kernel/802.11: Use the proper enum for ic_vap_create()'s opmode parameter.
[dragonfly.git] / sys / dev / netif / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20
21 #define VERSION "20071127"
22
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109
110 #define WPI_DEBUG
111
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)      do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)  do { if (wpi_debug & n) kprintf x; } while (0)
115 #define WPI_DEBUG_SET   (wpi_debug != 0)
116
117 enum {
118         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
119         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
120         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
121         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
122         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
123         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
124         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
125         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
126         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
127         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
128         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
129         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
130         WPI_DEBUG_ANY           = 0xffffffff
131 };
132
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET   0
141 #endif
142
143 struct wpi_ident {
144         uint16_t        vendor;
145         uint16_t        device;
146         uint16_t        subdevice;
147         const char      *name;
148 };
149
150 static const struct wpi_ident wpi_ident_table[] = {
151         /* The below entries support ABG regardless of the subid */
152         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154         /* The below entries only support BG */
155         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159         { 0, 0, 0, NULL }
160 };
161
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163                     const char name[IFNAMSIZ], int unit,
164                     enum ieee80211_opmode opmode,
165                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
166                     const uint8_t mac[IEEE80211_ADDR_LEN]);
167 static void     wpi_vap_delete(struct ieee80211vap *);
168 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
169                     void **, bus_size_t, bus_size_t, int);
170 static void     wpi_dma_contig_free(struct wpi_dma_info *);
171 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
172 static int      wpi_alloc_shared(struct wpi_softc *);
173 static void     wpi_free_shared(struct wpi_softc *);
174 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
177 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
178                     int, int);
179 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
181 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
182                             const uint8_t mac[IEEE80211_ADDR_LEN]);
183 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
184 static void     wpi_mem_lock(struct wpi_softc *);
185 static void     wpi_mem_unlock(struct wpi_softc *);
186 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
187 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
188 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
189                     const uint32_t *, int);
190 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
191 static int      wpi_alloc_fwmem(struct wpi_softc *);
192 static void     wpi_free_fwmem(struct wpi_softc *);
193 static int      wpi_load_firmware(struct wpi_softc *);
194 static void     wpi_unload_firmware(struct wpi_softc *);
195 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
196 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
197                     struct wpi_rx_data *);
198 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
200 static void     wpi_notif_intr(struct wpi_softc *);
201 static void     wpi_intr(void *);
202 static uint8_t  wpi_plcp_signal(int);
203 static void     wpi_watchdog_callout(void *);
204 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
205                     struct ieee80211_node *, int);
206 static void     wpi_start(struct ifnet *, struct ifaltq_subque *);
207 static void     wpi_start_locked(struct ifnet *);
208 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
209                     const struct ieee80211_bpf_params *);
210 static void     wpi_scan_start(struct ieee80211com *);
211 static void     wpi_scan_end(struct ieee80211com *);
212 static void     wpi_set_channel(struct ieee80211com *);
213 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
214 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
215 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
216 static void     wpi_read_eeprom(struct wpi_softc *,
217                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
218 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
219 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
220 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
221 static int      wpi_wme_update(struct ieee80211com *);
222 static int      wpi_mrr_setup(struct wpi_softc *);
223 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
224 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
225 #if 0
226 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
227 #endif
228 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
229 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
230 static int      wpi_scan(struct wpi_softc *);
231 static int      wpi_config(struct wpi_softc *);
232 static void     wpi_stop_master(struct wpi_softc *);
233 static int      wpi_power_up(struct wpi_softc *);
234 static int      wpi_reset(struct wpi_softc *);
235 static void     wpi_hwreset_task(void *, int);
236 static void     wpi_rfreset_task(void *, int);
237 static void     wpi_hw_config(struct wpi_softc *);
238 static void     wpi_init(void *);
239 static void     wpi_init_locked(struct wpi_softc *, int);
240 static void     wpi_stop(struct wpi_softc *);
241 static void     wpi_stop_locked(struct wpi_softc *);
242
243 static void     wpi_newassoc(struct ieee80211_node *, int);
244 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
245                     int);
246 static void     wpi_calib_timeout_callout(void *);
247 static void     wpi_power_calibration(struct wpi_softc *, int);
248 static int      wpi_get_power_index(struct wpi_softc *,
249                     struct wpi_power_group *, struct ieee80211_channel *, int);
250 #ifdef WPI_DEBUG
251 static const char *wpi_cmd_str(int);
252 #endif
253 static int wpi_probe(device_t);
254 static int wpi_attach(device_t);
255 static int wpi_detach(device_t);
256 static int wpi_shutdown(device_t);
257 static int wpi_suspend(device_t);
258 static int wpi_resume(device_t);
259
260
261 static device_method_t wpi_methods[] = {
262         /* Device interface */
263         DEVMETHOD(device_probe,         wpi_probe),
264         DEVMETHOD(device_attach,        wpi_attach),
265         DEVMETHOD(device_detach,        wpi_detach),
266         DEVMETHOD(device_shutdown,      wpi_shutdown),
267         DEVMETHOD(device_suspend,       wpi_suspend),
268         DEVMETHOD(device_resume,        wpi_resume),
269
270         DEVMETHOD_END
271 };
272
273 static driver_t wpi_driver = {
274         "wpi",
275         wpi_methods,
276         sizeof (struct wpi_softc)
277 };
278
279 static devclass_t wpi_devclass;
280
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282
283 static const uint8_t wpi_ridx_to_plcp[] = {
284         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
285         /* R1-R4 (ral/ural is R4-R1) */
286         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
287         /* CCK: device-dependent */
288         10, 20, 55, 110
289 };
290 static const uint8_t wpi_ridx_to_rate[] = {
291         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
292         2, 4, 11, 22 /*CCK */
293 };
294
295
296 static int
297 wpi_probe(device_t dev)
298 {
299         const struct wpi_ident *ident;
300
301         wlan_serialize_enter();
302         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
303                 if (pci_get_vendor(dev) == ident->vendor &&
304                     pci_get_device(dev) == ident->device) {
305                         device_set_desc(dev, ident->name);
306                         wlan_serialize_exit();
307                         return 0;
308                 }
309         }
310         wlan_serialize_exit();
311         return ENXIO;
312 }
313
314 /**
315  * Load the firmare image from disk to the allocated dma buffer.
316  * we also maintain the reference to the firmware pointer as there
317  * is times where we may need to reload the firmware but we are not
318  * in a context that can access the filesystem (ie taskq cause by restart)
319  *
320  * @return 0 on success, an errno on failure
321  */
322 static int
323 wpi_load_firmware(struct wpi_softc *sc)
324 {
325         const struct firmware *fp;
326         struct wpi_dma_info *dma = &sc->fw_dma;
327         const struct wpi_firmware_hdr *hdr;
328         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
329         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
330         int error;
331
332         DPRINTFN(WPI_DEBUG_FIRMWARE,
333             ("Attempting Loading Firmware from wpi_fw module\n"));
334
335         wlan_assert_serialized();
336         wlan_serialize_exit();
337         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
338                 device_printf(sc->sc_dev,
339                     "could not load firmware image 'wpifw_fw'\n");
340                 error = ENOENT;
341                 wlan_serialize_enter();
342                 goto fail;
343         }
344         wlan_serialize_enter();
345
346         fp = sc->fw_fp;
347
348         /* Validate the firmware is minimum a particular version */
349         if (fp->version < WPI_FW_MINVERSION) {
350             device_printf(sc->sc_dev,
351                            "firmware version is too old. Need %d, got %d\n",
352                            WPI_FW_MINVERSION,
353                            fp->version);
354             error = ENXIO;
355             goto fail;
356         }
357
358         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359                 device_printf(sc->sc_dev,
360                     "firmware file too short: %zu bytes\n", fp->datasize);
361                 error = ENXIO;
362                 goto fail;
363         }
364
365         hdr = (const struct wpi_firmware_hdr *)fp->data;
366
367         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369
370         rtextsz = le32toh(hdr->rtextsz);
371         rdatasz = le32toh(hdr->rdatasz);
372         itextsz = le32toh(hdr->itextsz);
373         idatasz = le32toh(hdr->idatasz);
374         btextsz = le32toh(hdr->btextsz);
375
376         /* check that all firmware segments are present */
377         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379                 device_printf(sc->sc_dev,
380                     "firmware file too short: %zu bytes\n", fp->datasize);
381                 error = ENXIO; /* XXX appropriate error code? */
382                 goto fail;
383         }
384
385         /* get pointers to firmware segments */
386         rtext = (const uint8_t *)(hdr + 1);
387         rdata = rtext + rtextsz;
388         itext = rdata + rdatasz;
389         idata = itext + itextsz;
390         btext = idata + idatasz;
391
392         DPRINTFN(WPI_DEBUG_FIRMWARE,
393             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395              (le32toh(hdr->version) & 0xff000000) >> 24,
396              (le32toh(hdr->version) & 0x00ff0000) >> 16,
397              (le32toh(hdr->version) & 0x0000ffff),
398              rtextsz, rdatasz,
399              itextsz, idatasz, btextsz));
400
401         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406
407         /* sanity checks */
408         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413             (btextsz & 3) != 0) {
414                 device_printf(sc->sc_dev, "firmware invalid\n");
415                 error = EINVAL;
416                 goto fail;
417         }
418
419         /* copy initialization images into pre-allocated DMA-safe memory */
420         memcpy(dma->vaddr, idata, idatasz);
421         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422
423         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424
425         /* tell adapter where to find initialization images */
426         wpi_mem_lock(sc);
427         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432         wpi_mem_unlock(sc);
433
434         /* load firmware boot code */
435         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436             device_printf(sc->sc_dev, "Failed to load microcode\n");
437             goto fail;
438         }
439
440         /* now press "execute" */
441         WPI_WRITE(sc, WPI_RESET, 0);
442
443         /* wait at most one second for the first alive notification */
444         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
445                 device_printf(sc->sc_dev,
446                     "timeout waiting for adapter to initialize\n");
447                 goto fail;
448         }
449
450         /* copy runtime images into pre-allocated DMA-sage memory */
451         memcpy(dma->vaddr, rdata, rdatasz);
452         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
453         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
454
455         /* tell adapter where to find runtime images */
456         wpi_mem_lock(sc);
457         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
458         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
459         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
460             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
461         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
462         wpi_mem_unlock(sc);
463
464         /* wait at most one second for the first alive notification */
465         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
466                 device_printf(sc->sc_dev,
467                     "timeout waiting for adapter to initialize2\n");
468                 goto fail;
469         }
470
471         DPRINTFN(WPI_DEBUG_FIRMWARE,
472             ("Firmware loaded to driver successfully\n"));
473         return error;
474 fail:
475         wpi_unload_firmware(sc);
476         return error;
477 }
478
479 /**
480  * Free the referenced firmware image
481  */
482 static void
483 wpi_unload_firmware(struct wpi_softc *sc)
484 {
485         if (sc->fw_fp) {
486                 wlan_assert_serialized();
487                 wlan_serialize_exit();
488                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
489                 wlan_serialize_enter();
490                 sc->fw_fp = NULL;
491         }
492 }
493
494 static int
495 wpi_attach(device_t dev)
496 {
497         struct wpi_softc *sc;
498         struct ifnet *ifp;
499         struct ieee80211com *ic;
500         int ac, error, supportsa = 1;
501         uint32_t tmp;
502         const struct wpi_ident *ident;
503         uint8_t macaddr[IEEE80211_ADDR_LEN];
504
505         wlan_serialize_enter();
506         sc = device_get_softc(dev);
507         sc->sc_dev = dev;
508
509         if (bootverbose || WPI_DEBUG_SET)
510             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
511
512         /*
513          * Some card's only support 802.11b/g not a, check to see if
514          * this is one such card. A 0x0 in the subdevice table indicates
515          * the entire subdevice range is to be ignored.
516          */
517         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
518                 if (ident->subdevice &&
519                     pci_get_subdevice(dev) == ident->subdevice) {
520                     supportsa = 0;
521                     break;
522                 }
523         }
524
525         /* Create the tasks that can be queued */
526         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
527         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
528
529         callout_init(&sc->calib_to_callout);
530         callout_init(&sc->watchdog_to_callout);
531
532         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
533                 device_printf(dev, "chip is in D%d power mode "
534                     "-- setting to D0\n", pci_get_powerstate(dev));
535                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
536         }
537
538         /* disable the retry timeout register */
539         pci_write_config(dev, 0x41, 0, 1);
540
541         /* enable bus-mastering */
542         pci_enable_busmaster(dev);
543
544         sc->mem_rid = PCIR_BAR(0);
545         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
546             RF_ACTIVE);
547         if (sc->mem == NULL) {
548                 device_printf(dev, "could not allocate memory resource\n");
549                 error = ENOMEM;
550                 goto fail;
551         }
552
553         sc->sc_st = rman_get_bustag(sc->mem);
554         sc->sc_sh = rman_get_bushandle(sc->mem);
555
556         sc->irq_rid = 0;
557         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
558             RF_ACTIVE | RF_SHAREABLE);
559         if (sc->irq == NULL) {
560                 device_printf(dev, "could not allocate interrupt resource\n");
561                 error = ENOMEM;
562                 goto fail;
563         }
564
565         /*
566          * Allocate DMA memory for firmware transfers.
