1dc67e663f8e8e3fc97c22408aa2432342aae3f0
[dragonfly.git] / sys / kern / usched_bsd4.c
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/queue.h>
37 #include <sys/proc.h>
38 #include <sys/rtprio.h>
39 #include <sys/uio.h>
40 #include <sys/sysctl.h>
41 #include <sys/resourcevar.h>
42 #include <sys/spinlock.h>
43 #include <sys/cpu_topology.h>
44 #include <sys/thread2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/mplock2.h>
47
48 #include <sys/ktr.h>
49
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52
53 /*
54  * Priorities.  Note that with 32 run queues per scheduler each queue
55  * represents four priority levels.
56  */
57
58 #define MAXPRI                  128
59 #define PRIMASK                 (MAXPRI - 1)
60 #define PRIBASE_REALTIME        0
61 #define PRIBASE_NORMAL          MAXPRI
62 #define PRIBASE_IDLE            (MAXPRI * 2)
63 #define PRIBASE_THREAD          (MAXPRI * 3)
64 #define PRIBASE_NULL            (MAXPRI * 4)
65
66 #define NQS     32                      /* 32 run queues. */
67 #define PPQ     (MAXPRI / NQS)          /* priorities per queue */
68 #define PPQMASK (PPQ - 1)
69
70 /*
71  * NICEPPQ      - number of nice units per priority queue
72  *
73  * ESTCPUPPQ    - number of estcpu units per priority queue
74  * ESTCPUMAX    - number of estcpu units
75  */
76 #define NICEPPQ         2
77 #define ESTCPUPPQ       512
78 #define ESTCPUMAX       (ESTCPUPPQ * NQS)
79 #define BATCHMAX        (ESTCPUFREQ * 30)
80 #define PRIO_RANGE      (PRIO_MAX - PRIO_MIN + 1)
81
82 #define ESTCPULIM(v)    min((v), ESTCPUMAX)
83
84 TAILQ_HEAD(rq, lwp);
85
86 #define lwp_priority    lwp_usdata.bsd4.priority
87 #define lwp_rqindex     lwp_usdata.bsd4.rqindex
88 #define lwp_estcpu      lwp_usdata.bsd4.estcpu
89 #define lwp_batch       lwp_usdata.bsd4.batch
90 #define lwp_rqtype      lwp_usdata.bsd4.rqtype
91
92 static void bsd4_acquire_curproc(struct lwp *lp);
93 static void bsd4_release_curproc(struct lwp *lp);
94 static void bsd4_select_curproc(globaldata_t gd);
95 static void bsd4_setrunqueue(struct lwp *lp);
96 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
97                                 sysclock_t cpstamp);
98 static void bsd4_recalculate_estcpu(struct lwp *lp);
99 static void bsd4_resetpriority(struct lwp *lp);
100 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
101 static void bsd4_exiting(struct lwp *lp, struct proc *);
102 static void bsd4_uload_update(struct lwp *lp);
103 static void bsd4_yield(struct lwp *lp);
104
105 #ifdef SMP
106 static void bsd4_need_user_resched_remote(void *dummy);
107 static int bsd4_batchy_looser_pri_test(struct lwp* lp);
108 static struct lwp *bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp);
109 static void bsd4_kick_helper(struct lwp *lp);
110 #endif
111 static struct lwp *bsd4_chooseproc_locked(struct lwp *chklp);
112 static void bsd4_remrunqueue_locked(struct lwp *lp);
113 static void bsd4_setrunqueue_locked(struct lwp *lp);
114
115 struct usched usched_bsd4 = {
116         { NULL },
117         "bsd4", "Original DragonFly Scheduler",
118         NULL,                   /* default registration */
119         NULL,                   /* default deregistration */
120         bsd4_acquire_curproc,
121         bsd4_release_curproc,
122         bsd4_setrunqueue,
123         bsd4_schedulerclock,
124         bsd4_recalculate_estcpu,
125         bsd4_resetpriority,
126         bsd4_forking,
127         bsd4_exiting,
128         bsd4_uload_update,
129         NULL,                   /* setcpumask not supported */
130         bsd4_yield
131 };
132
133 struct usched_bsd4_pcpu {
134         struct thread   helper_thread;
135         short           rrcount;
136         short           upri;
137         struct lwp      *uschedcp;
138         struct lwp      *old_uschedcp;
139 #ifdef SMP
140         cpu_node_t      *cpunode;
141 #endif
142 };
143
144 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t;
145
146 /*
147  * We have NQS (32) run queues per scheduling class.  For the normal
148  * class, there are 128 priorities scaled onto these 32 queues.  New
149  * processes are added to the last entry in each queue, and processes
150  * are selected for running by taking them from the head and maintaining
151  * a simple FIFO arrangement.  Realtime and Idle priority processes have
152  * and explicit 0-31 priority which maps directly onto their class queue
153  * index.  When a queue has something in it, the corresponding bit is
154  * set in the queuebits variable, allowing a single read to determine
155  * the state of all 32 queues and then a ffs() to find the first busy
156  * queue.
157  */
158 static struct rq bsd4_queues[NQS];
159 static struct rq bsd4_rtqueues[NQS];
160 static struct rq bsd4_idqueues[NQS];
161 static u_int32_t bsd4_queuebits;
162 static u_int32_t bsd4_rtqueuebits;
163 static u_int32_t bsd4_idqueuebits;
164 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */
165 static cpumask_t bsd4_rdyprocmask;      /* ready to accept a user process */
166 static int       bsd4_runqcount;
167 #ifdef SMP
168 static volatile int bsd4_scancpu;
169 #endif
170 static struct spinlock bsd4_spin;
171 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
172 static struct sysctl_ctx_list usched_bsd4_sysctl_ctx;
173 static struct sysctl_oid *usched_bsd4_sysctl_tree;
174
175 /* Debug info exposed through debug.* sysctl */
176
177 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD,
178            &bsd4_runqcount, 0,
179            "Number of run queues");
180
181 static int usched_bsd4_debug = -1;
182 SYSCTL_INT(_debug, OID_AUTO, bsd4_scdebug, CTLFLAG_RW,
183            &usched_bsd4_debug, 0,
184            "Print debug information for this pid");
185
186 static int usched_bsd4_pid_debug = -1;
187 SYSCTL_INT(_debug, OID_AUTO, bsd4_pid_debug, CTLFLAG_RW,
188            &usched_bsd4_pid_debug, 0,
189            "Print KTR debug information for this pid");
190
191 /* Tunning usched_bsd4 - configurable through kern.usched_bsd4.* */
192 #ifdef SMP
193 static int usched_bsd4_smt = 0;
194 static int usched_bsd4_cache_coherent = 0;
195 static int usched_bsd4_upri_affinity = 16; /* 32 queues - half-way */
196 static int usched_bsd4_queue_checks = 5;
197 static int usched_bsd4_stick_to_level = 0;
198 static long usched_bsd4_kicks;
199 #endif
200 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
201 static int usched_bsd4_decay = 8;
202 static int usched_bsd4_batch_time = 10;
203
204 /* KTR debug printings */
205
206 KTR_INFO_MASTER_EXTERN(usched);
207
208 #if !defined(KTR_USCHED_BSD4)
209 #define KTR_USCHED_BSD4 KTR_ALL
210 #endif
211
212 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_urw, 0,
213     "USCHED_BSD4(bsd4_acquire_curproc in user_reseched_wanted "
214     "after release: pid %d, cpuid %d, curr_cpuid %d)",
215     pid_t pid, int cpuid, int curr);
216 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_before_loop, 0,
217     "USCHED_BSD4(bsd4_acquire_curproc before loop: pid %d, cpuid %d, "
218     "curr_cpuid %d)",
219     pid_t pid, int cpuid, int curr);
220 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_not, 0,
221     "USCHED_BSD4(bsd4_acquire_curproc couldn't acquire after "
222     "bsd4_setrunqueue: pid %d, cpuid %d, curr_lp pid %d, curr_cpuid %d)",
223     pid_t pid, int cpuid, pid_t curr_pid, int curr_cpuid);
224 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_switch, 0,
225     "USCHED_BSD4(bsd4_acquire_curproc after lwkt_switch: pid %d, "
226     "cpuid %d, curr_cpuid %d)",
227     pid_t pid, int cpuid, int curr);
228
229 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_release_curproc, 0,
230     "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
231     "cpuid %d, curr_cpuid %d)",
232     pid_t pid, int cpuid, int curr);
233
234 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_select_curproc, 0,
235     "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
236     "cpuid %d, old_pid %d, old_cpuid %d, curr_cpuid %d)",
237     pid_t pid, int cpuid, pid_t old_pid, int old_cpuid, int curr);
238
239 #ifdef SMP
240 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_false, 0,
241     "USCHED_BSD4(batchy_looser_pri_test false: pid %d, "
242     "cpuid %d, verify_mask %lu)",
243     pid_t pid, int cpuid, cpumask_t mask);
244 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_true, 0,
245     "USCHED_BSD4(batchy_looser_pri_test true: pid %d, "
246     "cpuid %d, verify_mask %lu)",
247     pid_t pid, int cpuid, cpumask_t mask);
248
249 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_smt, 0,
250     "USCHED_BSD4(bsd4_setrunqueue free cpus smt: pid %d, cpuid %d, "
251     "mask %lu, curr_cpuid %d)",
252     pid_t pid, int cpuid, cpumask_t mask, int curr);
253 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_non_smt, 0,
254     "USCHED_BSD4(bsd4_setrunqueue free cpus check non_smt: pid %d, "
255     "cpuid %d, mask %lu, curr_cpuid %d)",
256     pid_t pid, int cpuid, cpumask_t mask, int curr);
257 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_rc, 0,
258     "USCHED_BSD4(bsd4_setrunqueue running cpus check: pid %d, "
259     "cpuid %d, mask %lu, curr_cpuid %d)",
260     pid_t pid, int cpuid, cpumask_t mask, int curr);
261 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found, 0,
262     "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
263     "mask %lu, found_cpuid %d, curr_cpuid %d)",
264     pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
265 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_not_found, 0,
266     "USCHED_BSD4(bsd4_setrunqueue not found cpu: pid %d, cpuid %d, "
267     "try_cpuid %d, curr_cpuid %d)",
268     pid_t pid, int cpuid, int try_cpuid, int curr);
269 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found_best_cpuid, 0,
270     "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
271     "mask %lu, found_cpuid %d, curr_cpuid %d)",
272     pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
273 #endif
274
275 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc, 0,
276     "USCHED_BSD4(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
277     pid_t pid, int old_cpuid, int curr);
278 #ifdef SMP
279 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc, 0,
280     "USCHED_BSD4(chooseproc_cc: pid %d, old_cpuid %d, curr_cpuid %d)",
281     pid_t pid, int old_cpuid, int curr);
282 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_not_good, 0,
283     "USCHED_BSD4(chooseproc_cc not good: pid %d, old_cpumask %lu, "
284     "sibling_mask %lu, curr_cpumask %lu)",
285     pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
286 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_elected, 0,
287     "USCHED_BSD4(chooseproc_cc elected: pid %d, old_cpumask %lu, "
288     "sibling_mask %lu, curr_cpumask: %lu)",
289     pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
290
291 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process, 0,
292     "USCHED_BSD4(sched_thread %d no process scheduled: pid %d, old_cpuid %d)",
293     int id, pid_t pid, int cpuid);
294 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_process, 0,
295     "USCHED_BSD4(sched_thread %d process scheduled: pid %d, old_cpuid %d)",
296     int id, pid_t pid, int cpuid);
297 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process_found, 0,
298     "USCHED_BSD4(sched_thread %d no process found; tmpmask %lu)",
299     int id, cpumask_t tmpmask);
300 #endif
301
302 /*
303  * Initialize the run queues at boot time.
