kern - Utilize new way of printing MAC addresses.
[dragonfly.git] / sys / dev / netif / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2007 Broadcom Corporation
3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $
31  */
32
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, C0
40  *   BCM5716  C0
41  *
42  * The following controllers are not supported by this driver:
43  *   BCM5706C A0, A1
44  *   BCM5706S A0, A1
45  *   BCM5708C A0, B0
46  *   BCM5708S A0, B0
47  *   BCM5709C A0, B0, B1
48  *   BCM5709S A0, A1, B0, B1, B2, C0
49  */
50
51 #include "opt_bce.h"
52 #include "opt_ifpoll.h"
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kernel.h>
58 #include <sys/interrupt.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/queue.h>
62 #ifdef BCE_DEBUG
63 #include <sys/random.h>
64 #endif
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70
71 #include <netinet/ip.h>
72 #include <netinet/tcp.h>
73
74 #include <net/bpf.h>
75 #include <net/ethernet.h>
76 #include <net/if.h>
77 #include <net/if_arp.h>
78 #include <net/if_dl.h>
79 #include <net/if_media.h>
80 #include <net/if_poll.h>
81 #include <net/if_types.h>
82 #include <net/ifq_var.h>
83 #include <net/vlan/if_vlan_var.h>
84 #include <net/vlan/if_vlan_ether.h>
85
86 #include <dev/netif/mii_layer/mii.h>
87 #include <dev/netif/mii_layer/miivar.h>
88 #include <dev/netif/mii_layer/brgphyreg.h>
89
90 #include <bus/pci/pcireg.h>
91 #include <bus/pci/pcivar.h>
92
93 #include "miibus_if.h"
94
95 #include <dev/netif/bce/if_bcereg.h>
96 #include <dev/netif/bce/if_bcefw.h>
97
98 #define BCE_MSI_CKINTVL         ((10 * hz) / 1000)      /* 10ms */
99
100 /****************************************************************************/
101 /* BCE Debug Options                                                        */
102 /****************************************************************************/
103 #ifdef BCE_DEBUG
104
105 static uint32_t bce_debug = BCE_WARN;
106
107 /*
108  *          0 = Never             
109  *          1 = 1 in 2,147,483,648
110  *        256 = 1 in     8,388,608
111  *       2048 = 1 in     1,048,576
112  *      65536 = 1 in        32,768
113  *    1048576 = 1 in         2,048
114  *  268435456 = 1 in             8
115  *  536870912 = 1 in             4
116  * 1073741824 = 1 in             2
117  *
118  * bce_debug_mbuf_allocation_failure:
119  *     How often to simulate an mbuf allocation failure.
120  *
121  * bce_debug_dma_map_addr_failure:
122  *     How often to simulate a DMA mapping failure.
123  *
124  * bce_debug_bootcode_running_failure:
125  *     How often to simulate a bootcode failure.
126  */
127 static int      bce_debug_mbuf_allocation_failure = 0;
128 static int      bce_debug_dma_map_addr_failure = 0;
129 static int      bce_debug_bootcode_running_failure = 0;
130
131 #endif  /* BCE_DEBUG */
132
133
134 /****************************************************************************/
135 /* PCI Device ID Table                                                      */
136 /*                                                                          */
137 /* Used by bce_probe() to identify the devices supported by this driver.    */
138 /****************************************************************************/
139 #define BCE_DEVDESC_MAX         64
140
141 static struct bce_type bce_devs[] = {
142         /* BCM5706C Controllers and OEM boards. */
143         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
144                 "HP NC370T Multifunction Gigabit Server Adapter" },
145         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
146                 "HP NC370i Multifunction Gigabit Server Adapter" },
147         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
148                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
149         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
150                 "HP NC371i Multifunction Gigabit Server Adapter" },
151         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
152                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
153
154         /* BCM5706S controllers and OEM boards. */
155         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
156                 "HP NC370F Multifunction Gigabit Server Adapter" },
157         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
158                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
159
160         /* BCM5708C controllers and OEM boards. */
161         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
162                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
163         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
164                 "HP NC373i Multifunction Gigabit Server Adapter" },
165         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
166                 "HP NC374m PCIe Multifunction Adapter" },
167         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
168                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
169
170         /* BCM5708S controllers and OEM boards. */
171         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
172                 "HP NC373m Multifunction Gigabit Server Adapter" },
173         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
174                 "HP NC373i Multifunction Gigabit Server Adapter" },
175         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
176                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
177         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
178                 "Broadcom NetXtreme II BCM5708S 1000Base-T" },
179
180         /* BCM5709C controllers and OEM boards. */
181         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
182                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
183         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
184                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
185         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
186                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
187
188         /* BCM5709S controllers and OEM boards. */
189         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
190                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
191         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
192                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
193         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
194                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
195
196         /* BCM5716 controllers and OEM boards. */
197         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,   PCI_ANY_ID,  PCI_ANY_ID,
198                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
199
200         { 0, 0, 0, 0, NULL }
201 };
202
203
204 /****************************************************************************/
205 /* Supported Flash NVRAM device data.                                       */
206 /****************************************************************************/
207 static const struct flash_spec flash_table[] =
208 {
209 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
210 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
211
212         /* Slow EEPROM */
213         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
214          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216          "EEPROM - slow"},
217         /* Expansion entry 0001 */
218         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
219          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221          "Entry 0001"},
222         /* Saifun SA25F010 (non-buffered flash) */
223         /* strap, cfg1, & write1 need updates */
224         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
225          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
226          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
227          "Non-buffered flash (128kB)"},
228         /* Saifun SA25F020 (non-buffered flash) */
229         /* strap, cfg1, & write1 need updates */
230         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
231          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
232          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
233          "Non-buffered flash (256kB)"},
234         /* Expansion entry 0100 */
235         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
236          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238          "Entry 0100"},
239         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
240         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
241          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
242          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
243          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
244         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
245         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
246          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
247          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
248          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
249         /* Saifun SA25F005 (non-buffered flash) */
250         /* strap, cfg1, & write1 need updates */
251         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
252          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
254          "Non-buffered flash (64kB)"},
255         /* Fast EEPROM */
256         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
257          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
258          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
259          "EEPROM - fast"},
260         /* Expansion entry 1001 */
261         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
262          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
263          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
264          "Entry 1001"},
265         /* Expansion entry 1010 */
266         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
267          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
268          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
269          "Entry 1010"},
270         /* ATMEL AT45DB011B (buffered flash) */
271         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
272          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
273          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
274          "Buffered flash (128kB)"},
275         /* Expansion entry 1100 */
276         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
277          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
278          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
279          "Entry 1100"},
280         /* Expansion entry 1101 */
281         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
282          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
283          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
284          "Entry 1101"},
285         /* Ateml Expansion entry 1110 */
286         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
287          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
288          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
289          "Entry 1110 (Atmel)"},
290         /* ATMEL AT45DB021B (buffered flash) */
291         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
292          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
293          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
294          "Buffered flash (256kB)"},
295 };
296
297 /*
298  * The BCM5709 controllers transparently handle the
299  * differences between Atmel 264 byte pages and all
300  * flash devices which use 256 byte pages, so no
301  * logical-to-physical mapping is required in the
302  * driver.
303  */
304 static struct flash_spec flash_5709 = {
305         .flags          = BCE_NV_BUFFERED,
306         .page_bits      = BCM5709_FLASH_PAGE_BITS,
307         .page_size      = BCM5709_FLASH_PAGE_SIZE,
308         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
309         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
310         .name           = "5709/5716 buffered flash (256kB)",
311 };
312
313
314 /****************************************************************************/
315 /* DragonFly device entry points.                                           */
316 /****************************************************************************/
317 static int      bce_probe(device_t);
318 static int      bce_attach(device_t);
319 static int      bce_detach(device_t);
320 static void     bce_shutdown(device_t);
321
322 /****************************************************************************/
323 /* BCE Debug Data Structure Dump Routines                                   */
324 /****************************************************************************/
325 #ifdef BCE_DEBUG
326 static void     bce_dump_mbuf(struct bce_softc *, struct mbuf *);
327 static void     bce_dump_rx_mbuf_chain(struct bce_softc *, int, int);
328 static void     bce_dump_txbd(struct bce_softc *, int, struct tx_bd *);
329 static void     bce_dump_rxbd(struct bce_softc *, int, struct rx_bd *);
330 static void     bce_dump_l2fhdr(struct bce_softc *, int,
331                                 struct l2_fhdr *) __unused;
332 static void     bce_dump_tx_chain(struct bce_softc *, int, int);
333 static void     bce_dump_rx_chain(struct bce_softc *, int, int);
334 static void     bce_dump_status_block(struct bce_softc *);
335 static void     bce_dump_driver_state(struct bce_softc *);
336 static void     bce_dump_stats_block(struct bce_softc *) __unused;
337 static void     bce_dump_hw_state(struct bce_softc *);
338 static void     bce_dump_txp_state(struct bce_softc *);
339 static void     bce_dump_rxp_state(struct bce_softc *) __unused;
340 static void     bce_dump_tpat_state(struct bce_softc *) __unused;
341 static void     bce_freeze_controller(struct bce_softc *) __unused;
342 static void     bce_unfreeze_controller(struct bce_softc *) __unused;
343 static void     bce_breakpoint(struct bce_softc *);
344 #endif  /* BCE_DEBUG */
345
346
347 /****************************************************************************/
348 /* BCE Register/Memory Access Routines                                      */
349 /****************************************************************************/
350 static uint32_t bce_reg_rd_ind(struct bce_softc *, uint32_t);
351 static void     bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t);
352 static void     bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t);
353 static uint32_t bce_shmem_rd(struct bce_softc *, u32);
354 static void     bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t);
355 static int      bce_miibus_read_reg(device_t, int, int);
356 static int      bce_miibus_write_reg(device_t, int, int, int);
357 static void     bce_miibus_statchg(device_t);
358
359
360 /****************************************************************************/
361 /* BCE NVRAM Access Routines                                                */
362 /****************************************************************************/
363 static int      bce_acquire_nvram_lock(struct bce_softc *);
364 static int      bce_release_nvram_lock(struct bce_softc *);
365 static void     bce_enable_nvram_access(struct bce_softc *);
366 static void     bce_disable_nvram_access(struct bce_softc *);
367 static int      bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *,
368                                      uint32_t);
369 static int      bce_init_nvram(struct bce_softc *);
370 static int      bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int);
371 static int      bce_nvram_test(struct bce_softc *);
372
373 /****************************************************************************/
374 /* BCE DMA Allocate/Free Routines                                           */
375 /****************************************************************************/
376 static int      bce_dma_alloc(struct bce_softc *);
377 static void     bce_dma_free(struct bce_softc *);
378 static void     bce_dma_map_addr(void *, bus_dma_segment_t *, int, int);
379
380 /****************************************************************************/
381 /* BCE Firmware Synchronization and Load                                    */
382 /****************************************************************************/
383 static int      bce_fw_sync(struct bce_softc *, uint32_t);
384 static void     bce_load_rv2p_fw(struct bce_softc *, uint32_t *,
385                                  uint32_t, uint32_t);
386 static void     bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *,
387                                 struct fw_info *);
388 static void     bce_start_cpu(struct bce_softc *, struct cpu_reg *);
389 static void     bce_halt_cpu(struct bce_softc *, struct cpu_reg *);
390 static void     bce_start_rxp_cpu(struct bce_softc *);
391 static void     bce_init_rxp_cpu(struct bce_softc *);
392 static void     bce_init_txp_cpu(struct bce_softc *);
393 static void     bce_init_tpat_cpu(struct bce_softc *);
394 static void     bce_init_cp_cpu(struct bce_softc *);
395 static void     bce_init_com_cpu(struct bce_softc *);
396 static void     bce_init_cpus(struct bce_softc *);
397
398 static void     bce_stop(struct bce_softc *);
399 static int      bce_reset(struct bce_softc *, uint32_t);
400 static int      bce_chipinit(struct bce_softc *);
401 static int      bce_blockinit(struct bce_softc *);
402 static int      bce_newbuf_std(struct bce_softc *, uint16_t *, uint16_t *,
403                                uint32_t *, int);
404 static void     bce_setup_rxdesc_std(struct bce_softc *, uint16_t, uint32_t *);
405 static void     bce_probe_pci_caps(struct bce_softc *);
406 static void     bce_print_adapter_info(struct bce_softc *);
407 static void     bce_get_media(struct bce_softc *);
408
409 static void     bce_init_tx_context(struct bce_softc *);
410 static int      bce_init_tx_chain(struct bce_softc *);
411 static void     bce_init_rx_context(struct bce_softc *);
412 static int      bce_init_rx_chain(struct bce_softc *);
413 static void     bce_free_rx_chain(struct bce_softc *);
414 static void     bce_free_tx_chain(struct bce_softc *);
415
416 static int      bce_encap(struct bce_softc *, struct mbuf **, int *);
417 static int      bce_tso_setup(struct bce_softc *, struct mbuf **,
418                     uint16_t *, uint16_t *);
419 static void     bce_start(struct ifnet *, struct ifaltq_subque *);
420 static int      bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
421 static void     bce_watchdog(struct ifnet *);
422 static int      bce_ifmedia_upd(struct ifnet *);
423 static void     bce_ifmedia_sts(struct ifnet *, struct ifmediareq *);
424 static void     bce_init(void *);
425 static void     bce_mgmt_init(struct bce_softc *);
426
427 static int      bce_init_ctx(struct bce_softc *);
428 static void     bce_get_mac_addr(struct bce_softc *);
429 static void     bce_set_mac_addr(struct bce_softc *);
430 static void     bce_phy_intr(struct bce_softc *);
431 static void     bce_rx_intr(struct bce_softc *, int, uint16_t);
432 static void     bce_tx_intr(struct bce_softc *, uint16_t);
433 static void     bce_disable_intr(struct bce_softc *);
434 static void     bce_enable_intr(struct bce_softc *);
435 static void     bce_reenable_intr(struct bce_softc *);
436
437 #ifdef IFPOLL_ENABLE
438 static void     bce_npoll(struct ifnet *, struct ifpoll_info *);
439 static void     bce_npoll_compat(struct ifnet *, void *, int);
440 #endif
441 static void     bce_intr(struct bce_softc *);
442 static void     bce_intr_legacy(void *);
443 static void     bce_intr_msi(void *);
444 static void     bce_intr_msi_oneshot(void *);
445 static void     bce_set_rx_mode(struct bce_softc *);
446 static void     bce_stats_update(struct bce_softc *);
447 static void     bce_tick(void *);
448 static void     bce_tick_serialized(struct bce_softc *);
449 static void     bce_pulse(void *);
450 static void     bce_check_msi(void *);
451 static void     bce_add_sysctls(struct bce_softc *);
452
453 static void     bce_coal_change(struct bce_softc *);
454 static int      bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS);
455 static int      bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS);
456 static int      bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS);
457 static int      bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS);
458 static int      bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS);
459 static int      bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS);
460 static int      bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS);
461 static int      bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS);
462 static int      bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS,
463                                        uint32_t *, uint32_t);
464
465 /*
466  * NOTE:
467  * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023.  Linux's bnx2
468  * takes 1023 as the TX ticks limit.  However, using 1023 will
469  * cause 5708(B2) to generate extra interrupts (~2000/s) even when
470  * there is _no_ network activity on the NIC.
471  */
472 static uint32_t bce_tx_bds_int = 255;           /* bcm: 20 */
473 static uint32_t bce_tx_bds = 255;               /* bcm: 20 */
474 static uint32_t bce_tx_ticks_int = 1022;        /* bcm: 80 */
475 static uint32_t bce_tx_ticks = 1022;            /* bcm: 80 */
476 static uint32_t bce_rx_bds_int = 128;           /* bcm: 6 */
477 static uint32_t bce_rx_bds = 0;                 /* bcm: 6 */
478 static uint32_t bce_rx_ticks_int = 150;         /* bcm: 18 */
479 static uint32_t bce_rx_ticks = 150;             /* bcm: 18 */
480
481 static int      bce_msi_enable = 1;
482
483 static int      bce_rx_pages = RX_PAGES_DEFAULT;
484 static int      bce_tx_pages = TX_PAGES_DEFAULT;
485
486 TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int);
487 TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds);
488 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
489 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
490 TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int);
491 TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds);
492 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
493 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
494 TUNABLE_INT("hw.bce.msi.enable", &bce_msi_enable);
495 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
496 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
497
498 /****************************************************************************/
499 /* DragonFly device dispatch table.                                         */
500 /****************************************************************************/
501 static device_method_t bce_methods[] = {
502         /* Device interface */
503         DEVMETHOD(device_probe,         bce_probe),
504         DEVMETHOD(device_attach,        bce_attach),
505         DEVMETHOD(device_detach,        bce_detach),
506         DEVMETHOD(device_shutdown,      bce_shutdown),
507
508         /* bus interface */
509         DEVMETHOD(bus_print_child,      bus_generic_print_child),
510         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
511
512         /* MII interface */
513         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
514         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
515         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
516
517         { 0, 0 }
518 };
519
520 static driver_t bce_driver = {
521         "bce",
522         bce_methods,
523         sizeof(struct bce_softc)
524 };
525
526 static devclass_t bce_devclass;
527
528
529 DECLARE_DUMMY_MODULE(if_bce);
530 MODULE_DEPEND(bce, miibus, 1, 1, 1);
531 DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL);
532 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
533
534
535 /****************************************************************************/
536 /* Device probe function.                                                   */
537 /*                                                                          */
538 /* Compares the device to the driver's list of supported devices and        */
539 /* reports back to the OS whether this is the right driver for the device.  */
540 /*                                                                          */
541 /* Returns:                                                                 */
542 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
543 /****************************************************************************/
544 static int
545 bce_probe(device_t dev)
546 {
547         struct bce_type *t;
548         uint16_t vid, did, svid, sdid;
549
550         /* Get the data for the device to be probed. */
551         vid  = pci_get_vendor(dev);
552         did  = pci_get_device(dev);
553         svid = pci_get_subvendor(dev);
554         sdid = pci_get_subdevice(dev);
555
556         /* Look through the list of known devices for a match. */
557         for (t = bce_devs; t->bce_name != NULL; ++t) {
558                 if (vid == t->bce_vid && did == t->bce_did && 
559                     (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) &&
560                     (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) {
561                         uint32_t revid = pci_read_config(dev, PCIR_REVID, 4);
562                         char *descbuf;
563
564                         descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK);
565
566                         /* Print out the device identity. */
567                         ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
568                                   t->bce_name,
569                                   ((revid & 0xf0) >> 4) + 'A', revid & 0xf);
570
571                         device_set_desc_copy(dev, descbuf);
572                         kfree(descbuf, M_TEMP);
573                         return 0;
574                 }
575         }
576         return ENXIO;
577 }
578
579
580 /****************************************************************************/
581 /* PCI Capabilities Probe Function.                                         */
582 /*                                                                          */
583 /* Walks the PCI capabiites list for the device to find what features are   */
584 /* supported.                                                               */
585 /*                                                                          */
586 /* Returns:                                                                 */
587 /*   None.                                                                  */
588 /****************************************************************************/
589 static void
590 bce_print_adapter_info(struct bce_softc *sc)
591 {
592         device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid);
593
594         kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
595                 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
596
597         /* Bus info. */
598         if (sc->bce_flags & BCE_PCIE_FLAG) {
599                 kprintf("Bus (PCIe x%d, ", sc->link_width);
600                 switch (sc->link_speed) {
601                 case 1:
602                         kprintf("2.5Gbps); ");
603                         break;
604                 case 2:
605                         kprintf("5Gbps); ");
606                         break;
607                 default:
608                         kprintf("Unknown link speed); ");
609                         break;
610                 }
611         } else {
612                 kprintf("Bus (PCI%s, %s, %dMHz); ",
613                     ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
614                     ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
615                     sc->bus_speed_mhz);
616         }
617
618         /* Firmware version and device features. */
619         kprintf("B/C (%s)", sc->bce_bc_ver);
620
621         if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) ||
622             (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
623                 kprintf("; Flags(");
624                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
625                         kprintf("MFW[%s]", sc->bce_mfw_ver);
626                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
627                         kprintf(" 2.5G");
628                 kprintf(")");
629         }
630         kprintf("\n");
631 }
632
633
634 /****************************************************************************/
635 /* PCI Capabilities Probe Function.                                         */
636 /*                                                                          */
637 /* Walks the PCI capabiites list for the device to find what features are   */
638 /* supported.                                                               */
639 /*                                                                          */
640 /* Returns:                                                                 */
641 /*   None.                                                                  */
642 /****************************************************************************/
643 static void
644 bce_probe_pci_caps(struct bce_softc *sc)
645 {
646         device_t dev = sc->bce_dev;
647         uint8_t ptr;
648
649         if (pci_is_pcix(dev))
650                 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
651
652         ptr = pci_get_pciecap_ptr(dev);
653         if (ptr) {
654                 uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2);
655
656                 sc->link_speed = link_status & 0xf;
657                 sc->link_width = (link_status >> 4) & 0x3f;
658                 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
659                 sc->bce_flags |= BCE_PCIE_FLAG;
660         }
661 }
662
663
664 /****************************************************************************/
665 /* Device attach function.                                                  */
666 /*                                                                          */
667 /* Allocates device resources, performs secondary chip identification,      */
668 /* resets and initializes the hardware, and initializes driver instance     */
669 /* variables.                                                               */
670 /*                                                                          */
671 /* Returns:                                                                 */
672 /*   0 on success, positive value on failure.                               */
673 /****************************************************************************/
674 static int
675 bce_attach(device_t dev)
676 {
677         struct bce_softc *sc = device_get_softc(dev);
678         struct ifnet *ifp = &sc->arpcom.ac_if;
679         uint32_t val;
680         u_int irq_flags;
681         void (*irq_handle)(void *);
682         int rid, rc = 0;
683         int i, j;
684         struct mii_probe_args mii_args;
685         uintptr_t mii_priv = 0;
686
687         sc->bce_dev = dev;
688         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
689
690         pci_enable_busmaster(dev);
691
692         bce_probe_pci_caps(sc);
693
694         /* Allocate PCI memory resources. */
695         rid = PCIR_BAR(0);
696         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
697                                                  RF_ACTIVE | PCI_RF_DENSE);
698         if (sc->bce_res_mem == NULL) {
699                 device_printf(dev, "PCI memory allocation failed\n");
700                 return ENXIO;
701         }
702         sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
703         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
704
705         /* Allocate PCI IRQ resources. */
706         sc->bce_irq_type = pci_alloc_1intr(dev, bce_msi_enable,
707             &sc->bce_irq_rid, &irq_flags);
708
709         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
710             &sc->bce_irq_rid, irq_flags);
711         if (sc->bce_res_irq == NULL) {
712                 device_printf(dev, "PCI map interrupt failed\n");
713                 rc = ENXIO;
714                 goto fail;
715         }
716
717         /*
718          * Configure byte swap and enable indirect register access.