567          */
568         if ((error = wpi_alloc_fwmem(sc)) != 0) {
569                 kprintf(": could not allocate firmware memory\n");
570                 error = ENOMEM;
571                 goto fail;
572         }
573
574         /*
575          * Put adapter into a known state.
576          */
577         if ((error = wpi_reset(sc)) != 0) {
578                 device_printf(dev, "could not reset adapter\n");
579                 goto fail;
580         }
581
582         wpi_mem_lock(sc);
583         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
584         if (bootverbose || WPI_DEBUG_SET)
585             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
586
587         wpi_mem_unlock(sc);
588
589         /* Allocate shared page */
590         if ((error = wpi_alloc_shared(sc)) != 0) {
591                 device_printf(dev, "could not allocate shared page\n");
592                 goto fail;
593         }
594
595         /* tx data queues  - 4 for QoS purposes */
596         for (ac = 0; ac < WME_NUM_AC; ac++) {
597                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
598                 if (error != 0) {
599                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
600                     goto fail;
601                 }
602         }
603
604         /* command queue to talk to the card's firmware */
605         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
606         if (error != 0) {
607                 device_printf(dev, "could not allocate command ring\n");
608                 goto fail;
609         }
610
611         /* receive data queue */
612         error = wpi_alloc_rx_ring(sc, &sc->rxq);
613         if (error != 0) {
614                 device_printf(dev, "could not allocate Rx ring\n");
615                 goto fail;
616         }
617
618         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
619         if (ifp == NULL) {
620                 device_printf(dev, "can not if_alloc()\n");
621                 error = ENOMEM;
622                 goto fail;
623         }
624         ic = ifp->if_l2com;
625
626         ic->ic_ifp = ifp;
627         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
628         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
629
630         /* set device capabilities */
631         ic->ic_caps =
632                   IEEE80211_C_STA               /* station mode supported */
633                 | IEEE80211_C_MONITOR           /* monitor mode supported */
634                 | IEEE80211_C_TXPMGT            /* tx power management */
635                 | IEEE80211_C_SHSLOT            /* short slot time supported */
636                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
637                 | IEEE80211_C_WPA               /* 802.11i */
638 /* XXX looks like WME is partly supported? */
639 #if 0
640                 | IEEE80211_C_IBSS              /* IBSS mode support */
641                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
642                 | IEEE80211_C_WME               /* 802.11e */
643                 | IEEE80211_C_HOSTAP            /* Host access point mode */
644 #endif
645                 ;
646
647         /*
648          * Read in the eeprom and also setup the channels for
649          * net80211. We don't set the rates as net80211 does this for us
650          */
651         wpi_read_eeprom(sc, macaddr);
652
653         if (bootverbose || WPI_DEBUG_SET) {
654             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
655             device_printf(sc->sc_dev, "Hardware Type: %c\n",
656                           sc->type > 1 ? 'B': '?');
657             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
658                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
659             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
660                           supportsa ? "does" : "does not");
661
662             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
663                what sc->rev really represents - benjsc 20070615 */
664         }
665
666         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
667         ifp->if_softc = sc;
668         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
669         ifp->if_init = wpi_init;
670         ifp->if_ioctl = wpi_ioctl;
671         ifp->if_start = wpi_start;
672         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
673 #ifdef notyet
674         ifq_set_ready(&ifp->if_snd);
675 #endif
676
677         ieee80211_ifattach(ic, macaddr);
678         /* override default methods */
679         ic->ic_node_alloc = wpi_node_alloc;
680         ic->ic_newassoc = wpi_newassoc;
681         ic->ic_raw_xmit = wpi_raw_xmit;
682         ic->ic_wme.wme_update = wpi_wme_update;
683         ic->ic_scan_start = wpi_scan_start;
684         ic->ic_scan_end = wpi_scan_end;
685         ic->ic_set_channel = wpi_set_channel;
686         ic->ic_scan_curchan = wpi_scan_curchan;
687         ic->ic_scan_mindwell = wpi_scan_mindwell;
688
689         ic->ic_vap_create = wpi_vap_create;
690         ic->ic_vap_delete = wpi_vap_delete;
691
692         ieee80211_radiotap_attach(ic,
693             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694                 WPI_TX_RADIOTAP_PRESENT,
695             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696                 WPI_RX_RADIOTAP_PRESENT);
697
698         /*
699          * Hook our interrupt after all initialization is complete.
700          */
701         error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
702             wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
703         if (error != 0) {
704                 device_printf(dev, "could not set up interrupt\n");
705                 goto fail;
706         }
707
708         if (bootverbose)
709                 ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711         ieee80211_announce_channels(ic);
712 #endif
713         wlan_serialize_exit();
714         return 0;
715
716 fail:
717         wlan_serialize_exit();
718         wpi_detach(dev);
719         return ENXIO;
720 }
721
722 static int
723 wpi_detach(device_t dev)
724 {
725         struct wpi_softc *sc;
726         struct ifnet *ifp;
727         struct ieee80211com *ic;
728         int ac;
729
730         wlan_serialize_enter();
731         sc = device_get_softc(dev);
732         ifp = sc->sc_ifp;
733         if (ifp != NULL) {
734                 ic = ifp->if_l2com;
735
736                 ieee80211_draintask(ic, &sc->sc_restarttask);
737                 ieee80211_draintask(ic, &sc->sc_radiotask);
738                 wpi_stop(sc);
739                 callout_stop(&sc->watchdog_to_callout);
740                 callout_stop(&sc->calib_to_callout);
741                 ieee80211_ifdetach(ic);
742         }
743
744         if (sc->txq[0].data_dmat) {
745                 for (ac = 0; ac < WME_NUM_AC; ac++)
746                         wpi_free_tx_ring(sc, &sc->txq[ac]);
747
748                 wpi_free_tx_ring(sc, &sc->cmdq);
749                 wpi_free_rx_ring(sc, &sc->rxq);
750                 wpi_free_shared(sc);
751         }
752
753         if (sc->fw_fp != NULL) {
754                 wpi_unload_firmware(sc);
755         }
756
757         if (sc->fw_dma.tag)
758                 wpi_free_fwmem(sc);
759
760         if (sc->irq != NULL) {
761                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
762                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
763         }
764
765         if (sc->mem != NULL)
766                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
767
768         if (ifp != NULL)
769                 if_free(ifp);
770
771         wlan_serialize_exit();
772         return 0;
773 }
774
775 static struct ieee80211vap *
776 wpi_vap_create(struct ieee80211com *ic,
777         const char name[IFNAMSIZ], int unit,
778         enum ieee80211_opmode opmode, int flags,
779         const uint8_t bssid[IEEE80211_ADDR_LEN],
780         const uint8_t mac[IEEE80211_ADDR_LEN])
781 {
782         struct wpi_vap *wvp;
783         struct ieee80211vap *vap;
784
785         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
786                 return NULL;
787         wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
788             M_80211_VAP, M_INTWAIT | M_ZERO);
789         if (wvp == NULL)
790                 return NULL;
791         vap = &wvp->vap;
792         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
793         /* override with driver methods */
794         wvp->newstate = vap->iv_newstate;
795         vap->iv_newstate = wpi_newstate;
796
797         ieee80211_ratectl_init(vap);
798
799         /* complete setup */
800         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
801         ic->ic_opmode = opmode;
802         return vap;
803 }
804
805 static void
806 wpi_vap_delete(struct ieee80211vap *vap)
807 {
808         struct wpi_vap *wvp = WPI_VAP(vap);
809
810         ieee80211_ratectl_deinit(vap);
811         ieee80211_vap_detach(vap);
812         kfree(wvp, M_80211_VAP);
813 }
814
815 static void
816 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
817 {
818         if (error != 0)
819                 return;
820
821         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
822
823         *(bus_addr_t *)arg = segs[0].ds_addr;
824 }
825
826 /*
827  * Allocates a contiguous block of dma memory of the requested size and
828  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
829  * allocations greater than 4096 may fail. Hence if the requested alignment is
830  * greater we allocate 'alignment' size extra memory and shift the vaddr and
831  * paddr after the dma load. This bypasses the problem at the cost of a little
832  * more memory.
833  */
834 static int
835 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
836     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
837 {
838         int error;
839         bus_size_t align;
840         bus_size_t reqsize;
841
842         DPRINTFN(WPI_DEBUG_DMA,
843             ("Size: %zd - alignment %zd\n", size, alignment));
844
845         dma->size = size;
846         dma->tag = NULL;
847
848         if (alignment > 4096) {
849                 align = PAGE_SIZE;
850                 reqsize = size + alignment;
851         } else {
852                 align = alignment;
853                 reqsize = size;
854         }
855         error = bus_dma_tag_create(dma->tag, align,
856             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
857             NULL, NULL, reqsize,
858             1, reqsize, flags,
859             &dma->tag);
860         if (error != 0) {
861                 device_printf(sc->sc_dev,
862                     "could not create shared page DMA tag\n");
863                 goto fail;
864         }
865         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
866             flags | BUS_DMA_ZERO, &dma->map);
867         if (error != 0) {
868                 device_printf(sc->sc_dev,
869                     "could not allocate shared page DMA memory\n");
870                 goto fail;
871         }
872
873         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
874             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
875
876         /* Save the original pointers so we can free all the memory */
877         dma->paddr = dma->paddr_start;
878         dma->vaddr = dma->vaddr_start;
879
880         /*
881          * Check the alignment and increment by 4096 until we get the
882          * requested alignment. Fail if can't obtain the alignment
883          * we requested.
884          */
885         if ((dma->paddr & (alignment -1 )) != 0) {
886                 int i;
887
888                 for (i = 0; i < alignment / 4096; i++) {
889                         if ((dma->paddr & (alignment - 1 )) == 0)
890                                 break;
891                         dma->paddr += 4096;
892                         dma->vaddr += 4096;
893                 }
894                 if (i == alignment / 4096) {
895                         device_printf(sc->sc_dev,
896                             "alignment requirement was not satisfied\n");
897                         goto fail;
898                 }
899         }
900
901         if (error != 0) {
902                 device_printf(sc->sc_dev,
903                     "could not load shared page DMA map\n");
904                 goto fail;
905         }
906
907         if (kvap != NULL)
908                 *kvap = dma->vaddr;
909
910         return 0;
911
912 fail:
913         wpi_dma_contig_free(dma);
914         return error;
915 }
916
917 static void
918 wpi_dma_contig_free(struct wpi_dma_info *dma)
919 {
920         if (dma->tag) {
921                 if (dma->map != NULL) {
922                         if (dma->paddr_start != 0) {
923                                 bus_dmamap_sync(dma->tag, dma->map,
924                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
925                                 bus_dmamap_unload(dma->tag, dma->map);
926                         }
927                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
928                 }
929                 bus_dma_tag_destroy(dma->tag);
930         }
931 }
932
933 /*
934  * Allocate a shared page between host and NIC.
935  */
936 static int
937 wpi_alloc_shared(struct wpi_softc *sc)
938 {
939         int error;
940
941         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
942             (void **)&sc->shared, sizeof (struct wpi_shared),
943             PAGE_SIZE,
944             BUS_DMA_NOWAIT);
945
946         if (error != 0) {
947                 device_printf(sc->sc_dev,
948                     "could not allocate shared area DMA memory\n");
949         }
950
951         return error;
952 }
953
954 static void
955 wpi_free_shared(struct wpi_softc *sc)
956 {
957         wpi_dma_contig_free(&sc->shared_dma);
958 }
959
960 static int
961 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
962 {
963
964         int i, error;
965
966         ring->cur = 0;
967
968         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
969             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
970             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
971
972         if (error != 0) {
973                 device_printf(sc->sc_dev,
974                     "%s: could not allocate rx ring DMA memory, error %d\n",
975                     __func__, error);
976                 goto fail;
977         }
978
979         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
980             BUS_SPACE_MAXADDR_32BIT,
981             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
982             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
983         if (error != 0) {
984                 device_printf(sc->sc_dev,
985                     "%s: bus_dma_tag_create_failed, error %d\n",
986                     __func__, error);
987                 goto fail;
988         }
989
990         /*
991          * Setup Rx buffers.