304  */
305 static void
306 bsd4_rqinit(void *dummy)
307 {
308         int i;
309
310         spin_init(&bsd4_spin);
311         for (i = 0; i < NQS; i++) {
312                 TAILQ_INIT(&bsd4_queues[i]);
313                 TAILQ_INIT(&bsd4_rtqueues[i]);
314                 TAILQ_INIT(&bsd4_idqueues[i]);
315         }
316         atomic_clear_cpumask(&bsd4_curprocmask, 1);
317 }
318 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, bsd4_rqinit, NULL)
319
320 /*
321  * BSD4_ACQUIRE_CURPROC
322  *
323  * This function is called when the kernel intends to return to userland.
324  * It is responsible for making the thread the current designated userland
325  * thread for this cpu, blocking if necessary.
326  *
327  * The kernel will not depress our LWKT priority until after we return,
328  * in case we have to shove over to another cpu.
329  *
330  * We must determine our thread's disposition before we switch away.  This
331  * is very sensitive code.
332  *
333  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
334  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
335  * occur, this function is called only under very controlled circumstances.
336  *
337  * MPSAFE
338  */
339 static void
340 bsd4_acquire_curproc(struct lwp *lp)
341 {
342         globaldata_t gd;
343         bsd4_pcpu_t dd;
344         thread_t td;
345 #if 0
346         struct lwp *olp;
347 #endif
348
349         /*
350          * Make sure we aren't sitting on a tsleep queue.
351          */
352         td = lp->lwp_thread;
353         crit_enter_quick(td);
354         if (td->td_flags & TDF_TSLEEPQ)
355                 tsleep_remove(td);
356         bsd4_recalculate_estcpu(lp);
357
358         /*
359          * If a reschedule was requested give another thread the
360          * driver's seat.
361          */
362         if (user_resched_wanted()) {
363                 clear_user_resched();
364                 bsd4_release_curproc(lp);
365
366                 KTR_COND_LOG(usched_bsd4_acquire_curproc_urw,
367                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
368                     lp->lwp_proc->p_pid,
369                     lp->lwp_thread->td_gd->gd_cpuid,
370                     mycpu->gd_cpuid);
371         }
372
373         /*
374          * Loop until we are the current user thread
375          */
376         gd = mycpu;
377         dd = &bsd4_pcpu[gd->gd_cpuid];
378
379         KTR_COND_LOG(usched_bsd4_acquire_curproc_before_loop,
380             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
381             lp->lwp_proc->p_pid,
382             lp->lwp_thread->td_gd->gd_cpuid,
383             gd->gd_cpuid);
384
385         do {
386                 /*
387                  * Process any pending events and higher priority threads.
388                  */
389                 lwkt_yield();
390
391                 /*
392                  * Become the currently scheduled user thread for this cpu
393                  * if we can do so trivially.
394                  *
395                  * We can steal another thread's current thread designation
396                  * on this cpu since if we are running that other thread
397                  * must not be, so we can safely deschedule it.
398                  */
399                 if (dd->uschedcp == lp) {
400                         /*
401                          * We are already the current lwp (hot path).
402                          */
403                         dd->upri = lp->lwp_priority;
404                 } else if (dd->uschedcp == NULL) {
405                         /*
406                          * We can trivially become the current lwp.
407                          */
408                         atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
409                         dd->uschedcp = lp;
410                         dd->upri = lp->lwp_priority;
411                 } else if (dd->upri > lp->lwp_priority) {
412                         /*
413                          * We can steal the current cpu's lwp designation
414                          * away simply by replacing it.  The other thread
415                          * will stall when it tries to return to userland.
416                          */
417                         dd->uschedcp = lp;
418                         dd->upri = lp->lwp_priority;
419                         /*
420                         lwkt_deschedule(olp->lwp_thread);
421                         bsd4_setrunqueue(olp);
422                         */
423                 } else {
424                         /*
425                          * We cannot become the current lwp, place the lp
426                          * on the bsd4 run-queue and deschedule ourselves.
427                          *
428                          * When we are reactivated we will have another
429                          * chance.
430                          */
431                         lwkt_deschedule(lp->lwp_thread);
432
433                         bsd4_setrunqueue(lp);
434
435                         KTR_COND_LOG(usched_bsd4_acquire_curproc_not,
436                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
437                             lp->lwp_proc->p_pid,
438                             lp->lwp_thread->td_gd->gd_cpuid,
439                             dd->uschedcp->lwp_proc->p_pid,
440                             gd->gd_cpuid);
441
442
443                         lwkt_switch();
444
445                         /*
446                          * Reload after a switch or setrunqueue/switch possibly
447                          * moved us to another cpu.
448                          */
449                         gd = mycpu;
450                         dd = &bsd4_pcpu[gd->gd_cpuid];
451
452                         KTR_COND_LOG(usched_bsd4_acquire_curproc_switch,
453                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
454                             lp->lwp_proc->p_pid,
455                             lp->lwp_thread->td_gd->gd_cpuid,
456                             gd->gd_cpuid);
457                 }
458         } while (dd->uschedcp != lp);
459
460         crit_exit_quick(td);
461         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
462 }
463
464 /*
465  * BSD4_RELEASE_CURPROC
466  *
467  * This routine detaches the current thread from the userland scheduler,
468  * usually because the thread needs to run or block in the kernel (at
469  * kernel priority) for a while.
470  *
471  * This routine is also responsible for selecting a new thread to
472  * make the current thread.
473  *
474  * NOTE: This implementation differs from the dummy example in that
475  * bsd4_select_curproc() is able to select the current process, whereas
476  * dummy_select_curproc() is not able to select the current process.
477  * This means we have to NULL out uschedcp.
478  *
479  * Additionally, note that we may already be on a run queue if releasing
480  * via the lwkt_switch() in bsd4_setrunqueue().
481  *
482  * MPSAFE
483  */
484
485 static void
486 bsd4_release_curproc(struct lwp *lp)
487 {
488         globaldata_t gd = mycpu;
489         bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
490
491         if (dd->uschedcp == lp) {
492                 crit_enter();
493                 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
494
495                 KTR_COND_LOG(usched_bsd4_release_curproc,
496                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
497                     lp->lwp_proc->p_pid,
498                     lp->lwp_thread->td_gd->gd_cpuid,
499                     gd->gd_cpuid);
500
501                 dd->uschedcp = NULL;    /* don't let lp be selected */
502                 dd->upri = PRIBASE_NULL;
503                 atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
504                 dd->old_uschedcp = lp;  /* used only for KTR debug prints */
505                 bsd4_select_curproc(gd);
506                 crit_exit();
507         }
508 }
509
510 /*
511  * BSD4_SELECT_CURPROC
512  *
513  * Select a new current process for this cpu and clear any pending user
514  * reschedule request.  The cpu currently has no current process.