719          * Rely on CPU to do target byte swapping on big endian systems.
720          * Access to registers outside of PCI configurtion space are not
721          * valid until this is done.
722          */
723         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
724                          BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
725                          BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
726
727         /* Save ASIC revsion info. */
728         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
729
730         /* Weed out any non-production controller revisions. */
731         switch (BCE_CHIP_ID(sc)) {
732         case BCE_CHIP_ID_5706_A0:
733         case BCE_CHIP_ID_5706_A1:
734         case BCE_CHIP_ID_5708_A0:
735         case BCE_CHIP_ID_5708_B0:
736         case BCE_CHIP_ID_5709_A0:
737         case BCE_CHIP_ID_5709_B0:
738         case BCE_CHIP_ID_5709_B1:
739 #ifdef foo
740         /* 5709C B2 seems to work fine */
741         case BCE_CHIP_ID_5709_B2:
742 #endif
743                 device_printf(dev, "Unsupported chip id 0x%08x!\n",
744                               BCE_CHIP_ID(sc));
745                 rc = ENODEV;
746                 goto fail;
747         }
748
749         mii_priv |= BRGPHY_FLAG_WIRESPEED;
750         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
751                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax ||
752                     BCE_CHIP_REV(sc) == BCE_CHIP_REV_Bx)
753                         mii_priv |= BRGPHY_FLAG_NO_EARLYDAC;
754         } else {
755                 mii_priv |= BRGPHY_FLAG_BER_BUG;
756         }
757
758         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
759                 irq_handle = bce_intr_legacy;
760         } else if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) {
761                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
762                         irq_handle = bce_intr_msi_oneshot;
763                         sc->bce_flags |= BCE_ONESHOT_MSI_FLAG;
764                 } else {
765                         irq_handle = bce_intr_msi;
766                         sc->bce_flags |= BCE_CHECK_MSI_FLAG;
767                 }
768         } else {
769                 panic("%s: unsupported intr type %d",
770                     device_get_nameunit(dev), sc->bce_irq_type);
771         }
772
773         /*
774          * Find the base address for shared memory access.
775          * Newer versions of bootcode use a signature and offset
776          * while older versions use a fixed address.
777          */
778         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
779         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) ==
780             BCE_SHM_HDR_SIGNATURE_SIG) {
781                 /* Multi-port devices use different offsets in shared memory. */
782                 sc->bce_shmem_base = REG_RD_IND(sc,
783                     BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2));
784         } else {
785                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
786         }
787         DBPRINT(sc, BCE_INFO, "bce_shmem_base = 0x%08X\n", sc->bce_shmem_base);
788
789         /* Fetch the bootcode revision. */
790         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
791         for (i = 0, j = 0; i < 3; i++) {
792                 uint8_t num;
793                 int k, skip0;
794
795                 num = (uint8_t)(val >> (24 - (i * 8)));
796                 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
797                         if (num >= k || !skip0 || k == 1) {
798                                 sc->bce_bc_ver[j++] = (num / k) + '0';
799                                 skip0 = 0;
800                         }
801                 }
802                 if (i != 2)
803                         sc->bce_bc_ver[j++] = '.';
804         }
805
806         /* Check if any management firwmare is running. */
807         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
808         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
809                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
810
811                 /* Allow time for firmware to enter the running state. */
812                 for (i = 0; i < 30; i++) {
813                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
814                         if (val & BCE_CONDITION_MFW_RUN_MASK)
815                                 break;
816                         DELAY(10000);
817                 }
818         }
819
820         /* Check the current bootcode state. */
821         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) &
822             BCE_CONDITION_MFW_RUN_MASK;
823         if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
824             val != BCE_CONDITION_MFW_RUN_NONE) {
825                 uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
826
827                 for (i = 0, j = 0; j < 3; j++) {
828                         val = bce_reg_rd_ind(sc, addr + j * 4);
829                         val = bswap32(val);
830                         memcpy(&sc->bce_mfw_ver[i], &val, 4);
831                         i += 4;
832                 }
833         }
834
835         /* Get PCI bus information (speed and type). */
836         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
837         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
838                 uint32_t clkreg;
839
840                 sc->bce_flags |= BCE_PCIX_FLAG;
841
842                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) &
843                          BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
844                 switch (clkreg) {
845                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
846                         sc->bus_speed_mhz = 133;
847                         break;
848
849                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
850                         sc->bus_speed_mhz = 100;
851                         break;
852
853                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
854                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
855                         sc->bus_speed_mhz = 66;
856                         break;
857
858                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
859                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
860                         sc->bus_speed_mhz = 50;
861                         break;
862
863                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
864                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
865                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
866                         sc->bus_speed_mhz = 33;
867                         break;
868                 }
869         } else {
870                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
871                         sc->bus_speed_mhz = 66;
872                 else
873                         sc->bus_speed_mhz = 33;
874         }
875
876         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
877                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
878
879         /* Reset the controller. */
880         rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
881         if (rc != 0)
882                 goto fail;
883
884         /* Initialize the controller. */
885         rc = bce_chipinit(sc);
886         if (rc != 0) {
887                 device_printf(dev, "Controller initialization failed!\n");
888                 goto fail;
889         }
890
891         /* Perform NVRAM test. */
892         rc = bce_nvram_test(sc);
893         if (rc != 0) {
894                 device_printf(dev, "NVRAM test failed!\n");
895                 goto fail;
896         }
897
898         /* Fetch the permanent Ethernet MAC address. */
899         bce_get_mac_addr(sc);
900
901         /*
902          * Trip points control how many BDs
903          * should be ready before generating an
904          * interrupt while ticks control how long
905          * a BD can sit in the chain before
906          * generating an interrupt.  Set the default 
907          * values for the RX and TX rings.
908          */
909
910 #ifdef BCE_DRBUG
911         /* Force more frequent interrupts. */
912         sc->bce_tx_quick_cons_trip_int = 1;
913         sc->bce_tx_quick_cons_trip     = 1;
914         sc->bce_tx_ticks_int           = 0;
915         sc->bce_tx_ticks               = 0;
916
917         sc->bce_rx_quick_cons_trip_int = 1;
918         sc->bce_rx_quick_cons_trip     = 1;
919         sc->bce_rx_ticks_int           = 0;
920         sc->bce_rx_ticks               = 0;
921 #else
922         sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int;
923         sc->bce_tx_quick_cons_trip     = bce_tx_bds;
924         sc->bce_tx_ticks_int           = bce_tx_ticks_int;
925         sc->bce_tx_ticks               = bce_tx_ticks;
926
927         sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int;
928         sc->bce_rx_quick_cons_trip     = bce_rx_bds;
929         sc->bce_rx_ticks_int           = bce_rx_ticks_int;
930         sc->bce_rx_ticks               = bce_rx_ticks;
931 #endif
932         sc->tx_wreg = 8;
933
934         /* Update statistics once every second. */
935         sc->bce_stats_ticks = 1000000 & 0xffff00;
936
937         /* Find the media type for the adapter. */
938         bce_get_media(sc);
939
940         /* Allocate DMA memory resources. */
941         rc = bce_dma_alloc(sc);
942         if (rc != 0) {
943                 device_printf(dev, "DMA resource allocation failed!\n");
944                 goto fail;
945         }
946
947         /* Initialize the ifnet interface. */
948         ifp->if_softc = sc;
949         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
950         ifp->if_ioctl = bce_ioctl;
951         ifp->if_start = bce_start;
952         ifp->if_init = bce_init;
953         ifp->if_watchdog = bce_watchdog;
954 #ifdef IFPOLL_ENABLE
955         ifp->if_npoll = bce_npoll;
956 #endif
957         ifp->if_mtu = ETHERMTU;
958         ifp->if_hwassist = BCE_CSUM_FEATURES | CSUM_TSO;
959         ifp->if_capabilities = BCE_IF_CAPABILITIES;
960         ifp->if_capenable = ifp->if_capabilities;
961         ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD(sc));
962         ifq_set_ready(&ifp->if_snd);
963
964         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
965                 ifp->if_baudrate = IF_Gbps(2.5);
966         else
967                 ifp->if_baudrate = IF_Gbps(1);
968
969         /* Assume a standard 1500 byte MTU size for mbuf allocations. */
970         sc->mbuf_alloc_size  = MCLBYTES;
971
972         /*
973          * Look for our PHY.
974          */
975         mii_probe_args_init(&mii_args, bce_ifmedia_upd, bce_ifmedia_sts);
976         mii_args.mii_probemask = 1 << sc->bce_phy_addr;
977         mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
978         mii_args.mii_priv = mii_priv;
979
980         rc = mii_probe(dev, &sc->bce_miibus, &mii_args);
981         if (rc != 0) {
982                 device_printf(dev, "PHY probe failed!\n");
983                 goto fail;
984         }
985
986         /* Attach to the Ethernet interface list. */
987         ether_ifattach(ifp, sc->eaddr, NULL);
988
989         callout_init_mp(&sc->bce_tick_callout);
990         callout_init_mp(&sc->bce_pulse_callout);
991         callout_init_mp(&sc->bce_ckmsi_callout);
992
993         /* Hookup IRQ last. */
994         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_MPSAFE, irq_handle, sc,
995                             &sc->bce_intrhand, ifp->if_serializer);
996         if (rc != 0) {
997                 device_printf(dev, "Failed to setup IRQ!\n");
998                 ether_ifdetach(ifp);
999                 goto fail;
1000         }
1001
1002         sc->bce_intr_cpuid = rman_get_cpuid(sc->bce_res_irq);
1003         ifq_set_cpuid(&ifp->if_snd, sc->bce_intr_cpuid);
1004
1005         /* Print some important debugging info. */
1006         DBRUN(BCE_INFO, bce_dump_driver_state(sc));
1007
1008         /* Add the supported sysctls to the kernel. */
1009         bce_add_sysctls(sc);
1010
1011 #ifdef IFPOLL_ENABLE
1012         ifpoll_compat_setup(&sc->bce_npoll,
1013             &sc->bce_sysctl_ctx, sc->bce_sysctl_tree, device_get_unit(dev),
1014             ifp->if_serializer);
1015 #endif
1016
1017         /*
1018          * The chip reset earlier notified the bootcode that
1019          * a driver is present.  We now need to start our pulse
1020          * routine so that the bootcode is reminded that we're
1021          * still running.
1022          */
1023         bce_pulse(sc);
1024
1025         /* Get the firmware running so IPMI still works */
1026         bce_mgmt_init(sc);
1027
1028         if (bootverbose)
1029                 bce_print_adapter_info(sc);
1030
1031         return 0;
1032 fail:
1033         bce_detach(dev);
1034         return(rc);
1035 }
1036
1037
1038 /****************************************************************************/
1039 /* Device detach function.                                                  */
1040 /*                                                                          */
1041 /* Stops the controller, resets the controller, and releases resources.     */
1042 /*                                                                          */
1043 /* Returns:                                                                 */
1044 /*   0 on success, positive value on failure.                               */
1045 /****************************************************************************/
1046 static int
1047 bce_detach(device_t dev)
1048 {
1049         struct bce_softc *sc = device_get_softc(dev);
1050
1051         if (device_is_attached(dev)) {
1052                 struct ifnet *ifp = &sc->arpcom.ac_if;
1053                 uint32_t msg;
1054
1055                 /* Stop and reset the controller. */
1056                 lwkt_serialize_enter(ifp->if_serializer);
1057                 callout_stop(&sc->bce_pulse_callout);
1058                 bce_stop(sc);
1059                 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1060                         msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1061                 else
1062                         msg = BCE_DRV_MSG_CODE_UNLOAD;
1063                 bce_reset(sc, msg);
1064                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
1065                 lwkt_serialize_exit(ifp->if_serializer);
1066
1067                 ether_ifdetach(ifp);
1068         }
1069
1070         /* If we have a child device on the MII bus remove it too. */
1071         if (sc->bce_miibus)
1072                 device_delete_child(dev, sc->bce_miibus);
1073         bus_generic_detach(dev);
1074
1075         if (sc->bce_res_irq != NULL) {
1076                 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
1077                     sc->bce_res_irq);
1078         }
1079
1080         if (sc->bce_irq_type == PCI_INTR_TYPE_MSI)
1081                 pci_release_msi(dev);
1082
1083         if (sc->bce_res_mem != NULL) {
1084                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
1085                                      sc->bce_res_mem);
1086         }
1087
1088         bce_dma_free(sc);
1089
1090         if (sc->bce_sysctl_tree != NULL)
1091                 sysctl_ctx_free(&sc->bce_sysctl_ctx);
1092
1093         return 0;
1094 }
1095
1096
1097 /****************************************************************************/
1098 /* Device shutdown function.                                                */
1099 /*                                                                          */
1100 /* Stops and resets the controller.                                         */
1101 /*                                                                          */
1102 /* Returns:                                                                 */
1103 /*   Nothing                                                                */
1104 /****************************************************************************/
1105 static void
1106 bce_shutdown(device_t dev)
1107 {
1108         struct bce_softc *sc = device_get_softc(dev);
1109         struct ifnet *ifp = &sc->arpcom.ac_if;
1110         uint32_t msg;
1111
1112         lwkt_serialize_enter(ifp->if_serializer);
1113         bce_stop(sc);
1114         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1115                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1116         else
1117                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1118         bce_reset(sc, msg);
1119         lwkt_serialize_exit(ifp->if_serializer);
1120 }
1121
1122
1123 /****************************************************************************/
1124 /* Indirect register read.                                                  */
1125 /*                                                                          */
1126 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1127 /* configuration space.  Using this mechanism avoids issues with posted     */
1128 /* reads but is much slower than memory-mapped I/O.                         */
1129 /*                                                                          */
1130 /* Returns:                                                                 */
1131 /*   The value of the register.                                             */
1132 /****************************************************************************/
1133 static uint32_t
1134 bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset)
1135 {
1136         device_t dev = sc->bce_dev;
1137
1138         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1139 #ifdef BCE_DEBUG
1140         {
1141                 uint32_t val;
1142                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1143                 DBPRINT(sc, BCE_EXCESSIVE,
1144                         "%s(); offset = 0x%08X, val = 0x%08X\n",
1145                         __func__, offset, val);
1146                 return val;
1147         }
1148 #else
1149         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1150 #endif
1151 }
1152
1153
1154 /****************************************************************************/
1155 /* Indirect register write.                                                 */
1156 /*                                                                          */
1157 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1158 /* configuration space.  Using this mechanism avoids issues with posted     */
1159 /* writes but is muchh slower than memory-mapped I/O.                       */
1160 /*                                                                          */
1161 /* Returns:                                                                 */
1162 /*   Nothing.                                                               */
1163 /****************************************************************************/
1164 static void
1165 bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val)
1166 {
1167         device_t dev = sc->bce_dev;
1168
1169         DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1170                 __func__, offset, val);
1171
1172         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1173         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1174 }
1175
1176
1177 /****************************************************************************/
1178 /* Shared memory write.                                                     */
1179 /*                                                                          */
1180 /* Writes NetXtreme II shared memory region.                                */
1181 /*                                                                          */
1182 /* Returns:                                                                 */
1183 /*   Nothing.                                                               */
1184 /****************************************************************************/
1185 static void
1186 bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val)
1187 {
1188         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1189 }
1190
1191
1192 /****************************************************************************/
1193 /* Shared memory read.                                                      */
1194 /*                                                                          */
1195 /* Reads NetXtreme II shared memory region.                                 */
1196 /*                                                                          */
1197 /* Returns:                                                                 */
1198 /*   The 32 bit value read.                                                 */
1199 /****************************************************************************/
1200 static u32
1201 bce_shmem_rd(struct bce_softc *sc, uint32_t offset)
1202 {
1203         return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1204 }
1205
1206
1207 /****************************************************************************/
1208 /* Context memory write.                                                    */
1209 /*                                                                          */
1210 /* The NetXtreme II controller uses context memory to track connection      */
1211 /* information for L2 and higher network protocols.                         */
1212 /*                                                                          */
1213 /* Returns:                                                                 */
1214 /*   Nothing.                                                               */
1215 /****************************************************************************/
1216 static void
1217 bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1218     uint32_t ctx_val)
1219 {
1220         uint32_t idx, offset = ctx_offset + cid_addr;
1221         uint32_t val, retry_cnt = 5;
1222
1223         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1224             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1225                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1226                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1227
1228                 for (idx = 0; idx < retry_cnt; idx++) {
1229                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1230                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1231                                 break;
1232                         DELAY(5);
1233                 }
1234
1235                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) {
1236                         device_printf(sc->bce_dev,
1237                             "Unable to write CTX memory: "
1238                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1239                             cid_addr, ctx_offset);
1240                 }
1241         } else {
1242                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1243                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1244         }
1245 }
1246
1247
1248 /****************************************************************************/
1249 /* PHY register read.                                                       */
1250 /*                                                                          */
1251 /* Implements register reads on the MII bus.                                */
1252 /*                                                                          */
1253 /* Returns:                                                                 */
1254 /*   The value of the register.                                             */
1255 /****************************************************************************/
1256 static int
1257 bce_miibus_read_reg(device_t dev, int phy, int reg)
1258 {
1259         struct bce_softc *sc = device_get_softc(dev);
1260         uint32_t val;
1261         int i;
1262
1263         /* Make sure we are accessing the correct PHY address. */
1264         KASSERT(phy == sc->bce_phy_addr,
1265             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1266
1267         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1268                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1269                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1270
1271                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1272                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1273
1274                 DELAY(40);
1275         }
1276
1277         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1278               BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1279               BCE_EMAC_MDIO_COMM_START_BUSY;
1280         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1281
1282         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1283                 DELAY(10);
1284
1285                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1286                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1287                         DELAY(5);
1288
1289                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1290                         val &= BCE_EMAC_MDIO_COMM_DATA;
1291                         break;
1292                 }
1293         }
1294
1295         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1296                 if_printf(&sc->arpcom.ac_if,
1297                           "Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1298                           phy, reg);
1299                 val = 0x0;
1300         } else {
1301                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1302         }
1303
1304         DBPRINT(sc, BCE_EXCESSIVE,
1305                 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1306                 __func__, phy, (uint16_t)reg & 0xffff, (uint16_t) val & 0xffff);
1307
1308         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1309                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1310                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1311
