7300
7301         intel_crtc->unpin_work = NULL;
7302
7303         if (work->event) {
7304                 e = work->event;
7305                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7306
7307                 /* Called before vblank count and timestamps have
7308                  * been updated for the vblank interval of flip
7309                  * completion? Need to increment vblank count and
7310                  * add one videorefresh duration to returned timestamp
7311                  * to account for this. We assume this happened if we
7312                  * get called over 0.9 frame durations after the last
7313                  * timestamped vblank.
7314                  *
7315                  * This calculation can not be used with vrefresh rates
7316                  * below 5Hz (10Hz to be on the safe side) without
7317                  * promoting to 64 integers.
7318                  */
7319                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7320                     9 * crtc->framedur_ns) {
7321                         e->event.sequence++;
7322                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7323                                              crtc->framedur_ns);
7324                 }
7325
7326                 e->event.tv_sec = tvbl.tv_sec;
7327                 e->event.tv_usec = tvbl.tv_usec;
7328
7329                 list_add_tail(&e->base.link,
7330                               &e->base.file_priv->event_list);
7331                 drm_event_wakeup(&e->base);
7332         }
7333
7334         drm_vblank_put(dev, intel_crtc->pipe);
7335
7336         obj = work->old_fb_obj;
7337
7338         atomic_clear_int(&obj->pending_flip, 1 << intel_crtc->plane);
7339         if (atomic_load_acq_int(&obj->pending_flip) == 0)
7340                 wakeup(&obj->pending_flip);
7341         lockmgr(&dev->event_lock, LK_RELEASE);
7342
7343         taskqueue_enqueue(dev_priv->tq, &work->task);
7344 }
7345
7346 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7347 {
7348         drm_i915_private_t *dev_priv = dev->dev_private;
7349         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7350
7351         do_intel_finish_page_flip(dev, crtc);
7352 }
7353
7354 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7355 {
7356         drm_i915_private_t *dev_priv = dev->dev_private;
7357         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7358
7359         do_intel_finish_page_flip(dev, crtc);
7360 }
7361
7362 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7363 {
7364         drm_i915_private_t *dev_priv = dev->dev_private;
7365         struct intel_crtc *intel_crtc =
7366                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7367
7368         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7369         if (intel_crtc->unpin_work) {
7370                 if ((++intel_crtc->unpin_work->pending) > 1)
7371                         DRM_ERROR("Prepared flip multiple times\n");
7372         } else {
7373                 DRM_DEBUG("preparing flip with no unpin work?\n");
7374         }
7375         lockmgr(&dev->event_lock, LK_RELEASE);
7376 }
7377
7378 static int intel_gen2_queue_flip(struct drm_device *dev,
7379                                  struct drm_crtc *crtc,
7380                                  struct drm_framebuffer *fb,
7381                                  struct drm_i915_gem_object *obj)
7382 {
7383         struct drm_i915_private *dev_priv = dev->dev_private;
7384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7385         unsigned long offset;
7386         u32 flip_mask;
7387         int ret;
7388
7389         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7390         if (ret)
7391                 goto out;
7392
7393         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7394         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7395
7396         ret = BEGIN_LP_RING(6);
7397         if (ret)
7398                 goto out;
7399
7400         /* Can't queue multiple flips, so wait for the previous
7401          * one to finish before executing the next.
7402          */
7403         if (intel_crtc->plane)
7404                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7405         else
7406                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7407         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7408         OUT_RING(MI_NOOP);
7409         OUT_RING(MI_DISPLAY_FLIP |
7410                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7411         OUT_RING(fb->pitches[0]);
7412         OUT_RING(obj->gtt_offset + offset);
7413         OUT_RING(0); /* aux display base address, unused */
7414         ADVANCE_LP_RING();
7415 out:
7416         return ret;
7417 }
7418
7419 static int intel_gen3_queue_flip(struct drm_device *dev,
7420                                  struct drm_crtc *crtc,
7421                                  struct drm_framebuffer *fb,
7422                                  struct drm_i915_gem_object *obj)
7423 {
7424         struct drm_i915_private *dev_priv = dev->dev_private;
7425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7426         unsigned long offset;
7427         u32 flip_mask;
7428         int ret;
7429
7430         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7431         if (ret)
7432                 goto out;
7433
7434         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7435         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7436
7437         ret = BEGIN_LP_RING(6);
7438         if (ret)
7439                 goto out;
7440
7441         if (intel_crtc->plane)
7442                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7443         else
7444                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7445         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7446         OUT_RING(MI_NOOP);
7447         OUT_RING(MI_DISPLAY_FLIP_I915 |
7448                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7449         OUT_RING(fb->pitches[0]);
7450         OUT_RING(obj->gtt_offset + offset);
7451         OUT_RING(MI_NOOP);
7452
7453         ADVANCE_LP_RING();
7454 out:
7455         return ret;
7456 }
7457
7458 static int intel_gen4_queue_flip(struct drm_device *dev,
7459                                  struct drm_crtc *crtc,
7460                                  struct drm_framebuffer *fb,
7461                                  struct drm_i915_gem_object *obj)
7462 {
7463         struct drm_i915_private *dev_priv = dev->dev_private;
7464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7465         uint32_t pf, pipesrc;
7466         int ret;
7467
7468         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7469         if (ret)
7470                 goto out;
7471
7472         ret = BEGIN_LP_RING(4);
7473         if (ret)
7474                 goto out;
7475
7476         /* i965+ uses the linear or tiled offsets from the
7477          * Display Registers (which do not change across a page-flip)
7478          * so we need only reprogram the base address.
7479          */
7480         OUT_RING(MI_DISPLAY_FLIP |
7481                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7482         OUT_RING(fb->pitches[0]);
7483         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7484
7485         /* XXX Enabling the panel-fitter across page-flip is so far
7486          * untested on non-native modes, so ignore it for now.
7487          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7488          */
7489         pf = 0;
7490         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7491         OUT_RING(pf | pipesrc);
7492         ADVANCE_LP_RING();
7493 out:
7494         return ret;
7495 }
7496
7497 static int intel_gen6_queue_flip(struct drm_device *dev,
7498                                  struct drm_crtc *crtc,
7499                                  struct drm_framebuffer *fb,
7500                                  struct drm_i915_gem_object *obj)
7501 {
7502         struct drm_i915_private *dev_priv = dev->dev_private;
7503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7504         uint32_t pf, pipesrc;
7505         int ret;
7506
7507         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7508         if (ret)
7509                 goto out;
7510
7511         ret = BEGIN_LP_RING(4);
7512         if (ret)
7513                 goto out;
7514
7515         OUT_RING(MI_DISPLAY_FLIP |
7516                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7517         OUT_RING(fb->pitches[0] | obj->tiling_mode);
7518         OUT_RING(obj->gtt_offset);
7519
7520         /* Contrary to the suggestions in the documentation,
7521          * "Enable Panel Fitter" does not seem to be required when page
7522          * flipping with a non-native mode, and worse causes a normal
7523          * modeset to fail.
7524          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7525          */
7526         pf = 0;
7527         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7528         OUT_RING(pf | pipesrc);
7529         ADVANCE_LP_RING();
7530 out:
7531         return ret;
7532 }
7533
7534 /*
7535  * On gen7 we currently use the blit ring because (in early silicon at least)
7536  * the render ring doesn't give us interrpts for page flip completion, which
7537  * means clients will hang after the first flip is queued.  Fortunately the
7538  * blit ring generates interrupts properly, so use it instead.
7539  */
7540 static int intel_gen7_queue_flip(struct drm_device *dev,
7541                                  struct drm_crtc *crtc,
7542                                  struct drm_framebuffer *fb,
7543                                  struct drm_i915_gem_object *obj)
7544 {
7545         struct drm_i915_private *dev_priv = dev->dev_private;
7546         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7547         struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
7548         int ret;
7549
7550         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7551         if (ret)
7552                 goto out;
7553
7554         ret = intel_ring_begin(ring, 4);
7555         if (ret)
7556                 goto out;
7557
7558         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7559         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7560         intel_ring_emit(ring, (obj->gtt_offset));
7561         intel_ring_emit(ring, (MI_NOOP));
7562         intel_ring_advance(ring);
7563 out:
7564         return ret;
7565 }
7566
7567 static int intel_default_queue_flip(struct drm_device *dev,
7568                                     struct drm_crtc *crtc,
7569                                     struct drm_framebuffer *fb,
7570                                     struct drm_i915_gem_object *obj)
7571 {
7572         return -ENODEV;
7573 }
7574
7575 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7576                                 struct drm_framebuffer *fb,
7577                                 struct drm_pending_vblank_event *event)
7578 {
7579         struct drm_device *dev = crtc->dev;
7580         struct drm_i915_private *dev_priv = dev->dev_private;
7581         struct intel_framebuffer *intel_fb;
7582         struct drm_i915_gem_object *obj;
7583         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7584         struct intel_unpin_work *work;
7585         int ret;
7586
7587         work = kmalloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
7588
7589         work->event = event;
7590         work->dev = crtc->dev;
7591         intel_fb = to_intel_framebuffer(crtc->fb);
7592         work->old_fb_obj = intel_fb->obj;
7593         TASK_INIT(&work->task, 0, intel_unpin_work_fn, work);
7594
7595         ret = drm_vblank_get(dev, intel_crtc->pipe);
7596         if (ret)
7597                 goto free_work;
7598
7599         /* We borrow the event spin lock for protecting unpin_work */
7600         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7601         if (intel_crtc->unpin_work) {
7602                 lockmgr(&dev->event_lock, LK_RELEASE);
7603                 drm_free(work, DRM_MEM_KMS);
7604                 drm_vblank_put(dev, intel_crtc->pipe);
7605
7606                 DRM_DEBUG("flip queue: crtc already busy\n");
7607                 return -EBUSY;
7608         }
7609         intel_crtc->unpin_work = work;
7610         lockmgr(&dev->event_lock, LK_RELEASE);
7611
7612         intel_fb = to_intel_framebuffer(fb);
7613         obj = intel_fb->obj;
7614
7615         DRM_LOCK(dev);
7616
7617         /* Reference the objects for the scheduled work. */
7618         drm_gem_object_reference(&work->old_fb_obj->base);
7619         drm_gem_object_reference(&obj->base);
7620
7621         crtc->fb = fb;
7622
7623         work->pending_flip_obj = obj;
7624
7625         work->enable_stall_check = true;
7626
7627         /* Block clients from rendering to the new back buffer until
7628          * the flip occurs and the object is no longer visible.