515  *
516  * This routine is also responsible for equal-priority round-robining,
517  * typically triggered from bsd4_schedulerclock().  In our dummy example
518  * all the 'user' threads are LWKT scheduled all at once and we just
519  * call lwkt_switch().
520  *
521  * The calling process is not on the queue and cannot be selected.
522  *
523  * MPSAFE
524  */
525 static
526 void
527 bsd4_select_curproc(globaldata_t gd)
528 {
529         bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
530         struct lwp *nlp;
531         int cpuid = gd->gd_cpuid;
532
533         crit_enter_gd(gd);
534
535         spin_lock(&bsd4_spin);
536 #ifdef SMP
537         if(usched_bsd4_cache_coherent)
538                 nlp = bsd4_chooseproc_locked_cache_coherent(dd->uschedcp);
539         else
540 #endif
541                 nlp = bsd4_chooseproc_locked(dd->uschedcp);
542
543         if (nlp) {
544
545                 KTR_COND_LOG(usched_bsd4_select_curproc,
546                     nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
547                     nlp->lwp_proc->p_pid,
548                     nlp->lwp_thread->td_gd->gd_cpuid,
549                     dd->old_uschedcp->lwp_proc->p_pid,
550                     dd->old_uschedcp->lwp_thread->td_gd->gd_cpuid,
551                     gd->gd_cpuid);
552
553                 atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
554                 dd->upri = nlp->lwp_priority;
555                 dd->uschedcp = nlp;
556                 dd->rrcount = 0;                /* reset round robin */
557                 spin_unlock(&bsd4_spin);
558 #ifdef SMP
559                 lwkt_acquire(nlp->lwp_thread);
560 #endif
561                 lwkt_schedule(nlp->lwp_thread);
562         } else {
563                 spin_unlock(&bsd4_spin);
564         }
565
566 #if 0
567         } else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
568                 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
569                 spin_unlock(&bsd4_spin);
570                 lwkt_schedule(&dd->helper_thread);
571         } else {
572                 spin_unlock(&bsd4_spin);
573         }
574 #endif
575         crit_exit_gd(gd);
576 }
577 #ifdef SMP
578
579 /*
580  * batchy_looser_pri_test() - determine if a process is batchy or not
581  * relative to the other processes running in the system
582  */
583 static int
584 bsd4_batchy_looser_pri_test(struct lwp* lp)
585 {
586         cpumask_t mask;
587         bsd4_pcpu_t other_dd;
588         int cpu;
589
590         /* Current running processes */
591         mask = bsd4_curprocmask & smp_active_mask
592             & usched_global_cpumask;
593
594         while(mask) {
595                 cpu = BSFCPUMASK(mask);
596                 other_dd = &bsd4_pcpu[cpu];
597                 if (other_dd->upri - lp->lwp_priority > usched_bsd4_upri_affinity * PPQ) {
598
599                         KTR_COND_LOG(usched_batchy_test_false,
600                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
601                             lp->lwp_proc->p_pid,
602                             lp->lwp_thread->td_gd->gd_cpuid,
603                             (unsigned long)mask);
604
605                         return 0;
606                 }
607                 mask &= ~CPUMASK(cpu);
608         }
609
610         KTR_COND_LOG(usched_batchy_test_true,
611             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
612             lp->lwp_proc->p_pid,
613             lp->lwp_thread->td_gd->gd_cpuid,
614             (unsigned long)mask);
615
616         return 1;
617 }
618
619 #endif
620 /*
621  *
622  * BSD4_SETRUNQUEUE
623  *
624  * Place the specified lwp on the user scheduler's run queue.  This routine
625  * must be called with the thread descheduled.  The lwp must be runnable.
626  *
627  * The thread may be the current thread as a special case.
628  *
629  * MPSAFE
630  */
631 static void
632 bsd4_setrunqueue(struct lwp *lp)
633 {
634         globaldata_t gd;
635         bsd4_pcpu_t dd;
636 #ifdef SMP
637         int cpuid;
638         cpumask_t mask;
639         cpumask_t tmpmask;
640 #endif
641
642         /*
643          * First validate the process state relative to the current cpu.
644          * We don't need the spinlock for this, just a critical section.
645          * We are in control of the process.
646          */
647         crit_enter();
648         KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
649         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
650             ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
651              lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
652         KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
653
654         /*
655          * Note: gd and dd are relative to the target thread's last cpu,
656          * NOT our current cpu.
657          */
658         gd = lp->lwp_thread->td_gd;
659         dd = &bsd4_pcpu[gd->gd_cpuid];
660
661         /*
662          * This process is not supposed to be scheduled anywhere or assigned
663          * as the current process anywhere.  Assert the condition.
664          */
665         KKASSERT(dd->uschedcp != lp);
666
667 #ifndef SMP
668         /*
669          * If we are not SMP we do not have a scheduler helper to kick
670          * and must directly activate the process if none are scheduled.
671          *
672          * This is really only an issue when bootstrapping init since
673          * the caller in all other cases will be a user process, and
674          * even if released (dd->uschedcp == NULL), that process will
675          * kickstart the scheduler when it returns to user mode from
676          * the kernel.
677          */
678         if (dd->uschedcp == NULL) {
679                 atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
680                 dd->uschedcp = lp;
681                 dd->upri = lp->lwp_priority;
682                 lwkt_schedule(lp->lwp_thread);
683                 crit_exit();
684                 return;
685         }
686 #endif
687
688 #ifdef SMP
689         /*
690          * XXX fixme.  Could be part of a remrunqueue/setrunqueue
691          * operation when the priority is recalculated, so TDF_MIGRATING
692          * may already be set.
693          */
694         if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
695                 lwkt_giveaway(lp->lwp_thread);
696 #endif
697
698         /*
699          * We lose control of lp the moment we release the spinlock after
700          * having placed lp on the queue.  i.e. another cpu could pick it
701          * up and it could exit, or its priority could be further adjusted,
702          * or something like that.
703          */
704         spin_lock(&bsd4_spin);
705         bsd4_setrunqueue_locked(lp);
706         lp->lwp_rebal_ticks = sched_ticks;
707
708 #ifdef SMP
709         /*
710          * Kick the scheduler helper on one of the other cpu's
711          * and request a reschedule if appropriate.
712          *
713          * NOTE: We check all cpus whos rdyprocmask is set.  First we
714          *       look for cpus without designated lps, then we look for
715          *       cpus with designated lps with a worse priority than our
716          *       process.
717          */
718         ++bsd4_scancpu;
719
720         if (usched_bsd4_smt) {
721
722                 /*
723                  * SMT heuristic - Try to schedule on a free physical core.
724                  * If no physical core found than choose the one that has
725                  * an interactive thread.
726                  */
727
728                 int best_cpuid = -1;
729                 int min_prio = MAXPRI * MAXPRI;
730                 int sibling;
731
732                 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
733                 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
734                     smp_active_mask & usched_global_cpumask;
735
736                 KTR_COND_LOG(usched_bsd4_setrunqueue_fc_smt,
737                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
738                     lp->lwp_proc->p_pid,
739                     lp->lwp_thread->td_gd->gd_cpuid,
740                     (unsigned long)mask,
741                     mycpu->gd_cpuid);
742
743                 while (mask) {
744                         tmpmask = ~(CPUMASK(cpuid) - 1);
745                         if (mask & tmpmask)
746                                 cpuid = BSFCPUMASK(mask & tmpmask);
747                         else
748                                 cpuid = BSFCPUMASK(mask);
749                         gd = globaldata_find(cpuid);
750                         dd = &bsd4_pcpu[cpuid];
751
752                         if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
753                                 if (dd->cpunode->parent_node->members & ~dd->cpunode->members & mask) {
754
755                                         KTR_COND_LOG(usched_bsd4_setrunqueue_found,
756                                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
757                                             lp->lwp_proc->p_pid,
758                                             lp->lwp_thread->td_gd->gd_cpuid,
759                                             (unsigned long)mask,
760                                             cpuid,
761                                             mycpu->gd_cpuid);
762
763                                         goto found;
764                                 } else {
765                                         sibling = BSFCPUMASK(dd->cpunode->parent_node->members &
766                                             ~dd->cpunode->members);
767                                         if (min_prio > bsd4_pcpu[sibling].upri) {
768                                                 min_prio = bsd4_pcpu[sibling].upri;
769                                                 best_cpuid = cpuid;
770                                         }
771                                 }
772                         }
773                         mask &= ~CPUMASK(cpuid);
774                 }
775
776                 if (best_cpuid != -1) {
777                         cpuid = best_cpuid;
778                         gd = globaldata_find(cpuid);
779                         dd = &bsd4_pcpu[cpuid];
780
781                         KTR_COND_LOG(usched_bsd4_setrunqueue_found_best_cpuid,
782                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
783                             lp->lwp_proc->p_pid,
784                             lp->lwp_thread->td_gd->gd_cpuid,
785                             (unsigned long)mask,
786                             cpuid,
787                             mycpu->gd_cpuid);
788
789                         goto found;
790                 }
791         } else {
792                 /* Fallback to the original heuristic */
793                 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
794                 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
795                        smp_active_mask & usched_global_cpumask;
796
797                 KTR_COND_LOG(usched_bsd4_setrunqueue_fc_non_smt,
798                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
799                     lp->lwp_proc->p_pid,
800                     lp->lwp_thread->td_gd->gd_cpuid,
801                     (unsigned long)mask,
802                     mycpu->gd_cpuid);
803
804                 while (mask) {
805                         tmpmask = ~(CPUMASK(cpuid) - 1);
806                         if (mask & tmpmask)
807                                 cpuid = BSFCPUMASK(mask & tmpmask);
808                         else
809                                 cpuid = BSFCPUMASK(mask);
810                         gd = globaldata_find(cpuid);
811                         dd = &bsd4_pcpu[cpuid];
812
813                         if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
814
815                                 KTR_COND_LOG(usched_bsd4_setrunqueue_found,
816                                     lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
817                                     lp->lwp_proc->p_pid,
818                                     lp->lwp_thread->td_gd->gd_cpuid,
819                                     (unsigned long)mask,
820                                     cpuid,
821                                     mycpu->gd_cpuid);
822
823                                 goto found;
824                         }
825                         mask &= ~CPUMASK(cpuid);
826                 }
827         }
828
829         /*
830          * Then cpus which might have a currently running lp
831          */
832         mask = bsd4_curprocmask & bsd4_rdyprocmask &
833                lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
834
835         KTR_COND_LOG(usched_bsd4_setrunqueue_rc,
836             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
837             lp->lwp_proc->p_pid,
838             lp->lwp_thread->td_gd->gd_cpuid,
839             (unsigned long)mask,
840             mycpu->gd_cpuid);
841
842         while (mask) {
843                 tmpmask = ~(CPUMASK(cpuid) - 1);
844                 if (mask & tmpmask)
845                         cpuid = BSFCPUMASK(mask & tmpmask);
846                 else
847                         cpuid = BSFCPUMASK(mask);
848                 gd = globaldata_find(cpuid);
849                 dd = &bsd4_pcpu[cpuid];
850
851                 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
852
853                         KTR_COND_LOG(usched_bsd4_setrunqueue_found,
854                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
855                             lp->lwp_proc->p_pid,
856                             lp->lwp_thread->td_gd->gd_cpuid,
857                             (unsigned long)mask,
858                             cpuid,
859                             mycpu->gd_cpuid);
860
861                         goto found;
862                 }
863                 mask &= ~CPUMASK(cpuid);
864         }
865
866         /*
867          * If we cannot find a suitable cpu we reload from bsd4_scancpu
868          * and round-robin.  Other cpus will pickup as they release their
869          * current lwps or become ready.