1312                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1313                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1314
1315                 DELAY(40);
1316         }
1317         return (val & 0xffff);
1318 }
1319
1320
1321 /****************************************************************************/
1322 /* PHY register write.                                                      */
1323 /*                                                                          */
1324 /* Implements register writes on the MII bus.                               */
1325 /*                                                                          */
1326 /* Returns:                                                                 */
1327 /*   The value of the register.                                             */
1328 /****************************************************************************/
1329 static int
1330 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1331 {
1332         struct bce_softc *sc = device_get_softc(dev);
1333         uint32_t val1;
1334         int i;
1335
1336         /* Make sure we are accessing the correct PHY address. */
1337         KASSERT(phy == sc->bce_phy_addr,
1338             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1339
1340         DBPRINT(sc, BCE_EXCESSIVE,
1341                 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1342                 __func__, phy, (uint16_t)(reg & 0xffff),
1343                 (uint16_t)(val & 0xffff));
1344
1345         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1346                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1347                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1348
1349                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1350                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1351
1352                 DELAY(40);
1353         }
1354
1355         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1356                 BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1357                 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1358         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1359
1360         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1361                 DELAY(10);
1362
1363                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1364                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1365                         DELAY(5);
1366                         break;
1367                 }
1368         }
1369
1370         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1371                 if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n");
1372
1373         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1374                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1375                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1376
1377                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1378                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1379
1380                 DELAY(40);
1381         }
1382         return 0;
1383 }
1384
1385
1386 /****************************************************************************/
1387 /* MII bus status change.                                                   */
1388 /*                                                                          */
1389 /* Called by the MII bus driver when the PHY establishes link to set the    */
1390 /* MAC interface registers.                                                 */
1391 /*                                                                          */
1392 /* Returns:                                                                 */
1393 /*   Nothing.                                                               */
1394 /****************************************************************************/
1395 static void
1396 bce_miibus_statchg(device_t dev)
1397 {
1398         struct bce_softc *sc = device_get_softc(dev);
1399         struct mii_data *mii = device_get_softc(sc->bce_miibus);
1400
1401         DBPRINT(sc, BCE_INFO, "mii_media_active = 0x%08X\n",
1402                 mii->mii_media_active);
1403
1404 #ifdef BCE_DEBUG
1405         /* Decode the interface media flags. */
1406         if_printf(&sc->arpcom.ac_if, "Media: ( ");
1407         switch(IFM_TYPE(mii->mii_media_active)) {
1408         case IFM_ETHER:
1409                 kprintf("Ethernet )");
1410                 break;
1411         default:
1412                 kprintf("Unknown )");
1413                 break;
1414         }
1415
1416         kprintf(" Media Options: ( ");
1417         switch(IFM_SUBTYPE(mii->mii_media_active)) {
1418         case IFM_AUTO:
1419                 kprintf("Autoselect )");
1420                 break;
1421         case IFM_MANUAL:
1422                 kprintf("Manual )");
1423                 break;
1424         case IFM_NONE:
1425                 kprintf("None )");
1426                 break;
1427         case IFM_10_T:
1428                 kprintf("10Base-T )");
1429                 break;
1430         case IFM_100_TX:
1431                 kprintf("100Base-TX )");
1432                 break;
1433         case IFM_1000_SX:
1434                 kprintf("1000Base-SX )");
1435                 break;
1436         case IFM_1000_T:
1437                 kprintf("1000Base-T )");
1438                 break;
1439         default:
1440                 kprintf("Other )");
1441                 break;
1442         }
1443
1444         kprintf(" Global Options: (");
1445         if (mii->mii_media_active & IFM_FDX)
1446                 kprintf(" FullDuplex");
1447         if (mii->mii_media_active & IFM_HDX)
1448                 kprintf(" HalfDuplex");
1449         if (mii->mii_media_active & IFM_LOOP)
1450                 kprintf(" Loopback");
1451         if (mii->mii_media_active & IFM_FLAG0)
1452                 kprintf(" Flag0");
1453         if (mii->mii_media_active & IFM_FLAG1)
1454                 kprintf(" Flag1");
1455         if (mii->mii_media_active & IFM_FLAG2)
1456                 kprintf(" Flag2");
1457         kprintf(" )\n");
1458 #endif
1459
1460         BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
1461
1462         /*
1463          * Set MII or GMII interface based on the speed negotiated
1464          * by the PHY.
1465          */
1466         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 
1467             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
1468                 DBPRINT(sc, BCE_INFO, "Setting GMII interface.\n");
1469                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
1470         } else {
1471                 DBPRINT(sc, BCE_INFO, "Setting MII interface.\n");
1472                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
1473         }
1474
1475         /*
1476          * Set half or full duplex based on the duplicity negotiated
1477          * by the PHY.
1478          */
1479         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1480                 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1481                 BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1482         } else {
1483                 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1484                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1485         }
1486 }
1487
1488
1489 /****************************************************************************/
1490 /* Acquire NVRAM lock.                                                      */
1491 /*                                                                          */
1492 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1493 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1494 /* for use by the driver.                                                   */
1495 /*                                                                          */
1496 /* Returns:                                                                 */
1497 /*   0 on success, positive value on failure.                               */
1498 /****************************************************************************/
1499 static int
1500 bce_acquire_nvram_lock(struct bce_softc *sc)
1501 {
1502         uint32_t val;
1503         int j;
1504
1505         DBPRINT(sc, BCE_VERBOSE, "Acquiring NVRAM lock.\n");
1506
1507         /* Request access to the flash interface. */
1508         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1509         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1510                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1511                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1512                         break;
1513
1514                 DELAY(5);
1515         }
1516
1517         if (j >= NVRAM_TIMEOUT_COUNT) {
1518                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1519                 return EBUSY;
1520         }
1521         return 0;
1522 }
1523
1524
1525 /****************************************************************************/
1526 /* Release NVRAM lock.                                                      */
1527 /*                                                                          */
1528 /* When the caller is finished accessing NVRAM the lock must be released.   */
1529 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1530 /* for use by the driver.                                                   */
1531 /*                                                                          */
1532 /* Returns:                                                                 */
1533 /*   0 on success, positive value on failure.                               */
1534 /****************************************************************************/
1535 static int
1536 bce_release_nvram_lock(struct bce_softc *sc)
1537 {
1538         int j;
1539         uint32_t val;
1540
1541         DBPRINT(sc, BCE_VERBOSE, "Releasing NVRAM lock.\n");
1542
1543         /*
1544          * Relinquish nvram interface.
1545          */
1546         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1547
1548         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1549                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1550                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1551                         break;
1552
1553                 DELAY(5);
1554         }
1555
1556         if (j >= NVRAM_TIMEOUT_COUNT) {
1557                 DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n");
1558                 return EBUSY;
1559         }
1560         return 0;
1561 }
1562
1563
1564 /****************************************************************************/
1565 /* Enable NVRAM access.                                                     */
1566 /*                                                                          */
1567 /* Before accessing NVRAM for read or write operations the caller must      */
1568 /* enabled NVRAM access.                                                    */
1569 /*                                                                          */
1570 /* Returns:                                                                 */
1571 /*   Nothing.                                                               */
1572 /****************************************************************************/
1573 static void
1574 bce_enable_nvram_access(struct bce_softc *sc)
1575 {
1576         uint32_t val;
1577
1578         DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM access.\n");
1579
1580         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1581         /* Enable both bits, even on read. */
1582         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1583                val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1584 }
1585
1586
1587 /****************************************************************************/
1588 /* Disable NVRAM access.                                                    */
1589 /*                                                                          */
1590 /* When the caller is finished accessing NVRAM access must be disabled.     */
1591 /*                                                                          */
1592 /* Returns:                                                                 */
1593 /*   Nothing.                                                               */
1594 /****************************************************************************/
1595 static void
1596 bce_disable_nvram_access(struct bce_softc *sc)
1597 {
1598         uint32_t val;
1599
1600         DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM access.\n");
1601
1602         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1603
1604         /* Disable both bits, even after read. */
1605         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1606                val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1607 }
1608
1609
1610 /****************************************************************************/
1611 /* Read a dword (32 bits) from NVRAM.                                       */
1612 /*                                                                          */
1613 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1614 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1615 /*                                                                          */
1616 /* Returns:                                                                 */
1617 /*   0 on success and the 32 bit value read, positive value on failure.     */
1618 /****************************************************************************/
1619 static int
1620 bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val,
1621                      uint32_t cmd_flags)
1622 {
1623         uint32_t cmd;
1624         int i, rc = 0;
1625
1626         /* Build the command word. */
1627         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1628
1629         /* Calculate the offset for buffered flash. */
1630         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1631                 offset = ((offset / sc->bce_flash_info->page_size) <<
1632                           sc->bce_flash_info->page_bits) +
1633                          (offset % sc->bce_flash_info->page_size);
1634         }
1635
1636         /*
1637          * Clear the DONE bit separately, set the address to read,
1638          * and issue the read.
1639          */
1640         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1641         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1642         REG_WR(sc, BCE_NVM_COMMAND, cmd);
1643
1644         /* Wait for completion. */
1645         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1646                 uint32_t val;
1647
1648                 DELAY(5);
1649
1650                 val = REG_RD(sc, BCE_NVM_COMMAND);
1651                 if (val & BCE_NVM_COMMAND_DONE) {
1652                         val = REG_RD(sc, BCE_NVM_READ);
1653
1654                         val = be32toh(val);
1655                         memcpy(ret_val, &val, 4);
1656                         break;
1657                 }
1658         }
1659
1660         /* Check for errors. */
1661         if (i >= NVRAM_TIMEOUT_COUNT) {
1662                 if_printf(&sc->arpcom.ac_if,
1663                           "Timeout error reading NVRAM at offset 0x%08X!\n",
1664                           offset);
1665                 rc = EBUSY;
1666         }
1667         return rc;
1668 }
1669
1670
1671 /****************************************************************************/
1672 /* Initialize NVRAM access.                                                 */
1673 /*                                                                          */
1674 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1675 /* access that device.                                                      */
1676 /*                                                                          */
1677 /* Returns:                                                                 */
1678 /*   0 on success, positive value on failure.                               */
1679 /****************************************************************************/
1680 static int
1681 bce_init_nvram(struct bce_softc *sc)
1682 {
1683         uint32_t val;
1684         int j, entry_count, rc = 0;
1685         const struct flash_spec *flash;
1686
1687         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
1688
1689         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1690             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1691                 sc->bce_flash_info = &flash_5709;
1692                 goto bce_init_nvram_get_flash_size;
1693         }
1694
1695         /* Determine the selected interface. */
1696         val = REG_RD(sc, BCE_NVM_CFG1);
1697
1698         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1699
1700         /*
1701          * Flash reconfiguration is required to support additional
1702          * NVRAM devices not directly supported in hardware.
1703          * Check if the flash interface was reconfigured
1704          * by the bootcode.
1705          */
1706
1707         if (val & 0x40000000) {
1708                 /* Flash interface reconfigured by bootcode. */
1709
1710                 DBPRINT(sc, BCE_INFO_LOAD, 
1711                         "%s(): Flash WAS reconfigured.\n", __func__);
1712
1713                 for (j = 0, flash = flash_table; j < entry_count;
1714                      j++, flash++) {
1715                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
1716                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1717                                 sc->bce_flash_info = flash;
1718                                 break;
1719                         }
1720                 }
1721         } else {
1722                 /* Flash interface not yet reconfigured. */
1723                 uint32_t mask;
1724
1725                 DBPRINT(sc, BCE_INFO_LOAD, 
1726                         "%s(): Flash was NOT reconfigured.\n", __func__);
1727
1728                 if (val & (1 << 23))
1729                         mask = FLASH_BACKUP_STRAP_MASK;
1730                 else
1731                         mask = FLASH_STRAP_MASK;
1732
1733                 /* Look for the matching NVRAM device configuration data. */
1734                 for (j = 0, flash = flash_table; j < entry_count;
1735                      j++, flash++) {
1736                         /* Check if the device matches any of the known devices. */
1737                         if ((val & mask) == (flash->strapping & mask)) {
1738                                 /* Found a device match. */
1739                                 sc->bce_flash_info = flash;
1740
1741                                 /* Request access to the flash interface. */
1742                                 rc = bce_acquire_nvram_lock(sc);
1743                                 if (rc != 0)
1744                                         return rc;
1745
1746                                 /* Reconfigure the flash interface. */
1747                                 bce_enable_nvram_access(sc);
1748                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
1749                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
1750                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
1751                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
1752                                 bce_disable_nvram_access(sc);
1753                                 bce_release_nvram_lock(sc);
1754                                 break;
1755                         }
1756                 }
1757         }
1758
1759         /* Check if a matching device was found. */
1760         if (j == entry_count) {
1761                 sc->bce_flash_info = NULL;
1762                 if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n");
1763                 return ENODEV;
1764         }
1765
1766 bce_init_nvram_get_flash_size:
1767         /* Write the flash config data to the shared memory interface. */
1768         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) &
1769             BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
1770         if (val)
1771                 sc->bce_flash_size = val;
1772         else
1773                 sc->bce_flash_size = sc->bce_flash_info->total_size;
1774
1775         DBPRINT(sc, BCE_INFO_LOAD, "%s() flash->total_size = 0x%08X\n",
1776                 __func__, sc->bce_flash_info->total_size);
1777
1778         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
1779
1780         return rc;
1781 }
1782
1783
1784 /****************************************************************************/
1785 /* Read an arbitrary range of data from NVRAM.                              */
1786 /*                                                                          */
1787 /* Prepares the NVRAM interface for access and reads the requested data     */
1788 /* into the supplied buffer.                                                */
1789 /*                                                                          */
1790 /* Returns:                                                                 */
1791 /*   0 on success and the data read, positive value on failure.             */
1792 /****************************************************************************/
1793 static int
1794 bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf,
1795                int buf_size)
1796 {
1797         uint32_t cmd_flags, offset32, len32, extra;
1798         int rc = 0;
1799
1800         if (buf_size == 0)
1801                 return 0;
1802
1803         /* Request access to the flash interface. */
1804         rc = bce_acquire_nvram_lock(sc);
1805         if (rc != 0)
1806                 return rc;
1807
1808         /* Enable access to flash interface */
1809         bce_enable_nvram_access(sc);
1810
1811         len32 = buf_size;
1812         offset32 = offset;
1813         extra = 0;
1814
1815         cmd_flags = 0;
1816
1817         /* XXX should we release nvram lock if read_dword() fails? */
1818         if (offset32 & 3) {
1819                 uint8_t buf[4];
1820                 uint32_t pre_len;
1821
1822                 offset32 &= ~3;
1823                 pre_len = 4 - (offset & 3);
1824
1825                 if (pre_len >= len32) {
1826                         pre_len = len32;
1827                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
1828                 } else {
1829                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1830                 }
1831
1832                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1833                 if (rc)
1834                         return rc;
1835
1836                 memcpy(ret_buf, buf + (offset & 3), pre_len);
1837
1838                 offset32 += 4;
1839                 ret_buf += pre_len;
1840                 len32 -= pre_len;
1841         }
1842
1843         if (len32 & 3) {
1844                 extra = 4 - (len32 & 3);
1845                 len32 = (len32 + 4) & ~3;
1846         }
1847
1848         if (len32 == 4) {
1849                 uint8_t buf[4];
1850
1851                 if (cmd_flags)
1852                         cmd_flags = BCE_NVM_COMMAND_LAST;
1853                 else
1854                         cmd_flags = BCE_NVM_COMMAND_FIRST |
1855                                     BCE_NVM_COMMAND_LAST;
1856
1857                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1858
1859                 memcpy(ret_buf, buf, 4 - extra);
1860         } else if (len32 > 0) {
1861                 uint8_t buf[4];
1862
1863                 /* Read the first word. */
1864                 if (cmd_flags)
1865                         cmd_flags = 0;
1866                 else
1867                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1868
1869                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1870
1871                 /* Advance to the next dword. */
1872                 offset32 += 4;
1873                 ret_buf += 4;
1874                 len32 -= 4;
1875
1876                 while (len32 > 4 && rc == 0) {
1877                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
1878
1879                         /* Advance to the next dword. */
1880                         offset32 += 4;
1881                         ret_buf += 4;
1882                         len32 -= 4;
1883                 }
1884
1885                 if (rc)
1886                         goto bce_nvram_read_locked_exit;
1887
1888                 cmd_flags = BCE_NVM_COMMAND_LAST;
1889                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1890
1891                 memcpy(ret_buf, buf, 4 - extra);
1892         }
1893
1894 bce_nvram_read_locked_exit:
1895         /* Disable access to flash interface and release the lock. */
1896         bce_disable_nvram_access(sc);
1897         bce_release_nvram_lock(sc);
1898
1899         return rc;
1900 }
1901
1902
1903 /****************************************************************************/
1904 /* Verifies that NVRAM is accessible and contains valid data.               */
1905 /*                                                                          */
1906 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1907 /* correct.                                                                 */
1908 /*                                                                          */
1909 /* Returns:                                                                 */
1910 /*   0 on success, positive value on failure.                               */
1911 /****************************************************************************/
1912 static int
1913 bce_nvram_test(struct bce_softc *sc)
1914 {
1915         uint32_t buf[BCE_NVRAM_SIZE / 4];
1916         uint32_t magic, csum;
1917         uint8_t *data = (uint8_t *)buf;
1918         int rc = 0;
1919
1920         /*
1921          * Check that the device NVRAM is valid by reading
1922          * the magic value at offset 0.