7629          */
7630         atomic_set_int(&work->old_fb_obj->pending_flip, 1 << intel_crtc->plane);
7631
7632         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7633         if (ret)
7634                 goto cleanup_pending;
7635         intel_disable_fbc(dev);
7636         DRM_UNLOCK(dev);
7637
7638         return 0;
7639
7640 cleanup_pending:
7641         atomic_clear_int(&work->old_fb_obj->pending_flip, 1 << intel_crtc->plane);
7642         drm_gem_object_unreference(&work->old_fb_obj->base);
7643         drm_gem_object_unreference(&obj->base);
7644         DRM_UNLOCK(dev);
7645
7646         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7647         intel_crtc->unpin_work = NULL;
7648         lockmgr(&dev->event_lock, LK_RELEASE);
7649
7650         drm_vblank_put(dev, intel_crtc->pipe);
7651 free_work:
7652         drm_free(work, DRM_MEM_KMS);
7653
7654         return ret;
7655 }
7656
7657 static void intel_sanitize_modesetting(struct drm_device *dev,
7658                                        int pipe, int plane)
7659 {
7660         struct drm_i915_private *dev_priv = dev->dev_private;
7661         u32 reg, val;
7662
7663         /* Clear any frame start delays used for debugging left by the BIOS */
7664         for_each_pipe(pipe) {
7665                 reg = PIPECONF(pipe);
7666                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7667         }
7668
7669         if (HAS_PCH_SPLIT(dev))
7670                 return;
7671
7672         /* Who knows what state these registers were left in by the BIOS or
7673          * grub?
7674          *
7675          * If we leave the registers in a conflicting state (e.g. with the
7676          * display plane reading from the other pipe than the one we intend
7677          * to use) then when we attempt to teardown the active mode, we will
7678          * not disable the pipes and planes in the correct order -- leaving
7679          * a plane reading from a disabled pipe and possibly leading to
7680          * undefined behaviour.
7681          */
7682
7683         reg = DSPCNTR(plane);
7684         val = I915_READ(reg);
7685
7686         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7687                 return;
7688         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7689                 return;
7690
7691         /* This display plane is active and attached to the other CPU pipe. */
7692         pipe = !pipe;
7693
7694         /* Disable the plane and wait for it to stop reading from the pipe. */
7695         intel_disable_plane(dev_priv, plane, pipe);
7696         intel_disable_pipe(dev_priv, pipe);
7697 }
7698
7699 static void intel_crtc_reset(struct drm_crtc *crtc)
7700 {
7701         struct drm_device *dev = crtc->dev;
7702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7703
7704         /* Reset flags back to the 'unknown' status so that they
7705          * will be correctly set on the initial modeset.
7706          */
7707         intel_crtc->dpms_mode = -1;
7708
7709         /* We need to fix up any BIOS configuration that conflicts with
7710          * our expectations.
7711          */
7712         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7713 }
7714
7715 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7716         .dpms = intel_crtc_dpms,
7717         .mode_fixup = intel_crtc_mode_fixup,
7718         .mode_set = intel_crtc_mode_set,
7719         .mode_set_base = intel_pipe_set_base,
7720         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7721         .load_lut = intel_crtc_load_lut,
7722         .disable = intel_crtc_disable,
7723 };
7724
7725 static const struct drm_crtc_funcs intel_crtc_funcs = {
7726         .reset = intel_crtc_reset,
7727         .cursor_set = intel_crtc_cursor_set,
7728         .cursor_move = intel_crtc_cursor_move,
7729         .gamma_set = intel_crtc_gamma_set,
7730         .set_config = drm_crtc_helper_set_config,
7731         .destroy = intel_crtc_destroy,
7732         .page_flip = intel_crtc_page_flip,
7733 };
7734
7735 static void intel_crtc_init(struct drm_device *dev, int pipe)
7736 {
7737         drm_i915_private_t *dev_priv = dev->dev_private;
7738         struct intel_crtc *intel_crtc;
7739         int i;
7740
7741         intel_crtc = kmalloc(sizeof(struct intel_crtc) +
7742             (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
7743             DRM_MEM_KMS, M_WAITOK | M_ZERO);
7744
7745         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7746
7747         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7748         for (i = 0; i < 256; i++) {
7749                 intel_crtc->lut_r[i] = i;
7750                 intel_crtc->lut_g[i] = i;
7751                 intel_crtc->lut_b[i] = i;
7752         }
7753
7754         /* Swap pipes & planes for FBC on pre-965 */
7755         intel_crtc->pipe = pipe;
7756         intel_crtc->plane = pipe;
7757         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7758                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7759                 intel_crtc->plane = !pipe;
7760         }
7761
7762         KASSERT(pipe < DRM_ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) &&
7763             dev_priv->plane_to_crtc_mapping[intel_crtc->plane] == NULL,
7764             ("plane_to_crtc is already initialized"));
7765         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7766         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7767
7768         intel_crtc_reset(&intel_crtc->base);
7769         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7770         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7771
7772         if (HAS_PCH_SPLIT(dev)) {
7773                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7774                         intel_crtc->no_pll = true;
7775                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7776                 intel_helper_funcs.commit = ironlake_crtc_commit;
7777         } else {
7778                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7779                 intel_helper_funcs.commit = i9xx_crtc_commit;
7780         }
7781
7782         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7783
7784         intel_crtc->busy = false;
7785
7786         callout_init_mp(&intel_crtc->idle_callout);
7787 }
7788
7789 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7790                                 struct drm_file *file)
7791 {
7792         drm_i915_private_t *dev_priv = dev->dev_private;
7793         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7794         struct drm_mode_object *drmmode_obj;
7795         struct intel_crtc *crtc;
7796
7797         if (!dev_priv) {
7798                 DRM_ERROR("called with no initialization\n");
7799                 return -EINVAL;
7800         }
7801
7802         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7803                         DRM_MODE_OBJECT_CRTC);
7804
7805         if (!drmmode_obj) {
7806                 DRM_ERROR("no such CRTC id\n");
7807                 return -EINVAL;
7808         }
7809
7810         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7811         pipe_from_crtc_id->pipe = crtc->pipe;
7812
7813         return 0;
7814 }
7815
7816 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7817 {
7818         struct intel_encoder *encoder;
7819         int index_mask = 0;
7820         int entry = 0;
7821
7822         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7823                 if (type_mask & encoder->clone_mask)
7824                         index_mask |= (1 << entry);
7825                 entry++;
7826         }
7827
7828         return index_mask;
7829 }
7830
7831 static bool has_edp_a(struct drm_device *dev)
7832 {
7833         struct drm_i915_private *dev_priv = dev->dev_private;
7834
7835         if (!IS_MOBILE(dev))
7836                 return false;
7837
7838         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7839                 return false;
7840
7841         if (IS_GEN5(dev) &&
7842             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7843                 return false;
7844
7845         return true;
7846 }
7847
7848 static void intel_setup_outputs(struct drm_device *dev)
7849 {
7850         struct drm_i915_private *dev_priv = dev->dev_private;
7851         struct intel_encoder *encoder;
7852         bool dpd_is_edp = false;
7853         bool has_lvds;
7854
7855         has_lvds = intel_lvds_init(dev);
7856         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7857                 /* disable the panel fitter on everything but LVDS */
7858                 I915_WRITE(PFIT_CONTROL, 0);
7859         }
7860
7861         if (HAS_PCH_SPLIT(dev)) {
7862                 dpd_is_edp = intel_dpd_is_edp(dev);
7863
7864                 if (has_edp_a(dev))
7865                         intel_dp_init(dev, DP_A);
7866
7867                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7868                         intel_dp_init(dev, PCH_DP_D);
7869         }
7870
7871         intel_crt_init(dev);
7872
7873         if (HAS_PCH_SPLIT(dev)) {
7874                 int found;
7875
7876                 DRM_DEBUG_KMS(
7877 "HDMIB %d PCH_DP_B %d HDMIC %d HDMID %d PCH_DP_C %d PCH_DP_D %d LVDS %d\n",