870          *
871          * Avoid a degenerate system lockup case if usched_global_cpumask
872          * is set to 0 or otherwise does not cover lwp_cpumask.
873          *
874          * We only kick the target helper thread in this case, we do not
875          * set the user resched flag because
876          */
877         cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
878         if ((CPUMASK(cpuid) & usched_global_cpumask) == 0) {
879                 cpuid = 0;
880         }
881         gd = globaldata_find(cpuid);
882         dd = &bsd4_pcpu[cpuid];
883
884         KTR_COND_LOG(usched_bsd4_setrunqueue_not_found,
885             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
886             lp->lwp_proc->p_pid,
887             lp->lwp_thread->td_gd->gd_cpuid,
888             cpuid,
889             mycpu->gd_cpuid);
890
891 found:
892         if (gd == mycpu) {
893                 spin_unlock(&bsd4_spin);
894                 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
895                         if (dd->uschedcp == NULL) {
896                                 wakeup_mycpu(&dd->helper_thread);
897                         } else {
898                                 need_user_resched();
899                         }
900                 }
901         } else {
902                 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
903                 spin_unlock(&bsd4_spin);
904                 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
905                         lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
906                 else
907                         wakeup(&dd->helper_thread);
908         }
909 #else
910         /*
911          * Request a reschedule if appropriate.
912          */
913         spin_unlock(&bsd4_spin);
914         if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
915                 need_user_resched();
916         }
917 #endif
918         crit_exit();
919 }
920
921 /*
922  * This routine is called from a systimer IPI.  It MUST be MP-safe and
923  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
924  * each cpu.
925  *
926  * This routine is called on every sched tick.  If the currently running
927  * thread belongs to this scheduler it will be called with a non-NULL lp,
928  * otherwise it will be called with a NULL lp.
929  *
930  * MPSAFE
931  */
932 static
933 void
934 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
935 {
936         globaldata_t gd = mycpu;
937         bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
938
939         /*
940          * No impl if no lp running.
941          */
942         if (lp == NULL)
943                 return;
944
945         /*
946          * Do we need to round-robin?  We round-robin 10 times a second.
947          * This should only occur for cpu-bound batch processes.
948          */
949         if (++dd->rrcount >= usched_bsd4_rrinterval) {
950                 dd->rrcount = 0;
951                 need_user_resched();
952         }
953
954         /*
955          * Adjust estcpu upward using a real time equivalent calculation.
956          */
957         lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
958
959         /*
960          * Spinlocks also hold a critical section so there should not be
961          * any active.
962          */
963         KKASSERT(gd->gd_spinlocks == 0);
964
965         bsd4_resetpriority(lp);
966 }
967
968 /*
969  * Called from acquire and from kern_synch's one-second timer (one of the
970  * callout helper threads) with a critical section held.
971  *
972  * Decay p_estcpu based on the number of ticks we haven't been running
973  * and our p_nice.  As the load increases each process observes a larger
974  * number of idle ticks (because other processes are running in them).
975  * This observation leads to a larger correction which tends to make the
976  * system more 'batchy'.
977  *
978  * Note that no recalculation occurs for a process which sleeps and wakes
979  * up in the same tick.  That is, a system doing thousands of context
980  * switches per second will still only do serious estcpu calculations
981  * ESTCPUFREQ times per second.
982  *
983  * MPSAFE
984  */
985 static
986 void
987 bsd4_recalculate_estcpu(struct lwp *lp)
988 {
989         globaldata_t gd = mycpu;
990         sysclock_t cpbase;
991         sysclock_t ttlticks;
992         int estcpu;
993         int decay_factor;
994
995         /*
996          * We have to subtract periodic to get the last schedclock
997          * timeout time, otherwise we would get the upcoming timeout.
998          * Keep in mind that a process can migrate between cpus and
999          * while the scheduler clock should be very close, boundary
1000          * conditions could lead to a small negative delta.
1001          */
1002         cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
1003
1004         if (lp->lwp_slptime > 1) {
1005                 /*
1006                  * Too much time has passed, do a coarse correction.
1007                  */
1008                 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
1009                 bsd4_resetpriority(lp);
1010                 lp->lwp_cpbase = cpbase;
1011                 lp->lwp_cpticks = 0;
1012                 lp->lwp_batch -= ESTCPUFREQ;
1013                 if (lp->lwp_batch < 0)
1014                         lp->lwp_batch = 0;
1015         } else if (lp->lwp_cpbase != cpbase) {
1016                 /*
1017                  * Adjust estcpu if we are in a different tick.  Don't waste
1018                  * time if we are in the same tick.
1019                  *
1020                  * First calculate the number of ticks in the measurement
1021                  * interval.  The ttlticks calculation can wind up 0 due to
1022                  * a bug in the handling of lwp_slptime  (as yet not found),
1023                  * so make sure we do not get a divide by 0 panic.
1024                  */
1025                 ttlticks = (cpbase - lp->lwp_cpbase) /
1026                            gd->gd_schedclock.periodic;
1027                 if ((ssysclock_t)ttlticks < 0) {
1028                         ttlticks = 0;
1029                         lp->lwp_cpbase = cpbase;
1030                 }
1031                 if (ttlticks == 0)
1032                         return;
1033                 updatepcpu(lp, lp->lwp_cpticks, ttlticks);
1034
1035                 /*
1036                  * Calculate the percentage of one cpu used factoring in ncpus
1037                  * and the load and adjust estcpu.  Handle degenerate cases
1038                  * by adding 1 to bsd4_runqcount.
1039                  *
1040                  * estcpu is scaled by ESTCPUMAX.
1041                  *
1042                  * bsd4_runqcount is the excess number of user processes
1043                  * that cannot be immediately scheduled to cpus.  We want
1044                  * to count these as running to avoid range compression
1045                  * in the base calculation (which is the actual percentage
1046                  * of one cpu used).
1047                  */
1048                 estcpu = (lp->lwp_cpticks * ESTCPUMAX) *
1049                          (bsd4_runqcount + ncpus) / (ncpus * ttlticks);
1050
1051                 /*
1052                  * If estcpu is > 50% we become more batch-like
1053                  * If estcpu is <= 50% we become less batch-like
1054                  *
1055                  * It takes 30 cpu seconds to traverse the entire range.
1056                  */
1057                 if (estcpu > ESTCPUMAX / 2) {
1058                         lp->lwp_batch += ttlticks;
1059                         if (lp->lwp_batch > BATCHMAX)
1060                                 lp->lwp_batch = BATCHMAX;
1061                 } else {
1062                         lp->lwp_batch -= ttlticks;
1063                         if (lp->lwp_batch < 0)
1064                                 lp->lwp_batch = 0;
1065                 }
1066
1067                 if (usched_bsd4_debug == lp->lwp_proc->p_pid) {
1068                         kprintf("pid %d lwp %p estcpu %3d %3d bat %d cp %d/%d",
1069                                 lp->lwp_proc->p_pid, lp,
1070                                 estcpu, lp->lwp_estcpu,
1071                                 lp->lwp_batch,
1072                                 lp->lwp_cpticks, ttlticks);
1073                 }
1074
1075                 /*
1076                  * Adjust lp->lwp_esetcpu.  The decay factor determines how
1077                  * quickly lwp_estcpu collapses to its realtime calculation.