992          */
993         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
994                 struct wpi_rx_data *data = &ring->data[i];
995                 struct mbuf *m;
996                 bus_addr_t paddr;
997
998                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
999                 if (error != 0) {
1000                         device_printf(sc->sc_dev,
1001                             "%s: bus_dmamap_create failed, error %d\n",
1002                             __func__, error);
1003                         goto fail;
1004                 }
1005                 m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1006                 if (m == NULL) {
1007                         device_printf(sc->sc_dev,
1008                            "%s: could not allocate rx mbuf\n", __func__);
1009                         error = ENOMEM;
1010                         goto fail;
1011                 }
1012                 /* map page */
1013                 error = bus_dmamap_load(ring->data_dmat, data->map,
1014                     mtod(m, caddr_t), MJUMPAGESIZE,
1015                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1016                 if (error != 0 && error != EFBIG) {
1017                         device_printf(sc->sc_dev,
1018                             "%s: bus_dmamap_load failed, error %d\n",
1019                             __func__, error);
1020                         m_freem(m);
1021                         error = ENOMEM; /* XXX unique code */
1022                         goto fail;
1023                 }
1024                 bus_dmamap_sync(ring->data_dmat, data->map,
1025                     BUS_DMASYNC_PREWRITE);
1026
1027                 data->m = m;
1028                 ring->desc[i] = htole32(paddr);
1029         }
1030         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1031             BUS_DMASYNC_PREWRITE);
1032         return 0;
1033 fail:
1034         wpi_free_rx_ring(sc, ring);
1035         return error;
1036 }
1037
1038 static void
1039 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1040 {
1041         int ntries;
1042
1043         wpi_mem_lock(sc);
1044
1045         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1046
1047         for (ntries = 0; ntries < 100; ntries++) {
1048                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1049                         break;
1050                 DELAY(10);
1051         }
1052
1053         wpi_mem_unlock(sc);
1054
1055 #ifdef WPI_DEBUG
1056         if (ntries == 100 && wpi_debug > 0)
1057                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1058 #endif
1059
1060         ring->cur = 0;
1061 }
1062
1063 static void
1064 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1065 {
1066         int i;
1067
1068         wpi_dma_contig_free(&ring->desc_dma);
1069
1070         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1071                 if (ring->data[i].m != NULL)
1072                         m_freem(ring->data[i].m);
1073 }
1074
1075 static int
1076 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1077         int qid)
1078 {
1079         struct wpi_tx_data *data;
1080         int i, error;
1081
1082         ring->qid = qid;
1083         ring->count = count;
1084         ring->queued = 0;
1085         ring->cur = 0;
1086         ring->data = NULL;
1087
1088         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1089                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1090                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1091
1092         if (error != 0) {
1093             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1094             goto fail;
1095         }
1096
1097         /* update shared page with ring's base address */
1098         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1099
1100         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1101                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1102                 BUS_DMA_NOWAIT);
1103
1104         if (error != 0) {
1105                 device_printf(sc->sc_dev,
1106                     "could not allocate tx command DMA memory\n");
1107                 goto fail;
1108         }
1109
1110         ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1111             M_INTWAIT | M_ZERO);
1112         if (ring->data == NULL) {
1113                 device_printf(sc->sc_dev,
1114                     "could not allocate tx data slots\n");
1115                 goto fail;
1116         }
1117
1118         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1119             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
1120             WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
1121             &ring->data_dmat);
1122         if (error != 0) {
1123                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1124                 goto fail;
1125         }
1126
1127         for (i = 0; i < count; i++) {
1128                 data = &ring->data[i];
1129
1130                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1131                 if (error != 0) {
1132                         device_printf(sc->sc_dev,
1133                             "could not create tx buf DMA map\n");
1134                         goto fail;
1135                 }
1136                 bus_dmamap_sync(ring->data_dmat, data->map,
1137                     BUS_DMASYNC_PREWRITE);
1138         }
1139
1140         return 0;
1141
1142 fail:
1143         wpi_free_tx_ring(sc, ring);
1144         return error;
1145 }
1146
1147 static void
1148 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1149 {
1150         struct wpi_tx_data *data;
1151         int i, ntries;
1152
1153         wpi_mem_lock(sc);
1154
1155         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1156         for (ntries = 0; ntries < 100; ntries++) {
1157                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1158                         break;
1159                 DELAY(10);
1160         }
1161 #ifdef WPI_DEBUG
1162         if (ntries == 100 && wpi_debug > 0)
1163                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1164                     ring->qid);
1165 #endif
1166         wpi_mem_unlock(sc);
1167
1168         for (i = 0; i < ring->count; i++) {
1169                 data = &ring->data[i];
1170
1171                 if (data->m != NULL) {
1172                         bus_dmamap_unload(ring->data_dmat, data->map);
1173                         m_freem(data->m);
1174                         data->m = NULL;
1175                 }
1176         }
1177
1178         ring->queued = 0;
1179         ring->cur = 0;
1180 }
1181
1182 static void
1183 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1184 {
1185         struct wpi_tx_data *data;
1186         int i;
1187
1188         wpi_dma_contig_free(&ring->desc_dma);
1189         wpi_dma_contig_free(&ring->cmd_dma);
1190
1191         if (ring->data != NULL) {
1192                 for (i = 0; i < ring->count; i++) {
1193                         data = &ring->data[i];
1194
1195                         if (data->m != NULL) {
1196                                 bus_dmamap_sync(ring->data_dmat, data->map,
1197                                     BUS_DMASYNC_POSTWRITE);
1198                                 bus_dmamap_unload(ring->data_dmat, data->map);
1199                                 m_freem(data->m);
1200                                 data->m = NULL;
1201                         }
1202                 }
1203                 kfree(ring->data, M_DEVBUF);
1204         }
1205
1206         if (ring->data_dmat != NULL)
1207                 bus_dma_tag_destroy(ring->data_dmat);
1208 }
1209
1210 static int
1211 wpi_shutdown(device_t dev)
1212 {
1213         struct wpi_softc *sc;
1214
1215         wlan_serialize_enter();
1216         sc = device_get_softc(dev);
1217         wpi_stop_locked(sc);
1218         wpi_unload_firmware(sc);
1219         wlan_serialize_exit();
1220
1221         return 0;
1222 }
1223
1224 static int
1225 wpi_suspend(device_t dev)
1226 {
1227         struct wpi_softc *sc;
1228
1229         wlan_serialize_enter();
1230         sc = device_get_softc(dev);
1231         wpi_stop(sc);
1232         wlan_serialize_exit();
1233         return 0;
1234 }
1235
1236 static int
1237 wpi_resume(device_t dev)
1238 {
1239         struct wpi_softc *sc;
1240         struct ifnet *ifp;
1241
1242         wlan_serialize_enter();
1243         sc = device_get_softc(dev);
1244         ifp = sc->sc_ifp;
1245         pci_write_config(dev, 0x41, 0, 1);
1246
1247         if (ifp->if_flags & IFF_UP) {
1248                 wpi_init(ifp->if_softc);
1249                 if (ifp->if_flags & IFF_RUNNING)
1250                         if_devstart(ifp);
1251         }
1252         wlan_serialize_exit();
1253         return 0;
1254 }
1255
1256 /* ARGSUSED */
1257 static struct ieee80211_node *
1258 wpi_node_alloc(struct ieee80211vap *vap __unused,
1259         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1260 {
1261         struct wpi_node *wn;
1262
1263         wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1264
1265         return &wn->ni;
1266 }
1267
1268 /**
1269  * Called by net80211 when ever there is a change to 80211 state machine
1270  */
1271 static int
1272 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1273 {
1274         struct wpi_vap *wvp = WPI_VAP(vap);
1275         struct ieee80211com *ic = vap->iv_ic;
1276         struct ifnet *ifp = ic->ic_ifp;
1277         struct wpi_softc *sc = ifp->if_softc;
1278         int error;
1279
1280         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1281                 ieee80211_state_name[vap->iv_state],
1282                 ieee80211_state_name[nstate], sc->flags));
1283
1284         if (nstate == IEEE80211_S_AUTH) {
1285                 /* The node must be registered in the firmware before auth */
1286                 error = wpi_auth(sc, vap);
1287                 if (error != 0) {
1288                         device_printf(sc->sc_dev,
1289                             "%s: could not move to auth state, error %d\n",
1290                             __func__, error);
1291                 }
1292         }
1293         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1294                 error = wpi_run(sc, vap);
1295                 if (error != 0) {
1296                         device_printf(sc->sc_dev,
1297                             "%s: could not move to run state, error %d\n",
1298                             __func__, error);
1299                 }
1300         }
1301         if (nstate == IEEE80211_S_RUN) {
1302                 /* RUN -> RUN transition; just restart the timers */
1303                 wpi_calib_timeout_callout(sc);
1304                 /* XXX split out rate control timer */
1305         }
1306         return wvp->newstate(vap, nstate, arg);
1307 }
1308
1309 /*
1310  * Grab exclusive access to NIC memory.
1311  */
1312 static void
1313 wpi_mem_lock(struct wpi_softc *sc)
1314 {
1315         int ntries;
1316         uint32_t tmp;
1317
1318         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1319         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1320
1321         /* spin until we actually get the lock */
1322         for (ntries = 0; ntries < 100; ntries++) {
1323                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1324                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1325                         break;
1326                 DELAY(10);
1327         }
1328         if (ntries == 100)
1329                 device_printf(sc->sc_dev, "could not lock memory\n");
1330 }
1331
1332 /*
1333  * Release lock on NIC memory.
1334  */
1335 static void
1336 wpi_mem_unlock(struct wpi_softc *sc)
1337 {
1338         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1339         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1340 }
1341
1342 static uint32_t
1343 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1344 {
1345         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1346         return WPI_READ(sc, WPI_READ_MEM_DATA);
1347 }
1348
1349 static void
1350 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1351 {
1352         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1353         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1354 }
1355
1356 static void
1357 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1358     const uint32_t *data, int wlen)
1359 {
1360         for (; wlen > 0; wlen--, data++, addr+=4)
1361                 wpi_mem_write(sc, addr, *data);
1362 }
1363
1364 /*
1365  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1366  * using the traditional bit-bang method. Data is read up until len bytes have
1367  * been obtained.
1368  */
1369 static uint16_t
1370 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1371 {
1372         int ntries;
1373         uint32_t val;
1374         uint8_t *out = data;
1375
1376         wpi_mem_lock(sc);
1377
1378         for (; len > 0; len -= 2, addr++) {
1379                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1380
1381                 for (ntries = 0; ntries < 10; ntries++) {
1382                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1383                                 break;
1384                         DELAY(5);
1385                 }
1386
1387                 if (ntries == 10) {
1388                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1389                         return ETIMEDOUT;
1390                 }
1391
1392                 *out++= val >> 16;
1393                 if (len > 1)
1394                         *out ++= val >> 24;
1395         }
1396
1397         wpi_mem_unlock(sc);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * The firmware text and data segments are transferred to the NIC using DMA.
1404  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1405  * where to find it.  Once the NIC has copied the firmware into its internal
1406  * memory, we can free our local copy in the driver.
1407  */
1408 static int
1409 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1410 {
1411         int error, ntries;
1412
1413         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1414
1415         size /= sizeof(uint32_t);
1416
1417         wpi_mem_lock(sc);
1418
1419         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1420             (const uint32_t *)fw, size);
1421
1422         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1423         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1424         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1425
1426         /* run microcode */
1427         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1428
1429         /* wait while the adapter is busy copying the firmware */
1430         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1431                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1432                 DPRINTFN(WPI_DEBUG_HW,
1433                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1434                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1435                 if (status & WPI_TX_IDLE(6)) {
1436                         DPRINTFN(WPI_DEBUG_HW,
1437                             ("Status Match! - ntries = %d\n", ntries));
1438                         break;
1439                 }
1440                 DELAY(10);
1441         }
1442         if (ntries == 1000) {
1443                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1444                 error = ETIMEDOUT;
1445         }
1446
1447         /* start the microcode executing */
1448         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1449
1450         wpi_mem_unlock(sc);
1451
1452         return (error);
1453 }
1454
1455 static void
1456 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1457         struct wpi_rx_data *data)
1458 {
1459         struct ifnet *ifp = sc->sc_ifp;
1460         struct ieee80211com *ic = ifp->if_l2com;
1461         struct wpi_rx_ring *ring = &sc->rxq;
1462         struct wpi_rx_stat *stat;
1463         struct wpi_rx_head *head;
1464         struct wpi_rx_tail *tail;
1465         struct ieee80211_node *ni;
1466         struct mbuf *m, *mnew;
1467         bus_addr_t paddr;
1468         int error;
1469
1470         stat = (struct wpi_rx_stat *)(desc + 1);
1471
1472         if (stat->len > WPI_STAT_MAXLEN) {
1473                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1474                 IFNET_STAT_INC(ifp, ierrors, 1);
1475                 return;
1476         }
1477
1478         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1479         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1480
1481         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1482             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1483             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1484             (uintmax_t)le64toh(tail->tstamp)));
1485
1486         /* discard Rx frames with bad CRC early */
1487         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1488                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1489                     le32toh(tail->flags)));
1490                 IFNET_STAT_INC(ifp, ierrors, 1);
1491                 return;
1492         }
1493         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1494                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1495                     le16toh(head->len)));
1496                 IFNET_STAT_INC(ifp, ierrors, 1);
1497                 return;
1498         }
1499
1500         /* XXX don't need mbuf, just dma buffer */
1501         mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1502         if (mnew == NULL) {
1503                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1504                     __func__));
1505                 IFNET_STAT_INC(ifp, ierrors, 1);
1506                 return;
1507         }
1508         error = bus_dmamap_load(ring->data_dmat, data->map,
1509             mtod(mnew, caddr_t), MJUMPAGESIZE,
1510             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1511         if (error != 0 && error != EFBIG) {
1512                 device_printf(sc->sc_dev,
1513                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1514                 m_freem(mnew);
1515                 IFNET_STAT_INC(ifp, ierrors, 1);
1516                 return;
1517         }
1518         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1519
1520         /* finalize mbuf and swap in new one */
1521         m = data->m;
1522         m->m_pkthdr.rcvif = ifp;
1523         m->m_data = (caddr_t)(head + 1);
1524         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1525
1526         data->m = mnew;
1527         /* update Rx descriptor */
1528         ring->desc[ring->cur] = htole32(paddr);
1529
1530         if (ieee80211_radiotap_active(ic)) {
1531                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1532
1533                 tap->wr_flags = 0;
1534                 tap->wr_chan_freq =
1535                         htole16(ic->ic_channels[head->chan].ic_freq);
1536                 tap->wr_chan_flags =
1537                         htole16(ic->ic_channels[head->chan].ic_flags);
1538                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1539                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1540                 tap->wr_tsft = tail->tstamp;
1541                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1542                 switch (head->rate) {
1543                 /* CCK rates */
1544                 case  10: tap->wr_rate =   2; break;
1545                 case  20: tap->wr_rate =   4; break;
1546                 case  55: tap->wr_rate =  11; break;
1547                 case 110: tap->wr_rate =  22; break;
1548                 /* OFDM rates */
1549                 case 0xd: tap->wr_rate =  12; break;
1550                 case 0xf: tap->wr_rate =  18; break;
1551                 case 0x5: tap->wr_rate =  24; break;
1552                 case 0x7: tap->wr_rate =  36; break;
1553                 case 0x9: tap->wr_rate =  48; break;
1554                 case 0xb: tap->wr_rate =  72; break;
1555                 case 0x1: tap->wr_rate =  96; break;
1556                 case 0x3: tap->wr_rate = 108; break;
1557                 /* unknown rate: should not happen */
1558                 default:  tap->wr_rate =   0;
1559                 }
1560                 if (le16toh(head->flags) & 0x4)
1561                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1562         }
1563
1564         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1565         if (ni != NULL) {
1566                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1567                 ieee80211_free_node(ni);
1568         } else
1569                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1570 }
1571
1572 static void
1573 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1574 {
1575         struct ifnet *ifp = sc->sc_ifp;
1576         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1577         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1578         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1579         struct ieee80211_node *ni = txdata->ni;
1580         struct ieee80211vap *vap = ni->ni_vap;
1581         int retrycnt = 0;
1582
1583         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1584             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1585             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1586             le32toh(stat->status)));
1587
1588         /*
1589          * Update rate control statistics for the node.