7878                     (I915_READ(HDMIB) & PORT_DETECTED) != 0,
7879                     (I915_READ(PCH_DP_B) & DP_DETECTED) != 0,
7880                     (I915_READ(HDMIC) & PORT_DETECTED) != 0,
7881                     (I915_READ(HDMID) & PORT_DETECTED) != 0,
7882                     (I915_READ(PCH_DP_C) & DP_DETECTED) != 0,
7883                     (I915_READ(PCH_DP_D) & DP_DETECTED) != 0,
7884                     (I915_READ(PCH_LVDS) & LVDS_DETECTED) != 0);
7885
7886                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7887                         /* PCH SDVOB multiplex with HDMIB */
7888                         found = intel_sdvo_init(dev, PCH_SDVOB);
7889                         if (!found)
7890                                 intel_hdmi_init(dev, HDMIB);
7891                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7892                                 intel_dp_init(dev, PCH_DP_B);
7893                 }
7894
7895                 if (I915_READ(HDMIC) & PORT_DETECTED)
7896                         intel_hdmi_init(dev, HDMIC);
7897
7898                 if (I915_READ(HDMID) & PORT_DETECTED)
7899                         intel_hdmi_init(dev, HDMID);
7900
7901                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7902                         intel_dp_init(dev, PCH_DP_C);
7903
7904                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7905                         intel_dp_init(dev, PCH_DP_D);
7906
7907         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7908                 bool found = false;
7909
7910                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7911                         DRM_DEBUG_KMS("probing SDVOB\n");
7912                         found = intel_sdvo_init(dev, SDVOB);
7913                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7914                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7915                                 intel_hdmi_init(dev, SDVOB);
7916                         }
7917
7918                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7919                                 DRM_DEBUG_KMS("probing DP_B\n");
7920                                 intel_dp_init(dev, DP_B);
7921                         }
7922                 }
7923
7924                 /* Before G4X SDVOC doesn't have its own detect register */
7925
7926                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7927                         DRM_DEBUG_KMS("probing SDVOC\n");
7928                         found = intel_sdvo_init(dev, SDVOC);
7929                 }
7930
7931                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7932
7933                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7934                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7935                                 intel_hdmi_init(dev, SDVOC);
7936                         }
7937                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7938                                 DRM_DEBUG_KMS("probing DP_C\n");
7939                                 intel_dp_init(dev, DP_C);
7940                         }
7941                 }
7942
7943                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7944                     (I915_READ(DP_D) & DP_DETECTED)) {
7945                         DRM_DEBUG_KMS("probing DP_D\n");
7946                         intel_dp_init(dev, DP_D);
7947                 }
7948         } else if (IS_GEN2(dev)) {
7949 #if 1
7950                 KIB_NOTYET();
7951 #else
7952                 intel_dvo_init(dev);
7953 #endif
7954         }
7955
7956         if (SUPPORTS_TV(dev))
7957                 intel_tv_init(dev);
7958
7959         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7960                 encoder->base.possible_crtcs = encoder->crtc_mask;
7961                 encoder->base.possible_clones =
7962                         intel_encoder_clones(dev, encoder->clone_mask);
7963         }
7964
7965         /* disable all the possible outputs/crtcs before entering KMS mode */
7966         drm_helper_disable_unused_functions(dev);
7967
7968         if (HAS_PCH_SPLIT(dev))
7969                 ironlake_init_pch_refclk(dev);
7970 }
7971
7972 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7973 {
7974         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7975
7976         drm_framebuffer_cleanup(fb);
7977         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7978
7979         drm_free(intel_fb, DRM_MEM_KMS);
7980 }
7981
7982 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7983                                                 struct drm_file *file,
7984                                                 unsigned int *handle)
7985 {
7986         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7987         struct drm_i915_gem_object *obj = intel_fb->obj;
7988
7989         return drm_gem_handle_create(file, &obj->base, handle);
7990 }
7991
7992 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7993         .destroy = intel_user_framebuffer_destroy,
7994         .create_handle = intel_user_framebuffer_create_handle,
7995 };
7996
7997 int intel_framebuffer_init(struct drm_device *dev,
7998                            struct intel_framebuffer *intel_fb,
7999                            struct drm_mode_fb_cmd2 *mode_cmd,
8000                            struct drm_i915_gem_object *obj)
8001 {
8002         int ret;
8003
8004         if (obj->tiling_mode == I915_TILING_Y)
8005                 return -EINVAL;
8006
8007         if (mode_cmd->pitches[0] & 63)
8008                 return -EINVAL;
8009
8010         switch (mode_cmd->pixel_format) {
8011         case DRM_FORMAT_RGB332:
8012         case DRM_FORMAT_RGB565:
8013         case DRM_FORMAT_XRGB8888:
8014         case DRM_FORMAT_XBGR8888:
8015         case DRM_FORMAT_ARGB8888:
8016         case DRM_FORMAT_XRGB2101010:
8017         case DRM_FORMAT_ARGB2101010:
8018                 /* RGB formats are common across chipsets */
8019                 break;
8020         case DRM_FORMAT_YUYV:
8021         case DRM_FORMAT_UYVY:
8022         case DRM_FORMAT_YVYU:
8023         case DRM_FORMAT_VYUY:
8024                 break;
8025         default:
8026                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8027                                 mode_cmd->pixel_format);
8028                 return -EINVAL;
8029         }
8030
8031         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8032         if (ret) {
8033                 DRM_ERROR("framebuffer init failed %d\n", ret);
8034                 return ret;
8035         }
8036
8037         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8038         intel_fb->obj = obj;
8039         return 0;
8040 }
8041
8042 static int
8043 intel_user_framebuffer_create(struct drm_device *dev,
8044     struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd,
8045     struct drm_framebuffer **res)
8046 {
8047         struct drm_i915_gem_object *obj;
8048
8049         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8050                                                 mode_cmd->handles[0]));
8051         if (&obj->base == NULL)
8052                 return (-ENOENT);
8053
8054         return (intel_framebuffer_create(dev, mode_cmd, obj, res));
8055 }
8056
8057 static const struct drm_mode_config_funcs intel_mode_funcs = {
8058         .fb_create = intel_user_framebuffer_create,
8059         .output_poll_changed = intel_fb_output_poll_changed,
8060 };
8061
8062 static struct drm_i915_gem_object *
8063 intel_alloc_context_page(struct drm_device *dev)
8064 {
8065         struct drm_i915_gem_object *ctx;
8066         int ret;
8067
8068         DRM_LOCK_ASSERT(dev);
8069
8070         ctx = i915_gem_alloc_object(dev, 4096);
8071         if (!ctx) {
8072                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8073                 return NULL;
8074         }
8075
8076         ret = i915_gem_object_pin(ctx, 4096, true);
8077         if (ret) {
8078                 DRM_ERROR("failed to pin power context: %d\n", ret);
8079                 goto err_unref;
8080         }
8081
8082         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8083         if (ret) {
8084                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8085                 goto err_unpin;
8086         }
8087
8088         return ctx;
8089
8090 err_unpin:
8091         i915_gem_object_unpin(ctx);
8092 err_unref:
8093         drm_gem_object_unreference(&ctx->base);
8094         DRM_UNLOCK(dev);
8095         return NULL;
8096 }
8097
8098 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8099 {
8100         struct drm_i915_private *dev_priv = dev->dev_private;
8101         u16 rgvswctl;
8102
8103         rgvswctl = I915_READ16(MEMSWCTL);
8104         if (rgvswctl & MEMCTL_CMD_STS) {
8105                 DRM_DEBUG("gpu busy, RCS change rejected\n");
8106                 return false; /* still busy with another command */
8107         }
8108
8109         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8110                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8111         I915_WRITE16(MEMSWCTL, rgvswctl);