1078                  * A slower collapse gives us a more accurate number but
1079                  * can cause a cpu hog to eat too much cpu before the
1080                  * scheduler decides to downgrade it.
1081                  *
1082                  * NOTE: p_nice is accounted for in bsd4_resetpriority(),
1083                  *       and not here, but we must still ensure that a
1084                  *       cpu-bound nice -20 process does not completely
1085                  *       override a cpu-bound nice +20 process.
1086                  *
1087                  * NOTE: We must use ESTCPULIM() here to deal with any
1088                  *       overshoot.
1089                  */
1090                 decay_factor = usched_bsd4_decay;
1091                 if (decay_factor < 1)
1092                         decay_factor = 1;
1093                 if (decay_factor > 1024)
1094                         decay_factor = 1024;
1095
1096                 lp->lwp_estcpu = ESTCPULIM(
1097                         (lp->lwp_estcpu * decay_factor + estcpu) /
1098                         (decay_factor + 1));
1099
1100                 if (usched_bsd4_debug == lp->lwp_proc->p_pid)
1101                         kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
1102                 bsd4_resetpriority(lp);
1103                 lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
1104                 lp->lwp_cpticks = 0;
1105         }
1106 }
1107
1108 /*
1109  * Compute the priority of a process when running in user mode.
1110  * Arrange to reschedule if the resulting priority is better
1111  * than that of the current process.
1112  *
1113  * This routine may be called with any process.
1114  *
1115  * This routine is called by fork1() for initial setup with the process
1116  * of the run queue, and also may be called normally with the process on or
1117  * off the run queue.
1118  *
1119  * MPSAFE
1120  */
1121 static void
1122 bsd4_resetpriority(struct lwp *lp)
1123 {
1124         bsd4_pcpu_t dd;
1125         int newpriority;
1126         u_short newrqtype;
1127         int reschedcpu;
1128         int checkpri;
1129         int estcpu;
1130
1131         /*
1132          * Calculate the new priority and queue type
1133          */
1134         crit_enter();
1135         spin_lock(&bsd4_spin);
1136
1137         newrqtype = lp->lwp_rtprio.type;
1138
1139         switch(newrqtype) {
1140         case RTP_PRIO_REALTIME:
1141         case RTP_PRIO_FIFO:
1142                 newpriority = PRIBASE_REALTIME +
1143                              (lp->lwp_rtprio.prio & PRIMASK);
1144                 break;
1145         case RTP_PRIO_NORMAL:
1146                 /*
1147                  * Detune estcpu based on batchiness.  lwp_batch ranges
1148                  * from 0 to  BATCHMAX.  Limit estcpu for the sake of
1149                  * the priority calculation to between 50% and 100%.
1150                  */
1151                 estcpu = lp->lwp_estcpu * (lp->lwp_batch + BATCHMAX) /
1152                          (BATCHMAX * 2);
1153
1154                 /*
1155                  * p_nice piece         Adds (0-40) * 2         0-80
1156                  * estcpu               Adds 16384  * 4 / 512   0-128
1157                  */
1158                 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1159                 newpriority += estcpu * PPQ / ESTCPUPPQ;
1160                 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1161                               NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1162                 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1163                 break;
1164         case RTP_PRIO_IDLE:
1165                 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1166                 break;
1167         case RTP_PRIO_THREAD:
1168                 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1169                 break;
1170         default:
1171                 panic("Bad RTP_PRIO %d", newrqtype);
1172                 /* NOT REACHED */
1173         }
1174
1175         /*
1176          * The newpriority incorporates the queue type so do a simple masked
1177          * check to determine if the process has moved to another queue.  If
1178          * it has, and it is currently on a run queue, then move it.
1179          *
1180          * td_upri has normal sense (higher values are more desireable), so
1181          * negate it.
1182          */
1183         lp->lwp_thread->td_upri = -(newpriority & ~PPQMASK);
1184         if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1185                 lp->lwp_priority = newpriority;
1186                 if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1187                         bsd4_remrunqueue_locked(lp);
1188                         lp->lwp_rqtype = newrqtype;
1189                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1190                         bsd4_setrunqueue_locked(lp);
1191                         checkpri = 1;
1192                 } else {
1193                         lp->lwp_rqtype = newrqtype;
1194                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1195                         checkpri = 0;
1196                 }
1197                 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
1198         } else {
1199                 lp->lwp_priority = newpriority;
1200                 reschedcpu = -1;
1201                 checkpri = 1;
1202         }
1203
1204         /*
1205          * Determine if we need to reschedule the target cpu.  This only
1206          * occurs if the LWP is already on a scheduler queue, which means
1207          * that idle cpu notification has already occured.  At most we
1208          * need only issue a need_user_resched() on the appropriate cpu.
1209          *
1210          * The LWP may be owned by a CPU different from the current one,
1211          * in which case dd->uschedcp may be modified without an MP lock
1212          * or a spinlock held.  The worst that happens is that the code
1213          * below causes a spurious need_user_resched() on the target CPU
1214          * and dd->pri to be wrong for a short period of time, both of
1215          * which are harmless.
1216          *
1217          * If checkpri is 0 we are adjusting the priority of the current
1218          * process, possibly higher (less desireable), so ignore the upri
1219          * check which will fail in that case.
1220          */
1221         if (reschedcpu >= 0) {
1222                 dd = &bsd4_pcpu[reschedcpu];
1223                 if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
1224                     (checkpri == 0 ||
1225                      (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK))) {
1226 #ifdef SMP
1227                         if (reschedcpu == mycpu->gd_cpuid) {
1228                                 spin_unlock(&bsd4_spin);
1229                                 need_user_resched();
1230                         } else {
1231                                 spin_unlock(&bsd4_spin);
1232                                 atomic_clear_cpumask(&bsd4_rdyprocmask,
1233                                                      CPUMASK(reschedcpu));
1234                                 lwkt_send_ipiq(lp->lwp_thread->td_gd,
1235                                                bsd4_need_user_resched_remote,
1236                                                NULL);
1237                         }
1238 #else
1239                         spin_unlock(&bsd4_spin);
1240                         need_user_resched();
1241 #endif
1242                 } else {
1243                         spin_unlock(&bsd4_spin);
1244                 }
1245         } else {
1246                 spin_unlock(&bsd4_spin);
1247         }
1248         crit_exit();
1249 }
1250
1251 /*
1252  * MPSAFE
1253  */
1254 static
1255 void
1256 bsd4_yield(struct lwp *lp)
1257 {
1258 #if 0
1259         /* FUTURE (or something similar) */
1260         switch(lp->lwp_rqtype) {
1261         case RTP_PRIO_NORMAL:
1262                 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
1263                 break;
1264         default:
1265                 break;
1266         }
1267 #endif
1268         need_user_resched();
1269 }
1270
1271 /*
1272  * Called from fork1() when a new child process is being created.
1273  *
1274  * Give the child process an initial estcpu that is more batch then
1275  * its parent and dock the parent for the fork (but do not
1276  * reschedule the parent).   This comprises the main part of our batch
1277  * detection heuristic for both parallel forking and sequential execs.
1278  *
1279  * XXX lwp should be "spawning" instead of "forking"
1280  *
1281  * MPSAFE
1282  */
1283 static void
1284 bsd4_forking(struct lwp *plp, struct lwp *lp)
1285 {
1286         /*
1287          * Put the child 4 queue slots (out of 32) higher than the parent
1288          * (less desireable than the parent).
1289          */
1290         lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1291
1292         /*
1293          * The batch status of children always starts out centerline
1294          * and will inch-up or inch-down as appropriate.  It takes roughly
1295          * ~15 seconds of >50% cpu to hit the limit.
1296          */
1297         lp->lwp_batch = BATCHMAX / 2;
1298
1299         /*
1300          * Dock the parent a cost for the fork, protecting us from fork
1301          * bombs.  If the parent is forking quickly make the child more
1302          * batchy.
1303          */
1304         plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1305 }
1306
1307 /*
1308  * Called when a lwp is being removed from this scheduler, typically
1309  * during lwp_exit().
1310  */
1311 static void
1312 bsd4_exiting(struct lwp *lp, struct proc *child_proc)
1313 {
1314 }
1315
1316 static void
1317 bsd4_uload_update(struct lwp *lp)
1318 {
1319 }
1320
1321 /*
1322  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1323  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1324  * has a better or equal priority then the process that would otherwise be
1325  * chosen, NULL is returned.
1326  *
1327  * Until we fix the RUNQ code the chklp test has to be strict or we may
1328  * bounce between processes trying to acquire the current process designation.
1329  *
1330  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
1331  *          left intact through the entire routine.