1590          * XXX we should not count mgmt frames since they're always sent at
1591          * the lowest available bit-rate.
1592          * XXX frames w/o ACK shouldn't be used either
1593          */
1594         if (stat->ntries > 0) {
1595                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1596                 retrycnt = 1;
1597         }
1598         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1599                 &retrycnt, NULL);
1600
1601         /* XXX oerrors should only count errors !maxtries */
1602         if ((le32toh(stat->status) & 0xff) != 1)
1603                 IFNET_STAT_INC(ifp, oerrors, 1);
1604         else
1605                 IFNET_STAT_INC(ifp, opackets, 1);
1606
1607         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1608         bus_dmamap_unload(ring->data_dmat, txdata->map);
1609         /* XXX handle M_TXCB? */
1610         m_freem(txdata->m);
1611         txdata->m = NULL;
1612         ieee80211_free_node(txdata->ni);
1613         txdata->ni = NULL;
1614
1615         ring->queued--;
1616
1617         sc->sc_tx_timer = 0;
1618         ifq_clr_oactive(&ifp->if_snd);
1619         wpi_start_locked(ifp);
1620 }
1621
1622 static void
1623 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1624 {
1625         struct wpi_tx_ring *ring = &sc->cmdq;
1626         struct wpi_tx_data *data;
1627
1628         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1629                                  "type=%s len=%d\n", desc->qid, desc->idx,
1630                                  desc->flags, wpi_cmd_str(desc->type),
1631                                  le32toh(desc->len)));
1632
1633         if ((desc->qid & 7) != 4)
1634                 return; /* not a command ack */
1635
1636         data = &ring->data[desc->idx];
1637
1638         /* if the command was mapped in a mbuf, free it */
1639         if (data->m != NULL) {
1640                 bus_dmamap_unload(ring->data_dmat, data->map);
1641                 m_freem(data->m);
1642                 data->m = NULL;
1643         }
1644
1645         sc->flags &= ~WPI_FLAG_BUSY;
1646         wakeup(&ring->cmd[desc->idx]);
1647 }
1648
1649 static void
1650 wpi_notif_intr(struct wpi_softc *sc)
1651 {
1652         struct ifnet *ifp = sc->sc_ifp;
1653         struct ieee80211com *ic = ifp->if_l2com;
1654         struct wpi_rx_desc *desc;
1655         struct wpi_rx_data *data;
1656         uint32_t hw;
1657
1658         hw = le32toh(sc->shared->next);
1659         while (sc->rxq.cur != hw) {
1660                 data = &sc->rxq.data[sc->rxq.cur];
1661                 desc = (void *)data->m->m_ext.ext_buf;
1662
1663                 DPRINTFN(WPI_DEBUG_NOTIFY,
1664                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1665                           desc->qid,
1666                           desc->idx,
1667                           desc->flags,
1668                           desc->type,
1669                           le32toh(desc->len)));
1670
1671                 if (!(desc->qid & 0x80))        /* reply to a command */
1672                         wpi_cmd_intr(sc, desc);
1673
1674                 switch (desc->type) {
1675                 case WPI_RX_DONE:
1676                         /* a 802.11 frame was received */
1677                         wpi_rx_intr(sc, desc, data);
1678                         break;
1679
1680                 case WPI_TX_DONE:
1681                         /* a 802.11 frame has been transmitted */
1682                         wpi_tx_intr(sc, desc);
1683                         break;
1684
1685                 case WPI_UC_READY:
1686                 {
1687                         struct wpi_ucode_info *uc =
1688                                 (struct wpi_ucode_info *)(desc + 1);
1689
1690                         /* the microcontroller is ready */
1691                         DPRINTF(("microcode alive notification version %x "
1692                                 "alive %x\n", le32toh(uc->version),
1693                                 le32toh(uc->valid)));
1694
1695                         if (le32toh(uc->valid) != 1) {
1696                                 device_printf(sc->sc_dev,
1697                                     "microcontroller initialization failed\n");
1698                                 wpi_stop_locked(sc);
1699                         }
1700                         break;
1701                 }
1702                 case WPI_STATE_CHANGED:
1703                 {
1704                         uint32_t *status = (uint32_t *)(desc + 1);
1705
1706                         /* enabled/disabled notification */
1707                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1708
1709                         if (le32toh(*status) & 1) {
1710                                 device_printf(sc->sc_dev,
1711                                     "Radio transmitter is switched off\n");
1712                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1713                                 ifp->if_flags &= ~IFF_RUNNING;
1714                                 /* Disable firmware commands */
1715                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1716                         }
1717                         break;
1718                 }
1719                 case WPI_START_SCAN:
1720                 {
1721 #ifdef WPI_DEBUG
1722                         struct wpi_start_scan *scan =
1723                                 (struct wpi_start_scan *)(desc + 1);
1724 #endif
1725
1726                         DPRINTFN(WPI_DEBUG_SCANNING,
1727                                  ("scanning channel %d status %x\n",
1728                             scan->chan, le32toh(scan->status)));
1729                         break;
1730                 }
1731                 case WPI_STOP_SCAN:
1732                 {
1733 #ifdef WPI_DEBUG
1734                         struct wpi_stop_scan *scan =
1735                                 (struct wpi_stop_scan *)(desc + 1);
1736 #endif
1737                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1738
1739                         DPRINTFN(WPI_DEBUG_SCANNING,
1740                             ("scan finished nchan=%d status=%d chan=%d\n",
1741                              scan->nchan, scan->status, scan->chan));
1742
1743                         sc->sc_scan_timer = 0;
1744                         ieee80211_scan_next(vap);
1745                         break;
1746                 }
1747                 case WPI_MISSED_BEACON:
1748                 {
1749                         struct wpi_missed_beacon *beacon =
1750                                 (struct wpi_missed_beacon *)(desc + 1);
1751                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1752
1753                         if (le32toh(beacon->consecutive) >=
1754                             vap->iv_bmissthreshold) {
1755                                 DPRINTF(("Beacon miss: %u >= %u\n",
1756                                          le32toh(beacon->consecutive),
1757                                          vap->iv_bmissthreshold));
1758                                 ieee80211_beacon_miss(ic);
1759                         }
1760                         break;
1761                 }
1762                 }
1763
1764                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1765         }
1766
1767         /* tell the firmware what we have processed */
1768         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1769         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1770 }
1771
1772 static void
1773 wpi_intr(void *arg)
1774 {
1775         struct wpi_softc *sc = arg;
1776         uint32_t r;
1777
1778         r = WPI_READ(sc, WPI_INTR);
1779         if (r == 0 || r == 0xffffffff) {
1780                 return;
1781         }
1782
1783         /* disable interrupts */
1784         WPI_WRITE(sc, WPI_MASK, 0);
1785         /* ack interrupts */
1786         WPI_WRITE(sc, WPI_INTR, r);
1787
1788         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1789                 struct ifnet *ifp = sc->sc_ifp;
1790                 struct ieee80211com *ic = ifp->if_l2com;
1791                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1792
1793                 device_printf(sc->sc_dev, "fatal firmware error\n");
1794                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1795                                 "(Hardware Error)"));
1796                 if (vap != NULL)
1797                         ieee80211_cancel_scan(vap);
1798                 ieee80211_runtask(ic, &sc->sc_restarttask);
1799                 sc->flags &= ~WPI_FLAG_BUSY;
1800                 return;
1801         }
1802
1803         if (r & WPI_RX_INTR)
1804                 wpi_notif_intr(sc);
1805
1806         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1807                 wakeup(sc);
1808
1809         /* re-enable interrupts */
1810         if (sc->sc_ifp->if_flags & IFF_UP)
1811                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1812
1813 }
1814
1815 static uint8_t
1816 wpi_plcp_signal(int rate)
1817 {
1818         switch (rate) {
1819         /* CCK rates (returned values are device-dependent) */
1820         case 2:         return 10;
1821         case 4:         return 20;
1822         case 11:        return 55;
1823         case 22:        return 110;
1824
1825         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1826         /* R1-R4 (ral/ural is R4-R1) */
1827         case 12:        return 0xd;
1828         case 18:        return 0xf;
1829         case 24:        return 0x5;
1830         case 36:        return 0x7;
1831         case 48:        return 0x9;
1832         case 72:        return 0xb;
1833         case 96:        return 0x1;
1834         case 108:       return 0x3;
1835
1836         /* unsupported rates (should not get there) */
1837         default:        return 0;
1838         }
1839 }
1840
1841 /* quickly determine if a given rate is CCK or OFDM */
1842 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1843
1844 /*
1845  * Construct the data packet for a transmit buffer and acutally put
1846  * the buffer onto the transmit ring, kicking the card to process the
1847  * the buffer.