8112         POSTING_READ16(MEMSWCTL);
8113
8114         rgvswctl |= MEMCTL_CMD_STS;
8115         I915_WRITE16(MEMSWCTL, rgvswctl);
8116
8117         return true;
8118 }
8119
8120 void ironlake_enable_drps(struct drm_device *dev)
8121 {
8122         struct drm_i915_private *dev_priv = dev->dev_private;
8123         u32 rgvmodectl = I915_READ(MEMMODECTL);
8124         u8 fmax, fmin, fstart, vstart;
8125
8126         /* Enable temp reporting */
8127         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8128         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8129
8130         /* 100ms RC evaluation intervals */
8131         I915_WRITE(RCUPEI, 100000);
8132         I915_WRITE(RCDNEI, 100000);
8133
8134         /* Set max/min thresholds to 90ms and 80ms respectively */
8135         I915_WRITE(RCBMAXAVG, 90000);
8136         I915_WRITE(RCBMINAVG, 80000);
8137
8138         I915_WRITE(MEMIHYST, 1);
8139
8140         /* Set up min, max, and cur for interrupt handling */
8141         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8142         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8143         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8144                 MEMMODE_FSTART_SHIFT;
8145
8146         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8147                 PXVFREQ_PX_SHIFT;
8148
8149         dev_priv->fmax = fmax; /* IPS callback will increase this */
8150         dev_priv->fstart = fstart;
8151
8152         dev_priv->max_delay = fstart;
8153         dev_priv->min_delay = fmin;
8154         dev_priv->cur_delay = fstart;
8155
8156         DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
8157                          fmax, fmin, fstart);
8158
8159         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8160
8161         /*
8162          * Interrupts will be enabled in ironlake_irq_postinstall
8163          */
8164
8165         I915_WRITE(VIDSTART, vstart);
8166         POSTING_READ(VIDSTART);
8167
8168         rgvmodectl |= MEMMODE_SWMODE_EN;
8169         I915_WRITE(MEMMODECTL, rgvmodectl);
8170
8171         if (_intel_wait_for(dev,
8172             (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
8173             1, "915per"))
8174                 DRM_ERROR("stuck trying to change perf mode\n");
8175         DELAY(1000);
8176
8177         ironlake_set_drps(dev, fstart);
8178
8179         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8180                 I915_READ(0x112e0);
8181         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8182         dev_priv->last_count2 = I915_READ(0x112f4);
8183         nanotime(&dev_priv->last_time2);
8184 }
8185
8186 void ironlake_disable_drps(struct drm_device *dev)
8187 {
8188         struct drm_i915_private *dev_priv = dev->dev_private;
8189         u16 rgvswctl = I915_READ16(MEMSWCTL);
8190
8191         /* Ack interrupts, disable EFC interrupt */
8192         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8193         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8194         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8195         I915_WRITE(DEIIR, DE_PCU_EVENT);
8196         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8197
8198         /* Go back to the starting frequency */
8199         ironlake_set_drps(dev, dev_priv->fstart);
8200         DELAY(1000);
8201         rgvswctl |= MEMCTL_CMD_STS;
8202         I915_WRITE(MEMSWCTL, rgvswctl);
8203         DELAY(1000);
8204
8205 }
8206
8207 void gen6_set_rps(struct drm_device *dev, u8 val)
8208 {
8209         struct drm_i915_private *dev_priv = dev->dev_private;
8210         u32 swreq;
8211
8212         swreq = (val & 0x3ff) << 25;
8213         I915_WRITE(GEN6_RPNSWREQ, swreq);
8214 }
8215
8216 void gen6_disable_rps(struct drm_device *dev)
8217 {
8218         struct drm_i915_private *dev_priv = dev->dev_private;
8219
8220         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8221         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8222         I915_WRITE(GEN6_PMIER, 0);
8223         /* Complete PM interrupt masking here doesn't race with the rps work
8224          * item again unmasking PM interrupts because that is using a different
8225          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8226          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8227
8228         lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
8229         dev_priv->pm_iir = 0;
8230         lockmgr(&dev_priv->rps_lock, LK_RELEASE);
8231
8232         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8233 }
8234
8235 static unsigned long intel_pxfreq(u32 vidfreq)
8236 {
8237         unsigned long freq;
8238         int div = (vidfreq & 0x3f0000) >> 16;
8239         int post = (vidfreq & 0x3000) >> 12;
8240         int pre = (vidfreq & 0x7);
8241
8242         if (!pre)
8243                 return 0;
8244
8245         freq = ((div * 133333) / ((1<<post) * pre));
8246
8247         return freq;
8248 }
8249
8250 void intel_init_emon(struct drm_device *dev)
8251 {
8252         struct drm_i915_private *dev_priv = dev->dev_private;
8253         u32 lcfuse;
8254         u8 pxw[16];
8255         int i;
8256
8257         /* Disable to program */
8258         I915_WRITE(ECR, 0);
8259         POSTING_READ(ECR);
8260
8261         /* Program energy weights for various events */
8262         I915_WRITE(SDEW, 0x15040d00);
8263         I915_WRITE(CSIEW0, 0x007f0000);
8264         I915_WRITE(CSIEW1, 0x1e220004);
8265         I915_WRITE(CSIEW2, 0x04000004);
8266
8267         for (i = 0; i < 5; i++)
8268                 I915_WRITE(PEW + (i * 4), 0);
8269         for (i = 0; i < 3; i++)
8270                 I915_WRITE(DEW + (i * 4), 0);
8271
8272         /* Program P-state weights to account for frequency power adjustment */
8273         for (i = 0; i < 16; i++) {
8274                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8275                 unsigned long freq = intel_pxfreq(pxvidfreq);
8276                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8277                         PXVFREQ_PX_SHIFT;
8278                 unsigned long val;
8279
8280                 val = vid * vid;
8281                 val *= (freq / 1000);
8282                 val *= 255;
8283                 val /= (127*127*900);
8284                 if (val > 0xff)
8285                         DRM_ERROR("bad pxval: %ld\n", val);
8286                 pxw[i] = val;
8287         }
8288         /* Render standby states get 0 weight */
8289         pxw[14] = 0;
8290         pxw[15] = 0;
8291
8292         for (i = 0; i < 4; i++) {
8293                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8294                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8295                 I915_WRITE(PXW + (i * 4), val);
8296         }
8297
8298         /* Adjust magic regs to magic values (more experimental results) */
8299         I915_WRITE(OGW0, 0);
8300         I915_WRITE(OGW1, 0);
8301         I915_WRITE(EG0, 0x00007f00);
8302         I915_WRITE(EG1, 0x0000000e);
8303         I915_WRITE(EG2, 0x000e0000);
8304         I915_WRITE(EG3, 0x68000300);
8305         I915_WRITE(EG4, 0x42000000);
8306         I915_WRITE(EG5, 0x00140031);
8307         I915_WRITE(EG6, 0);
8308         I915_WRITE(EG7, 0);
8309
8310         for (i = 0; i < 8; i++)
8311                 I915_WRITE(PXWL + (i * 4), 0);
8312
8313         /* Enable PMON + select events */
8314         I915_WRITE(ECR, 0x80000019);
8315
8316         lcfuse = I915_READ(LCFUSE02);
8317
8318         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8319 }
8320
8321 static int intel_enable_rc6(struct drm_device *dev)
8322 {
8323         /*
8324          * Respect the kernel parameter if it is set
8325          */
8326         if (i915_enable_rc6 >= 0)
8327                 return i915_enable_rc6;
8328
8329         /*
8330          * Disable RC6 on Ironlake
8331          */
8332         if (INTEL_INFO(dev)->gen == 5)
8333                 return 0;
8334
8335         /*
8336          * Enable rc6 on Sandybridge if DMA remapping is disabled
8337          */
8338         if (INTEL_INFO(dev)->gen == 6) {
8339                 DRM_DEBUG_DRIVER(
8340                     "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
8341                      intel_iommu_enabled ? "true" : "false",
8342                      !intel_iommu_enabled ? "en" : "dis");
8343                 return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
8344         }
8345         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8346         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8347 }
8348
8349 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8350 {
8351         struct drm_device *dev = dev_priv->dev;
8352         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8353         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8354         u32 pcu_mbox, rc6_mask = 0;
8355         u32 gtfifodbg;
8356         int cur_freq, min_freq, max_freq;
8357         int rc6_mode;
8358         int i;
8359
8360         /* Here begins a magic sequence of register writes to enable
8361          * auto-downclocking.
8362          *
8363          * Perhaps there might be some value in exposing these to
8364          * userspace...