1923          */
1924         rc = bce_nvram_read(sc, 0, data, 4);
1925         if (rc != 0)
1926                 return rc;
1927
1928         magic = be32toh(buf[0]);
1929         if (magic != BCE_NVRAM_MAGIC) {
1930                 if_printf(&sc->arpcom.ac_if,
1931                           "Invalid NVRAM magic value! Expected: 0x%08X, "
1932                           "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic);
1933                 return ENODEV;
1934         }
1935
1936         /*
1937          * Verify that the device NVRAM includes valid
1938          * configuration data.
1939          */
1940         rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE);
1941         if (rc != 0)
1942                 return rc;
1943
1944         csum = ether_crc32_le(data, 0x100);
1945         if (csum != BCE_CRC32_RESIDUAL) {
1946                 if_printf(&sc->arpcom.ac_if,
1947                           "Invalid Manufacturing Information NVRAM CRC! "
1948                           "Expected: 0x%08X, Found: 0x%08X\n",
1949                           BCE_CRC32_RESIDUAL, csum);
1950                 return ENODEV;
1951         }
1952
1953         csum = ether_crc32_le(data + 0x100, 0x100);
1954         if (csum != BCE_CRC32_RESIDUAL) {
1955                 if_printf(&sc->arpcom.ac_if,
1956                           "Invalid Feature Configuration Information "
1957                           "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1958                           BCE_CRC32_RESIDUAL, csum);
1959                 rc = ENODEV;
1960         }
1961         return rc;
1962 }
1963
1964
1965 /****************************************************************************/
1966 /* Identifies the current media type of the controller and sets the PHY     */
1967 /* address.                                                                 */
1968 /*                                                                          */
1969 /* Returns:                                                                 */
1970 /*   Nothing.                                                               */
1971 /****************************************************************************/
1972 static void
1973 bce_get_media(struct bce_softc *sc)
1974 {
1975         uint32_t val;
1976
1977         sc->bce_phy_addr = 1;
1978
1979         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1980             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1981                 uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
1982                 uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1983                 uint32_t strap;
1984
1985                 /*
1986                  * The BCM5709S is software configurable
1987                  * for Copper or SerDes operation.
1988                  */
1989                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1990                         return;
1991                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1992                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1993                         return;
1994                 }
1995
1996                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) {
1997                         strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1998                 } else {
1999                         strap =
2000                         (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2001                 }
2002
2003                 if (pci_get_function(sc->bce_dev) == 0) {
2004                         switch (strap) {
2005                         case 0x4:
2006                         case 0x5:
2007                         case 0x6:
2008                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2009                                 break;
2010                         }
2011                 } else {
2012                         switch (strap) {
2013                         case 0x1:
2014                         case 0x2:
2015                         case 0x4:
2016                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2017                                 break;
2018                         }
2019                 }
2020         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
2021                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2022         }
2023
2024         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2025                 sc->bce_flags |= BCE_NO_WOL_FLAG;
2026                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2027                         sc->bce_phy_addr = 2;
2028                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2029                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
2030                                 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
2031                 }
2032         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2033             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) {
2034                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2035         }
2036 }
2037
2038
2039 /****************************************************************************/
2040 /* Free any DMA memory owned by the driver.                                 */
2041 /*                                                                          */
2042 /* Scans through each data structre that requires DMA memory and frees      */
2043 /* the memory if allocated.                                                 */
2044 /*                                                                          */
2045 /* Returns:                                                                 */
2046 /*   Nothing.                                                               */
2047 /****************************************************************************/
2048 static void
2049 bce_dma_free(struct bce_softc *sc)
2050 {
2051         int i;
2052
2053         /* Destroy the status block. */
2054         if (sc->status_tag != NULL) {
2055                 if (sc->status_block != NULL) {
2056                         bus_dmamap_unload(sc->status_tag, sc->status_map);
2057                         bus_dmamem_free(sc->status_tag, sc->status_block,
2058                                         sc->status_map);
2059                 }
2060                 bus_dma_tag_destroy(sc->status_tag);
2061         }
2062
2063         /* Destroy the statistics block. */
2064         if (sc->stats_tag != NULL) {
2065                 if (sc->stats_block != NULL) {
2066                         bus_dmamap_unload(sc->stats_tag, sc->stats_map);
2067                         bus_dmamem_free(sc->stats_tag, sc->stats_block,
2068                                         sc->stats_map);
2069                 }
2070                 bus_dma_tag_destroy(sc->stats_tag);
2071         }
2072
2073         /* Destroy the CTX DMA stuffs. */
2074         if (sc->ctx_tag != NULL) {
2075                 for (i = 0; i < sc->ctx_pages; i++) {
2076                         if (sc->ctx_block[i] != NULL) {
2077                                 bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]);
2078                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2079                                                 sc->ctx_map[i]);
2080                         }
2081                 }
2082                 bus_dma_tag_destroy(sc->ctx_tag);
2083         }
2084
2085         /* Destroy the TX buffer descriptor DMA stuffs. */
2086         if (sc->tx_bd_chain_tag != NULL) {
2087                 for (i = 0; i < sc->tx_pages; i++) {
2088                         if (sc->tx_bd_chain[i] != NULL) {
2089                                 bus_dmamap_unload(sc->tx_bd_chain_tag,
2090                                                   sc->tx_bd_chain_map[i]);
2091                                 bus_dmamem_free(sc->tx_bd_chain_tag,
2092                                                 sc->tx_bd_chain[i],
2093                                                 sc->tx_bd_chain_map[i]);
2094                         }
2095                 }
2096                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2097         }
2098
2099         /* Destroy the RX buffer descriptor DMA stuffs. */
2100         if (sc->rx_bd_chain_tag != NULL) {
2101                 for (i = 0; i < sc->rx_pages; i++) {
2102                         if (sc->rx_bd_chain[i] != NULL) {
2103                                 bus_dmamap_unload(sc->rx_bd_chain_tag,
2104                                                   sc->rx_bd_chain_map[i]);
2105                                 bus_dmamem_free(sc->rx_bd_chain_tag,
2106                                                 sc->rx_bd_chain[i],
2107                                                 sc->rx_bd_chain_map[i]);
2108                         }
2109                 }
2110                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2111         }
2112
2113         /* Destroy the TX mbuf DMA stuffs. */
2114         if (sc->tx_mbuf_tag != NULL) {
2115                 for (i = 0; i < TOTAL_TX_BD(sc); i++) {
2116                         /* Must have been unloaded in bce_stop() */
2117                         KKASSERT(sc->tx_mbuf_ptr[i] == NULL);
2118                         bus_dmamap_destroy(sc->tx_mbuf_tag,
2119                                            sc->tx_mbuf_map[i]);
2120                 }
2121                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
2122         }
2123
2124         /* Destroy the RX mbuf DMA stuffs. */
2125         if (sc->rx_mbuf_tag != NULL) {
2126                 for (i = 0; i < TOTAL_RX_BD(sc); i++) {
2127                         /* Must have been unloaded in bce_stop() */
2128                         KKASSERT(sc->rx_mbuf_ptr[i] == NULL);
2129                         bus_dmamap_destroy(sc->rx_mbuf_tag,
2130                                            sc->rx_mbuf_map[i]);
2131                 }
2132                 bus_dmamap_destroy(sc->rx_mbuf_tag, sc->rx_mbuf_tmpmap);
2133                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2134         }
2135
2136         /* Destroy the parent tag */
2137         if (sc->parent_tag != NULL)
2138                 bus_dma_tag_destroy(sc->parent_tag);
2139
2140         if (sc->tx_bd_chain_map != NULL)
2141                 kfree(sc->tx_bd_chain_map, M_DEVBUF);
2142         if (sc->tx_bd_chain != NULL)
2143                 kfree(sc->tx_bd_chain, M_DEVBUF);
2144         if (sc->tx_bd_chain_paddr != NULL)
2145                 kfree(sc->tx_bd_chain_paddr, M_DEVBUF);
2146
2147         if (sc->rx_bd_chain_map != NULL)
2148                 kfree(sc->rx_bd_chain_map, M_DEVBUF);
2149         if (sc->rx_bd_chain != NULL)
2150                 kfree(sc->rx_bd_chain, M_DEVBUF);
2151         if (sc->rx_bd_chain_paddr != NULL)
2152                 kfree(sc->rx_bd_chain_paddr, M_DEVBUF);
2153
2154         if (sc->tx_mbuf_map != NULL)
2155                 kfree(sc->tx_mbuf_map, M_DEVBUF);
2156         if (sc->tx_mbuf_ptr != NULL)
2157                 kfree(sc->tx_mbuf_ptr, M_DEVBUF);
2158
2159         if (sc->rx_mbuf_map != NULL)
2160                 kfree(sc->rx_mbuf_map, M_DEVBUF);
2161         if (sc->rx_mbuf_ptr != NULL)
2162                 kfree(sc->rx_mbuf_ptr, M_DEVBUF);
2163         if (sc->rx_mbuf_paddr != NULL)
2164                 kfree(sc->rx_mbuf_paddr, M_DEVBUF);
2165 }
2166
2167
2168 /****************************************************************************/
2169 /* Get DMA memory from the OS.                                              */
2170 /*                                                                          */
2171 /* Validates that the OS has provided DMA buffers in response to a          */
2172 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2173 /* When the callback is used the OS will return 0 for the mapping function  */
2174 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2175 /* failures back to the caller.                                             */
2176 /*                                                                          */
2177 /* Returns:                                                                 */
2178 /*   Nothing.                                                               */
2179 /****************************************************************************/
2180 static void
2181 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2182 {
2183         bus_addr_t *busaddr = arg;
2184
2185         /*
2186          * Simulate a mapping failure.
2187          * XXX not correct.
2188          */
2189         DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
2190                 kprintf("bce: %s(%d): Simulating DMA mapping error.\n",
2191                         __FILE__, __LINE__);
2192                 error = ENOMEM);
2193                 
2194         /* Check for an error and signal the caller that an error occurred. */
2195         if (error)
2196                 return;
2197
2198         KASSERT(nseg == 1, ("only one segment is allowed"));
2199         *busaddr = segs->ds_addr;
2200 }
2201
2202
2203 /****************************************************************************/
2204 /* Allocate any DMA memory needed by the driver.                            */
2205 /*                                                                          */
2206 /* Allocates DMA memory needed for the various global structures needed by  */
2207 /* hardware.                                                                */
2208 /*                                                                          */
2209 /* Memory alignment requirements:                                           */
2210 /* -----------------+----------+----------+----------+----------+           */
2211 /*  Data Structure  |   5706   |   5708   |   5709   |   5716   |           */
2212 /* -----------------+----------+----------+----------+----------+           */
2213 /* Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2214 /* Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2215 /* RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |           */
2216 /* PG Buffers       |   none   |   none   |   none   |   none   |           */
2217 /* TX Buffers       |   none   |   none   |   none   |   none   |           */
2218 /* Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |           */
2219 /* Context Pages(1) |   N/A    |   N/A    |   4KiB   |   4KiB   |           */
2220 /* -----------------+----------+----------+----------+----------+           */
2221 /*                                                                          */
2222 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2223 /*                                                                          */
2224 /* Returns:                                                                 */
2225 /*   0 for success, positive value for failure.                             */
2226 /****************************************************************************/
2227 static int
2228 bce_dma_alloc(struct bce_softc *sc)
2229 {
2230         struct ifnet *ifp = &sc->arpcom.ac_if;
2231         int i, j, rc = 0, pages;
2232         bus_addr_t busaddr, max_busaddr;
2233         bus_size_t status_align, stats_align;
2234
2235         pages = device_getenv_int(sc->bce_dev, "rx_pages", bce_rx_pages);
2236         if (pages <= 0 || pages > RX_PAGES_MAX || !powerof2(pages)) {
2237                 device_printf(sc->bce_dev, "invalid # of RX pages\n");
2238                 pages = RX_PAGES_DEFAULT;
2239         }
2240         sc->rx_pages = pages;
2241
2242         pages = device_getenv_int(sc->bce_dev, "tx_pages", bce_tx_pages);
2243         if (pages <= 0 || pages > TX_PAGES_MAX || !powerof2(pages)) {
2244                 device_printf(sc->bce_dev, "invalid # of TX pages\n");
2245                 pages = TX_PAGES_DEFAULT;
2246         }
2247         sc->tx_pages = pages;
2248
2249         sc->tx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * sc->tx_pages,
2250             M_DEVBUF, M_WAITOK | M_ZERO);
2251         sc->tx_bd_chain = kmalloc(sizeof(struct tx_bd *) * sc->tx_pages,
2252             M_DEVBUF, M_WAITOK | M_ZERO);
2253         sc->tx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * sc->tx_pages,
2254             M_DEVBUF, M_WAITOK | M_ZERO);
2255
2256         sc->rx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * sc->rx_pages,
2257             M_DEVBUF, M_WAITOK | M_ZERO);
2258         sc->rx_bd_chain = kmalloc(sizeof(struct rx_bd *) * sc->rx_pages,
2259             M_DEVBUF, M_WAITOK | M_ZERO);
2260         sc->rx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * sc->rx_pages,
2261             M_DEVBUF, M_WAITOK | M_ZERO);
2262
2263         sc->tx_mbuf_map = kmalloc(sizeof(bus_dmamap_t) * TOTAL_TX_BD(sc),
2264             M_DEVBUF, M_WAITOK | M_ZERO);
2265         sc->tx_mbuf_ptr = kmalloc(sizeof(struct mbuf *) * TOTAL_TX_BD(sc),
2266             M_DEVBUF, M_WAITOK | M_ZERO);
2267
2268         sc->rx_mbuf_map = kmalloc(sizeof(bus_dmamap_t) * TOTAL_RX_BD(sc),
2269             M_DEVBUF, M_WAITOK | M_ZERO);
2270         sc->rx_mbuf_ptr = kmalloc(sizeof(struct mbuf *) * TOTAL_RX_BD(sc),
2271             M_DEVBUF, M_WAITOK | M_ZERO);
2272         sc->rx_mbuf_paddr = kmalloc(sizeof(bus_addr_t) * TOTAL_RX_BD(sc),
2273             M_DEVBUF, M_WAITOK | M_ZERO);
2274
2275         /*
2276          * The embedded PCIe to PCI-X bridge (EPB) 
2277          * in the 5708 cannot address memory above 
2278          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 
2279          */
2280         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
2281                 max_busaddr = BCE_BUS_SPACE_MAXADDR;
2282         else
2283                 max_busaddr = BUS_SPACE_MAXADDR;
2284
2285         /*
2286          * BCM5709 and BCM5716 uses host memory as cache for context memory.
2287          */
2288         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2289             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2290                 sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE;
2291                 if (sc->ctx_pages == 0)
2292                         sc->ctx_pages = 1;
2293                 if (sc->ctx_pages > BCE_CTX_PAGES) {
2294                         device_printf(sc->bce_dev, "excessive ctx pages %d\n",
2295                             sc->ctx_pages);
2296                         return ENOMEM;
2297                 }
2298                 status_align = 16;
2299                 stats_align = 16;
2300         } else {
2301                 status_align = 8;
2302                 stats_align = 8;
2303         }
2304
2305         /*
2306          * Allocate the parent bus DMA tag appropriate for PCI.
2307          */
2308         rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY,
2309                                 max_busaddr, BUS_SPACE_MAXADDR,
2310                                 NULL, NULL,
2311                                 BUS_SPACE_MAXSIZE_32BIT, 0,
2312                                 BUS_SPACE_MAXSIZE_32BIT,
2313                                 0, &sc->parent_tag);
2314         if (rc != 0) {
2315                 if_printf(ifp, "Could not allocate parent DMA tag!\n");
2316                 return rc;
2317         }
2318
2319         /*
2320          * Allocate status block.
2321          */
2322         sc->status_block = bus_dmamem_coherent_any(sc->parent_tag,
2323                                 status_align, BCE_STATUS_BLK_SZ,
2324                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2325                                 &sc->status_tag, &sc->status_map,
2326                                 &sc->status_block_paddr);
2327         if (sc->status_block == NULL) {
2328                 if_printf(ifp, "Could not allocate status block!\n");
2329                 return ENOMEM;
2330         }
2331
2332         /*
2333          * Allocate statistics block.
2334          */
2335         sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag,
2336                                 stats_align, BCE_STATS_BLK_SZ,
2337                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2338                                 &sc->stats_tag, &sc->stats_map,
2339                                 &sc->stats_block_paddr);
2340         if (sc->stats_block == NULL) {
2341                 if_printf(ifp, "Could not allocate statistics block!\n");
2342                 return ENOMEM;
2343         }
2344
2345         /*
2346          * Allocate context block, if needed
2347          */
2348         if (sc->ctx_pages != 0) {
2349                 rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2350                                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2351                                         NULL, NULL,
2352                                         BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
2353                                         0, &sc->ctx_tag);
2354                 if (rc != 0) {
2355                         if_printf(ifp, "Could not allocate "
2356                                   "context block DMA tag!\n");
2357                         return rc;
2358                 }
2359
2360                 for (i = 0; i < sc->ctx_pages; i++) {
2361                         rc = bus_dmamem_alloc(sc->ctx_tag,
2362                                               (void **)&sc->ctx_block[i],
2363                                               BUS_DMA_WAITOK | BUS_DMA_ZERO |
2364                                               BUS_DMA_COHERENT,
2365                                               &sc->ctx_map[i]);
2366                         if (rc != 0) {
2367                                 if_printf(ifp, "Could not allocate %dth context "
2368                                           "DMA memory!\n", i);
2369                                 return rc;
2370                         }
2371
2372                         rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
2373                                              sc->ctx_block[i], BCM_PAGE_SIZE,
2374                                              bce_dma_map_addr, &busaddr,
2375                                              BUS_DMA_WAITOK);
2376                         if (rc != 0) {
2377                                 if (rc == EINPROGRESS) {
2378                                         panic("%s coherent memory loading "
2379                                               "is still in progress!", ifp->if_xname);
2380                                 }
2381                                 if_printf(ifp, "Could not map %dth context "
2382                                           "DMA memory!\n", i);
2383                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2384                                                 sc->ctx_map[i]);
2385                                 sc->ctx_block[i] = NULL;
2386                                 return rc;
2387                         }
2388                         sc->ctx_paddr[i] = busaddr;
2389                 }
2390         }
2391
2392         /*
2393          * Create a DMA tag for the TX buffer descriptor chain,
2394          * allocate and clear the  memory, and fetch the
2395          * physical address of the block.