1848  */
1849 static int
1850 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1851         int ac)
1852 {
1853         struct ieee80211vap *vap = ni->ni_vap;
1854         struct ifnet *ifp = sc->sc_ifp;
1855         struct ieee80211com *ic = ifp->if_l2com;
1856         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1857         struct wpi_tx_ring *ring = &sc->txq[ac];
1858         struct wpi_tx_desc *desc;
1859         struct wpi_tx_data *data;
1860         struct wpi_tx_cmd *cmd;
1861         struct wpi_cmd_data *tx;
1862         struct ieee80211_frame *wh;
1863         const struct ieee80211_txparam *tp;
1864         struct ieee80211_key *k;
1865         struct mbuf *mnew;
1866         int i, error, nsegs, rate, hdrlen, ismcast;
1867         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1868
1869         desc = &ring->desc[ring->cur];
1870         data = &ring->data[ring->cur];
1871
1872         wh = mtod(m0, struct ieee80211_frame *);
1873
1874         hdrlen = ieee80211_hdrsize(wh);
1875         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1876
1877         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1878                 k = ieee80211_crypto_encap(ni, m0);
1879                 if (k == NULL) {
1880                         m_freem(m0);
1881                         return ENOBUFS;
1882                 }
1883                 /* packet header may have moved, reset our local pointer */
1884                 wh = mtod(m0, struct ieee80211_frame *);
1885         }
1886
1887         cmd = &ring->cmd[ring->cur];
1888         cmd->code = WPI_CMD_TX_DATA;
1889         cmd->flags = 0;
1890         cmd->qid = ring->qid;
1891         cmd->idx = ring->cur;
1892
1893         tx = (struct wpi_cmd_data *)cmd->data;
1894         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1895         tx->timeout = htole16(0);
1896         tx->ofdm_mask = 0xff;
1897         tx->cck_mask = 0x0f;
1898         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1899         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1900         tx->len = htole16(m0->m_pkthdr.len);
1901
1902         if (!ismcast) {
1903                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1904                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1905                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1906                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1907                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1908                         tx->rts_ntries = 7;
1909                 }
1910         }
1911         /* pick a rate */
1912         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1913         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1914                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1915                 /* tell h/w to set timestamp in probe responses */
1916                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1917                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1918                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1919                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1920                         tx->timeout = htole16(3);
1921                 else
1922                         tx->timeout = htole16(2);
1923                 rate = tp->mgmtrate;
1924         } else if (ismcast) {
1925                 rate = tp->mcastrate;
1926         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1927                 rate = tp->ucastrate;
1928         } else {
1929                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1930                 rate = ni->ni_txrate;
1931         }
1932         tx->rate = wpi_plcp_signal(rate);
1933
1934         /* be very persistant at sending frames out */
1935 #if 0
1936         tx->data_ntries = tp->maxretry;
1937 #else
1938         tx->data_ntries = 30;           /* XXX way too high */
1939 #endif
1940
1941         if (ieee80211_radiotap_active_vap(vap)) {
1942                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1943                 tap->wt_flags = 0;
1944                 tap->wt_rate = rate;
1945                 tap->wt_hwqueue = ac;
1946                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1947                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1948
1949                 ieee80211_radiotap_tx(vap, m0);
1950         }
1951
1952         /* save and trim IEEE802.11 header */
1953         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1954         m_adj(m0, hdrlen);
1955
1956         error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1957             1, &nsegs, BUS_DMA_NOWAIT);
1958         if (error != 0 && error != EFBIG) {
1959                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1960                     error);
1961                 m_freem(m0);
1962                 return error;
1963         }
1964         if (error != 0) {
1965                 /* XXX use m_collapse */
1966                 mnew = m_defrag(m0, MB_DONTWAIT);
1967                 if (mnew == NULL) {
1968                         device_printf(sc->sc_dev,
1969                             "could not defragment mbuf\n");
1970                         m_freem(m0);
1971                         return ENOBUFS;
1972                 }
1973                 m0 = mnew;
1974
1975                 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1976                     m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1977                 if (error != 0) {
1978                         device_printf(sc->sc_dev,
1979                             "could not map mbuf (error %d)\n", error);
1980                         m_freem(m0);
1981                         return error;
1982                 }
1983         }
1984
1985         data->m = m0;
1986         data->ni = ni;
1987
1988         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1989             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1990
1991         /* first scatter/gather segment is used by the tx data command */
1992         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1993             (1 + nsegs) << 24);
1994         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1995             ring->cur * sizeof (struct wpi_tx_cmd));
1996         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1997         for (i = 1; i <= nsegs; i++) {
1998                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1999                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2000         }
2001
2002         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2003         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2004             BUS_DMASYNC_PREWRITE);
2005
2006         ring->queued++;
2007
2008         /* kick ring */
2009         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2010         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2011
2012         return 0;
2013 }
2014
2015 /**
2016  * Process data waiting to be sent on the IFNET output queue
2017  */
2018 static void
2019 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2020 {
2021         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2022         wpi_start_locked(ifp);
2023 }
2024
2025 static void
2026 wpi_start_locked(struct ifnet *ifp)
2027 {
2028         struct wpi_softc *sc = ifp->if_softc;
2029         struct ieee80211_node *ni;
2030         struct mbuf *m;
2031         int ac;
2032
2033         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2034                 ifq_purge(&ifp->if_snd);
2035                 return;
2036         }
2037
2038         for (;;) {
2039                 m = ifq_dequeue(&ifp->if_snd);
2040                 if (m == NULL)
2041                         break;
2042                 ac = M_WME_GETAC(m);
2043                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2044                         /* there is no place left in this ring */
2045                         /*
2046                          * XXX: we CANNOT do it this way. If something
2047                          * is prepended already, this is going to blow.
2048                          */
2049                         ifq_set_oactive(&ifp->if_snd);
2050                         ifq_prepend(&ifp->if_snd, m);
2051                         break;
2052                 }
2053                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2054                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055                         ieee80211_free_node(ni);
2056                         IFNET_STAT_INC(ifp, oerrors, 1);
2057                         break;
2058                 }
2059                 sc->sc_tx_timer = 5;
2060         }
2061 }
2062
2063 static int
2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065         const struct ieee80211_bpf_params *params)
2066 {
2067         struct ieee80211com *ic = ni->ni_ic;
2068         struct ifnet *ifp = ic->ic_ifp;
2069         struct wpi_softc *sc = ifp->if_softc;
2070
2071         /* prevent management frames from being sent if we're not ready */
2072         if (!(ifp->if_flags & IFF_RUNNING)) {
2073                 m_freem(m);
2074                 ieee80211_free_node(ni);
2075                 return ENETDOWN;
2076         }
2077
2078         /* management frames go into ring 0 */
2079         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2080                 ifq_set_oactive(&ifp->if_snd);
2081                 m_freem(m);
2082                 ieee80211_free_node(ni);
2083                 return ENOBUFS;         /* XXX */
2084         }
2085
2086         IFNET_STAT_INC(ifp, opackets, 1);
2087         if (wpi_tx_data(sc, m, ni, 0) != 0)
2088                 goto bad;
2089         sc->sc_tx_timer = 5;
2090         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2091
2092         return 0;
2093 bad:
2094         IFNET_STAT_INC(ifp, oerrors, 1);
2095         ieee80211_free_node(ni);
2096         return EIO;             /* XXX */
2097 }
2098
2099 static int
2100 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2101 {
2102         struct wpi_softc *sc = ifp->if_softc;
2103         struct ieee80211com *ic = ifp->if_l2com;
2104         struct ifreq *ifr = (struct ifreq *) data;
2105         int error = 0, startall = 0;
2106
2107         switch (cmd) {
2108         case SIOCSIFFLAGS:
2109                 if ((ifp->if_flags & IFF_UP)) {
2110                         if (!(ifp->if_flags & IFF_RUNNING)) {
2111                                 wpi_init_locked(sc, 0);
2112                                 startall = 1;
2113                         }
2114                 } else if ((ifp->if_flags & IFF_RUNNING) ||
2115                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2116                         wpi_stop_locked(sc);
2117                 if (startall)
2118                         ieee80211_start_all(ic);
2119                 break;
2120         case SIOCGIFMEDIA:
2121                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2122                 break;
2123         case SIOCGIFADDR:
2124                 error = ether_ioctl(ifp, cmd, data);
2125                 break;
2126         default:
2127                 error = EINVAL;
2128                 break;
2129         }
2130         return error;
2131 }
2132
2133 /*
2134  * Extract various information from EEPROM.
2135  */
2136 static void
2137 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2138 {
2139         int i;
2140
2141         /* read the hardware capabilities, revision and SKU type */
2142         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2143         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2144         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2145
2146         /* read the regulatory domain */
2147         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2148
2149         /* read in the hw MAC address */
2150         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2151
2152         /* read the list of authorized channels */
2153         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2154                 wpi_read_eeprom_channels(sc,i);
2155
2156         /* read the power level calibration info for each group */
2157         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2158                 wpi_read_eeprom_group(sc,i);
2159 }
2160
2161 /*
2162  * Send a command to the firmware.
2163  */
2164 static int
2165 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2166 {
2167         struct wpi_tx_ring *ring = &sc->cmdq;
2168         struct wpi_tx_desc *desc;
2169         struct wpi_tx_cmd *cmd;
2170
2171 #ifdef WPI_DEBUG
2172         if (!async) {
2173                 wlan_assert_serialized();
2174         }
2175 #endif
2176
2177         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2178                     async));
2179
2180         if (sc->flags & WPI_FLAG_BUSY) {
2181                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2182                     __func__, code);
2183                 return EAGAIN;
2184         }
2185         sc->flags|= WPI_FLAG_BUSY;
2186
2187         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2188             code, size));
2189
2190         desc = &ring->desc[ring->cur];
2191         cmd = &ring->cmd[ring->cur];
2192
2193         cmd->code = code;
2194         cmd->flags = 0;
2195         cmd->qid = ring->qid;
2196         cmd->idx = ring->cur;
2197         memcpy(cmd->data, buf, size);
2198
2199         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2200         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2201                 ring->cur * sizeof (struct wpi_tx_cmd));
2202         desc->segs[0].len  = htole32(4 + size);
2203
2204         /* kick cmd ring */
2205         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2206         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2207
2208         if (async) {
2209                 sc->flags &= ~ WPI_FLAG_BUSY;
2210                 return 0;
2211         }
2212
2213         return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2214 }
2215
2216 static int
2217 wpi_wme_update(struct ieee80211com *ic)
2218 {
2219 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2220 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2221         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2222         const struct wmeParams *wmep;
2223         struct wpi_wme_setup wme;
2224         int ac;
2225
2226         /* don't override default WME values if WME is not actually enabled */
2227         if (!(ic->ic_flags & IEEE80211_F_WME))
2228                 return 0;
2229
2230         wme.flags = 0;
2231         for (ac = 0; ac < WME_NUM_AC; ac++) {
2232                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2233                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2234                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2235                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2236                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2237
2238                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2239                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2240                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2241         }
2242         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2243 #undef WPI_USEC
2244 #undef WPI_EXP2
2245 }
2246
2247 /*
2248  * Configure h/w multi-rate retries.
2249  */
2250 static int
2251 wpi_mrr_setup(struct wpi_softc *sc)
2252 {
2253         struct ifnet *ifp = sc->sc_ifp;
2254         struct ieee80211com *ic = ifp->if_l2com;
2255         struct wpi_mrr_setup mrr;
2256         int i, error;
2257
2258         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2259
2260         /* CCK rates (not used with 802.11a) */
2261         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2262                 mrr.rates[i].flags = 0;
2263                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2264                 /* fallback to the immediate lower CCK rate (if any) */
2265                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2266                 /* try one time at this rate before falling back to "next" */
2267                 mrr.rates[i].ntries = 1;
2268         }
2269
2270         /* OFDM rates (not used with 802.11b) */
2271         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2272                 mrr.rates[i].flags = 0;
2273                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2274                 /* fallback to the immediate lower OFDM rate (if any) */
2275                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2276                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2277                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2278                         WPI_OFDM6 : WPI_CCK2) :
2279                     i - 1;
2280                 /* try one time at this rate before falling back to "next" */
2281                 mrr.rates[i].ntries = 1;
2282         }
2283
2284         /* setup MRR for control frames */
2285         mrr.which = htole32(WPI_MRR_CTL);
2286         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2287         if (error != 0) {
2288                 device_printf(sc->sc_dev,
2289                     "could not setup MRR for control frames\n");
2290                 return error;
2291         }
2292
2293         /* setup MRR for data frames */
2294         mrr.which = htole32(WPI_MRR_DATA);
2295         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2296         if (error != 0) {
2297                 device_printf(sc->sc_dev,
2298                     "could not setup MRR for data frames\n");
2299                 return error;
2300         }
2301
2302         return 0;
2303 }
2304
2305 static void
2306 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2307 {
2308         struct wpi_cmd_led led;
2309
2310         led.which = which;
2311         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2312         led.off = off;
2313         led.on = on;
2314
2315         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2316 }
2317
2318 static void
2319 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2320 {
2321         struct wpi_cmd_tsf tsf;
2322         uint64_t val, mod;
2323
2324         memset(&tsf, 0, sizeof tsf);
2325         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2326         tsf.bintval = htole16(ni->ni_intval);
2327         tsf.lintval = htole16(10);
2328
2329         /* compute remaining time until next beacon */
2330         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2331         mod = le64toh(tsf.tstamp) % val;
2332         tsf.binitval = htole32((uint32_t)(val - mod));
2333
2334         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2335                 device_printf(sc->sc_dev, "could not enable TSF\n");
2336 }
2337
2338 #if 0
2339 /*
2340  * Build a beacon frame that the firmware will broadcast periodically in
2341  * IBSS or HostAP modes.