1332  */
1333 static
1334 struct lwp *
1335 bsd4_chooseproc_locked(struct lwp *chklp)
1336 {
1337         struct lwp *lp;
1338         struct rq *q;
1339         u_int32_t *which, *which2;
1340         u_int32_t pri;
1341         u_int32_t rtqbits;
1342         u_int32_t tsqbits;
1343         u_int32_t idqbits;
1344         cpumask_t cpumask;
1345
1346         rtqbits = bsd4_rtqueuebits;
1347         tsqbits = bsd4_queuebits;
1348         idqbits = bsd4_idqueuebits;
1349         cpumask = mycpu->gd_cpumask;
1350
1351
1352 #ifdef SMP
1353 again:
1354 #endif
1355         if (rtqbits) {
1356                 pri = bsfl(rtqbits);
1357                 q = &bsd4_rtqueues[pri];
1358                 which = &bsd4_rtqueuebits;
1359                 which2 = &rtqbits;
1360         } else if (tsqbits) {
1361                 pri = bsfl(tsqbits);
1362                 q = &bsd4_queues[pri];
1363                 which = &bsd4_queuebits;
1364                 which2 = &tsqbits;
1365         } else if (idqbits) {
1366                 pri = bsfl(idqbits);
1367                 q = &bsd4_idqueues[pri];
1368                 which = &bsd4_idqueuebits;
1369                 which2 = &idqbits;
1370         } else {
1371                 return NULL;
1372         }
1373         lp = TAILQ_FIRST(q);
1374         KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1375
1376 #ifdef SMP
1377         while ((lp->lwp_cpumask & cpumask) == 0) {
1378                 lp = TAILQ_NEXT(lp, lwp_procq);
1379                 if (lp == NULL) {
1380                         *which2 &= ~(1 << pri);
1381                         goto again;
1382                 }
1383         }
1384 #endif
1385
1386         /*
1387          * If the passed lwp <chklp> is reasonably close to the selected
1388          * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1389          *
1390          * Note that we must error on the side of <chklp> to avoid bouncing
1391          * between threads in the acquire code.
1392          */
1393         if (chklp) {
1394                 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1395                         return(NULL);
1396         }
1397
1398 #ifdef SMP
1399         /*
1400          * If the chosen lwp does not reside on this cpu spend a few
1401          * cycles looking for a better candidate at the same priority level.
1402          * This is a fallback check, setrunqueue() tries to wakeup the
1403          * correct cpu and is our front-line affinity.
1404          */
1405         if (lp->lwp_thread->td_gd != mycpu &&
1406             (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
1407         ) {
1408                 if (chklp->lwp_thread->td_gd == mycpu) {
1409                         lp = chklp;
1410                 }
1411         }
1412 #endif
1413
1414         KTR_COND_LOG(usched_chooseproc,
1415             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1416             lp->lwp_proc->p_pid,
1417             lp->lwp_thread->td_gd->gd_cpuid,
1418             mycpu->gd_cpuid);
1419
1420         TAILQ_REMOVE(q, lp, lwp_procq);
1421         --bsd4_runqcount;
1422         if (TAILQ_EMPTY(q))
1423                 *which &= ~(1 << pri);
1424         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1425         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1426
1427         return lp;
1428 }
1429
1430 #ifdef SMP
1431 /*
1432  * chooseproc() - with a cache coherence heuristic. Try to pull a process that
1433  * has its home on the current CPU> If the process doesn't have its home here
1434  * and is a batchy one (see batcy_looser_pri_test), we can wait for a
1435  * sched_tick, may be its home will become free and pull it in. Anyway,
1436  * we can't wait more than one tick. If that tick expired, we pull in that
1437  * process, no matter what.
1438  */
1439 static
1440 struct lwp *
1441 bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp)
1442 {
1443         struct lwp *lp;
1444         struct rq *q;
1445         u_int32_t *which, *which2;
1446         u_int32_t pri;
1447         u_int32_t checks;
1448         u_int32_t rtqbits;
1449         u_int32_t tsqbits;
1450         u_int32_t idqbits;
1451         cpumask_t cpumask;
1452
1453         struct lwp * min_level_lwp = NULL;
1454         struct rq *min_q = NULL;
1455         cpumask_t siblings;
1456         cpu_node_t* cpunode = NULL;
1457         u_int32_t min_level = MAXCPU;   /* number of levels < MAXCPU */
1458         u_int32_t *min_which = NULL;
1459         u_int32_t min_pri = 0;
1460         u_int32_t level = 0;
1461
1462         rtqbits = bsd4_rtqueuebits;
1463         tsqbits = bsd4_queuebits;
1464         idqbits = bsd4_idqueuebits;
1465         cpumask = mycpu->gd_cpumask;
1466
1467         /* Get the mask coresponding to the sysctl configured level */
1468         cpunode = bsd4_pcpu[mycpu->gd_cpuid].cpunode;
1469         level = usched_bsd4_stick_to_level;
1470         while (level) {
1471                 cpunode = cpunode->parent_node;
1472                 level--;
1473         }
1474         /* The cpus which can ellect a process */
1475         siblings = cpunode->members;
1476         checks = 0;
1477
1478 again:
1479         if (rtqbits) {
1480                 pri = bsfl(rtqbits);
1481                 q = &bsd4_rtqueues[pri];
1482                 which = &bsd4_rtqueuebits;
1483                 which2 = &rtqbits;
1484         } else if (tsqbits) {
1485                 pri = bsfl(tsqbits);
1486                 q = &bsd4_queues[pri];
1487                 which = &bsd4_queuebits;
1488                 which2 = &tsqbits;
1489         } else if (idqbits) {
1490                 pri = bsfl(idqbits);
1491                 q = &bsd4_idqueues[pri];
1492                 which = &bsd4_idqueuebits;
1493                 which2 = &idqbits;
1494         } else {
1495                 /*
1496                  * No more left and we didn't reach the checks limit.
1497                  */
1498                 bsd4_kick_helper(min_level_lwp);
1499                 return NULL;
1500         }
1501         lp = TAILQ_FIRST(q);
1502         KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1503
1504         /*
1505          * Limit the number of checks/queue to a configurable value to
1506          * minimize the contention (we are in a locked region
1507          */
1508         while (checks < usched_bsd4_queue_checks) {
1509                 if ((lp->lwp_cpumask & cpumask) == 0 ||
1510                     ((siblings & lp->lwp_thread->td_gd->gd_cpumask) == 0 &&
1511                       (lp->lwp_rebal_ticks == sched_ticks ||
1512                        lp->lwp_rebal_ticks == (int)(sched_ticks - 1)) &&
1513                       bsd4_batchy_looser_pri_test(lp))) {
1514
1515                         KTR_COND_LOG(usched_chooseproc_cc_not_good,
1516                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1517                             lp->lwp_proc->p_pid,
1518                             (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1519                             (unsigned long)siblings,
1520                             (unsigned long)cpumask);
1521
1522                         cpunode = bsd4_pcpu[lp->lwp_thread->td_gd->gd_cpuid].cpunode;
1523                         level = 0;
1524                         while (cpunode) {
1525                                 if (cpunode->members & cpumask)
1526                                         break;
1527                                 cpunode = cpunode->parent_node;
1528                                 level++;
1529                         }
1530                         if (level < min_level ||
1531                             (level == min_level && min_level_lwp &&
1532                              lp->lwp_priority < min_level_lwp->lwp_priority)) {
1533                                 bsd4_kick_helper(min_level_lwp);
1534                                 min_level_lwp = lp;
1535                                 min_level = level;
1536                                 min_q = q;
1537                                 min_which = which;
1538                                 min_pri = pri;
1539                         } else {
1540                                 bsd4_kick_helper(lp);
1541                         }
1542                         lp = TAILQ_NEXT(lp, lwp_procq);
1543                         if (lp == NULL) {
1544                                 *which2 &= ~(1 << pri);
1545                                 goto again;
1546                         }
1547                 } else {
1548                         KTR_COND_LOG(usched_chooseproc_cc_elected,
1549                             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1550                             lp->lwp_proc->p_pid,
1551                             (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1552                             (unsigned long)siblings,
1553                             (unsigned long)cpumask);
1554
1555                         goto found;
1556                 }
1557                 ++checks;
1558         }
1559
1560         /*
1561          * Checks exhausted, we tried to defer too many threads, so schedule
1562          * the best of the worst.
1563          */
1564         lp = min_level_lwp;
1565         q = min_q;
1566         which = min_which;
1567         pri = min_pri;
1568         KASSERT(lp, ("chooseproc: at least the first lp was good"));
1569
1570 found:
1571
1572         /*
1573          * If the passed lwp <chklp> is reasonably close to the selected
1574          * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1575          *
1576          * Note that we must error on the side of <chklp> to avoid bouncing
1577          * between threads in the acquire code.
1578          */
1579         if (chklp) {
1580                 if (chklp->lwp_priority < lp->lwp_priority + PPQ) {
1581                         bsd4_kick_helper(lp);
1582                         return(NULL);
1583                 }
1584         }
1585
1586         KTR_COND_LOG(usched_chooseproc_cc,
1587             lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1588             lp->lwp_proc->p_pid,
1589             lp->lwp_thread->td_gd->gd_cpuid,
1590             mycpu->gd_cpuid);
1591
1592         TAILQ_REMOVE(q, lp, lwp_procq);
1593         --bsd4_runqcount;
1594         if (TAILQ_EMPTY(q))
1595                 *which &= ~(1 << pri);
1596         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1597         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1598
1599         return lp;
1600 }
1601
1602 /*
1603  * If we aren't willing to schedule a ready process on our cpu, give it's
1604  * target cpu a kick rather than wait for the next tick.