8365          */
8366         I915_WRITE(GEN6_RC_STATE, 0);
8367         DRM_LOCK(dev);
8368
8369         /* Clear the DBG now so we don't confuse earlier errors */
8370         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8371                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8372                 I915_WRITE(GTFIFODBG, gtfifodbg);
8373         }
8374
8375         gen6_gt_force_wake_get(dev_priv);
8376
8377         /* disable the counters and set deterministic thresholds */
8378         I915_WRITE(GEN6_RC_CONTROL, 0);
8379
8380         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8381         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8382         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8383         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8384         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8385
8386         for (i = 0; i < I915_NUM_RINGS; i++)
8387                 I915_WRITE(RING_MAX_IDLE(dev_priv->rings[i].mmio_base), 10);
8388
8389         I915_WRITE(GEN6_RC_SLEEP, 0);
8390         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8391         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8392         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8393         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8394
8395         rc6_mode = intel_enable_rc6(dev_priv->dev);
8396         if (rc6_mode & INTEL_RC6_ENABLE)
8397                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8398
8399         if (rc6_mode & INTEL_RC6p_ENABLE)
8400                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8401
8402         if (rc6_mode & INTEL_RC6pp_ENABLE)
8403                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8404
8405         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8406                         (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8407                         (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8408                         (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8409
8410         I915_WRITE(GEN6_RC_CONTROL,
8411                    rc6_mask |
8412                    GEN6_RC_CTL_EI_MODE(1) |
8413                    GEN6_RC_CTL_HW_ENABLE);
8414
8415         I915_WRITE(GEN6_RPNSWREQ,
8416                    GEN6_FREQUENCY(10) |
8417                    GEN6_OFFSET(0) |
8418                    GEN6_AGGRESSIVE_TURBO);
8419         I915_WRITE(GEN6_RC_VIDEO_FREQ,
8420                    GEN6_FREQUENCY(12));
8421
8422         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8423         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8424                    18 << 24 |
8425                    6 << 16);
8426         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8427         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8428         I915_WRITE(GEN6_RP_UP_EI, 100000);
8429         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8430         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8431         I915_WRITE(GEN6_RP_CONTROL,
8432                    GEN6_RP_MEDIA_TURBO |
8433                    GEN6_RP_MEDIA_HW_MODE |
8434                    GEN6_RP_MEDIA_IS_GFX |
8435                    GEN6_RP_ENABLE |
8436                    GEN6_RP_UP_BUSY_AVG |
8437                    GEN6_RP_DOWN_IDLE_CONT);
8438
8439         if (_intel_wait_for(dev,
8440             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8441             1, "915pr1"))
8442                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8443
8444         I915_WRITE(GEN6_PCODE_DATA, 0);
8445         I915_WRITE(GEN6_PCODE_MAILBOX,
8446                    GEN6_PCODE_READY |
8447                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8448         if (_intel_wait_for(dev,
8449             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8450             1, "915pr2"))
8451                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8452
8453         min_freq = (rp_state_cap & 0xff0000) >> 16;
8454         max_freq = rp_state_cap & 0xff;
8455         cur_freq = (gt_perf_status & 0xff00) >> 8;
8456
8457         /* Check for overclock support */
8458         if (_intel_wait_for(dev,
8459             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8460             1, "915pr3"))
8461                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8462         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8463         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8464         if (_intel_wait_for(dev,
8465             (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8466             1, "915pr4"))
8467                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8468         if (pcu_mbox & (1<<31)) { /* OC supported */
8469                 max_freq = pcu_mbox & 0xff;
8470                 DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8471         }
8472
8473         /* In units of 100MHz */
8474         dev_priv->max_delay = max_freq;
8475         dev_priv->min_delay = min_freq;
8476         dev_priv->cur_delay = cur_freq;
8477
8478         /* requires MSI enabled */
8479         I915_WRITE(GEN6_PMIER,
8480                    GEN6_PM_MBOX_EVENT |
8481                    GEN6_PM_THERMAL_EVENT |
8482                    GEN6_PM_RP_DOWN_TIMEOUT |
8483                    GEN6_PM_RP_UP_THRESHOLD |
8484                    GEN6_PM_RP_DOWN_THRESHOLD |
8485                    GEN6_PM_RP_UP_EI_EXPIRED |
8486                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8487         lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
8488         if (dev_priv->pm_iir != 0)
8489                 kprintf("pm_iir %x\n", dev_priv->pm_iir);
8490         I915_WRITE(GEN6_PMIMR, 0);
8491         lockmgr(&dev_priv->rps_lock, LK_RELEASE);
8492         /* enable all PM interrupts */
8493         I915_WRITE(GEN6_PMINTRMSK, 0);
8494
8495         gen6_gt_force_wake_put(dev_priv);
8496         DRM_UNLOCK(dev);
8497 }
8498
8499 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8500 {
8501         struct drm_device *dev;
8502         int min_freq = 15;
8503         int gpu_freq, ia_freq, max_ia_freq;
8504         int scaling_factor = 180;
8505         uint64_t tsc_freq;
8506
8507         dev = dev_priv->dev;
8508 #if 0
8509         max_ia_freq = cpufreq_quick_get_max(0);
8510         /*
8511          * Default to measured freq if none found, PCU will ensure we don't go
8512          * over
8513          */
8514         if (!max_ia_freq)
8515                 max_ia_freq = tsc_freq;
8516
8517         /* Convert from Hz to MHz */
8518         max_ia_freq /= 1000;
8519 #else
8520         tsc_freq = atomic_load_acq_64(&tsc_freq);
8521         max_ia_freq = tsc_freq / 1000 / 1000;
8522 #endif
8523
8524         DRM_LOCK(dev);
8525
8526         /*
8527          * For each potential GPU frequency, load a ring frequency we'd like
8528          * to use for memory access.  We do this by specifying the IA frequency
8529          * the PCU should use as a reference to determine the ring frequency.
8530          */
8531         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8532              gpu_freq--) {
8533                 int diff = dev_priv->max_delay - gpu_freq;
8534                 int d;
8535
8536                 /*
8537                  * For GPU frequencies less than 750MHz, just use the lowest
8538                  * ring freq.
8539                  */
8540                 if (gpu_freq < min_freq)
8541                         ia_freq = 800;
8542                 else
8543                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8544                 d = 100;
8545                 ia_freq = (ia_freq + d / 2) / d;
8546
8547                 I915_WRITE(GEN6_PCODE_DATA,
8548                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8549                            gpu_freq);
8550                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8551                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8552                 if (_intel_wait_for(dev,
8553                     (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8554                     10, 1, "915frq")) {
8555                         DRM_ERROR("pcode write of freq table timed out\n");
8556                         continue;
8557                 }
8558         }
8559
8560         DRM_UNLOCK(dev);
8561 }
8562
8563 static void ironlake_init_clock_gating(struct drm_device *dev)
8564 {
8565         struct drm_i915_private *dev_priv = dev->dev_private;
8566         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8567
8568         /* Required for FBC */
8569         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8570                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8571                 DPFDUNIT_CLOCK_GATE_DISABLE;
8572         /* Required for CxSR */
8573         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8574
8575         I915_WRITE(PCH_3DCGDIS0,
8576                    MARIUNIT_CLOCK_GATE_DISABLE |
8577                    SVSMUNIT_CLOCK_GATE_DISABLE);
8578         I915_WRITE(PCH_3DCGDIS1,
8579                    VFMUNIT_CLOCK_GATE_DISABLE);
8580
8581         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8582
8583         /*
8584          * According to the spec the following bits should be set in
8585          * order to enable memory self-refresh
8586          * The bit 22/21 of 0x42004
8587          * The bit 5 of 0x42020
8588          * The bit 15 of 0x45000
8589          */
8590         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8591                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8592                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8593         I915_WRITE(ILK_DSPCLK_GATE,
8594                    (I915_READ(ILK_DSPCLK_GATE) |
8595                     ILK_DPARB_CLK_GATE));
8596         I915_WRITE(DISP_ARB_CTL,
8597                    (I915_READ(DISP_ARB_CTL) |
8598                     DISP_FBC_WM_DIS));
8599         I915_WRITE(WM3_LP_ILK, 0);
8600         I915_WRITE(WM2_LP_ILK, 0);
8601         I915_WRITE(WM1_LP_ILK, 0);
8602
8603         /*
8604          * Based on the document from hardware guys the following bits
8605          * should be set unconditionally in order to enable FBC.
8606          * The bit 22 of 0x42000
8607          * The bit 22 of 0x42004
8608          * The bit 7,8,9 of 0x42020.
8609          */
8610         if (IS_IRONLAKE_M(dev)) {
8611                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8612                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8613                            ILK_FBCQ_DIS);
8614                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8615                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8616                            ILK_DPARB_GATE);
8617                 I915_WRITE(ILK_DSPCLK_GATE,
8618                            I915_READ(ILK_DSPCLK_GATE) |
8619                            ILK_DPFC_DIS1 |
8620                            ILK_DPFC_DIS2 |
8621                            ILK_CLK_FBC);
8622         }
8623
8624         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8625                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8626                    ILK_ELPIN_409_SELECT);
8627         I915_WRITE(_3D_CHICKEN2,
8628                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8629                    _3D_CHICKEN2_WM_READ_PIPELINED);
8630 }
8631
8632 static void gen6_init_clock_gating(struct drm_device *dev)
8633 {
8634         struct drm_i915_private *dev_priv = dev->dev_private;
8635         int pipe;
8636         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8637
8638         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8639
8640         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8641                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8642                    ILK_ELPIN_409_SELECT);
8643
8644         I915_WRITE(WM3_LP_ILK, 0);
8645         I915_WRITE(WM2_LP_ILK, 0);
8646         I915_WRITE(WM1_LP_ILK, 0);
8647
8648         I915_WRITE(GEN6_UCGCTL1,
8649                    I915_READ(GEN6_UCGCTL1) |
8650                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
8651
8652         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8653          * gating disable must be set.  Failure to set it results in
8654          * flickering pixels due to Z write ordering failures after
8655          * some amount of runtime in the Mesa "fire" demo, and Unigine
8656          * Sanctuary and Tropics, and apparently anything else with
8657          * alpha test or pixel discard.
8658          *
8659          * According to the spec, bit 11 (RCCUNIT) must also be set,
8660          * but we didn't debug actual testcases to find it out.
8661          */
8662         I915_WRITE(GEN6_UCGCTL2,
8663                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8664                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8665
8666         /*
8667          * According to the spec the following bits should be
8668          * set in order to enable memory self-refresh and fbc:
8669          * The bit21 and bit22 of 0x42000
8670          * The bit21 and bit22 of 0x42004
8671          * The bit5 and bit7 of 0x42020
8672          * The bit14 of 0x70180
8673          * The bit14 of 0x71180
8674          */
8675         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8676                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8677                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8678         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8679                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8680                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8681         I915_WRITE(ILK_DSPCLK_GATE,
8682                    I915_READ(ILK_DSPCLK_GATE) |
8683                    ILK_DPARB_CLK_GATE  |
8684                    ILK_DPFD_CLK_GATE);
8685
8686         for_each_pipe(pipe) {
8687                 I915_WRITE(DSPCNTR(pipe),
8688                            I915_READ(DSPCNTR(pipe)) |
8689                            DISPPLANE_TRICKLE_FEED_DISABLE);
8690                 intel_flush_display_plane(dev_priv, pipe);
8691         }
8692 }
8693
8694 static void ivybridge_init_clock_gating(struct drm_device *dev)
8695 {
8696         struct drm_i915_private *dev_priv = dev->dev_private;
8697         int pipe;
8698         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8699
8700         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8701
8702         I915_WRITE(WM3_LP_ILK, 0);
8703         I915_WRITE(WM2_LP_ILK, 0);
8704         I915_WRITE(WM1_LP_ILK, 0);
8705
8706         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8707          * This implements the WaDisableRCZUnitClockGating workaround.