2342  */
2343 static int
2344 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2345 {
2346         struct ifnet *ifp = sc->sc_ifp;
2347         struct ieee80211com *ic = ifp->if_l2com;
2348         struct wpi_tx_ring *ring = &sc->cmdq;
2349         struct wpi_tx_desc *desc;
2350         struct wpi_tx_data *data;
2351         struct wpi_tx_cmd *cmd;
2352         struct wpi_cmd_beacon *bcn;
2353         struct ieee80211_beacon_offsets bo;
2354         struct mbuf *m0;
2355         bus_addr_t physaddr;
2356         int error;
2357
2358         desc = &ring->desc[ring->cur];
2359         data = &ring->data[ring->cur];
2360
2361         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2362         if (m0 == NULL) {
2363                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2364                 return ENOMEM;
2365         }
2366
2367         cmd = &ring->cmd[ring->cur];
2368         cmd->code = WPI_CMD_SET_BEACON;
2369         cmd->flags = 0;
2370         cmd->qid = ring->qid;
2371         cmd->idx = ring->cur;
2372
2373         bcn = (struct wpi_cmd_beacon *)cmd->data;
2374         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2375         bcn->id = WPI_ID_BROADCAST;
2376         bcn->ofdm_mask = 0xff;
2377         bcn->cck_mask = 0x0f;
2378         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2379         bcn->len = htole16(m0->m_pkthdr.len);
2380         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2381                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2382         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2383
2384         /* save and trim IEEE802.11 header */
2385         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2386         m_adj(m0, sizeof (struct ieee80211_frame));
2387
2388         /* assume beacon frame is contiguous */
2389         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2390             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2391         if (error != 0) {
2392                 device_printf(sc->sc_dev, "could not map beacon\n");
2393                 m_freem(m0);
2394                 return error;
2395         }
2396
2397         data->m = m0;
2398
2399         /* first scatter/gather segment is used by the beacon command */
2400         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2401         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2402                 ring->cur * sizeof (struct wpi_tx_cmd));
2403         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2404         desc->segs[1].addr = htole32(physaddr);
2405         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2406
2407         /* kick cmd ring */
2408         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2409         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2410
2411         return 0;
2412 }
2413 #endif
2414
2415 static int
2416 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2417 {
2418         struct ieee80211com *ic = vap->iv_ic;
2419         struct ieee80211_node *ni;
2420         struct wpi_node_info node;
2421         int error;
2422
2423
2424         /* update adapter's configuration */
2425         sc->config.associd = 0;
2426         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2427         ni = ieee80211_ref_node(vap->iv_bss);
2428         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2429         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2430         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2431                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2432                     WPI_CONFIG_24GHZ);
2433         }
2434         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2435                 sc->config.cck_mask  = 0;
2436                 sc->config.ofdm_mask = 0x15;
2437         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2438                 sc->config.cck_mask  = 0x03;
2439                 sc->config.ofdm_mask = 0;
2440         } else {
2441                 /* XXX assume 802.11b/g */
2442                 sc->config.cck_mask  = 0x0f;
2443                 sc->config.ofdm_mask = 0x15;
2444         }
2445
2446         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2447                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2448         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2449                 sizeof (struct wpi_config), 1);
2450         if (error != 0) {
2451                 device_printf(sc->sc_dev, "could not configure\n");
2452                 ieee80211_free_node(ni);
2453                 return error;
2454         }
2455
2456         /* configuration has changed, set Tx power accordingly */
2457         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2458                 device_printf(sc->sc_dev, "could not set Tx power\n");
2459                 ieee80211_free_node(ni);
2460                 return error;
2461         }
2462
2463         /* add default node */
2464         memset(&node, 0, sizeof node);
2465         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2466         ieee80211_free_node(ni);
2467         node.id = WPI_ID_BSS;
2468         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2469             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2470         node.action = htole32(WPI_ACTION_SET_RATE);
2471         node.antenna = WPI_ANTENNA_BOTH;
2472         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2473         if (error != 0)
2474                 device_printf(sc->sc_dev, "could not add BSS node\n");
2475
2476         return (error);
2477 }
2478
2479 static int
2480 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2481 {
2482         struct ieee80211com *ic = vap->iv_ic;
2483         struct ieee80211_node *ni;
2484         int error;
2485
2486         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2487                 /* link LED blinks while monitoring */
2488                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2489                 return 0;
2490         }
2491
2492         ni = ieee80211_ref_node(vap->iv_bss);
2493         wpi_enable_tsf(sc, ni);
2494
2495         /* update adapter's configuration */
2496         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2497         /* short preamble/slot time are negotiated when associating */
2498         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2499             WPI_CONFIG_SHSLOT);
2500         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2501                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2502         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2503                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2504         sc->config.filter |= htole32(WPI_FILTER_BSS);
2505
2506         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2507
2508         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2509                     sc->config.flags));
2510         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2511                     wpi_config), 1);
2512         if (error != 0) {
2513                 device_printf(sc->sc_dev, "could not update configuration\n");
2514                 ieee80211_free_node(ni);
2515                 return error;
2516         }
2517
2518         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2519         ieee80211_free_node(ni);
2520         if (error != 0) {
2521                 device_printf(sc->sc_dev, "could set txpower\n");
2522                 return error;
2523         }
2524
2525         /* link LED always on while associated */
2526         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2527
2528         /* start automatic rate control timer */
2529         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2530
2531         return (error);
2532 }
2533
2534 /*
2535  * Send a scan request to the firmware.  Since this command is huge, we map it
2536  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2537  * much of this code is similar to that in wpi_cmd but because we must manually
2538  * construct the probe & channels, we duplicate what's needed here. XXX In the
2539  * future, this function should be modified to use wpi_cmd to help cleanup the
2540  * code base.
2541  */
2542 static int
2543 wpi_scan(struct wpi_softc *sc)
2544 {
2545         struct ifnet *ifp = sc->sc_ifp;
2546         struct ieee80211com *ic = ifp->if_l2com;
2547         struct ieee80211_scan_state *ss = ic->ic_scan;
2548         struct wpi_tx_ring *ring = &sc->cmdq;
2549         struct wpi_tx_desc *desc;
2550         struct wpi_tx_data *data;
2551         struct wpi_tx_cmd *cmd;
2552         struct wpi_scan_hdr *hdr;
2553         struct wpi_scan_chan *chan;
2554         struct ieee80211_frame *wh;
2555         struct ieee80211_rateset *rs;
2556         struct ieee80211_channel *c;
2557         enum ieee80211_phymode mode;
2558         uint8_t *frm;
2559         int nrates, pktlen, error, i, nssid;
2560         bus_addr_t physaddr;
2561
2562         desc = &ring->desc[ring->cur];
2563         data = &ring->data[ring->cur];
2564
2565         data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2566         if (data->m == NULL) {
2567                 device_printf(sc->sc_dev,
2568                     "could not allocate mbuf for scan command\n");
2569                 return ENOMEM;
2570         }
2571
2572         cmd = mtod(data->m, struct wpi_tx_cmd *);
2573         cmd->code = WPI_CMD_SCAN;
2574         cmd->flags = 0;
2575         cmd->qid = ring->qid;
2576         cmd->idx = ring->cur;
2577
2578         hdr = (struct wpi_scan_hdr *)cmd->data;
2579         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2580
2581         /*
2582          * Move to the next channel if no packets are received within 5 msecs
2583          * after sending the probe request (this helps to reduce the duration
2584          * of active scans).
2585          */
2586         hdr->quiet = htole16(5);
2587         hdr->threshold = htole16(1);
2588
2589         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2590                 /* send probe requests at 6Mbps */
2591                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2592
2593                 /* Enable crc checking */
2594                 hdr->promotion = htole16(1);
2595         } else {
2596                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2597                 /* send probe requests at 1Mbps */
2598                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2599         }
2600         hdr->tx.id = WPI_ID_BROADCAST;
2601         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2602         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2603
2604         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2605         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2606         for (i = 0; i < nssid; i++) {
2607                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2608                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2609                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2610                     hdr->scan_essids[i].esslen);
2611 #ifdef WPI_DEBUG
2612                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2613                         kprintf("Scanning Essid: ");
2614                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2615                             hdr->scan_essids[i].esslen);
2616                         kprintf("\n");
2617                 }
2618 #endif
2619         }
2620
2621         /*
2622          * Build a probe request frame.  Most of the following code is a
2623          * copy & paste of what is done in net80211.
2624          */
2625         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2626         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2627                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2628         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2629         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2630         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2631         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2632         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2633         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2634
2635         frm = (uint8_t *)(wh + 1);
2636
2637         /* add essid IE, the hardware will fill this in for us */
2638         *frm++ = IEEE80211_ELEMID_SSID;
2639         *frm++ = 0;
2640
2641         mode = ieee80211_chan2mode(ic->ic_curchan);
2642         rs = &ic->ic_sup_rates[mode];
2643
2644         /* add supported rates IE */
2645         *frm++ = IEEE80211_ELEMID_RATES;
2646         nrates = rs->rs_nrates;
2647         if (nrates > IEEE80211_RATE_SIZE)
2648                 nrates = IEEE80211_RATE_SIZE;
2649         *frm++ = nrates;
2650         memcpy(frm, rs->rs_rates, nrates);
2651         frm += nrates;
2652
2653         /* add supported xrates IE */
2654         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2655                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2656                 *frm++ = IEEE80211_ELEMID_XRATES;
2657                 *frm++ = nrates;
2658                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2659                 frm += nrates;
2660         }
2661
2662         /* setup length of probe request */
2663         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2664
2665         /*
2666          * Construct information about the channel that we
2667          * want to scan. The firmware expects this to be directly
2668          * after the scan probe request
2669          */
2670         c = ic->ic_curchan;
2671         chan = (struct wpi_scan_chan *)frm;
2672         chan->chan = ieee80211_chan2ieee(ic, c);
2673         chan->flags = 0;
2674         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2675                 chan->flags |= WPI_CHAN_ACTIVE;
2676                 if (nssid != 0)
2677                         chan->flags |= WPI_CHAN_DIRECT;
2678         }
2679         chan->gain_dsp = 0x6e; /* Default level */
2680         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2681                 chan->active = htole16(10);
2682                 chan->passive = htole16(ss->ss_maxdwell);
2683                 chan->gain_radio = 0x3b;
2684         } else {
2685                 chan->active = htole16(20);
2686                 chan->passive = htole16(ss->ss_maxdwell);
2687                 chan->gain_radio = 0x28;
2688         }
2689
2690         DPRINTFN(WPI_DEBUG_SCANNING,
2691             ("Scanning %u Passive: %d\n",
2692              chan->chan,
2693              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2694
2695         hdr->nchan++;
2696         chan++;
2697
2698         frm += sizeof (struct wpi_scan_chan);
2699 #if 0
2700         // XXX All Channels....
2701         for (c  = &ic->ic_channels[1];
2702              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2703                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2704                         continue;
2705
2706                 chan->chan = ieee80211_chan2ieee(ic, c);
2707                 chan->flags = 0;
2708                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2709                     chan->flags |= WPI_CHAN_ACTIVE;
2710                     if (ic->ic_des_ssid[0].len != 0)
2711                         chan->flags |= WPI_CHAN_DIRECT;
2712                 }
2713                 chan->gain_dsp = 0x6e; /* Default level */
2714                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2715                         chan->active = htole16(10);
2716                         chan->passive = htole16(110);
2717                         chan->gain_radio = 0x3b;
2718                 } else {
2719                         chan->active = htole16(20);
2720                         chan->passive = htole16(120);
2721                         chan->gain_radio = 0x28;
2722                 }
2723
2724                 DPRINTFN(WPI_DEBUG_SCANNING,
2725                          ("Scanning %u Passive: %d\n",
2726                           chan->chan,
2727                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2728
2729                 hdr->nchan++;
2730                 chan++;
2731
2732                 frm += sizeof (struct wpi_scan_chan);
2733         }
2734 #endif
2735
2736         hdr->len = htole16(frm - (uint8_t *)hdr);
2737         pktlen = frm - (uint8_t *)cmd;
2738
2739         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2740             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2741         if (error != 0) {
2742                 device_printf(sc->sc_dev, "could not map scan command\n");
2743                 m_freem(data->m);
2744                 data->m = NULL;
2745                 return error;
2746         }
2747
2748         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2749         desc->segs[0].addr = htole32(physaddr);
2750         desc->segs[0].len  = htole32(pktlen);
2751
2752         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2753             BUS_DMASYNC_PREWRITE);
2754         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2755
2756         /* kick cmd ring */
2757         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2758         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2759
2760         sc->sc_scan_timer = 5;
2761         return 0;       /* will be notified async. of failure/success */
2762 }
2763
2764 /**
2765  * Configure the card to listen to a particular channel, this transisions the
2766  * card in to being able to receive frames from remote devices.