2396          */
2397         rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2398                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2399                                 NULL, NULL,
2400                                 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ,
2401                                 0, &sc->tx_bd_chain_tag);
2402         if (rc != 0) {
2403                 if_printf(ifp, "Could not allocate "
2404                           "TX descriptor chain DMA tag!\n");
2405                 return rc;
2406         }
2407
2408         for (i = 0; i < sc->tx_pages; i++) {
2409                 rc = bus_dmamem_alloc(sc->tx_bd_chain_tag,
2410                                       (void **)&sc->tx_bd_chain[i],
2411                                       BUS_DMA_WAITOK | BUS_DMA_ZERO |
2412                                       BUS_DMA_COHERENT,
2413                                       &sc->tx_bd_chain_map[i]);
2414                 if (rc != 0) {
2415                         if_printf(ifp, "Could not allocate %dth TX descriptor "
2416                                   "chain DMA memory!\n", i);
2417                         return rc;
2418                 }
2419
2420                 rc = bus_dmamap_load(sc->tx_bd_chain_tag,
2421                                      sc->tx_bd_chain_map[i],
2422                                      sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ,
2423                                      bce_dma_map_addr, &busaddr,
2424                                      BUS_DMA_WAITOK);
2425                 if (rc != 0) {
2426                         if (rc == EINPROGRESS) {
2427                                 panic("%s coherent memory loading "
2428                                       "is still in progress!", ifp->if_xname);
2429                         }
2430                         if_printf(ifp, "Could not map %dth TX descriptor "
2431                                   "chain DMA memory!\n", i);
2432                         bus_dmamem_free(sc->tx_bd_chain_tag,
2433                                         sc->tx_bd_chain[i],
2434                                         sc->tx_bd_chain_map[i]);
2435                         sc->tx_bd_chain[i] = NULL;
2436                         return rc;
2437                 }
2438
2439                 sc->tx_bd_chain_paddr[i] = busaddr;
2440                 /* DRC - Fix for 64 bit systems. */
2441                 DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 
2442                         i, (uint32_t)sc->tx_bd_chain_paddr[i]);
2443         }
2444
2445         /* Create a DMA tag for TX mbufs. */
2446         rc = bus_dma_tag_create(sc->parent_tag, 1, 0,
2447                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2448                                 NULL, NULL,
2449                                 IP_MAXPACKET + sizeof(struct ether_vlan_header),
2450                                 BCE_MAX_SEGMENTS, PAGE_SIZE,
2451                                 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
2452                                 BUS_DMA_ONEBPAGE,
2453                                 &sc->tx_mbuf_tag);
2454         if (rc != 0) {
2455                 if_printf(ifp, "Could not allocate TX mbuf DMA tag!\n");
2456                 return rc;
2457         }
2458
2459         /* Create DMA maps for the TX mbufs clusters. */
2460         for (i = 0; i < TOTAL_TX_BD(sc); i++) {
2461                 rc = bus_dmamap_create(sc->tx_mbuf_tag,
2462                                        BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2463                                        &sc->tx_mbuf_map[i]);
2464                 if (rc != 0) {
2465                         for (j = 0; j < i; ++j) {
2466                                 bus_dmamap_destroy(sc->tx_mbuf_tag,
2467                                                    sc->tx_mbuf_map[i]);
2468                         }
2469                         bus_dma_tag_destroy(sc->tx_mbuf_tag);
2470                         sc->tx_mbuf_tag = NULL;
2471
2472                         if_printf(ifp, "Unable to create "
2473                                   "%dth TX mbuf DMA map!\n", i);
2474                         return rc;
2475                 }
2476         }
2477
2478         /*
2479          * Create a DMA tag for the RX buffer descriptor chain,
2480          * allocate and clear the  memory, and fetch the physical
2481          * address of the blocks.
2482          */
2483         rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2484                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2485                                 NULL, NULL,
2486                                 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
2487                                 0, &sc->rx_bd_chain_tag);
2488         if (rc != 0) {
2489                 if_printf(ifp, "Could not allocate "
2490                           "RX descriptor chain DMA tag!\n");
2491                 return rc;
2492         }
2493
2494         for (i = 0; i < sc->rx_pages; i++) {
2495                 rc = bus_dmamem_alloc(sc->rx_bd_chain_tag,
2496                                       (void **)&sc->rx_bd_chain[i],
2497                                       BUS_DMA_WAITOK | BUS_DMA_ZERO |
2498                                       BUS_DMA_COHERENT,
2499                                       &sc->rx_bd_chain_map[i]);
2500                 if (rc != 0) {
2501                         if_printf(ifp, "Could not allocate %dth RX descriptor "
2502                                   "chain DMA memory!\n", i);
2503                         return rc;
2504                 }
2505
2506                 rc = bus_dmamap_load(sc->rx_bd_chain_tag,
2507                                      sc->rx_bd_chain_map[i],
2508                                      sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ,
2509                                      bce_dma_map_addr, &busaddr,
2510                                      BUS_DMA_WAITOK);
2511                 if (rc != 0) {
2512                         if (rc == EINPROGRESS) {
2513                                 panic("%s coherent memory loading "
2514                                       "is still in progress!", ifp->if_xname);
2515                         }
2516                         if_printf(ifp, "Could not map %dth RX descriptor "
2517                                   "chain DMA memory!\n", i);
2518                         bus_dmamem_free(sc->rx_bd_chain_tag,
2519                                         sc->rx_bd_chain[i],
2520                                         sc->rx_bd_chain_map[i]);
2521                         sc->rx_bd_chain[i] = NULL;
2522                         return rc;
2523                 }
2524
2525                 sc->rx_bd_chain_paddr[i] = busaddr;
2526                 /* DRC - Fix for 64 bit systems. */
2527                 DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2528                         i, (uint32_t)sc->rx_bd_chain_paddr[i]);
2529         }
2530
2531         /* Create a DMA tag for RX mbufs. */
2532         rc = bus_dma_tag_create(sc->parent_tag, BCE_DMA_RX_ALIGN, 0,
2533                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2534                                 NULL, NULL,
2535                                 MCLBYTES, 1, MCLBYTES,
2536                                 BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2537                                 BUS_DMA_WAITOK,
2538                                 &sc->rx_mbuf_tag);
2539         if (rc != 0) {
2540                 if_printf(ifp, "Could not allocate RX mbuf DMA tag!\n");
2541                 return rc;
2542         }
2543
2544         /* Create tmp DMA map for RX mbuf clusters. */
2545         rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2546                                &sc->rx_mbuf_tmpmap);
2547         if (rc != 0) {
2548                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2549                 sc->rx_mbuf_tag = NULL;
2550
2551                 if_printf(ifp, "Could not create RX mbuf tmp DMA map!\n");
2552                 return rc;
2553         }
2554
2555         /* Create DMA maps for the RX mbuf clusters. */
2556         for (i = 0; i < TOTAL_RX_BD(sc); i++) {
2557                 rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2558                                        &sc->rx_mbuf_map[i]);
2559                 if (rc != 0) {
2560                         for (j = 0; j < i; ++j) {
2561                                 bus_dmamap_destroy(sc->rx_mbuf_tag,
2562                                                    sc->rx_mbuf_map[j]);
2563                         }
2564                         bus_dma_tag_destroy(sc->rx_mbuf_tag);
2565                         sc->rx_mbuf_tag = NULL;
2566
2567                         if_printf(ifp, "Unable to create "
2568                                   "%dth RX mbuf DMA map!\n", i);
2569                         return rc;
2570                 }
2571         }
2572         return 0;
2573 }
2574
2575
2576 /****************************************************************************/
2577 /* Firmware synchronization.                                                */
2578 /*                                                                          */
2579 /* Before performing certain events such as a chip reset, synchronize with  */
2580 /* the firmware first.                                                      */
2581 /*                                                                          */
2582 /* Returns:                                                                 */
2583 /*   0 for success, positive value for failure.                             */
2584 /****************************************************************************/
2585 static int
2586 bce_fw_sync(struct bce_softc *sc, uint32_t msg_data)
2587 {
2588         int i, rc = 0;
2589         uint32_t val;
2590
2591         /* Don't waste any time if we've timed out before. */
2592         if (sc->bce_fw_timed_out)
2593                 return EBUSY;
2594
2595         /* Increment the message sequence number. */
2596         sc->bce_fw_wr_seq++;
2597         msg_data |= sc->bce_fw_wr_seq;
2598
2599         DBPRINT(sc, BCE_VERBOSE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data);
2600
2601         /* Send the message to the bootcode driver mailbox. */
2602         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2603
2604         /* Wait for the bootcode to acknowledge the message. */
2605         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2606                 /* Check for a response in the bootcode firmware mailbox. */
2607                 val = bce_shmem_rd(sc, BCE_FW_MB);
2608                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
2609                         break;
2610                 DELAY(1000);
2611         }
2612
2613         /* If we've timed out, tell the bootcode that we've stopped waiting. */
2614         if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) &&
2615             (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) {
2616                 if_printf(&sc->arpcom.ac_if,
2617                           "Firmware synchronization timeout! "
2618                           "msg_data = 0x%08X\n", msg_data);
2619
2620                 msg_data &= ~BCE_DRV_MSG_CODE;
2621                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
2622
2623                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2624
2625                 sc->bce_fw_timed_out = 1;
2626                 rc = EBUSY;
2627         }
2628         return rc;
2629 }
2630
2631
2632 /****************************************************************************/
2633 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2634 /*                                                                          */
2635 /* Returns:                                                                 */
2636 /*   Nothing.                                                               */
2637 /****************************************************************************/
2638 static void
2639 bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code,
2640                  uint32_t rv2p_code_len, uint32_t rv2p_proc)
2641 {
2642         int i;
2643         uint32_t val;
2644
2645         for (i = 0; i < rv2p_code_len; i += 8) {
2646                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
2647                 rv2p_code++;
2648                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
2649                 rv2p_code++;
2650
2651                 if (rv2p_proc == RV2P_PROC1) {
2652                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
2653                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
2654                 } else {
2655                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
2656                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
2657                 }
2658         }
2659
2660         /* Reset the processor, un-stall is done later. */
2661         if (rv2p_proc == RV2P_PROC1)
2662                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
2663         else
2664                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
2665 }
2666
2667
2668 /****************************************************************************/
2669 /* Load RISC processor firmware.                                            */
2670 /*                                                                          */
2671 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
2672 /* associated with a particular processor.                                  */
2673 /*                                                                          */
2674 /* Returns:                                                                 */
2675 /*   Nothing.                                                               */
2676 /****************************************************************************/
2677 static void
2678 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
2679                 struct fw_info *fw)
2680 {
2681         uint32_t offset;
2682         int j;
2683
2684         bce_halt_cpu(sc, cpu_reg);
2685
2686         /* Load the Text area. */
2687         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2688         if (fw->text) {
2689                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2690                         REG_WR_IND(sc, offset, fw->text[j]);
2691         }
2692
2693         /* Load the Data area. */
2694         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2695         if (fw->data) {
2696                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2697                         REG_WR_IND(sc, offset, fw->data[j]);
2698         }
2699
2700         /* Load the SBSS area. */
2701         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2702         if (fw->sbss) {
2703                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2704                         REG_WR_IND(sc, offset, fw->sbss[j]);
2705         }
2706
2707         /* Load the BSS area. */
2708         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2709         if (fw->bss) {
2710                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2711                         REG_WR_IND(sc, offset, fw->bss[j]);
2712         }
2713
2714         /* Load the Read-Only area. */
2715         offset = cpu_reg->spad_base +
2716                 (fw->rodata_addr - cpu_reg->mips_view_base);
2717         if (fw->rodata) {
2718                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2719                         REG_WR_IND(sc, offset, fw->rodata[j]);
2720         }
2721
2722         /* Clear the pre-fetch instruction and set the FW start address. */
2723         REG_WR_IND(sc, cpu_reg->inst, 0);
2724         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2725 }
2726
2727
2728 /****************************************************************************/
2729 /* Starts the RISC processor.                                               */
2730 /*                                                                          */
2731 /* Assumes the CPU starting address has already been set.                   */
2732 /*                                                                          */
2733 /* Returns:                                                                 */
2734 /*   Nothing.                                                               */
2735 /****************************************************************************/
2736 static void
2737 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2738 {
2739         uint32_t val;
2740
2741         /* Start the CPU. */
2742         val = REG_RD_IND(sc, cpu_reg->mode);
2743         val &= ~cpu_reg->mode_value_halt;
2744         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2745         REG_WR_IND(sc, cpu_reg->mode, val);
2746 }
2747
2748
2749 /****************************************************************************/
2750 /* Halts the RISC processor.                                                */
2751 /*                                                                          */
2752 /* Returns:                                                                 */
2753 /*   Nothing.                                                               */
2754 /****************************************************************************/
2755 static void
2756 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2757 {
2758         uint32_t val;
2759
2760         /* Halt the CPU. */
2761         val = REG_RD_IND(sc, cpu_reg->mode);
2762         val |= cpu_reg->mode_value_halt;
2763         REG_WR_IND(sc, cpu_reg->mode, val);
2764         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2765 }
2766
2767
2768 /****************************************************************************/
2769 /* Start the RX CPU.                                                        */
2770 /*                                                                          */
2771 /* Returns:                                                                 */
2772 /*   Nothing.                                                               */
2773 /****************************************************************************/
2774 static void
2775 bce_start_rxp_cpu(struct bce_softc *sc)
2776 {
2777         struct cpu_reg cpu_reg;
2778
2779         cpu_reg.mode = BCE_RXP_CPU_MODE;
2780         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2781         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2782         cpu_reg.state = BCE_RXP_CPU_STATE;
2783         cpu_reg.state_value_clear = 0xffffff;
2784         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2785         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2786         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2787         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2788         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2789         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2790         cpu_reg.mips_view_base = 0x8000000;
2791
2792         bce_start_cpu(sc, &cpu_reg);
2793 }
2794
2795
2796 /****************************************************************************/
2797 /* Initialize the RX CPU.                                                   */
2798 /*                                                                          */
2799 /* Returns:                                                                 */
2800 /*   Nothing.                                                               */
2801 /****************************************************************************/
2802 static void
2803 bce_init_rxp_cpu(struct bce_softc *sc)
2804 {
2805         struct cpu_reg cpu_reg;
2806         struct fw_info fw;
2807
2808         cpu_reg.mode = BCE_RXP_CPU_MODE;
2809         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2810         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2811         cpu_reg.state = BCE_RXP_CPU_STATE;
2812         cpu_reg.state_value_clear = 0xffffff;
2813         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2814         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2815         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2816         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2817         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2818         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2819         cpu_reg.mips_view_base = 0x8000000;
2820
2821         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2822             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2823                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
2824                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
2825                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
2826                 fw.start_addr = bce_RXP_b09FwStartAddr;
2827
2828                 fw.text_addr = bce_RXP_b09FwTextAddr;
2829                 fw.text_len = bce_RXP_b09FwTextLen;
2830                 fw.text_index = 0;
2831                 fw.text = bce_RXP_b09FwText;
2832
2833                 fw.data_addr = bce_RXP_b09FwDataAddr;
2834                 fw.data_len = bce_RXP_b09FwDataLen;
2835                 fw.data_index = 0;
2836                 fw.data = bce_RXP_b09FwData;
2837
2838                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
2839                 fw.sbss_len = bce_RXP_b09FwSbssLen;
2840                 fw.sbss_index = 0;
2841                 fw.sbss = bce_RXP_b09FwSbss;
2842
2843                 fw.bss_addr = bce_RXP_b09FwBssAddr;
2844                 fw.bss_len = bce_RXP_b09FwBssLen;
2845                 fw.bss_index = 0;
2846                 fw.bss = bce_RXP_b09FwBss;
2847
2848                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
2849                 fw.rodata_len = bce_RXP_b09FwRodataLen;
2850                 fw.rodata_index = 0;
2851                 fw.rodata = bce_RXP_b09FwRodata;
2852         } else {
2853                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
2854                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
2855                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
2856                 fw.start_addr = bce_RXP_b06FwStartAddr;
2857
2858                 fw.text_addr = bce_RXP_b06FwTextAddr;
2859                 fw.text_len = bce_RXP_b06FwTextLen;
2860                 fw.text_index = 0;
2861                 fw.text = bce_RXP_b06FwText;
2862
2863                 fw.data_addr = bce_RXP_b06FwDataAddr;
2864                 fw.data_len = bce_RXP_b06FwDataLen;
2865                 fw.data_index = 0;
2866                 fw.data = bce_RXP_b06FwData;
2867
2868                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
2869                 fw.sbss_len = bce_RXP_b06FwSbssLen;
2870                 fw.sbss_index = 0;
2871                 fw.sbss = bce_RXP_b06FwSbss;
2872
2873                 fw.bss_addr = bce_RXP_b06FwBssAddr;
2874                 fw.bss_len = bce_RXP_b06FwBssLen;
2875                 fw.bss_index = 0;
2876                 fw.bss = bce_RXP_b06FwBss;
2877
2878                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
2879                 fw.rodata_len = bce_RXP_b06FwRodataLen;
2880                 fw.rodata_index = 0;
2881                 fw.rodata = bce_RXP_b06FwRodata;
2882         }
2883
2884         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
2885         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2886         /* Delay RXP start until initialization is complete. */
2887 }
2888
2889
2890 /****************************************************************************/
2891 /* Initialize the TX CPU.                                                   */
2892 /*                                                                          */
2893 /* Returns:                                                                 */
2894 /*   Nothing.                                                               */
2895 /****************************************************************************/
2896 static void
2897 bce_init_txp_cpu(struct bce_softc *sc)
2898 {
2899         struct cpu_reg cpu_reg;
2900         struct fw_info fw;
2901
2902         cpu_reg.mode = BCE_TXP_CPU_MODE;
2903         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
2904         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
2905         cpu_reg.state = BCE_TXP_CPU_STATE;
2906         cpu_reg.state_value_clear = 0xffffff;
2907         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
2908         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
2909         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
2910         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
2911         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
2912         cpu_reg.spad_base = BCE_TXP_SCRATCH;
2913         cpu_reg.mips_view_base = 0x8000000;
2914
2915         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2916             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2917                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
2918                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
2919                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
2920                 fw.start_addr = bce_TXP_b09FwStartAddr;
2921
2922                 fw.text_addr = bce_TXP_b09FwTextAddr;
2923                 fw.text_len = bce_TXP_b09FwTextLen;
2924                 fw.text_index = 0;
2925                 fw.text = bce_TXP_b09FwText;
2926
2927                 fw.data_addr = bce_TXP_b09FwDataAddr;
2928                 fw.data_len = bce_TXP_b09FwDataLen;
2929                 fw.data_index = 0;
2930                 fw.data = bce_TXP_b09FwData;
2931
2932                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
2933                 fw.sbss_len = bce_TXP_b09FwSbssLen;
2934                 fw.sbss_index = 0;
2935                 fw.sbss = bce_TXP_b09FwSbss;
2936
2937                 fw.bss_addr = bce_TXP_b09FwBssAddr;
2938                 fw.bss_len = bce_TXP_b09FwBssLen;
2939                 fw.bss_index = 0;
2940                 fw.bss = bce_TXP_b09FwBss;
2941
2942                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
2943                 fw.rodata_len = bce_TXP_b09FwRodataLen;
2944                 fw.rodata_index = 0;
2945                 fw.rodata = bce_TXP_b09FwRodata;
2946         } else {
2947                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
2948                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
2949                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
2950                 fw.start_addr = bce_TXP_b06FwStartAddr;
2951
2952                 fw.text_addr = bce_TXP_b06FwTextAddr;
2953                 fw.text_len = bce_TXP_b06FwTextLen;
2954                 fw.text_index = 0;
2955                 fw.text = bce_TXP_b06FwText;
2956
2957                 fw.data_addr = bce_TXP_b06FwDataAddr;
2958                 fw.data_len = bce_TXP_b06FwDataLen;
2959                 fw.data_index = 0;
2960                 fw.data = bce_TXP_b06FwData;
2961
2962                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
2963                 fw.sbss_len = bce_TXP_b06FwSbssLen;
2964                 fw.sbss_index = 0;
2965                 fw.sbss = bce_TXP_b06FwSbss;
2966
2967                 fw.bss_addr = bce_TXP_b06FwBssAddr;
2968                 fw.bss_len = bce_TXP_b06FwBssLen;
2969                 fw.bss_index = 0;
2970                 fw.bss = bce_TXP_b06FwBss;
2971
2972                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
2973                 fw.rodata_len = bce_TXP_b06FwRodataLen;
2974                 fw.rodata_index = 0;
2975                 fw.rodata = bce_TXP_b06FwRodata;
2976         }
2977
2978         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
2979         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2980         bce_start_cpu(sc, &cpu_reg);
2981 }
2982
2983
2984 /****************************************************************************/
2985 /* Initialize the TPAT CPU.                                                 */
2986 /*                                                                          */
2987 /* Returns:                                                                 */
2988 /*   Nothing.                                                               */
2989 /****************************************************************************/
2990 static void
2991 bce_init_tpat_cpu(struct bce_softc *sc)
2992 {
2993         struct cpu_reg cpu_reg;
2994         struct fw_info fw;