8708          */
8709         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8710
8711         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8712
8713         I915_WRITE(IVB_CHICKEN3,
8714                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8715                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8716
8717         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8718         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8719                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8720
8721         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8722         I915_WRITE(GEN7_L3CNTLREG1,
8723                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8724         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8725                         GEN7_WA_L3_CHICKEN_MODE);
8726
8727         /* This is required by WaCatErrorRejectionIssue */
8728         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8729                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8730                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8731
8732         for_each_pipe(pipe) {
8733                 I915_WRITE(DSPCNTR(pipe),
8734                            I915_READ(DSPCNTR(pipe)) |
8735                            DISPPLANE_TRICKLE_FEED_DISABLE);
8736                 intel_flush_display_plane(dev_priv, pipe);
8737         }
8738 }
8739
8740 static void g4x_init_clock_gating(struct drm_device *dev)
8741 {
8742         struct drm_i915_private *dev_priv = dev->dev_private;
8743         uint32_t dspclk_gate;
8744
8745         I915_WRITE(RENCLK_GATE_D1, 0);
8746         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8747                    GS_UNIT_CLOCK_GATE_DISABLE |
8748                    CL_UNIT_CLOCK_GATE_DISABLE);
8749         I915_WRITE(RAMCLK_GATE_D, 0);
8750         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8751                 OVRUNIT_CLOCK_GATE_DISABLE |
8752                 OVCUNIT_CLOCK_GATE_DISABLE;
8753         if (IS_GM45(dev))
8754                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8755         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8756 }
8757
8758 static void crestline_init_clock_gating(struct drm_device *dev)
8759 {
8760         struct drm_i915_private *dev_priv = dev->dev_private;
8761
8762         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8763         I915_WRITE(RENCLK_GATE_D2, 0);
8764         I915_WRITE(DSPCLK_GATE_D, 0);
8765         I915_WRITE(RAMCLK_GATE_D, 0);
8766         I915_WRITE16(DEUC, 0);
8767 }
8768
8769 static void broadwater_init_clock_gating(struct drm_device *dev)
8770 {
8771         struct drm_i915_private *dev_priv = dev->dev_private;
8772
8773         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8774                    I965_RCC_CLOCK_GATE_DISABLE |
8775                    I965_RCPB_CLOCK_GATE_DISABLE |
8776                    I965_ISC_CLOCK_GATE_DISABLE |
8777                    I965_FBC_CLOCK_GATE_DISABLE);
8778         I915_WRITE(RENCLK_GATE_D2, 0);
8779 }
8780
8781 static void gen3_init_clock_gating(struct drm_device *dev)
8782 {
8783         struct drm_i915_private *dev_priv = dev->dev_private;
8784         u32 dstate = I915_READ(D_STATE);
8785
8786         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8787                 DSTATE_DOT_CLOCK_GATING;
8788         I915_WRITE(D_STATE, dstate);
8789 }
8790
8791 static void i85x_init_clock_gating(struct drm_device *dev)
8792 {
8793         struct drm_i915_private *dev_priv = dev->dev_private;
8794
8795         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8796 }
8797
8798 static void i830_init_clock_gating(struct drm_device *dev)
8799 {
8800         struct drm_i915_private *dev_priv = dev->dev_private;
8801
8802         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8803 }
8804
8805 static void ibx_init_clock_gating(struct drm_device *dev)
8806 {
8807         struct drm_i915_private *dev_priv = dev->dev_private;
8808
8809         /*
8810          * On Ibex Peak and Cougar Point, we need to disable clock
8811          * gating for the panel power sequencer or it will fail to
8812          * start up when no ports are active.
8813          */
8814         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8815 }
8816
8817 static void cpt_init_clock_gating(struct drm_device *dev)
8818 {
8819         struct drm_i915_private *dev_priv = dev->dev_private;
8820         int pipe;
8821
8822         /*
8823          * On Ibex Peak and Cougar Point, we need to disable clock
8824          * gating for the panel power sequencer or it will fail to
8825          * start up when no ports are active.
8826          */
8827         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8828         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8829                    DPLS_EDP_PPS_FIX_DIS);
8830         /* Without this, mode sets may fail silently on FDI */
8831         for_each_pipe(pipe)
8832                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8833 }
8834
8835 static void ironlake_teardown_rc6(struct drm_device *dev)
8836 {
8837         struct drm_i915_private *dev_priv = dev->dev_private;
8838
8839         if (dev_priv->renderctx) {
8840                 i915_gem_object_unpin(dev_priv->renderctx);
8841                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8842                 dev_priv->renderctx = NULL;
8843         }
8844
8845         if (dev_priv->pwrctx) {
8846                 i915_gem_object_unpin(dev_priv->pwrctx);
8847                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8848                 dev_priv->pwrctx = NULL;
8849         }
8850 }
8851
8852 static void ironlake_disable_rc6(struct drm_device *dev)
8853 {
8854         struct drm_i915_private *dev_priv = dev->dev_private;
8855
8856         if (I915_READ(PWRCTXA)) {
8857                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8858                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8859                 (void)_intel_wait_for(dev,
8860                     ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8861                     50, 1, "915pro");
8862
8863                 I915_WRITE(PWRCTXA, 0);
8864                 POSTING_READ(PWRCTXA);
8865
8866                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8867                 POSTING_READ(RSTDBYCTL);
8868         }
8869
8870         ironlake_teardown_rc6(dev);
8871 }
8872
8873 static int ironlake_setup_rc6(struct drm_device *dev)
8874 {
8875         struct drm_i915_private *dev_priv = dev->dev_private;
8876
8877         if (dev_priv->renderctx == NULL)
8878                 dev_priv->renderctx = intel_alloc_context_page(dev);
8879         if (!dev_priv->renderctx)
8880                 return -ENOMEM;
8881
8882         if (dev_priv->pwrctx == NULL)
8883                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8884         if (!dev_priv->pwrctx) {
8885                 ironlake_teardown_rc6(dev);
8886                 return -ENOMEM;
8887         }
8888
8889         return 0;
8890 }
8891
8892 void ironlake_enable_rc6(struct drm_device *dev)
8893 {
8894         struct drm_i915_private *dev_priv = dev->dev_private;
8895         int ret;
8896
8897         /* rc6 disabled by default due to repeated reports of hanging during
8898          * boot and resume.
8899          */
8900         if (!intel_enable_rc6(dev))
8901                 return;
8902
8903         DRM_LOCK(dev);
8904         ret = ironlake_setup_rc6(dev);
8905         if (ret) {
8906                 DRM_UNLOCK(dev);
8907                 return;
8908         }
8909
8910         /*
8911          * GPU can automatically power down the render unit if given a page
8912          * to save state.
8913          */
8914         ret = BEGIN_LP_RING(6);
8915         if (ret) {
8916                 ironlake_teardown_rc6(dev);
8917                 DRM_UNLOCK(dev);
8918                 return;
8919         }
8920
8921         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8922         OUT_RING(MI_SET_CONTEXT);
8923         OUT_RING(dev_priv->renderctx->gtt_offset |
8924                  MI_MM_SPACE_GTT |
8925                  MI_SAVE_EXT_STATE_EN |
8926                  MI_RESTORE_EXT_STATE_EN |
8927                  MI_RESTORE_INHIBIT);
8928         OUT_RING(MI_SUSPEND_FLUSH);
8929         OUT_RING(MI_NOOP);
8930         OUT_RING(MI_FLUSH);
8931         ADVANCE_LP_RING();
8932
8933         /*
8934          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8935          * does an implicit flush, combined with MI_FLUSH above, it should be
8936          * safe to assume that renderctx is valid
8937          */
8938         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8939         if (ret) {
8940                 DRM_ERROR("failed to enable ironlake power power savings\n");
8941                 ironlake_teardown_rc6(dev);
8942                 DRM_UNLOCK(dev);
8943                 return;
8944         }
8945
8946         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8947         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8948         DRM_UNLOCK(dev);
8949 }
8950
8951 void intel_init_clock_gating(struct drm_device *dev)
8952 {
8953         struct drm_i915_private *dev_priv = dev->dev_private;
8954
8955         dev_priv->display.init_clock_gating(dev);
8956
8957         if (dev_priv->display.init_pch_clock_gating)
8958                 dev_priv->display.init_pch_clock_gating(dev);
8959 }
8960
8961 /* Set up chip specific display functions */
8962 static void intel_init_display(struct drm_device *dev)
8963 {
8964         struct drm_i915_private *dev_priv = dev->dev_private;
8965
8966         /* We always want a DPMS function */
8967         if (HAS_PCH_SPLIT(dev)) {
8968                 dev_priv->display.dpms = ironlake_crtc_dpms;
8969                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8970                 dev_priv->display.update_plane = ironlake_update_plane;
8971         } else {
8972                 dev_priv->display.dpms = i9xx_crtc_dpms;
8973                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8974                 dev_priv->display.update_plane = i9xx_update_plane;
8975         }
8976
8977         if (I915_HAS_FBC(dev)) {
8978                 if (HAS_PCH_SPLIT(dev)) {
8979                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8980                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8981                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8982                 } else if (IS_GM45(dev)) {
8983                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8984                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8985                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8986                 } else if (IS_CRESTLINE(dev)) {
8987                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8988                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8989                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8990                 }
8991                 /* 855GM needs testing */
8992         }
8993
8994         /* Returns the core display clock speed */
8995         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8996                 dev_priv->display.get_display_clock_speed =
8997                         i945_get_display_clock_speed;
8998         else if (IS_I915G(dev))
8999                 dev_priv->display.get_display_clock_speed =
9000                         i915_get_display_clock_speed;
9001         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9002                 dev_priv->display.get_display_clock_speed =
9003                         i9xx_misc_get_display_clock_speed;
9004         else if (IS_I915GM(dev))
9005                 dev_priv->display.get_display_clock_speed =
9006                         i915gm_get_display_clock_speed;
9007         else if (IS_I865G(dev))
9008                 dev_priv->display.get_display_clock_speed =
9009                         i865_get_display_clock_speed;
9010         else if (IS_I85X(dev))
9011                 dev_priv->display.get_display_clock_speed =
9012                         i855_get_display_clock_speed;
9013         else /* 852, 830 */
9014                 dev_priv->display.get_display_clock_speed =
9015                         i830_get_display_clock_speed;
9016
9017         /* For FIFO watermark updates */
9018         if (HAS_PCH_SPLIT(dev)) {
9019                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9020                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9021
9022                 /* IVB configs may use multi-threaded forcewake */
9023                 if (IS_IVYBRIDGE(dev)) {
9024                         u32     ecobus;
9025
9026                         /* A small trick here - if the bios hasn't configured MT forcewake,
9027                          * and if the device is in RC6, then force_wake_mt_get will not wake
9028                          * the device and the ECOBUS read will return zero. Which will be
9029                          * (correctly) interpreted by the test below as MT forcewake being
9030                          * disabled.