2767  */
2768 static int
2769 wpi_config(struct wpi_softc *sc)
2770 {
2771         struct ifnet *ifp = sc->sc_ifp;
2772         struct ieee80211com *ic = ifp->if_l2com;
2773         struct wpi_power power;
2774         struct wpi_bluetooth bluetooth;
2775         struct wpi_node_info node;
2776         int error;
2777
2778         /* set power mode */
2779         memset(&power, 0, sizeof power);
2780         power.flags = htole32(WPI_POWER_CAM|0x8);
2781         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2782         if (error != 0) {
2783                 device_printf(sc->sc_dev, "could not set power mode\n");
2784                 return error;
2785         }
2786
2787         /* configure bluetooth coexistence */
2788         memset(&bluetooth, 0, sizeof bluetooth);
2789         bluetooth.flags = 3;
2790         bluetooth.lead = 0xaa;
2791         bluetooth.kill = 1;
2792         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2793             0);
2794         if (error != 0) {
2795                 device_printf(sc->sc_dev,
2796                     "could not configure bluetooth coexistence\n");
2797                 return error;
2798         }
2799
2800         /* configure adapter */
2801         memset(&sc->config, 0, sizeof (struct wpi_config));
2802         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2803         /*set default channel*/
2804         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2805         sc->config.flags = htole32(WPI_CONFIG_TSF);
2806         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2807                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2808                     WPI_CONFIG_24GHZ);
2809         }
2810         sc->config.filter = 0;
2811         switch (ic->ic_opmode) {
2812         case IEEE80211_M_STA:
2813         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2814                 sc->config.mode = WPI_MODE_STA;
2815                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2816                 break;
2817         case IEEE80211_M_IBSS:
2818         case IEEE80211_M_AHDEMO:
2819                 sc->config.mode = WPI_MODE_IBSS;
2820                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2821                                              WPI_FILTER_MULTICAST);
2822                 break;
2823         case IEEE80211_M_HOSTAP:
2824                 sc->config.mode = WPI_MODE_HOSTAP;
2825                 break;
2826         case IEEE80211_M_MONITOR:
2827                 sc->config.mode = WPI_MODE_MONITOR;
2828                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2829                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2830                 break;
2831         default:
2832                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2833                 return EINVAL;
2834         }
2835         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2836         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2837         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2838                 sizeof (struct wpi_config), 0);
2839         if (error != 0) {
2840                 device_printf(sc->sc_dev, "configure command failed\n");
2841                 return error;
2842         }
2843
2844         /* configuration has changed, set Tx power accordingly */
2845         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2846             device_printf(sc->sc_dev, "could not set Tx power\n");
2847             return error;
2848         }
2849
2850         /* add broadcast node */
2851         memset(&node, 0, sizeof node);
2852         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2853         node.id = WPI_ID_BROADCAST;
2854         node.rate = wpi_plcp_signal(2);
2855         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2856         if (error != 0) {
2857                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2858                 return error;
2859         }
2860
2861         /* Setup rate scalling */
2862         error = wpi_mrr_setup(sc);
2863         if (error != 0) {
2864                 device_printf(sc->sc_dev, "could not setup MRR\n");
2865                 return error;
2866         }
2867
2868         return 0;
2869 }
2870
2871 static void
2872 wpi_stop_master(struct wpi_softc *sc)
2873 {
2874         uint32_t tmp;
2875         int ntries;
2876
2877         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2878
2879         tmp = WPI_READ(sc, WPI_RESET);
2880         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2881
2882         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2883         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2884                 return; /* already asleep */
2885
2886         for (ntries = 0; ntries < 100; ntries++) {
2887                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2888                         break;
2889                 DELAY(10);
2890         }
2891         if (ntries == 100) {
2892                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2893         }
2894 }
2895
2896 static int
2897 wpi_power_up(struct wpi_softc *sc)
2898 {
2899         uint32_t tmp;
2900         int ntries;
2901
2902         wpi_mem_lock(sc);
2903         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2904         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2905         wpi_mem_unlock(sc);
2906
2907         for (ntries = 0; ntries < 5000; ntries++) {
2908                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2909                         break;
2910                 DELAY(10);
2911         }
2912         if (ntries == 5000) {
2913                 device_printf(sc->sc_dev,
2914                     "timeout waiting for NIC to power up\n");
2915                 return ETIMEDOUT;
2916         }
2917         return 0;
2918 }
2919
2920 static int
2921 wpi_reset(struct wpi_softc *sc)
2922 {
2923         uint32_t tmp;
2924         int ntries;
2925
2926         DPRINTFN(WPI_DEBUG_HW,
2927             ("Resetting the card - clearing any uploaded firmware\n"));
2928
2929         /* clear any pending interrupts */
2930         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2931
2932         tmp = WPI_READ(sc, WPI_PLL_CTL);
2933         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2934
2935         tmp = WPI_READ(sc, WPI_CHICKEN);
2936         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2937
2938         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2939         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2940
2941         /* wait for clock stabilization */
2942         for (ntries = 0; ntries < 25000; ntries++) {
2943                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2944                         break;
2945                 DELAY(10);
2946         }
2947         if (ntries == 25000) {
2948                 device_printf(sc->sc_dev,
2949                     "timeout waiting for clock stabilization\n");
2950                 return ETIMEDOUT;
2951         }
2952
2953         /* initialize EEPROM */
2954         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2955
2956         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2957                 device_printf(sc->sc_dev, "EEPROM not found\n");
2958                 return EIO;
2959         }
2960         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2961
2962         return 0;
2963 }
2964
2965 static void
2966 wpi_hw_config(struct wpi_softc *sc)
2967 {
2968         uint32_t rev, hw;
2969
2970         /* voodoo from the Linux "driver".. */
2971         hw = WPI_READ(sc, WPI_HWCONFIG);
2972
2973         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2974         if ((rev & 0xc0) == 0x40)
2975                 hw |= WPI_HW_ALM_MB;
2976         else if (!(rev & 0x80))
2977                 hw |= WPI_HW_ALM_MM;
2978
2979         if (sc->cap == 0x80)
2980                 hw |= WPI_HW_SKU_MRC;
2981
2982         hw &= ~WPI_HW_REV_D;
2983         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2984                 hw |= WPI_HW_REV_D;
2985
2986         if (sc->type > 1)
2987                 hw |= WPI_HW_TYPE_B;
2988
2989         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2990 }
2991
2992 static void
2993 wpi_rfkill_resume(struct wpi_softc *sc)
2994 {
2995         struct ifnet *ifp = sc->sc_ifp;
2996         struct ieee80211com *ic = ifp->if_l2com;
2997         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2998         int ntries;
2999
3000         /* enable firmware again */
3001         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3002         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3003
3004         /* wait for thermal sensors to calibrate */
3005         for (ntries = 0; ntries < 1000; ntries++) {
3006                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3007                         break;
3008                 DELAY(10);
3009         }
3010
3011         if (ntries == 1000) {
3012                 device_printf(sc->sc_dev,
3013                     "timeout waiting for thermal calibration\n");
3014                 return;
3015         }
3016         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3017
3018         if (wpi_config(sc) != 0) {
3019                 device_printf(sc->sc_dev, "device config failed\n");
3020                 return;
3021         }
3022
3023         ifq_clr_oactive(&ifp->if_snd);
3024         ifp->if_flags |= IFF_RUNNING;
3025         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3026
3027         if (vap != NULL) {
3028                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3029                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3030                                 ieee80211_beacon_miss(ic);
3031                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3032                         } else
3033                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3034                 } else {
3035                         ieee80211_scan_next(vap);
3036                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3037                 }
3038         }
3039
3040         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3041 }
3042
3043 static void
3044 wpi_init_locked(struct wpi_softc *sc, int force)
3045 {
3046         struct ifnet *ifp = sc->sc_ifp;
3047         uint32_t tmp;
3048         int ntries, qid;
3049
3050         wpi_stop_locked(sc);
3051         (void)wpi_reset(sc);
3052
3053         wpi_mem_lock(sc);
3054         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3055         DELAY(20);
3056         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3057         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3058         wpi_mem_unlock(sc);
3059
3060         (void)wpi_power_up(sc);
3061         wpi_hw_config(sc);
3062
3063         /* init Rx ring */
3064         wpi_mem_lock(sc);
3065         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3066         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3067             offsetof(struct wpi_shared, next));
3068         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3069         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3070         wpi_mem_unlock(sc);
3071
3072         /* init Tx rings */
3073         wpi_mem_lock(sc);
3074         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3075         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3076         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3077         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3078         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3079         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3080         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3081
3082         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3083         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3084
3085         for (qid = 0; qid < 6; qid++) {
3086                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3087                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3088                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3089         }
3090         wpi_mem_unlock(sc);
3091
3092         /* clear "radio off" and "disable command" bits (reversed logic) */
3093         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3094         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3095         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3096
3097         /* clear any pending interrupts */
3098         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3099
3100         /* enable interrupts */
3101         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3102
3103         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3104         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3105
3106         if ((wpi_load_firmware(sc)) != 0) {
3107             device_printf(sc->sc_dev,
3108                 "A problem occurred loading the firmware to the driver\n");
3109             return;
3110         }
3111
3112         /* At this point the firmware is up and running. If the hardware
3113          * RF switch is turned off thermal calibration will fail, though
3114          * the card is still happy to continue to accept commands, catch
3115          * this case and schedule a task to watch for it to be turned on.
3116          */
3117         wpi_mem_lock(sc);
3118         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3119         wpi_mem_unlock(sc);
3120
3121         if (!(tmp & 0x1)) {
3122                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3123                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3124                 goto out;
3125         }
3126
3127         /* wait for thermal sensors to calibrate */
3128         for (ntries = 0; ntries < 1000; ntries++) {
3129                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3130                         break;
3131                 DELAY(10);
3132         }
3133
3134         if (ntries == 1000) {
3135                 device_printf(sc->sc_dev,
3136                     "timeout waiting for thermal sensors calibration\n");
3137                 return;
3138         }
3139         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3140
3141         if (wpi_config(sc) != 0) {
3142                 device_printf(sc->sc_dev, "device config failed\n");
3143                 return;
3144         }
3145
3146         ifq_clr_oactive(&ifp->if_snd);
3147         ifp->if_flags |= IFF_RUNNING;
3148 out:
3149         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3150 }
3151
3152 static void
3153 wpi_init(void *arg)
3154 {
3155         struct wpi_softc *sc = arg;
3156         struct ifnet *ifp = sc->sc_ifp;
3157         struct ieee80211com *ic = ifp->if_l2com;
3158
3159         wpi_init_locked(sc, 0);
3160
3161         if (ifp->if_flags & IFF_RUNNING)
3162                 ieee80211_start_all(ic);                /* start all vaps */
3163 }
3164
3165 static void
3166 wpi_stop_locked(struct wpi_softc *sc)
3167 {
3168         struct ifnet *ifp = sc->sc_ifp;
3169         uint32_t tmp;
3170         int ac;
3171
3172         sc->sc_tx_timer = 0;
3173         sc->sc_scan_timer = 0;
3174         ifp->if_flags &= ~IFF_RUNNING;
3175         ifq_clr_oactive(&ifp->if_snd);
3176         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3177         callout_stop(&sc->watchdog_to_callout);
3178         callout_stop(&sc->calib_to_callout);
3179
3180
3181         /* disable interrupts */
3182         WPI_WRITE(sc, WPI_MASK, 0);
3183         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3184         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3185         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3186
3187         wpi_mem_lock(sc);
3188         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3189         wpi_mem_unlock(sc);
3190
3191         /* reset all Tx rings */
3192         for (ac = 0; ac < 4; ac++)
3193                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3194         wpi_reset_tx_ring(sc, &sc->cmdq);
3195
3196         /* reset Rx ring */
3197         wpi_reset_rx_ring(sc, &sc->rxq);
3198
3199         wpi_mem_lock(sc);
3200         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3201         wpi_mem_unlock(sc);
3202
3203         DELAY(5);
3204
3205         wpi_stop_master(sc);
3206
3207         tmp = WPI_READ(sc, WPI_RESET);
3208         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3209         sc->flags &= ~WPI_FLAG_BUSY;
3210 }
3211
3212 static void
3213 wpi_stop(struct wpi_softc *sc)
3214 {
3215         wpi_stop_locked(sc);
3216 }
3217
3218 static void
3219 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3220 {
3221         /* XXX move */
3222         ieee80211_ratectl_node_init(ni);
3223 }
3224
3225 static void
3226 wpi_calib_timeout_callout(void *arg)
3227 {
3228         struct wpi_softc *sc = arg;
3229         struct ifnet *ifp = sc->sc_ifp;
3230         struct ieee80211com *ic = ifp->if_l2com;
3231         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3232         int temp;
3233
3234         if (vap->iv_state != IEEE80211_S_RUN)
3235                 return;
3236
3237         /* update sensor data */
3238         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3239         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3240
3241         wpi_power_calibration(sc, temp);
3242
3243         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3244 }
3245
3246 /*
3247  * This function is called periodically (every 60 seconds) to adjust output
3248  * power to temperature changes.
3249  */
3250 static void
3251 wpi_power_calibration(struct wpi_softc *sc, int temp)
3252 {
3253         struct ifnet *ifp = sc->sc_ifp;
3254         struct ieee80211com *ic = ifp->if_l2com;
3255         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3256
3257         /* sanity-check read value */
3258         if (temp < -260 || temp > 25) {
3259                 /* this can't be correct, ignore */
3260                 DPRINTFN(WPI_DEBUG_TEMP,
3261                     ("out-of-range temperature reported: %d\n", temp));
3262                 return;
3263         }
3264
3265         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3266
3267         /* adjust Tx power if need be */
3268         if (abs(temp - sc->temp) <= 6)
3269                 return;
3270
3271         sc->temp = temp;
3272
3273         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3274                 /* just warn, too bad for the automatic calibration... */
3275                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3276         }
3277 }
3278
3279 /**
3280  * Read the eeprom to find out what channels are valid for the given
3281  * band and update net80211 with what we find.