2995
2996         cpu_reg.mode = BCE_TPAT_CPU_MODE;
2997         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
2998         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
2999         cpu_reg.state = BCE_TPAT_CPU_STATE;
3000         cpu_reg.state_value_clear = 0xffffff;
3001         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
3002         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
3003         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
3004         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
3005         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
3006         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
3007         cpu_reg.mips_view_base = 0x8000000;
3008
3009         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3010             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3011                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3012                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3013                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3014                 fw.start_addr = bce_TPAT_b09FwStartAddr;
3015
3016                 fw.text_addr = bce_TPAT_b09FwTextAddr;
3017                 fw.text_len = bce_TPAT_b09FwTextLen;
3018                 fw.text_index = 0;
3019                 fw.text = bce_TPAT_b09FwText;
3020
3021                 fw.data_addr = bce_TPAT_b09FwDataAddr;
3022                 fw.data_len = bce_TPAT_b09FwDataLen;
3023                 fw.data_index = 0;
3024                 fw.data = bce_TPAT_b09FwData;
3025
3026                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3027                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
3028                 fw.sbss_index = 0;
3029                 fw.sbss = bce_TPAT_b09FwSbss;
3030
3031                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
3032                 fw.bss_len = bce_TPAT_b09FwBssLen;
3033                 fw.bss_index = 0;
3034                 fw.bss = bce_TPAT_b09FwBss;
3035
3036                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3037                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
3038                 fw.rodata_index = 0;
3039                 fw.rodata = bce_TPAT_b09FwRodata;
3040         } else {
3041                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3042                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3043                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3044                 fw.start_addr = bce_TPAT_b06FwStartAddr;
3045
3046                 fw.text_addr = bce_TPAT_b06FwTextAddr;
3047                 fw.text_len = bce_TPAT_b06FwTextLen;
3048                 fw.text_index = 0;
3049                 fw.text = bce_TPAT_b06FwText;
3050
3051                 fw.data_addr = bce_TPAT_b06FwDataAddr;
3052                 fw.data_len = bce_TPAT_b06FwDataLen;
3053                 fw.data_index = 0;
3054                 fw.data = bce_TPAT_b06FwData;
3055
3056                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
3057                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
3058                 fw.sbss_index = 0;
3059                 fw.sbss = bce_TPAT_b06FwSbss;
3060
3061                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
3062                 fw.bss_len = bce_TPAT_b06FwBssLen;
3063                 fw.bss_index = 0;
3064                 fw.bss = bce_TPAT_b06FwBss;
3065
3066                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
3067                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
3068                 fw.rodata_index = 0;
3069                 fw.rodata = bce_TPAT_b06FwRodata;
3070         }
3071
3072         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
3073         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3074         bce_start_cpu(sc, &cpu_reg);
3075 }
3076
3077
3078 /****************************************************************************/
3079 /* Initialize the CP CPU.                                                   */
3080 /*                                                                          */
3081 /* Returns:                                                                 */
3082 /*   Nothing.                                                               */
3083 /****************************************************************************/
3084 static void
3085 bce_init_cp_cpu(struct bce_softc *sc)
3086 {
3087         struct cpu_reg cpu_reg;
3088         struct fw_info fw;
3089
3090         cpu_reg.mode = BCE_CP_CPU_MODE;
3091         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
3092         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
3093         cpu_reg.state = BCE_CP_CPU_STATE;
3094         cpu_reg.state_value_clear = 0xffffff;
3095         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
3096         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
3097         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
3098         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
3099         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
3100         cpu_reg.spad_base = BCE_CP_SCRATCH;
3101         cpu_reg.mips_view_base = 0x8000000;
3102
3103         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3104             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3105                 fw.ver_major = bce_CP_b09FwReleaseMajor;
3106                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
3107                 fw.ver_fix = bce_CP_b09FwReleaseFix;
3108                 fw.start_addr = bce_CP_b09FwStartAddr;
3109
3110                 fw.text_addr = bce_CP_b09FwTextAddr;
3111                 fw.text_len = bce_CP_b09FwTextLen;
3112                 fw.text_index = 0;
3113                 fw.text = bce_CP_b09FwText;
3114
3115                 fw.data_addr = bce_CP_b09FwDataAddr;
3116                 fw.data_len = bce_CP_b09FwDataLen;
3117                 fw.data_index = 0;
3118                 fw.data = bce_CP_b09FwData;
3119
3120                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
3121                 fw.sbss_len = bce_CP_b09FwSbssLen;
3122                 fw.sbss_index = 0;
3123                 fw.sbss = bce_CP_b09FwSbss;
3124
3125                 fw.bss_addr = bce_CP_b09FwBssAddr;
3126                 fw.bss_len = bce_CP_b09FwBssLen;
3127                 fw.bss_index = 0;
3128                 fw.bss = bce_CP_b09FwBss;
3129
3130                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
3131                 fw.rodata_len = bce_CP_b09FwRodataLen;
3132                 fw.rodata_index = 0;
3133                 fw.rodata = bce_CP_b09FwRodata;
3134         } else {
3135                 fw.ver_major = bce_CP_b06FwReleaseMajor;
3136                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
3137                 fw.ver_fix = bce_CP_b06FwReleaseFix;
3138                 fw.start_addr = bce_CP_b06FwStartAddr;
3139
3140                 fw.text_addr = bce_CP_b06FwTextAddr;
3141                 fw.text_len = bce_CP_b06FwTextLen;
3142                 fw.text_index = 0;
3143                 fw.text = bce_CP_b06FwText;
3144
3145                 fw.data_addr = bce_CP_b06FwDataAddr;
3146                 fw.data_len = bce_CP_b06FwDataLen;
3147                 fw.data_index = 0;
3148                 fw.data = bce_CP_b06FwData;
3149
3150                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
3151                 fw.sbss_len = bce_CP_b06FwSbssLen;
3152                 fw.sbss_index = 0;
3153                 fw.sbss = bce_CP_b06FwSbss;
3154
3155                 fw.bss_addr = bce_CP_b06FwBssAddr;
3156                 fw.bss_len = bce_CP_b06FwBssLen;
3157                 fw.bss_index = 0;
3158                 fw.bss = bce_CP_b06FwBss;
3159
3160                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
3161                 fw.rodata_len = bce_CP_b06FwRodataLen;
3162                 fw.rodata_index = 0;
3163                 fw.rodata = bce_CP_b06FwRodata;
3164         }
3165
3166         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
3167         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3168         bce_start_cpu(sc, &cpu_reg);
3169 }
3170
3171
3172 /****************************************************************************/
3173 /* Initialize the COM CPU.                                                 */
3174 /*                                                                          */
3175 /* Returns:                                                                 */
3176 /*   Nothing.                                                               */
3177 /****************************************************************************/
3178 static void
3179 bce_init_com_cpu(struct bce_softc *sc)
3180 {
3181         struct cpu_reg cpu_reg;
3182         struct fw_info fw;
3183
3184         cpu_reg.mode = BCE_COM_CPU_MODE;
3185         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
3186         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
3187         cpu_reg.state = BCE_COM_CPU_STATE;
3188         cpu_reg.state_value_clear = 0xffffff;
3189         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
3190         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
3191         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
3192         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
3193         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
3194         cpu_reg.spad_base = BCE_COM_SCRATCH;
3195         cpu_reg.mips_view_base = 0x8000000;
3196
3197         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3198             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3199                 fw.ver_major = bce_COM_b09FwReleaseMajor;
3200                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
3201                 fw.ver_fix = bce_COM_b09FwReleaseFix;
3202                 fw.start_addr = bce_COM_b09FwStartAddr;
3203
3204                 fw.text_addr = bce_COM_b09FwTextAddr;
3205                 fw.text_len = bce_COM_b09FwTextLen;
3206                 fw.text_index = 0;
3207                 fw.text = bce_COM_b09FwText;
3208
3209                 fw.data_addr = bce_COM_b09FwDataAddr;
3210                 fw.data_len = bce_COM_b09FwDataLen;
3211                 fw.data_index = 0;
3212                 fw.data = bce_COM_b09FwData;
3213
3214                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
3215                 fw.sbss_len = bce_COM_b09FwSbssLen;
3216                 fw.sbss_index = 0;
3217                 fw.sbss = bce_COM_b09FwSbss;
3218
3219                 fw.bss_addr = bce_COM_b09FwBssAddr;
3220                 fw.bss_len = bce_COM_b09FwBssLen;
3221                 fw.bss_index = 0;
3222                 fw.bss = bce_COM_b09FwBss;
3223
3224                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
3225                 fw.rodata_len = bce_COM_b09FwRodataLen;
3226                 fw.rodata_index = 0;
3227                 fw.rodata = bce_COM_b09FwRodata;
3228         } else {
3229                 fw.ver_major = bce_COM_b06FwReleaseMajor;
3230                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
3231                 fw.ver_fix = bce_COM_b06FwReleaseFix;
3232                 fw.start_addr = bce_COM_b06FwStartAddr;
3233
3234                 fw.text_addr = bce_COM_b06FwTextAddr;
3235                 fw.text_len = bce_COM_b06FwTextLen;
3236                 fw.text_index = 0;
3237                 fw.text = bce_COM_b06FwText;
3238
3239                 fw.data_addr = bce_COM_b06FwDataAddr;
3240                 fw.data_len = bce_COM_b06FwDataLen;
3241                 fw.data_index = 0;
3242                 fw.data = bce_COM_b06FwData;
3243
3244                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
3245                 fw.sbss_len = bce_COM_b06FwSbssLen;
3246                 fw.sbss_index = 0;
3247                 fw.sbss = bce_COM_b06FwSbss;
3248
3249                 fw.bss_addr = bce_COM_b06FwBssAddr;
3250                 fw.bss_len = bce_COM_b06FwBssLen;
3251                 fw.bss_index = 0;
3252                 fw.bss = bce_COM_b06FwBss;
3253
3254                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
3255                 fw.rodata_len = bce_COM_b06FwRodataLen;
3256                 fw.rodata_index = 0;
3257                 fw.rodata = bce_COM_b06FwRodata;
3258         }
3259
3260         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
3261         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3262         bce_start_cpu(sc, &cpu_reg);
3263 }
3264
3265
3266 /****************************************************************************/
3267 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
3268 /*                                                                          */
3269 /* Loads the firmware for each CPU and starts the CPU.                      */
3270 /*                                                                          */
3271 /* Returns:                                                                 */
3272 /*   Nothing.                                                               */
3273 /****************************************************************************/
3274 static void
3275 bce_init_cpus(struct bce_softc *sc)
3276 {
3277         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3278             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3279                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) {
3280                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
3281                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
3282                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
3283                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
3284                 } else {
3285                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
3286                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
3287                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
3288                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
3289                 }
3290         } else {
3291                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
3292                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
3293                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
3294                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
3295         }
3296
3297         bce_init_rxp_cpu(sc);
3298         bce_init_txp_cpu(sc);
3299         bce_init_tpat_cpu(sc);
3300         bce_init_com_cpu(sc);
3301         bce_init_cp_cpu(sc);
3302 }
3303
3304
3305 /****************************************************************************/
3306 /* Initialize context memory.                                               */
3307 /*                                                                          */
3308 /* Clears the memory associated with each Context ID (CID).                 */
3309 /*                                                                          */
3310 /* Returns:                                                                 */
3311 /*   Nothing.                                                               */
3312 /****************************************************************************/
3313 static int
3314 bce_init_ctx(struct bce_softc *sc)
3315 {
3316         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3317             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3318                 /* DRC: Replace this constant value with a #define. */
3319                 int i, retry_cnt = 10;
3320                 uint32_t val;
3321
3322                 /*
3323                  * BCM5709 context memory may be cached
3324                  * in host memory so prepare the host memory
3325                  * for access.
3326                  */
3327                 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT |
3328                     (1 << 12);
3329                 val |= (BCM_PAGE_BITS - 8) << 16;
3330                 REG_WR(sc, BCE_CTX_COMMAND, val);
3331
3332                 /* Wait for mem init command to complete. */
3333                 for (i = 0; i < retry_cnt; i++) {
3334                         val = REG_RD(sc, BCE_CTX_COMMAND);
3335                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
3336                                 break;
3337                         DELAY(2);
3338                 }
3339                 if (i == retry_cnt) {
3340                         device_printf(sc->bce_dev,
3341                             "Context memory initialization failed!\n");
3342                         return ETIMEDOUT;
3343                 }
3344
3345                 for (i = 0; i < sc->ctx_pages; i++) {
3346                         int j;
3347
3348                         /*
3349                          * Set the physical address of the context
3350                          * memory cache.
3351                          */
3352                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
3353                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
3354                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
3355                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
3356                             BCE_ADDR_HI(sc->ctx_paddr[i]));
3357                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL,
3358                             i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3359
3360                         /*
3361                          * Verify that the context memory write was successful.
3362                          */
3363                         for (j = 0; j < retry_cnt; j++) {
3364                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
3365                                 if ((val &
3366                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3367                                         break;
3368                                 DELAY(5);
3369                         }
3370                         if (j == retry_cnt) {
3371                                 device_printf(sc->bce_dev,
3372                                     "Failed to initialize context page!\n");
3373                                 return ETIMEDOUT;
3374                         }
3375                 }
3376         } else {
3377                 uint32_t vcid_addr, offset;
3378
3379                 /*
3380                  * For the 5706/5708, context memory is local to
3381                  * the controller, so initialize the controller
3382                  * context memory.
3383                  */
3384
3385                 vcid_addr = GET_CID_ADDR(96);
3386                 while (vcid_addr) {
3387                         vcid_addr -= PHY_CTX_SIZE;
3388
3389                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
3390                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3391
3392                         for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
3393                                 CTX_WR(sc, 0x00, offset, 0);
3394
3395                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
3396                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3397                 }
3398         }
3399         return 0;
3400 }
3401
3402
3403 /****************************************************************************/
3404 /* Fetch the permanent MAC address of the controller.                       */
3405 /*                                                                          */
3406 /* Returns:                                                                 */
3407 /*   Nothing.                                                               */
3408 /****************************************************************************/
3409 static void
3410 bce_get_mac_addr(struct bce_softc *sc)
3411 {
3412         uint32_t mac_lo = 0, mac_hi = 0;
3413 #ifdef BCE_DEBUG
3414         char ethstr[ETHER_ADDRSTRLEN + 1];
3415 #endif
3416         /*
3417          * The NetXtreme II bootcode populates various NIC
3418          * power-on and runtime configuration items in a
3419          * shared memory area.  The factory configured MAC
3420          * address is available from both NVRAM and the
3421          * shared memory area so we'll read the value from
3422          * shared memory for speed.
3423          */
3424
3425         mac_hi = bce_shmem_rd(sc,  BCE_PORT_HW_CFG_MAC_UPPER);
3426         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
3427
3428         if (mac_lo == 0 && mac_hi == 0) {
3429                 if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n");
3430         } else {
3431                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3432                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3433                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3434                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3435                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3436                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3437         }
3438
3439         DBPRINT(sc, BCE_INFO, "Permanent Ethernet address = %s\n",
3440             kether_ntoa(sc->eaddr, ethstr));
3441 }
3442
3443
3444 /****************************************************************************/
3445 /* Program the MAC address.                                                 */
3446 /*                                                                          */
3447 /* Returns:                                                                 */
3448 /*   Nothing.                                                               */
3449 /****************************************************************************/
3450 static void
3451 bce_set_mac_addr(struct bce_softc *sc)
3452 {
3453         const uint8_t *mac_addr = sc->eaddr;
3454 #ifdef BCE_DEBUG
3455         char ethstr[ETHER_ADDRSTRLEN + 1];
3456 #endif
3457         uint32_t val;
3458
3459         DBPRINT(sc, BCE_INFO, "Setting Ethernet address = %s\n",
3460             kether_ntoa(sc->eaddr, ethstr));
3461
3462         val = (mac_addr[0] << 8) | mac_addr[1];
3463         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
3464
3465         val = (mac_addr[2] << 24) |
3466               (mac_addr[3] << 16) |
3467               (mac_addr[4] << 8) |
3468               mac_addr[5];
3469         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
3470 }
3471
3472
3473 /****************************************************************************/
3474 /* Stop the controller.                                                     */
3475 /*                                                                          */
3476 /* Returns:                                                                 */
3477 /*   Nothing.                                                               */
3478 /****************************************************************************/
3479 static void
3480 bce_stop(struct bce_softc *sc)
3481 {
3482         struct ifnet *ifp = &sc->arpcom.ac_if;
3483
3484         ASSERT_SERIALIZED(ifp->if_serializer);
3485
3486         callout_stop(&sc->bce_tick_callout);
3487
3488         /* Disable the transmit/receive blocks. */
3489         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
3490         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3491         DELAY(20);
3492
3493         bce_disable_intr(sc);
3494
3495         /* Free the RX lists. */
3496         bce_free_rx_chain(sc);
3497
3498         /* Free TX buffers. */
3499         bce_free_tx_chain(sc);
3500
3501         sc->bce_link = 0;
3502         sc->bce_coalchg_mask = 0;
3503
3504         ifp->if_flags &= ~IFF_RUNNING;
3505         ifq_clr_oactive(&ifp->if_snd);
3506         ifp->if_timer = 0;
3507 }
3508
3509
3510 static int
3511 bce_reset(struct bce_softc *sc, uint32_t reset_code)
3512 {
3513         uint32_t val;
3514         int i, rc = 0;
3515
3516         /* Wait for pending PCI transactions to complete. */
3517         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
3518                BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3519                BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3520                BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3521                BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3522         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3523         DELAY(5);
3524
3525         /* Disable DMA */
3526         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3527             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3528                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3529                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3530                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3531         }
3532
3533         /* Assume bootcode is running. */
3534         sc->bce_fw_timed_out = 0;
3535         sc->bce_drv_cardiac_arrest = 0;
3536
3537         /* Give the firmware a chance to prepare for the reset. */
3538         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
3539         if (rc) {
3540                 if_printf(&sc->arpcom.ac_if,
3541                           "Firmware is not ready for reset\n");
3542                 return rc;
3543         }
3544
3545         /* Set a firmware reminder that this is a soft reset. */
3546         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE,
3547             BCE_DRV_RESET_SIGNATURE_MAGIC);
3548
3549         /* Dummy read to force the chip to complete all current transactions. */
3550         val = REG_RD(sc, BCE_MISC_ID);
3551
3552         /* Chip reset. */
3553         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3554             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3555                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
3556                 REG_RD(sc, BCE_MISC_COMMAND);
3557                 DELAY(5);
3558
3559                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3560                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3561
3562                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
3563         } else {
3564                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3565                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3566                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3567                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
3568
3569                 /* Allow up to 30us for reset to complete. */
3570                 for (i = 0; i < 10; i++) {
3571                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
3572                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3573                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3574                                 break;
3575                         DELAY(10);
3576                 }
3577
3578                 /* Check that reset completed successfully. */
3579                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3580                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3581                         if_printf(&sc->arpcom.ac_if, "Reset failed!\n");
3582                         return EBUSY;
3583                 }
3584         }
3585
3586         /* Make sure byte swapping is properly configured. */
3587         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
3588         if (val != 0x01020304) {
3589                 if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n");
3590                 return ENODEV;
3591         }
3592
3593         /* Just completed a reset, assume that firmware is running again. */
3594         sc->bce_fw_timed_out = 0;
3595         sc->bce_drv_cardiac_arrest = 0;
3596
3597         /* Wait for the firmware to finish its initialization. */
3598         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
3599         if (rc) {
3600                 if_printf(&sc->arpcom.ac_if,
3601                           "Firmware did not complete initialization!\n");
3602         }
3603         return rc;
3604 }
3605
3606
3607 static int
3608 bce_chipinit(struct bce_softc *sc)
3609 {
3610         uint32_t val;
3611         int rc = 0;
3612
3613         /* Make sure the interrupt is not active. */
3614         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
3615         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
3616
3617         /*
3618          * Initialize DMA byte/word swapping, configure the number of DMA
3619          * channels and PCI clock compensation delay.