9031                          */
9032                         DRM_LOCK(dev);
9033                         __gen6_gt_force_wake_mt_get(dev_priv);
9034                         ecobus = I915_READ_NOTRACE(ECOBUS);
9035                         __gen6_gt_force_wake_mt_put(dev_priv);
9036                         DRM_UNLOCK(dev);
9037
9038                         if (ecobus & FORCEWAKE_MT_ENABLE) {
9039                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9040                                 dev_priv->display.force_wake_get =
9041                                         __gen6_gt_force_wake_mt_get;
9042                                 dev_priv->display.force_wake_put =
9043                                         __gen6_gt_force_wake_mt_put;
9044                         }
9045                 }
9046
9047                 if (HAS_PCH_IBX(dev))
9048                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9049                 else if (HAS_PCH_CPT(dev))
9050                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9051
9052                 if (IS_GEN5(dev)) {
9053                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9054                                 dev_priv->display.update_wm = ironlake_update_wm;
9055                         else {
9056                                 DRM_DEBUG_KMS("Failed to get proper latency. "
9057                                               "Disable CxSR\n");
9058                                 dev_priv->display.update_wm = NULL;
9059                         }
9060                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9061                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9062                         dev_priv->display.write_eld = ironlake_write_eld;
9063                 } else if (IS_GEN6(dev)) {
9064                         if (SNB_READ_WM0_LATENCY()) {
9065                                 dev_priv->display.update_wm = sandybridge_update_wm;
9066                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9067                         } else {
9068                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
9069                                               "Disable CxSR\n");
9070                                 dev_priv->display.update_wm = NULL;
9071                         }
9072                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9073                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9074                         dev_priv->display.write_eld = ironlake_write_eld;
9075                 } else if (IS_IVYBRIDGE(dev)) {
9076                         /* FIXME: detect B0+ stepping and use auto training */
9077                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9078                         if (SNB_READ_WM0_LATENCY()) {
9079                                 dev_priv->display.update_wm = sandybridge_update_wm;
9080                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9081                         } else {
9082                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
9083                                               "Disable CxSR\n");
9084                                 dev_priv->display.update_wm = NULL;
9085                         }
9086                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9087                         dev_priv->display.write_eld = ironlake_write_eld;
9088                 } else
9089                         dev_priv->display.update_wm = NULL;
9090         } else if (IS_PINEVIEW(dev)) {
9091                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9092                                             dev_priv->is_ddr3,
9093                                             dev_priv->fsb_freq,
9094                                             dev_priv->mem_freq)) {
9095                         DRM_INFO("failed to find known CxSR latency "
9096                                  "(found ddr%s fsb freq %d, mem freq %d), "
9097                                  "disabling CxSR\n",
9098                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9099                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9100                         /* Disable CxSR and never update its watermark again */
9101                         pineview_disable_cxsr(dev);
9102                         dev_priv->display.update_wm = NULL;
9103                 } else
9104                         dev_priv->display.update_wm = pineview_update_wm;
9105                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9106         } else if (IS_G4X(dev)) {
9107                 dev_priv->display.write_eld = g4x_write_eld;
9108                 dev_priv->display.update_wm = g4x_update_wm;
9109                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9110         } else if (IS_GEN4(dev)) {
9111                 dev_priv->display.update_wm = i965_update_wm;
9112                 if (IS_CRESTLINE(dev))
9113                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9114                 else if (IS_BROADWATER(dev))
9115                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9116         } else if (IS_GEN3(dev)) {
9117                 dev_priv->display.update_wm = i9xx_update_wm;
9118                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9119                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9120         } else if (IS_I865G(dev)) {
9121                 dev_priv->display.update_wm = i830_update_wm;
9122                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9123                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9124         } else if (IS_I85X(dev)) {
9125                 dev_priv->display.update_wm = i9xx_update_wm;
9126                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9127                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9128         } else {
9129                 dev_priv->display.update_wm = i830_update_wm;
9130                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9131                 if (IS_845G(dev))
9132                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9133                 else
9134                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9135         }
9136
9137         /* Default just returns -ENODEV to indicate unsupported */
9138         dev_priv->display.queue_flip = intel_default_queue_flip;
9139
9140         switch (INTEL_INFO(dev)->gen) {
9141         case 2:
9142                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9143                 break;
9144
9145         case 3:
9146                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9147                 break;
9148
9149         case 4:
9150         case 5:
9151                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9152                 break;
9153
9154         case 6:
9155                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9156                 break;
9157         case 7:
9158                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9159                 break;
9160         }
9161 }
9162
9163 /*
9164  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9165  * resume, or other times.  This quirk makes sure that's the case for
9166  * affected systems.