1605  *
1606  * Called with bsd4_spin held.
1607  */
1608 static
1609 void
1610 bsd4_kick_helper(struct lwp *lp)
1611 {
1612         globaldata_t gd;
1613         bsd4_pcpu_t dd;
1614
1615         if (lp == NULL)
1616                 return;
1617         gd = lp->lwp_thread->td_gd;
1618         dd = &bsd4_pcpu[gd->gd_cpuid];
1619         if ((smp_active_mask & usched_global_cpumask &
1620             bsd4_rdyprocmask & gd->gd_cpumask) == 0) {
1621                 return;
1622         }
1623         ++usched_bsd4_kicks;
1624         atomic_clear_cpumask(&bsd4_rdyprocmask, gd->gd_cpumask);
1625         if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
1626                 lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
1627         } else {
1628                 wakeup(&dd->helper_thread);
1629         }
1630 }
1631
1632 static
1633 void
1634 bsd4_need_user_resched_remote(void *dummy)
1635 {
1636         globaldata_t gd = mycpu;
1637         bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
1638
1639         need_user_resched();
1640
1641         /* Call wakeup_mycpu to avoid sending IPIs to other CPUs */
1642         wakeup_mycpu(&dd->helper_thread);
1643 }
1644
1645 #endif
1646
1647 /*
1648  * bsd4_remrunqueue_locked() removes a given process from the run queue
1649  * that it is on, clearing the queue busy bit if it becomes empty.
1650  *
1651  * Note that user process scheduler is different from the LWKT schedule.
1652  * The user process scheduler only manages user processes but it uses LWKT
1653  * underneath, and a user process operating in the kernel will often be
1654  * 'released' from our management.
1655  *
1656  * MPSAFE - bsd4_spin must be held exclusively on call
1657  */
1658 static void
1659 bsd4_remrunqueue_locked(struct lwp *lp)
1660 {
1661         struct rq *q;
1662         u_int32_t *which;
1663         u_int8_t pri;
1664
1665         KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1666         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1667         --bsd4_runqcount;
1668         KKASSERT(bsd4_runqcount >= 0);
1669
1670         pri = lp->lwp_rqindex;
1671         switch(lp->lwp_rqtype) {
1672         case RTP_PRIO_NORMAL:
1673                 q = &bsd4_queues[pri];
1674                 which = &bsd4_queuebits;
1675                 break;
1676         case RTP_PRIO_REALTIME:
1677         case RTP_PRIO_FIFO:
1678                 q = &bsd4_rtqueues[pri];
1679                 which = &bsd4_rtqueuebits;
1680                 break;
1681         case RTP_PRIO_IDLE:
1682                 q = &bsd4_idqueues[pri];
1683                 which = &bsd4_idqueuebits;
1684                 break;
1685         default:
1686                 panic("remrunqueue: invalid rtprio type");
1687                 /* NOT REACHED */
1688         }
1689         TAILQ_REMOVE(q, lp, lwp_procq);
1690         if (TAILQ_EMPTY(q)) {
1691                 KASSERT((*which & (1 << pri)) != 0,
1692                         ("remrunqueue: remove from empty queue"));
1693                 *which &= ~(1 << pri);
1694         }
1695 }
1696
1697 /*
1698  * bsd4_setrunqueue_locked()
1699  *
1700  * Add a process whos rqtype and rqindex had previously been calculated
1701  * onto the appropriate run queue.   Determine if the addition requires
1702  * a reschedule on a cpu and return the cpuid or -1.
1703  *
1704  * NOTE: Lower priorities are better priorities.
1705  *
1706  * MPSAFE - bsd4_spin must be held exclusively on call
1707  */
1708 static void
1709 bsd4_setrunqueue_locked(struct lwp *lp)
1710 {
1711         struct rq *q;
1712         u_int32_t *which;
1713         int pri;
1714
1715         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1716         atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1717         ++bsd4_runqcount;
1718
1719         pri = lp->lwp_rqindex;
1720
1721         switch(lp->lwp_rqtype) {
1722         case RTP_PRIO_NORMAL:
1723                 q = &bsd4_queues[pri];
1724                 which = &bsd4_queuebits;
1725                 break;
1726         case RTP_PRIO_REALTIME:
1727         case RTP_PRIO_FIFO:
1728                 q = &bsd4_rtqueues[pri];
1729                 which = &bsd4_rtqueuebits;
1730                 break;
1731         case RTP_PRIO_IDLE:
1732                 q = &bsd4_idqueues[pri];
1733                 which = &bsd4_idqueuebits;
1734                 break;
1735         default:
1736                 panic("remrunqueue: invalid rtprio type");
1737                 /* NOT REACHED */
1738         }
1739
1740         /*
1741          * Add to the correct queue and set the appropriate bit.  If no
1742          * lower priority (i.e. better) processes are in the queue then
1743          * we want a reschedule, calculate the best cpu for the job.
1744          *
1745          * Always run reschedules on the LWPs original cpu.
1746          */
1747         TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1748         *which |= 1 << pri;
1749 }
1750
1751 #ifdef SMP
1752
1753 /*
1754  * For SMP systems a user scheduler helper thread is created for each
1755  * cpu and is used to allow one cpu to wakeup another for the purposes of
1756  * scheduling userland threads from setrunqueue().
1757  *
1758  * UP systems do not need the helper since there is only one cpu.
1759  *
1760  * We can't use the idle thread for this because we might block.
1761  * Additionally, doing things this way allows us to HLT idle cpus
1762  * on MP systems.
1763  *
1764  * MPSAFE
1765  */
1766 static void
1767 sched_thread(void *dummy)
1768 {
1769     globaldata_t gd;
1770     bsd4_pcpu_t  dd;
1771     bsd4_pcpu_t  tmpdd;
1772     struct lwp *nlp;
1773     cpumask_t mask;
1774     int cpuid;
1775     cpumask_t tmpmask;
1776     int tmpid;
1777
1778     gd = mycpu;
1779     cpuid = gd->gd_cpuid;       /* doesn't change */
1780     mask = gd->gd_cpumask;      /* doesn't change */
1781     dd = &bsd4_pcpu[cpuid];
1782
1783     /*
1784      * Since we are woken up only when no user processes are scheduled
1785      * on a cpu, we can run at an ultra low priority.
1786      */
1787     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1788
1789     tsleep(&dd->helper_thread, 0, "sched_thread_sleep", 0);
1790
1791     for (;;) {
1792         /*
1793          * We use the LWKT deschedule-interlock trick to avoid racing
1794          * bsd4_rdyprocmask.  This means we cannot block through to the
1795          * manual lwkt_switch() call we make below.
1796          */
1797         crit_enter_gd(gd);
1798         tsleep_interlock(&dd->helper_thread, 0);
1799         spin_lock(&bsd4_spin);
1800         atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1801
1802         clear_user_resched();   /* This satisfied the reschedule request */
1803         dd->rrcount = 0;        /* Reset the round-robin counter */
1804
1805         if ((bsd4_curprocmask & mask) == 0) {
1806                 /*
1807                  * No thread is currently scheduled.
1808                  */
1809                 KKASSERT(dd->uschedcp == NULL);
1810                 if ((nlp = bsd4_chooseproc_locked(NULL)) != NULL) {
1811                         KTR_COND_LOG(usched_sched_thread_no_process,
1812                             nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1813                             gd->gd_cpuid,
1814                             nlp->lwp_proc->p_pid,
1815                             nlp->lwp_thread->td_gd->gd_cpuid);
1816
1817                         atomic_set_cpumask(&bsd4_curprocmask, mask);
1818                         dd->upri = nlp->lwp_priority;
1819                         dd->uschedcp = nlp;
1820                         dd->rrcount = 0;        /* reset round robin */
1821                         spin_unlock(&bsd4_spin);
1822                         lwkt_acquire(nlp->lwp_thread);
1823                         lwkt_schedule(nlp->lwp_thread);
1824                 } else {
1825                         spin_unlock(&bsd4_spin);
1826                 }
1827         } else if (bsd4_runqcount) {
1828                 if ((nlp = bsd4_chooseproc_locked(dd->uschedcp)) != NULL) {
1829                         KTR_COND_LOG(usched_sched_thread_process,
1830                             nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1831                             gd->gd_cpuid,
1832                             nlp->lwp_proc->p_pid,
1833                             nlp->lwp_thread->td_gd->gd_cpuid);
1834
1835                         dd->upri = nlp->lwp_priority;
1836                         dd->uschedcp = nlp;
1837                         dd->rrcount = 0;        /* reset round robin */
1838                         spin_unlock(&bsd4_spin);
1839                         lwkt_acquire(nlp->lwp_thread);
1840                         lwkt_schedule(nlp->lwp_thread);
1841                 } else {
1842                         /*
1843                          * CHAINING CONDITION TRAIN
1844                          *
1845                          * We could not deal with the scheduler wakeup
1846                          * request on this cpu, locate a ready scheduler
1847                          * with no current lp assignment and chain to it.
1848                          *
1849                          * This ensures that a wakeup race which fails due
1850                          * to priority test does not leave other unscheduled
1851                          * cpus idle when the runqueue is not empty.