3620          */
3621         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
3622               BCE_DMA_CONFIG_DATA_WORD_SWAP |
3623 #if BYTE_ORDER == BIG_ENDIAN
3624               BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
3625 #endif
3626               BCE_DMA_CONFIG_CNTL_WORD_SWAP |
3627               DMA_READ_CHANS << 12 |
3628               DMA_WRITE_CHANS << 16;
3629
3630         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3631
3632         if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133)
3633                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
3634
3635         /*
3636          * This setting resolves a problem observed on certain Intel PCI
3637          * chipsets that cannot handle multiple outstanding DMA operations.
3638          * See errata E9_5706A1_65.
3639          */
3640         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 &&
3641             BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 &&
3642             !(sc->bce_flags & BCE_PCIX_FLAG))
3643                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
3644
3645         REG_WR(sc, BCE_DMA_CONFIG, val);
3646
3647         /* Enable the RX_V2P and Context state machines before access. */
3648         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3649                BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3650                BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3651                BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3652
3653         /* Initialize context mapping and zero out the quick contexts. */
3654         rc = bce_init_ctx(sc);
3655         if (rc != 0)
3656                 return rc;
3657
3658         /* Initialize the on-boards CPUs */
3659         bce_init_cpus(sc);
3660
3661         /* Enable management frames (NC-SI) to flow to the MCP. */
3662         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3663                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) |
3664                     BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3665                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3666         }
3667
3668         /* Prepare NVRAM for access. */
3669         rc = bce_init_nvram(sc);
3670         if (rc != 0)
3671                 return rc;
3672
3673         /* Set the kernel bypass block size */
3674         val = REG_RD(sc, BCE_MQ_CONFIG);
3675         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3676         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3677
3678         /* Enable bins used on the 5709/5716. */
3679         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3680             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3681                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
3682                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
3683                         val |= BCE_MQ_CONFIG_HALT_DIS;
3684         }
3685
3686         REG_WR(sc, BCE_MQ_CONFIG, val);
3687
3688         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3689         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
3690         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
3691
3692         /* Set the page size and clear the RV2P processor stall bits. */
3693         val = (BCM_PAGE_BITS - 8) << 24;
3694         REG_WR(sc, BCE_RV2P_CONFIG, val);
3695
3696         /* Configure page size. */
3697         val = REG_RD(sc, BCE_TBDR_CONFIG);
3698         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
3699         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3700         REG_WR(sc, BCE_TBDR_CONFIG, val);
3701
3702         /* Set the perfect match control register to default. */
3703         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
3704
3705         return 0;
3706 }
3707
3708
3709 /****************************************************************************/
3710 /* Initialize the controller in preparation to send/receive traffic.        */
3711 /*                                                                          */
3712 /* Returns:                                                                 */
3713 /*   0 for success, positive value for failure.                             */
3714 /****************************************************************************/
3715 static int
3716 bce_blockinit(struct bce_softc *sc)
3717 {
3718         uint32_t reg, val;
3719         int rc = 0;
3720
3721         /* Load the hardware default MAC address. */
3722         bce_set_mac_addr(sc);
3723
3724         /* Set the Ethernet backoff seed value */
3725         val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3726               sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3727         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
3728
3729         sc->last_status_idx = 0;
3730         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
3731
3732         /* Set up link change interrupt generation. */
3733         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
3734
3735         /* Program the physical address of the status block. */
3736         REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr));
3737         REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr));
3738
3739         /* Program the physical address of the statistics block. */
3740         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
3741                BCE_ADDR_LO(sc->stats_block_paddr));
3742         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
3743                BCE_ADDR_HI(sc->stats_block_paddr));
3744
3745         /* Program various host coalescing parameters. */
3746         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
3747                (sc->bce_tx_quick_cons_trip_int << 16) |
3748                sc->bce_tx_quick_cons_trip);
3749         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
3750                (sc->bce_rx_quick_cons_trip_int << 16) |
3751                sc->bce_rx_quick_cons_trip);
3752         REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
3753                (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
3754         REG_WR(sc, BCE_HC_TX_TICKS,
3755                (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3756         REG_WR(sc, BCE_HC_RX_TICKS,
3757                (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3758         REG_WR(sc, BCE_HC_COM_TICKS,
3759                (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
3760         REG_WR(sc, BCE_HC_CMD_TICKS,
3761                (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
3762         REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00));
3763         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);   /* 3ms */
3764
3765         val = BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS;
3766         if (sc->bce_flags & BCE_ONESHOT_MSI_FLAG) {
3767                 if (bootverbose)
3768                         if_printf(&sc->arpcom.ac_if, "oneshot MSI\n");
3769                 val |= BCE_HC_CONFIG_ONE_SHOT | BCE_HC_CONFIG_USE_INT_PARAM;
3770         }
3771         REG_WR(sc, BCE_HC_CONFIG, val);
3772
3773         /* Clear the internal statistics counters. */
3774         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
3775
3776         /* Verify that bootcode is running. */
3777         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
3778
3779         DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
3780                 if_printf(&sc->arpcom.ac_if,
3781                           "%s(%d): Simulating bootcode failure.\n",
3782                           __FILE__, __LINE__);
3783                 reg = 0);
3784
3785         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3786             BCE_DEV_INFO_SIGNATURE_MAGIC) {
3787                 if_printf(&sc->arpcom.ac_if,
3788                           "Bootcode not running! Found: 0x%08X, "
3789                           "Expected: 08%08X\n",
3790                           reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK,
3791                           BCE_DEV_INFO_SIGNATURE_MAGIC);
3792                 return ENODEV;
3793         }
3794
3795         /* Enable DMA */
3796         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3797             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3798                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3799                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3800                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3801         }
3802
3803         /* Allow bootcode to apply any additional fixes before enabling MAC. */
3804         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
3805
3806         /* Enable link state change interrupt generation. */
3807         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3808
3809         /* Enable the RXP. */
3810         bce_start_rxp_cpu(sc);
3811
3812         /* Disable management frames (NC-SI) from flowing to the MCP. */
3813         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3814                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
3815                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3816                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3817         }
3818
3819         /* Enable all remaining blocks in the MAC. */
3820         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3821             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3822                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3823                     BCE_MISC_ENABLE_DEFAULT_XI);
3824         } else {
3825                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
3826         }
3827         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
3828         DELAY(20);
3829
3830         /* Save the current host coalescing block settings. */
3831         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
3832
3833         return 0;
3834 }
3835
3836
3837 /****************************************************************************/
3838 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3839 /*                                                                          */
3840 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3841 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3842 /* necessary.                                                               */
3843 /*                                                                          */
3844 /* Returns:                                                                 */
3845 /*   0 for success, positive value for failure.                             */
3846 /****************************************************************************/
3847 static int
3848 bce_newbuf_std(struct bce_softc *sc, uint16_t *prod, uint16_t *chain_prod,
3849                uint32_t *prod_bseq, int init)
3850 {
3851         bus_dmamap_t map;
3852         bus_dma_segment_t seg;
3853         struct mbuf *m_new;
3854         int error, nseg;
3855 #ifdef BCE_DEBUG
3856         uint16_t debug_chain_prod = *chain_prod;
3857 #endif
3858
3859         /* Make sure the inputs are valid. */
3860         DBRUNIF((*chain_prod > MAX_RX_BD(sc)),
3861                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3862                           "RX producer out of range: 0x%04X > 0x%04X\n",
3863                           __FILE__, __LINE__,
3864                           *chain_prod, (uint16_t)MAX_RX_BD(sc)));
3865
3866         DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
3867                 "prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3868
3869         DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
3870                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3871                           "Simulating mbuf allocation failure.\n",
3872                           __FILE__, __LINE__);
3873                 sc->mbuf_alloc_failed++;
3874                 return ENOBUFS);
3875
3876         /* This is a new mbuf allocation. */
3877         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3878         if (m_new == NULL)
3879                 return ENOBUFS;
3880         DBRUNIF(1, sc->rx_mbuf_alloc++);
3881
3882         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
3883
3884         /* Map the mbuf cluster into device memory. */
3885         error = bus_dmamap_load_mbuf_segment(sc->rx_mbuf_tag,
3886                         sc->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg,
3887                         BUS_DMA_NOWAIT);
3888         if (error) {
3889                 m_freem(m_new);
3890                 if (init) {
3891                         if_printf(&sc->arpcom.ac_if,
3892                                   "Error mapping mbuf into RX chain!\n");
3893                 }
3894                 DBRUNIF(1, sc->rx_mbuf_alloc--);
3895                 return error;
3896         }
3897
3898         if (sc->rx_mbuf_ptr[*chain_prod] != NULL) {
3899                 bus_dmamap_unload(sc->rx_mbuf_tag,
3900                                   sc->rx_mbuf_map[*chain_prod]);
3901         }
3902
3903         map = sc->rx_mbuf_map[*chain_prod];
3904         sc->rx_mbuf_map[*chain_prod] = sc->rx_mbuf_tmpmap;
3905         sc->rx_mbuf_tmpmap = map;
3906
3907         /* Watch for overflow. */
3908         DBRUNIF((sc->free_rx_bd > USABLE_RX_BD(sc)),
3909                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3910                           "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3911                           __FILE__, __LINE__, sc->free_rx_bd,
3912                           (uint16_t)USABLE_RX_BD(sc)));
3913
3914         /* Update some debug statistic counters */
3915         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3916                 sc->rx_low_watermark = sc->free_rx_bd);
3917         DBRUNIF((sc->free_rx_bd == 0), sc->rx_empty_count++);
3918
3919         /* Save the mbuf and update our counter. */
3920         sc->rx_mbuf_ptr[*chain_prod] = m_new;
3921         sc->rx_mbuf_paddr[*chain_prod] = seg.ds_addr;
3922         sc->free_rx_bd--;
3923
3924         bce_setup_rxdesc_std(sc, *chain_prod, prod_bseq);
3925
3926         DBRUN(BCE_VERBOSE_RECV,
3927               bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 1));
3928
3929         DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
3930                 "prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3931
3932         return 0;
3933 }
3934
3935
3936 static void
3937 bce_setup_rxdesc_std(struct bce_softc *sc, uint16_t chain_prod, uint32_t *prod_bseq)
3938 {
3939         struct rx_bd *rxbd;
3940         bus_addr_t paddr;
3941         int len;
3942
3943         paddr = sc->rx_mbuf_paddr[chain_prod];
3944         len = sc->rx_mbuf_ptr[chain_prod]->m_len;
3945
3946         /* Setup the rx_bd for the first segment. */
3947         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
3948
3949         rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr));
3950         rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr));
3951         rxbd->rx_bd_len = htole32(len);
3952         rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3953         *prod_bseq += len;
3954
3955         rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3956 }
3957
3958
3959 /****************************************************************************/
3960 /* Initialize the TX context memory.                                        */
3961 /*                                                                          */
3962 /* Returns:                                                                 */
3963 /*   Nothing                                                                */
3964 /****************************************************************************/
3965 static void
3966 bce_init_tx_context(struct bce_softc *sc)
3967 {
3968         uint32_t val;
3969
3970         /* Initialize the context ID for an L2 TX chain. */
3971         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3972             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3973                 /* Set the CID type to support an L2 connection. */
3974                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3975                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
3976                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3977                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val);
3978
3979                 /* Point the hardware to the first page in the chain. */
3980                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3981                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3982                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
3983                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3984                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3985                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
3986         } else {
3987                 /* Set the CID type to support an L2 connection. */
3988                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3989                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
3990                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3991                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
3992
3993                 /* Point the hardware to the first page in the chain. */
3994                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3995                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3996                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
3997                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3998                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3999                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
4000         }
4001 }
4002
4003
4004 /****************************************************************************/
4005 /* Allocate memory and initialize the TX data structures.                   */
4006 /*                                                                          */
4007 /* Returns:                                                                 */
4008 /*   0 for success, positive value for failure.                             */
4009 /****************************************************************************/
4010 static int
4011 bce_init_tx_chain(struct bce_softc *sc)
4012 {
4013         struct tx_bd *txbd;
4014         int i, rc = 0;
4015
4016         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4017
4018         /* Set the initial TX producer/consumer indices. */
4019         sc->tx_prod = 0;
4020         sc->tx_cons = 0;
4021         sc->tx_prod_bseq   = 0;
4022         sc->used_tx_bd = 0;
4023         sc->max_tx_bd = USABLE_TX_BD(sc);
4024         DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD(sc));
4025         DBRUNIF(1, sc->tx_full_count = 0);
4026
4027         /*
4028          * The NetXtreme II supports a linked-list structre called
4029          * a Buffer Descriptor Chain (or BD chain).  A BD chain
4030          * consists of a series of 1 or more chain pages, each of which
4031          * consists of a fixed number of BD entries.
4032          * The last BD entry on each page is a pointer to the next page
4033          * in the chain, and the last pointer in the BD chain
4034          * points back to the beginning of the chain.
4035          */
4036
4037         /* Set the TX next pointer chain entries. */
4038         for (i = 0; i < sc->tx_pages; i++) {
4039                 int j;
4040
4041                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4042
4043                 /* Check if we've reached the last page. */
4044                 if (i == (sc->tx_pages - 1))
4045                         j = 0;
4046                 else
4047                         j = i + 1;
4048
4049                 txbd->tx_bd_haddr_hi =
4050                         htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
4051                 txbd->tx_bd_haddr_lo =
4052                         htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
4053         }
4054         bce_init_tx_context(sc);
4055
4056         return(rc);
4057 }
4058
4059
4060 /****************************************************************************/
4061 /* Free memory and clear the TX data structures.                            */
4062 /*                                                                          */
4063 /* Returns:                                                                 */
4064 /*   Nothing.                                                               */
4065 /****************************************************************************/
4066 static void
4067 bce_free_tx_chain(struct bce_softc *sc)
4068 {
4069         int i;
4070
4071         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4072
4073         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4074         for (i = 0; i < TOTAL_TX_BD(sc); i++) {
4075                 if (sc->tx_mbuf_ptr[i] != NULL) {
4076                         bus_dmamap_unload(sc->tx_mbuf_tag, sc->tx_mbuf_map[i]);
4077                         m_freem(sc->tx_mbuf_ptr[i]);
4078                         sc->tx_mbuf_ptr[i] = NULL;
4079                         DBRUNIF(1, sc->tx_mbuf_alloc--);
4080                 }
4081         }
4082
4083         /* Clear each TX chain page. */
4084         for (i = 0; i < sc->tx_pages; i++)
4085                 bzero(sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
4086         sc->used_tx_bd = 0;
4087
4088         /* Check if we lost any mbufs in the process. */
4089         DBRUNIF((sc->tx_mbuf_alloc),
4090                 if_printf(&sc->arpcom.ac_if,
4091                           "%s(%d): Memory leak! "
4092                           "Lost %d mbufs from tx chain!\n",
4093                           __FILE__, __LINE__, sc->tx_mbuf_alloc));
4094
4095         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4096 }
4097
4098
4099 /****************************************************************************/
4100 /* Initialize the RX context memory.                                        */
4101 /*                                                                          */
4102 /* Returns:                                                                 */
4103 /*   Nothing                                                                */
4104 /****************************************************************************/
4105 static void
4106 bce_init_rx_context(struct bce_softc *sc)
4107 {
4108         uint32_t val;
4109
4110         /* Initialize the context ID for an L2 RX chain. */
4111         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4112             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4113
4114         /*
4115          * Set the level for generating pause frames
4116          * when the number of available rx_bd's gets
4117          * too low (the low watermark) and the level
4118          * when pause frames can be stopped (the high
4119          * watermark).