9167  */
9168 static void quirk_pipea_force(struct drm_device *dev)
9169 {
9170         struct drm_i915_private *dev_priv = dev->dev_private;
9171
9172         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9173         DRM_DEBUG("applying pipe a force quirk\n");
9174 }
9175
9176 /*
9177  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9178  */
9179 static void quirk_ssc_force_disable(struct drm_device *dev)
9180 {
9181         struct drm_i915_private *dev_priv = dev->dev_private;
9182         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9183 }
9184
9185 struct intel_quirk {
9186         int device;
9187         int subsystem_vendor;
9188         int subsystem_device;
9189         void (*hook)(struct drm_device *dev);
9190 };
9191
9192 #define PCI_ANY_ID      (~0u)
9193
9194 struct intel_quirk intel_quirks[] = {
9195         /* HP Mini needs pipe A force quirk (LP: #322104) */
9196         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9197
9198         /* Thinkpad R31 needs pipe A force quirk */
9199         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9200         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9201         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9202
9203         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9204         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
9205         /* ThinkPad X40 needs pipe A force quirk */
9206
9207         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9208         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9209
9210         /* 855 & before need to leave pipe A & dpll A up */
9211         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9212         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9213
9214         /* Lenovo U160 cannot use SSC on LVDS */
9215         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9216
9217         /* Sony Vaio Y cannot use SSC on LVDS */
9218         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9219 };
9220
9221 static void intel_init_quirks(struct drm_device *dev)
9222 {
9223         struct intel_quirk *q;
9224         device_t d;
9225         int i;
9226
9227         d = dev->device;
9228         for (i = 0; i < DRM_ARRAY_SIZE(intel_quirks); i++) {
9229                 q = &intel_quirks[i];
9230                 if (pci_get_device(d) == q->device &&
9231                     (pci_get_subvendor(d) == q->subsystem_vendor ||
9232                      q->subsystem_vendor == PCI_ANY_ID) &&
9233                     (pci_get_subdevice(d) == q->subsystem_device ||
9234                      q->subsystem_device == PCI_ANY_ID))
9235                         q->hook(dev);
9236         }
9237 }
9238
9239 /* Disable the VGA plane that we never use */
9240 static void i915_disable_vga(struct drm_device *dev)
9241 {
9242         struct drm_i915_private *dev_priv = dev->dev_private;
9243         u8 sr1;
9244         u32 vga_reg;
9245
9246         if (HAS_PCH_SPLIT(dev))
9247                 vga_reg = CPU_VGACNTRL;
9248         else
9249                 vga_reg = VGACNTRL;
9250
9251 #if 0
9252         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9253 #endif
9254         outb(VGA_SR_INDEX, 1);
9255         sr1 = inb(VGA_SR_DATA);
9256         outb(VGA_SR_DATA, sr1 | 1 << 5);
9257 #if 0
9258         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9259 #endif
9260         DELAY(300);
9261
9262         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9263         POSTING_READ(vga_reg);
9264 }
9265
9266 void intel_modeset_init(struct drm_device *dev)
9267 {
9268         struct drm_i915_private *dev_priv = dev->dev_private;
9269         int i, ret;
9270
9271         drm_mode_config_init(dev);
9272
9273         dev->mode_config.min_width = 0;
9274         dev->mode_config.min_height = 0;
9275
9276         dev->mode_config.preferred_depth = 24;
9277         dev->mode_config.prefer_shadow = 1;
9278
9279         dev->mode_config.funcs = __DECONST(struct drm_mode_config_funcs *,
9280             &intel_mode_funcs);
9281
9282         intel_init_quirks(dev);
9283
9284         intel_init_display(dev);
9285
9286         if (IS_GEN2(dev)) {
9287                 dev->mode_config.max_width = 2048;
9288                 dev->mode_config.max_height = 2048;
9289         } else if (IS_GEN3(dev)) {
9290                 dev->mode_config.max_width = 4096;
9291                 dev->mode_config.max_height = 4096;
9292         } else {
9293                 dev->mode_config.max_width = 8192;
9294                 dev->mode_config.max_height = 8192;
9295         }
9296         dev->mode_config.fb_base = dev->agp->base;
9297
9298         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9299                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9300
9301         for (i = 0; i < dev_priv->num_pipe; i++) {
9302                 intel_crtc_init(dev, i);
9303                 ret = intel_plane_init(dev, i);
9304                 if (ret)
9305                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9306         }
9307
9308         /* Just disable it once at startup */
9309         i915_disable_vga(dev);
9310         intel_setup_outputs(dev);
9311
9312         intel_init_clock_gating(dev);
9313
9314         if (IS_IRONLAKE_M(dev)) {
9315                 ironlake_enable_drps(dev);
9316                 intel_init_emon(dev);
9317         }
9318
9319         if (IS_GEN6(dev)) {
9320                 gen6_enable_rps(dev_priv);
9321                 gen6_update_ring_freq(dev_priv);
9322         }
9323
9324         TASK_INIT(&dev_priv->idle_task, 0, intel_idle_update, dev_priv);
9325         callout_init_mp(&dev_priv->idle_callout);
9326 }
9327
9328 void intel_modeset_gem_init(struct drm_device *dev)
9329 {
9330         if (IS_IRONLAKE_M(dev))
9331                 ironlake_enable_rc6(dev);
9332
9333         intel_setup_overlay(dev);
9334 }
9335
9336 void intel_modeset_cleanup(struct drm_device *dev)
9337 {
9338         struct drm_i915_private *dev_priv = dev->dev_private;
9339         struct drm_crtc *crtc;
9340         struct intel_crtc *intel_crtc;
9341
9342         drm_kms_helper_poll_fini(dev);
9343         DRM_LOCK(dev);
9344
9345 #if 0
9346         intel_unregister_dsm_handler();
9347 #endif
9348
9349         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9350                 /* Skip inactive CRTCs */
9351                 if (!crtc->fb)
9352                         continue;
9353
9354                 intel_crtc = to_intel_crtc(crtc);
9355                 intel_increase_pllclock(crtc);
9356         }
9357
9358         intel_disable_fbc(dev);
9359
9360         if (IS_IRONLAKE_M(dev))
9361                 ironlake_disable_drps(dev);
9362         if (IS_GEN6(dev))
9363                 gen6_disable_rps(dev);
9364
9365         if (IS_IRONLAKE_M(dev))
9366                 ironlake_disable_rc6(dev);
9367
9368         /* Disable the irq before mode object teardown, for the irq might
9369          * enqueue unpin/hotplug work. */
9370         drm_irq_uninstall(dev);
9371         DRM_UNLOCK(dev);
9372
9373         if (taskqueue_cancel(dev_priv->tq, &dev_priv->hotplug_task, NULL))
9374                 taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task);
9375         if (taskqueue_cancel(dev_priv->tq, &dev_priv->rps_task, NULL))
9376                 taskqueue_drain(dev_priv->tq, &dev_priv->rps_task);
9377
9378         /* Shut off idle work before the crtcs get freed. */
9379         if (taskqueue_cancel(dev_priv->tq, &dev_priv->idle_task, NULL))
9380                 taskqueue_drain(dev_priv->tq, &dev_priv->idle_task);
9381
9382         drm_mode_config_cleanup(dev);
9383 }
9384
9385 /*
9386  * Return which encoder is currently attached for connector.
9387  */
9388 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9389 {
9390         return &intel_attached_encoder(connector)->base;
9391 }
9392
9393 void intel_connector_attach_encoder(struct intel_connector *connector,
9394                                     struct intel_encoder *encoder)
9395 {
9396         connector->encoder = encoder;
9397         drm_mode_connector_attach_encoder(&connector->base,
9398                                           &encoder->base);
9399 }
9400
9401 /*
9402  * set vga decode state - true == enable VGA decode
9403  */
9404 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9405 {
9406         struct drm_i915_private *dev_priv;
9407         device_t bridge_dev;
9408         u16 gmch_ctrl;
9409
9410         dev_priv = dev->dev_private;
9411         bridge_dev = intel_gtt_get_bridge_device();
9412         gmch_ctrl = pci_read_config(bridge_dev, INTEL_GMCH_CTRL, 2);
9413         if (state)
9414                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9415         else
9416                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9417         pci_write_config(bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl, 2);
9418         return (0);
9419 }
9420
9421 struct intel_display_error_state {
9422         struct intel_cursor_error_state {
9423                 u32 control;
9424                 u32 position;
9425                 u32 base;
9426                 u32 size;
9427         } cursor[2];
9428
9429         struct intel_pipe_error_state {
9430                 u32 conf;
9431                 u32 source;
9432
9433                 u32 htotal;
9434                 u32 hblank;
9435                 u32 hsync;
9436                 u32 vtotal;
9437                 u32 vblank;
9438                 u32 vsync;
9439         } pipe[2];
9440
9441         struct intel_plane_error_state {
9442                 u32 control;
9443                 u32 stride;
9444                 u32 size;
9445                 u32 pos;
9446                 u32 addr;
9447                 u32 surface;
9448                 u32 tile_offset;
9449         } plane[2];
9450 };
9451
9452 struct intel_display_error_state *
9453 intel_display_capture_error_state(struct drm_device *dev)
9454 {
9455         drm_i915_private_t *dev_priv = dev->dev_private;
9456         struct intel_display_error_state *error;
9457         int i;
9458
9459         error = kmalloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
9460         if (error == NULL)
9461                 return NULL;
9462
9463         for (i = 0; i < 2; i++) {
9464                 error->cursor[i].control = I915_READ(CURCNTR(i));
9465                 error->cursor[i].position = I915_READ(CURPOS(i));
9466                 error->cursor[i].base = I915_READ(CURBASE(i));
9467
9468                 error->plane[i].control = I915_READ(DSPCNTR(i));
9469                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9470                 error->plane[i].size = I915_READ(DSPSIZE(i));
9471                 error->plane[i].pos = I915_READ(DSPPOS(i));
9472                 error->plane[i].addr = I915_READ(DSPADDR(i));
9473                 if (INTEL_INFO(dev)->gen >= 4) {
9474                         error->plane[i].surface = I915_READ(DSPSURF(i));
9475                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9476                 }
9477
9478                 error->pipe[i].conf = I915_READ(PIPECONF(i));
9479                 error->pipe[i].source = I915_READ(PIPESRC(i));
9480                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9481                 error->pipe[i].hblank = I915_READ(HBLANK(i));
9482                 error->pipe[i].hsync = I915_READ(HSYNC(i));
9483                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9484                 error->pipe[i].vblank = I915_READ(VBLANK(i));
9485                 error->pipe[i].vsync = I915_READ(VSYNC(i));
9486         }
9487
9488         return error;
9489 }
9490
9491 void
9492 intel_display_print_error_state(struct sbuf *m,
9493                                 struct drm_device *dev,
9494                                 struct intel_display_error_state *error)
9495 {
9496         int i;
9497
9498         for (i = 0; i < 2; i++) {
9499                 sbuf_printf(m, "Pipe [%d]:\n", i);
9500                 sbuf_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9501                 sbuf_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9502                 sbuf_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9503                 sbuf_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9504                 sbuf_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9505                 sbuf_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9506                 sbuf_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9507                 sbuf_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9508
9509                 sbuf_printf(m, "Plane [%d]:\n", i);
9510                 sbuf_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9511                 sbuf_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9512                 sbuf_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9513                 sbuf_printf(m, "  POS: %08x\n", error->plane[i].pos);
9514                 sbuf_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9515                 if (INTEL_INFO(dev)->gen >= 4) {
9516                         sbuf_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9517                         sbuf_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9518                 }
9519
9520                 sbuf_printf(m, "Cursor [%d]:\n", i);
9521                 sbuf_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9522                 sbuf_printf(m, "  POS: %08x\n", error->cursor[i].position);
9523                 sbuf_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9524         }
9525 }