3282  */
3283 static void
3284 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3285 {
3286         struct ifnet *ifp = sc->sc_ifp;
3287         struct ieee80211com *ic = ifp->if_l2com;
3288         const struct wpi_chan_band *band = &wpi_bands[n];
3289         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3290         struct ieee80211_channel *c;
3291         int chan, i, passive;
3292
3293         wpi_read_prom_data(sc, band->addr, channels,
3294             band->nchan * sizeof (struct wpi_eeprom_chan));
3295
3296         for (i = 0; i < band->nchan; i++) {
3297                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3298                         DPRINTFN(WPI_DEBUG_HW,
3299                             ("Channel Not Valid: %d, band %d\n",
3300                              band->chan[i],n));
3301                         continue;
3302                 }
3303
3304                 passive = 0;
3305                 chan = band->chan[i];
3306                 c = &ic->ic_channels[ic->ic_nchans++];
3307
3308                 /* is active scan allowed on this channel? */
3309                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3310                         passive = IEEE80211_CHAN_PASSIVE;
3311                 }
3312
3313                 if (n == 0) {   /* 2GHz band */
3314                         c->ic_ieee = chan;
3315                         c->ic_freq = ieee80211_ieee2mhz(chan,
3316                             IEEE80211_CHAN_2GHZ);
3317                         c->ic_flags = IEEE80211_CHAN_B | passive;
3318
3319                         c = &ic->ic_channels[ic->ic_nchans++];
3320                         c->ic_ieee = chan;
3321                         c->ic_freq = ieee80211_ieee2mhz(chan,
3322                             IEEE80211_CHAN_2GHZ);
3323                         c->ic_flags = IEEE80211_CHAN_G | passive;
3324
3325                 } else {        /* 5GHz band */
3326                         /*
3327                          * Some 3945ABG adapters support channels 7, 8, 11
3328                          * and 12 in the 2GHz *and* 5GHz bands.
3329                          * Because of limitations in our net80211(9) stack,
3330                          * we can't support these channels in 5GHz band.
3331                          * XXX not true; just need to map to proper frequency
3332                          */
3333                         if (chan <= 14)
3334                                 continue;
3335
3336                         c->ic_ieee = chan;
3337                         c->ic_freq = ieee80211_ieee2mhz(chan,
3338                             IEEE80211_CHAN_5GHZ);
3339                         c->ic_flags = IEEE80211_CHAN_A | passive;
3340                 }
3341
3342                 /* save maximum allowed power for this channel */
3343                 sc->maxpwr[chan] = channels[i].maxpwr;
3344
3345 #if 0
3346                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3347                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3348                 //ic->ic_channels[chan].ic_minpower...
3349                 //ic->ic_channels[chan].ic_maxregtxpower...
3350 #endif
3351
3352                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3353                     " passive=%d, offset %d\n", chan, c->ic_freq,
3354                     channels[i].flags, sc->maxpwr[chan],
3355                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3356                     ic->ic_nchans));
3357         }
3358 }
3359
3360 static void
3361 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3362 {
3363         struct wpi_power_group *group = &sc->groups[n];
3364         struct wpi_eeprom_group rgroup;
3365         int i;
3366
3367         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3368             sizeof rgroup);
3369
3370         /* save power group information */
3371         group->chan   = rgroup.chan;
3372         group->maxpwr = rgroup.maxpwr;
3373         /* temperature at which the samples were taken */
3374         group->temp   = (int16_t)le16toh(rgroup.temp);
3375
3376         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3377                     group->chan, group->maxpwr, group->temp));
3378
3379         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3380                 group->samples[i].index = rgroup.samples[i].index;
3381                 group->samples[i].power = rgroup.samples[i].power;
3382
3383                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3384                             group->samples[i].index, group->samples[i].power));
3385         }
3386 }
3387
3388 /*
3389  * Update Tx power to match what is defined for channel `c'.
3390  */
3391 static int
3392 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3393 {
3394         struct ifnet *ifp = sc->sc_ifp;
3395         struct ieee80211com *ic = ifp->if_l2com;
3396         struct wpi_power_group *group;
3397         struct wpi_cmd_txpower txpower;
3398         u_int chan;
3399         int i;
3400
3401         /* get channel number */
3402         chan = ieee80211_chan2ieee(ic, c);
3403
3404         /* find the power group to which this channel belongs */
3405         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3406                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3407                         if (chan <= group->chan)
3408                                 break;
3409         } else
3410                 group = &sc->groups[0];
3411
3412         memset(&txpower, 0, sizeof txpower);
3413         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3414         txpower.channel = htole16(chan);
3415
3416         /* set Tx power for all OFDM and CCK rates */
3417         for (i = 0; i <= 11 ; i++) {
3418                 /* retrieve Tx power for this channel/rate combination */
3419                 int idx = wpi_get_power_index(sc, group, c,
3420                     wpi_ridx_to_rate[i]);
3421
3422                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3423
3424                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3425                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3426                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3427                 } else {
3428                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3429                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3430                 }
3431                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3432                             chan, wpi_ridx_to_rate[i], idx));
3433         }
3434
3435         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3436 }
3437
3438 /*
3439  * Determine Tx power index for a given channel/rate combination.
3440  * This takes into account the regulatory information from EEPROM and the
3441  * current temperature.
3442  */
3443 static int
3444 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3445     struct ieee80211_channel *c, int rate)
3446 {
3447 /* fixed-point arithmetic division using a n-bit fractional part */
3448 #define fdivround(a, b, n)      \
3449         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3450
3451 /* linear interpolation */
3452 #define interpolate(x, x1, y1, x2, y2, n)       \
3453         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3454
3455         struct ifnet *ifp = sc->sc_ifp;
3456         struct ieee80211com *ic = ifp->if_l2com;
3457         struct wpi_power_sample *sample;
3458         int pwr, idx;
3459         u_int chan;
3460
3461         /* get channel number */
3462         chan = ieee80211_chan2ieee(ic, c);
3463
3464         /* default power is group's maximum power - 3dB */
3465         pwr = group->maxpwr / 2;
3466
3467         /* decrease power for highest OFDM rates to reduce distortion */
3468         switch (rate) {
3469                 case 72:        /* 36Mb/s */
3470                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3471                         break;
3472                 case 96:        /* 48Mb/s */
3473                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3474                         break;
3475                 case 108:       /* 54Mb/s */
3476                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3477                         break;
3478         }
3479
3480         /* never exceed channel's maximum allowed Tx power */
3481         pwr = min(pwr, sc->maxpwr[chan]);
3482
3483         /* retrieve power index into gain tables from samples */
3484         for (sample = group->samples; sample < &group->samples[3]; sample++)
3485                 if (pwr > sample[1].power)
3486                         break;
3487         /* fixed-point linear interpolation using a 19-bit fractional part */
3488         idx = interpolate(pwr, sample[0].power, sample[0].index,
3489             sample[1].power, sample[1].index, 19);
3490
3491         /*
3492          *  Adjust power index based on current temperature
3493          *      - if colder than factory-calibrated: decreate output power
3494          *      - if warmer than factory-calibrated: increase output power
3495          */
3496         idx -= (sc->temp - group->temp) * 11 / 100;
3497
3498         /* decrease power for CCK rates (-5dB) */
3499         if (!WPI_RATE_IS_OFDM(rate))
3500                 idx += 10;
3501
3502         /* keep power index in a valid range */
3503         if (idx < 0)
3504                 return 0;
3505         if (idx > WPI_MAX_PWR_INDEX)
3506                 return WPI_MAX_PWR_INDEX;
3507         return idx;
3508
3509 #undef interpolate
3510 #undef fdivround
3511 }
3512
3513 /**
3514  * Called by net80211 framework to indicate that a scan
3515  * is starting. This function doesn't actually do the scan,
3516  * wpi_scan_curchan starts things off. This function is more
3517  * of an early warning from the framework we should get ready
3518  * for the scan.
3519  */
3520 static void
3521 wpi_scan_start(struct ieee80211com *ic)
3522 {
3523         struct ifnet *ifp = ic->ic_ifp;
3524         struct wpi_softc *sc = ifp->if_softc;
3525
3526         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3527 }
3528
3529 /**
3530  * Called by the net80211 framework, indicates that the
3531  * scan has ended. If there is a scan in progress on the card
3532  * then it should be aborted.
3533  */
3534 static void
3535 wpi_scan_end(struct ieee80211com *ic)
3536 {
3537         /* XXX ignore */
3538 }
3539
3540 /**
3541  * Called by the net80211 framework to indicate to the driver
3542  * that the channel should be changed
3543  */
3544 static void
3545 wpi_set_channel(struct ieee80211com *ic)
3546 {
3547         struct ifnet *ifp = ic->ic_ifp;
3548         struct wpi_softc *sc = ifp->if_softc;
3549         int error;
3550
3551         /*
3552          * Only need to set the channel in Monitor mode. AP scanning and auth
3553          * are already taken care of by their respective firmware commands.
3554          */
3555         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3556                 error = wpi_config(sc);
3557                 if (error != 0)
3558                         device_printf(sc->sc_dev,
3559                             "error %d settting channel\n", error);
3560         }
3561 }
3562
3563 /**
3564  * Called by net80211 to indicate that we need to scan the current
3565  * channel. The channel is previously be set via the wpi_set_channel
3566  * callback.
3567  */
3568 static void
3569 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3570 {
3571         struct ieee80211vap *vap = ss->ss_vap;
3572         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3573         struct wpi_softc *sc = ifp->if_softc;
3574
3575         if (wpi_scan(sc))
3576                 ieee80211_cancel_scan(vap);
3577 }
3578
3579 /**
3580  * Called by the net80211 framework to indicate
3581  * the minimum dwell time has been met, terminate the scan.
3582  * We don't actually terminate the scan as the firmware will notify
3583  * us when it's finished and we have no way to interrupt it.
3584  */
3585 static void
3586 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3587 {
3588         /* NB: don't try to abort scan; wait for firmware to finish */
3589 }
3590
3591 static void
3592 wpi_hwreset_task(void *arg, int pending)
3593 {
3594         struct wpi_softc *sc;
3595
3596         wlan_serialize_enter();
3597         sc = arg;
3598         wpi_init_locked(sc, 0);
3599         wlan_serialize_exit();
3600 }
3601
3602 static void
3603 wpi_rfreset_task(void *arg, int pending)
3604 {
3605         struct wpi_softc *sc;
3606
3607         wlan_serialize_enter();
3608         sc = arg;
3609         wpi_rfkill_resume(sc);
3610         wlan_serialize_exit();
3611 }
3612
3613 /*
3614  * Allocate DMA-safe memory for firmware transfer.
3615  */
3616 static int
3617 wpi_alloc_fwmem(struct wpi_softc *sc)
3618 {
3619         /* allocate enough contiguous space to store text and data */
3620         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3621             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3622             BUS_DMA_NOWAIT);
3623 }
3624
3625 static void
3626 wpi_free_fwmem(struct wpi_softc *sc)
3627 {
3628         wpi_dma_contig_free(&sc->fw_dma);
3629 }
3630
3631 /**
3632  * Called every second, wpi_watchdog_callout used by the watch dog timer
3633  * to check that the card is still alive
3634  */
3635 static void
3636 wpi_watchdog_callout(void *arg)
3637 {
3638         struct wpi_softc *sc;
3639         struct ifnet *ifp;
3640         struct ieee80211com *ic;
3641         uint32_t tmp;
3642
3643         wlan_serialize_enter();
3644         sc = arg;
3645         ifp = sc->sc_ifp;
3646         ic = ifp->if_l2com;
3647         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3648
3649         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3650                 /* No need to lock firmware memory */
3651                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3652
3653                 if ((tmp & 0x1) == 0) {
3654                         /* Radio kill switch is still off */
3655                         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3656                         wlan_serialize_exit();
3657                         return;
3658                 }
3659
3660                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3661                 ieee80211_runtask(ic, &sc->sc_radiotask);
3662                 wlan_serialize_exit();
3663                 return;
3664         }
3665
3666         if (sc->sc_tx_timer > 0) {
3667                 if (--sc->sc_tx_timer == 0) {
3668                         device_printf(sc->sc_dev,"device timeout\n");
3669                         IFNET_STAT_INC(ifp, oerrors, 1);
3670                         wlan_serialize_exit();
3671                         ieee80211_runtask(ic, &sc->sc_restarttask);
3672                         wlan_serialize_enter();
3673                 }
3674         }
3675         if (sc->sc_scan_timer > 0) {
3676                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3677                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3678                         device_printf(sc->sc_dev,"scan timeout\n");
3679                         ieee80211_cancel_scan(vap);
3680                         wlan_serialize_exit();
3681                         ieee80211_runtask(ic, &sc->sc_restarttask);
3682                         wlan_serialize_enter();
3683                 }
3684         }
3685
3686         if (ifp->if_flags & IFF_RUNNING)
3687                 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3688
3689         wlan_serialize_exit();
3690 }
3691
3692 #ifdef WPI_DEBUG
3693 static const char *wpi_cmd_str(int cmd)
3694 {
3695         switch (cmd) {
3696         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3697         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3698         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3699         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3700         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3701         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3702         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3703         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3704         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3705         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3706         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3707         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3708         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3709         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3710
3711         default:
3712                 KASSERT(1, ("Unknown Command: %d", cmd));
3713                 return "UNKNOWN CMD";   /* Make the compiler happy */
3714         }
3715 }
3716 #endif
3717
3718 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3719 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3720 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3721 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);