1852                          */
1853                         tmpmask = ~bsd4_curprocmask &
1854                                   bsd4_rdyprocmask & smp_active_mask;
1855                         if (tmpmask) {
1856                                 tmpid = BSFCPUMASK(tmpmask);
1857                                 tmpdd = &bsd4_pcpu[tmpid];
1858                                 atomic_clear_cpumask(&bsd4_rdyprocmask,
1859                                                      CPUMASK(tmpid));
1860                                 spin_unlock(&bsd4_spin);
1861                                 wakeup(&tmpdd->helper_thread);
1862                         } else {
1863                                 spin_unlock(&bsd4_spin);
1864                         }
1865
1866                         KTR_LOG(usched_sched_thread_no_process_found,
1867                                 gd->gd_cpuid, (unsigned long)tmpmask);
1868                 }
1869         } else {
1870                 /*
1871                  * The runq is empty.
1872                  */
1873                 spin_unlock(&bsd4_spin);
1874         }
1875
1876         /*
1877          * We're descheduled unless someone scheduled us.  Switch away.
1878          * Exiting the critical section will cause splz() to be called
1879          * for us if interrupts and such are pending.
1880          */
1881         crit_exit_gd(gd);
1882         tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
1883     }
1884 }
1885
1886 /* sysctl stick_to_level parameter */
1887 static int
1888 sysctl_usched_bsd4_stick_to_level(SYSCTL_HANDLER_ARGS)
1889 {
1890         int error, new_val;
1891
1892         new_val = usched_bsd4_stick_to_level;
1893
1894         error = sysctl_handle_int(oidp, &new_val, 0, req);
1895         if (error != 0 || req->newptr == NULL)
1896                 return (error);
1897         if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
1898                 return (EINVAL);
1899         usched_bsd4_stick_to_level = new_val;
1900         return (0);
1901 }
1902
1903 /*
1904  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1905  * been cleared by rqinit() and we should not mess with it further.
1906  */
1907 static void
1908 sched_thread_cpu_init(void)
1909 {
1910         int i;
1911         int cpuid;
1912         int smt_not_supported = 0;
1913         int cache_coherent_not_supported = 0;
1914
1915         if (bootverbose)
1916                 kprintf("Start scheduler helpers on cpus:\n");
1917
1918         sysctl_ctx_init(&usched_bsd4_sysctl_ctx);
1919         usched_bsd4_sysctl_tree =
1920                 SYSCTL_ADD_NODE(&usched_bsd4_sysctl_ctx,
1921                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
1922                                 "usched_bsd4", CTLFLAG_RD, 0, "");
1923
1924         for (i = 0; i < ncpus; ++i) {
1925                 bsd4_pcpu_t dd = &bsd4_pcpu[i];
1926                 cpumask_t mask = CPUMASK(i);
1927
1928                 if ((mask & smp_active_mask) == 0)
1929                     continue;
1930
1931                 dd->cpunode = get_cpu_node_by_cpuid(i);
1932
1933                 if (dd->cpunode == NULL) {
1934                         smt_not_supported = 1;
1935                         cache_coherent_not_supported = 1;
1936                         if (bootverbose)
1937                                 kprintf ("\tcpu%d - WARNING: No CPU NODE "
1938                                          "found for cpu\n", i);
1939                 } else {
1940                         switch (dd->cpunode->type) {
1941                         case THREAD_LEVEL:
1942                                 if (bootverbose)
1943                                         kprintf ("\tcpu%d - HyperThreading "
1944                                                  "available. Core siblings: ",
1945                                                  i);
1946                                 break;
1947                         case CORE_LEVEL:
1948                                 smt_not_supported = 1;
1949
1950                                 if (bootverbose)
1951                                         kprintf ("\tcpu%d - No HT available, "
1952                                                  "multi-core/physical "
1953                                                  "cpu. Physical siblings: ",
1954                                                  i);
1955                                 break;
1956                         case CHIP_LEVEL:
1957                                 smt_not_supported = 1;
1958
1959                                 if (bootverbose)
1960                                         kprintf ("\tcpu%d - No HT available, "
1961                                                  "single-core/physical cpu. "
1962                                                  "Package Siblings: ",
1963                                                  i);
1964                                 break;
1965                         default:
1966                                 /* Let's go for safe defaults here */
1967                                 smt_not_supported = 1;
1968                                 cache_coherent_not_supported = 1;
1969                                 if (bootverbose)
1970                                         kprintf ("\tcpu%d - Unknown cpunode->"
1971                                                  "type=%u. Siblings: ",
1972                                                  i,
1973                                                  (u_int)dd->cpunode->type);
1974                                 break;
1975                         }
1976
1977                         if (bootverbose) {
1978                                 if (dd->cpunode->parent_node != NULL) {
1979                                         CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
1980                                                 kprintf("cpu%d ", cpuid);
1981                                         kprintf("\n");
1982                                 } else {
1983                                         kprintf(" no siblings\n");
1984                                 }
1985                         }
1986                 }
1987
1988                 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1989                             0, i, "usched %d", i);
1990
1991                 /*
1992                  * Allow user scheduling on the target cpu.  cpu #0 has already
1993                  * been enabled in rqinit().
1994                  */
1995                 if (i)
1996                     atomic_clear_cpumask(&bsd4_curprocmask, mask);
1997                 atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1998                 dd->upri = PRIBASE_NULL;
1999
2000         }
2001
2002         /* usched_bsd4 sysctl configurable parameters */
2003
2004         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2005                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2006                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2007                        &usched_bsd4_rrinterval, 0, "");
2008         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2009                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2010                        OID_AUTO, "decay", CTLFLAG_RW,
2011                        &usched_bsd4_decay, 0, "Extra decay when not running");
2012         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2013                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2014                        OID_AUTO, "batch_time", CTLFLAG_RW,
2015                        &usched_bsd4_batch_time, 0, "Min batch counter value");
2016         SYSCTL_ADD_LONG(&usched_bsd4_sysctl_ctx,
2017                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2018                        OID_AUTO, "kicks", CTLFLAG_RW,
2019                        &usched_bsd4_kicks, "Number of kickstarts");
2020
2021         /* Add enable/disable option for SMT scheduling if supported */
2022         if (smt_not_supported) {
2023                 usched_bsd4_smt = 0;
2024                 SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
2025                                   SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2026                                   OID_AUTO, "smt", CTLFLAG_RD,
2027                                   "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2028         } else {
2029                 usched_bsd4_smt = 1;
2030                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2031                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2032                                OID_AUTO, "smt", CTLFLAG_RW,
2033                                &usched_bsd4_smt, 0, "Enable SMT scheduling");
2034         }
2035
2036         /*
2037          * Add enable/disable option for cache coherent scheduling
2038          * if supported
2039          */
2040         if (cache_coherent_not_supported) {
2041                 usched_bsd4_cache_coherent = 0;
2042                 SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
2043                                   SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2044                                   OID_AUTO, "cache_coherent", CTLFLAG_RD,
2045                                   "NOT SUPPORTED", 0,
2046                                   "Cache coherence NOT SUPPORTED");
2047         } else {
2048                 usched_bsd4_cache_coherent = 1;
2049                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2050                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2051                                OID_AUTO, "cache_coherent", CTLFLAG_RW,
2052                                &usched_bsd4_cache_coherent, 0,
2053                                "Enable/Disable cache coherent scheduling");
2054
2055                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2056                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2057                                OID_AUTO, "upri_affinity", CTLFLAG_RW,
2058                                &usched_bsd4_upri_affinity, 1,
2059                                "Number of PPQs in user priority check");
2060
2061                 SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2062                                SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2063                                OID_AUTO, "queue_checks", CTLFLAG_RW,
2064                                &usched_bsd4_queue_checks, 5,
2065                                "LWPs to check from a queue before giving up");
2066
2067                 SYSCTL_ADD_PROC(&usched_bsd4_sysctl_ctx,
2068                                 SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2069                                 OID_AUTO, "stick_to_level",
2070                                 CTLTYPE_INT | CTLFLAG_RW,
2071                                 NULL, sizeof usched_bsd4_stick_to_level,
2072                                 sysctl_usched_bsd4_stick_to_level, "I",
2073                                 "Stick a process to this level. See sysctl"
2074                                 "paremter hw.cpu_topology.level_description");
2075         }
2076 }
2077 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2078         sched_thread_cpu_init, NULL)
2079
2080 #else /* No SMP options - just add the configurable parameters to sysctl */
2081
2082 static void
2083 sched_sysctl_tree_init(void)
2084 {
2085         sysctl_ctx_init(&usched_bsd4_sysctl_ctx);
2086         usched_bsd4_sysctl_tree =
2087                 SYSCTL_ADD_NODE(&usched_bsd4_sysctl_ctx,
2088                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2089                                 "usched_bsd4", CTLFLAG_RD, 0, "");
2090
2091         /* usched_bsd4 sysctl configurable parameters */
2092         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2093                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2094                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2095                        &usched_bsd4_rrinterval, 0, "");
2096         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2097                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2098                        OID_AUTO, "decay", CTLFLAG_RW,
2099                        &usched_bsd4_decay, 0, "Extra decay when not running");
2100         SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
2101                        SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
2102                        OID_AUTO, "batch_time", CTLFLAG_RW,
2103                        &usched_bsd4_batch_time, 0, "Min batch counter value");
2104 }
2105 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2106         sched_sysctl_tree_init, NULL)
2107 #endif