4120          */
4121         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4122             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4123                 uint32_t lo_water, hi_water;
4124
4125                 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4126                 hi_water = USABLE_RX_BD(sc) / 4;
4127
4128                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
4129                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
4130
4131                 if (hi_water > 0xf)
4132                         hi_water = 0xf;
4133                 else if (hi_water == 0)
4134                         lo_water = 0;
4135                 val |= lo_water |
4136                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
4137         }
4138
4139         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
4140
4141         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4142         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4143             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4144                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
4145                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
4146         }
4147
4148         /* Point the hardware to the first page in the chain. */
4149         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
4150         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
4151         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
4152         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
4153 }
4154
4155
4156 /****************************************************************************/
4157 /* Allocate memory and initialize the RX data structures.                   */
4158 /*                                                                          */
4159 /* Returns:                                                                 */
4160 /*   0 for success, positive value for failure.                             */
4161 /****************************************************************************/
4162 static int
4163 bce_init_rx_chain(struct bce_softc *sc)
4164 {
4165         struct rx_bd *rxbd;
4166         int i, rc = 0;
4167         uint16_t prod, chain_prod;
4168         uint32_t prod_bseq;
4169
4170         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4171
4172         /* Initialize the RX producer and consumer indices. */
4173         sc->rx_prod = 0;
4174         sc->rx_cons = 0;
4175         sc->rx_prod_bseq = 0;
4176         sc->free_rx_bd = USABLE_RX_BD(sc);
4177         sc->max_rx_bd = USABLE_RX_BD(sc);
4178         DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD(sc));
4179         DBRUNIF(1, sc->rx_empty_count = 0);
4180
4181         /* Initialize the RX next pointer chain entries. */
4182         for (i = 0; i < sc->rx_pages; i++) {
4183                 int j;
4184
4185                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4186
4187                 /* Check if we've reached the last page. */
4188                 if (i == (sc->rx_pages - 1))
4189                         j = 0;
4190                 else
4191                         j = i + 1;
4192
4193                 /* Setup the chain page pointers. */
4194                 rxbd->rx_bd_haddr_hi =
4195                         htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
4196                 rxbd->rx_bd_haddr_lo =
4197                         htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
4198         }
4199
4200         /* Allocate mbuf clusters for the rx_bd chain. */
4201         prod = prod_bseq = 0;
4202         while (prod < TOTAL_RX_BD(sc)) {
4203                 chain_prod = RX_CHAIN_IDX(sc, prod);
4204                 if (bce_newbuf_std(sc, &prod, &chain_prod, &prod_bseq, 1)) {
4205                         if_printf(&sc->arpcom.ac_if,
4206                                   "Error filling RX chain: rx_bd[0x%04X]!\n",
4207                                   chain_prod);
4208                         rc = ENOBUFS;
4209                         break;
4210                 }
4211                 prod = NEXT_RX_BD(prod);
4212         }
4213
4214         /* Save the RX chain producer index. */
4215         sc->rx_prod = prod;
4216         sc->rx_prod_bseq = prod_bseq;
4217
4218         /* Tell the chip about the waiting rx_bd's. */
4219         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4220             sc->rx_prod);
4221         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4222             sc->rx_prod_bseq);
4223
4224         bce_init_rx_context(sc);
4225
4226         return(rc);
4227 }
4228
4229
4230 /****************************************************************************/
4231 /* Free memory and clear the RX data structures.                            */
4232 /*                                                                          */
4233 /* Returns:                                                                 */
4234 /*   Nothing.                                                               */
4235 /****************************************************************************/
4236 static void
4237 bce_free_rx_chain(struct bce_softc *sc)
4238 {
4239         int i;
4240
4241         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4242
4243         /* Free any mbufs still in the RX mbuf chain. */
4244         for (i = 0; i < TOTAL_RX_BD(sc); i++) {
4245                 if (sc->rx_mbuf_ptr[i] != NULL) {
4246                         bus_dmamap_unload(sc->rx_mbuf_tag, sc->rx_mbuf_map[i]);
4247                         m_freem(sc->rx_mbuf_ptr[i]);
4248                         sc->rx_mbuf_ptr[i] = NULL;
4249                         DBRUNIF(1, sc->rx_mbuf_alloc--);
4250                 }
4251         }
4252
4253         /* Clear each RX chain page. */
4254         for (i = 0; i < sc->rx_pages; i++)
4255                 bzero(sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
4256
4257         /* Check if we lost any mbufs in the process. */
4258         DBRUNIF((sc->rx_mbuf_alloc),
4259                 if_printf(&sc->arpcom.ac_if,
4260                           "%s(%d): Memory leak! "
4261                           "Lost %d mbufs from rx chain!\n",
4262                           __FILE__, __LINE__, sc->rx_mbuf_alloc));
4263
4264         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4265 }
4266
4267
4268 /****************************************************************************/
4269 /* Set media options.                                                       */
4270 /*                                                                          */
4271 /* Returns:                                                                 */
4272 /*   0 for success, positive value for failure.                             */
4273 /****************************************************************************/
4274 static int
4275 bce_ifmedia_upd(struct ifnet *ifp)
4276 {
4277         struct bce_softc *sc = ifp->if_softc;
4278         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4279         int error = 0;
4280
4281         /*
4282          * 'mii' will be NULL, when this function is called on following
4283          * code path: bce_attach() -> bce_mgmt_init()
4284          */
4285         if (mii != NULL) {
4286                 /* Make sure the MII bus has been enumerated. */
4287                 sc->bce_link = 0;
4288                 if (mii->mii_instance) {
4289                         struct mii_softc *miisc;
4290
4291                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4292                                 mii_phy_reset(miisc);
4293                 }
4294                 error = mii_mediachg(mii);
4295         }
4296         return error;
4297 }
4298
4299
4300 /****************************************************************************/
4301 /* Reports current media status.                                            */
4302 /*                                                                          */
4303 /* Returns:                                                                 */
4304 /*   Nothing.                                                               */
4305 /****************************************************************************/
4306 static void
4307 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4308 {
4309         struct bce_softc *sc = ifp->if_softc;
4310         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4311
4312         mii_pollstat(mii);
4313         ifmr->ifm_active = mii->mii_media_active;
4314         ifmr->ifm_status = mii->mii_media_status;
4315 }
4316
4317
4318 /****************************************************************************/
4319 /* Handles PHY generated interrupt events.                                  */
4320 /*                                                                          */
4321 /* Returns:                                                                 */
4322 /*   Nothing.                                                               */
4323 /****************************************************************************/
4324 static void
4325 bce_phy_intr(struct bce_softc *sc)
4326 {
4327         uint32_t new_link_state, old_link_state;
4328         struct ifnet *ifp = &sc->arpcom.ac_if;
4329
4330         ASSERT_SERIALIZED(ifp->if_serializer);
4331
4332         new_link_state = sc->status_block->status_attn_bits &
4333                          STATUS_ATTN_BITS_LINK_STATE;
4334         old_link_state = sc->status_block->status_attn_bits_ack &
4335                          STATUS_ATTN_BITS_LINK_STATE;
4336
4337         /* Handle any changes if the link state has changed. */
4338         if (new_link_state != old_link_state) { /* XXX redundant? */
4339                 DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
4340
4341                 /* Update the status_attn_bits_ack field in the status block. */
4342                 if (new_link_state) {
4343                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
4344                                STATUS_ATTN_BITS_LINK_STATE);
4345                         if (bootverbose)
4346                                 if_printf(ifp, "Link is now UP.\n");
4347                 } else {
4348                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
4349                                STATUS_ATTN_BITS_LINK_STATE);
4350                         if (bootverbose)
4351                                 if_printf(ifp, "Link is now DOWN.\n");
4352                 }
4353
4354                 /*
4355                  * Assume link is down and allow tick routine to
4356                  * update the state based on the actual media state.
4357                  */
4358                 sc->bce_link = 0;
4359                 callout_stop(&sc->bce_tick_callout);
4360                 bce_tick_serialized(sc);
4361         }
4362
4363         /* Acknowledge the link change interrupt. */
4364         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
4365 }
4366
4367
4368 /****************************************************************************/
4369 /* Reads the receive consumer value from the status block (skipping over    */
4370 /* chain page pointer if necessary).                                        */
4371 /*                                                                          */
4372 /* Returns:                                                                 */
4373 /*   hw_cons                                                                */
4374 /****************************************************************************/
4375 static __inline uint16_t
4376 bce_get_hw_rx_cons(struct bce_softc *sc)
4377 {
4378         uint16_t hw_cons = sc->status_block->status_rx_quick_consumer_index0;
4379
4380         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4381                 hw_cons++;
4382         return hw_cons;
4383 }
4384
4385
4386 /****************************************************************************/
4387 /* Handles received frame interrupt events.                                 */
4388 /*                                                                          */
4389 /* Returns:                                                                 */
4390 /*   Nothing.                                                               */
4391 /****************************************************************************/
4392 static void
4393 bce_rx_intr(struct bce_softc *sc, int count, uint16_t hw_cons)
4394 {
4395         struct ifnet *ifp = &sc->arpcom.ac_if;
4396         uint16_t sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
4397         uint32_t sw_prod_bseq;
4398
4399         ASSERT_SERIALIZED(ifp->if_serializer);
4400
4401         /* Get working copies of the driver's view of the RX indices. */
4402         sw_cons = sc->rx_cons;
4403         sw_prod = sc->rx_prod;
4404         sw_prod_bseq = sc->rx_prod_bseq;
4405
4406         /* Scan through the receive chain as long as there is work to do. */
4407         while (sw_cons != hw_cons) {
4408                 struct mbuf *m = NULL;
4409                 struct l2_fhdr *l2fhdr = NULL;
4410                 unsigned int len;
4411                 uint32_t status = 0;
4412
4413 #ifdef IFPOLL_ENABLE
4414                 if (count >= 0 && count-- == 0)
4415                         break;
4416 #endif
4417
4418                 /*
4419                  * Convert the producer/consumer indices
4420                  * to an actual rx_bd index.
4421                  */
4422                 sw_chain_cons = RX_CHAIN_IDX(sc, sw_cons);
4423                 sw_chain_prod = RX_CHAIN_IDX(sc, sw_prod);
4424
4425                 sc->free_rx_bd++;
4426
4427                 /* The mbuf is stored with the last rx_bd entry of a packet. */
4428                 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4429                         if (sw_chain_cons != sw_chain_prod) {
4430                                 if_printf(ifp, "RX cons(%d) != prod(%d), "
4431                                           "drop!\n", sw_chain_cons,
4432                                           sw_chain_prod);
4433                                 ifp->if_ierrors++;
4434
4435                                 bce_setup_rxdesc_std(sc, sw_chain_cons,
4436                                                      &sw_prod_bseq);
4437                                 m = NULL;
4438                                 goto bce_rx_int_next_rx;
4439                         }
4440
4441                         /* Unmap the mbuf from DMA space. */
4442                         bus_dmamap_sync(sc->rx_mbuf_tag,
4443                                         sc->rx_mbuf_map[sw_chain_cons],
4444                                         BUS_DMASYNC_POSTREAD);
4445
4446                         /* Save the mbuf from the driver's chain. */
4447                         m = sc->rx_mbuf_ptr[sw_chain_cons];
4448
4449                         /*
4450                          * Frames received on the NetXteme II are prepended 
4451                          * with an l2_fhdr structure which provides status
4452                          * information about the received frame (including
4453                          * VLAN tags and checksum info).  The frames are also
4454                          * automatically adjusted to align the IP header
4455                          * (i.e. two null bytes are inserted before the 
4456                          * Ethernet header).  As a result the data DMA'd by
4457                          * the controller into the mbuf is as follows:
4458                          *
4459                          * +---------+-----+---------------------+-----+
4460                          * | l2_fhdr | pad | packet data         | FCS |
4461                          * +---------+-----+---------------------+-----+
4462                          * 
4463                          * The l2_fhdr needs to be checked and skipped and the
4464                          * FCS needs to be stripped before sending the packet
4465                          * up the stack.
4466                          */
4467                         l2fhdr = mtod(m, struct l2_fhdr *);
4468
4469                         len = l2fhdr->l2_fhdr_pkt_len;
4470                         status = l2fhdr->l2_fhdr_status;
4471
4472                         len -= ETHER_CRC_LEN;
4473
4474                         /* Check the received frame for errors. */
4475                         if (status & (L2_FHDR_ERRORS_BAD_CRC |
4476                                       L2_FHDR_ERRORS_PHY_DECODE |
4477                                       L2_FHDR_ERRORS_ALIGNMENT |
4478                                       L2_FHDR_ERRORS_TOO_SHORT |
4479                                       L2_FHDR_ERRORS_GIANT_FRAME)) {
4480                                 ifp->if_ierrors++;
4481
4482                                 /* Reuse the mbuf for a new frame. */
4483                                 bce_setup_rxdesc_std(sc, sw_chain_prod,
4484                                                      &sw_prod_bseq);
4485                                 m = NULL;
4486                                 goto bce_rx_int_next_rx;
4487                         }
4488
4489                         /* 
4490                          * Get a new mbuf for the rx_bd.   If no new
4491                          * mbufs are available then reuse the current mbuf,
4492                          * log an ierror on the interface, and generate
4493                          * an error in the system log.
4494                          */
4495                         if (bce_newbuf_std(sc, &sw_prod, &sw_chain_prod,
4496                                            &sw_prod_bseq, 0)) {
4497                                 ifp->if_ierrors++;
4498
4499                                 /* Try and reuse the exisitng mbuf. */
4500                                 bce_setup_rxdesc_std(sc, sw_chain_prod,
4501                                                      &sw_prod_bseq);
4502                                 m = NULL;
4503                                 goto bce_rx_int_next_rx;
4504                         }
4505
4506                         /*
4507                          * Skip over the l2_fhdr when passing
4508                          * the data up the stack.
4509                          */
4510                         m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4511
4512                         m->m_pkthdr.len = m->m_len = len;
4513                         m->m_pkthdr.rcvif = ifp;
4514
4515                         /* Validate the checksum if offload enabled. */
4516                         if (ifp->if_capenable & IFCAP_RXCSUM) {
4517                                 /* Check for an IP datagram. */
4518                                 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4519                                         m->m_pkthdr.csum_flags |=
4520                                                 CSUM_IP_CHECKED;
4521
4522                                         /* Check if the IP checksum is valid. */
4523                                         if ((l2fhdr->l2_fhdr_ip_xsum ^
4524                                              0xffff) == 0) {
4525                                                 m->m_pkthdr.csum_flags |=
4526                                                         CSUM_IP_VALID;
4527                                         }
4528                                 }
4529
4530                                 /* Check for a valid TCP/UDP frame. */
4531                                 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4532                                               L2_FHDR_STATUS_UDP_DATAGRAM)) {
4533
4534                                         /* Check for a good TCP/UDP checksum. */
4535                                         if ((status &
4536                                              (L2_FHDR_ERRORS_TCP_XSUM |
4537                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4538                                                 m->m_pkthdr.csum_data =
4539                                                 l2fhdr->l2_fhdr_tcp_udp_xsum;
4540                                                 m->m_pkthdr.csum_flags |=
4541                                                         CSUM_DATA_VALID |
4542                                                         CSUM_PSEUDO_HDR;
4543                                         }
4544                                 }
4545                         }
4546
4547                         ifp->if_ipackets++;
4548 bce_rx_int_next_rx:
4549                         sw_prod = NEXT_RX_BD(sw_prod);
4550                 }
4551
4552                 sw_cons = NEXT_RX_BD(sw_cons);
4553
4554                 /* If we have a packet, pass it up the stack */
4555                 if (m) {
4556                         if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
4557                                 m->m_flags |= M_VLANTAG;
4558                                 m->m_pkthdr.ether_vlantag =
4559                                         l2fhdr->l2_fhdr_vlan_tag;
4560                         }
4561                         ifp->if_input(ifp, m);
4562                 }
4563         }
4564
4565         sc->rx_cons = sw_cons;
4566         sc->rx_prod = sw_prod;
4567         sc->rx_prod_bseq = sw_prod_bseq;
4568
4569         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4570             sc->rx_prod);
4571         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4572             sc->rx_prod_bseq);
4573 }
4574
4575
4576 /****************************************************************************/
4577 /* Reads the transmit consumer value from the status block (skipping over   */
4578 /* chain page pointer if necessary).                                        */
4579 /*                                                                          */
4580 /* Returns:                                                                 */
4581 /*   hw_cons                                                                */
4582 /****************************************************************************/
4583 static __inline uint16_t
4584 bce_get_hw_tx_cons(struct bce_softc *sc)
4585 {
4586         uint16_t hw_cons = sc->status_block->status_tx_quick_consumer_index0;
4587
4588         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4589                 hw_cons++;
4590         return hw_cons;
4591 }
4592
4593
4594 /****************************************************************************/
4595 /* Handles transmit completion interrupt events.                            */
4596 /*                                                                          */
4597 /* Returns:                                                                 */
4598 /*   Nothing.                                                               */
4599 /****************************************************************************/
4600 static void
4601 bce_tx_intr(struct bce_softc *sc, uint16_t hw_tx_cons)
4602 {
4603         struct ifnet *ifp = &sc->arpcom.ac_if;
4604         uint16_t sw_tx_cons, sw_tx_chain_cons;
4605
4606         ASSERT_SERIALIZED(ifp->if_serializer);
4607
4608         /* Get the hardware's view of the TX consumer index. */
4609         sw_tx_cons = sc->tx_cons;
4610
4611         /* Cycle through any completed TX chain page entries. */
4612         while (sw_tx_cons != hw_tx_cons) {
4613                 sw_tx_chain_cons = TX_CHAIN_IDX(sc, sw_tx_cons);
4614
4615                 /*
4616                  * Free the associated mbuf. Remember
4617                  * that only the last tx_bd of a packet
4618                  * has an mbuf pointer and DMA map.
4619                  */
4620                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
4621                         /* Unmap the mbuf. */
4622                         bus_dmamap_unload(sc->tx_mbuf_tag,
4623                                           sc->tx_mbuf_map[sw_tx_chain_cons]);
4624
4625                         /* Free the mbuf. */
4626                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
4627                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
4628
4629                         ifp->if_opackets++;
4630                 }
4631
4632                 sc->used_tx_bd--;
4633                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4634         }
4635
4636         if (sc->used_tx_bd == 0) {
4637                 /* Clear the TX timeout timer. */
4638                 ifp->if_timer = 0;
4639         }
4640
4641         /* Clear the tx hardware queue full flag. */
4642         if (sc->max_tx_bd - sc->used_tx_bd >= BCE_TX_SPARE_SPACE)
4643                 ifq_clr_oactive(&ifp->if_snd);
4644         sc->tx_cons = sw_tx_cons;
4645 }
4646
4647
4648 /****************************************************************************/
4649 /* Disables interrupt generation.                                           */
4650 /*                                                                          */
4651 /* Returns:                                                                 */
4652 /*   Nothing.                                                               */
4653 /****************************************************************************/
4654 static void
4655 bce_disable_intr(struct bce_softc *sc)
4656 {
4657         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
4658         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
4659
4660         callout_stop(&sc->bce_ckmsi_callout);
4661         sc->bce_msi_maylose = FALSE;
4662         sc->bce_check_rx_cons = 0;
4663         sc->bce_check_tx_cons = 0;
4664         sc->bce_check_status_idx = 0xffff;
4665
4666         sc->bce_npoll.ifpc_stcount = 0;
4667
4668         lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
4669 }
4670
4671
4672 /****************************************************************************/
4673 /* Enables interrupt generation.                                            */
4674 /*                                                                          */
4675 /* Returns:                                                                 */
4676 /*   Nothing.                                                               */
4677 /****************************************************************************/
4678 static void
4679 bce_enable_intr(struct bce_softc *sc)
4680 {
4681         lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
4682
4683         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4684                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4685                BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4686         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4687                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4688
4689         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
4690
4691         if (sc->bce_flags & BCE_CHECK_MSI_FLAG) {
4692                 sc->bce_msi_maylose = FALSE;
4693                 sc->bce_check_rx_cons = 0;
4694                 sc->bce_check_tx_cons = 0;
4695                 sc->bce_check_status_idx = 0xffff;
4696
4697                 if (bootverbose)
4698                         if_printf(&sc->arpcom.ac_if, "check msi\n");
4699
4700                 callout_reset_bycpu(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
4701                     bce_check_msi, sc, sc->bce_intr_cpuid);
4702         }
4703 }
4704
4705
4706 /****************************************************************************/
4707 /* Reenables interrupt generation during interrupt handling.                */
4708 /*                                                                          */
4709 /* Returns:                                                                 */
4710 /*   Nothing.                                                               */
4711 /****************************************************************************/
4712 static void
4713 bce_reenable_intr(struct bce_softc *sc)
4714 {
4715         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
4716                 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4717                        BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4718                        BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4719         }
4720         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4721                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4722 }
4723
4724
4725 /****************************************************************************/
4726 /* Handles controller initialization.                                       */
4727 /*                                                                          */
4728 /* Returns:                                                                 */
4729 /*   Nothing.                                                               */
4730 /****************************************************************************/
4731 static void
4732 bce_init(void *xsc)
4733 {
4734         struct bce_softc *sc = xsc;
4735         struct ifnet *ifp = &sc->arpcom.ac_if;
4736         uint32_t ether_mtu;
4737         int error;
4738
4739         ASSERT_SERIALIZED(ifp->if_serializer);
4740
4741         /* Check if the driver is still running and bail out if it is. */
4742         if (ifp->if_flags & IFF_RUNNING)
4743                 return;
4744
4745         bce_stop(sc);
4746
4747         error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
4748         if (error) {
4749                 if_printf(ifp, "Controller reset failed!\n");
4750                 goto back;
4751         }
4752
4753         error = bce_chipinit(sc);
4754         if (error) {
4755                 if_printf(ifp, "Controller initialization failed!\n");
4756                 goto back;
4757         }
4758
4759         error = bce_blockinit(sc);
4760         if (error) {
4761                 if_printf(ifp, "Block initialization failed!\n");
4762                 goto back;
4763         }
4764
4765         /* Load our MAC address. */
4766         bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN);
4767         bce_set_mac_addr(sc);
4768
4769         /* Calculate and program the Ethernet MTU size. */
4770         ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN;
4771
4772         DBPRINT(sc, BCE_INFO, "%s(): setting mtu = %d\n", __func__, ether_mtu);
4773
4774         /* 
4775          * Program the mtu, enabling jumbo frame 
4776          * support if necessary.  Also set the mbuf
4777          * allocation count for RX frames.
4778          */
4779         if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) {
4780 #ifdef notyet
4781                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
4782                        min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
4783                        BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4784                 sc->mbuf_alloc_size = MJUM9BYTES;
4785 #else
4786                 panic("jumbo buffer is not supported yet");
4787 #endif
4788         } else {
4789                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
4790                 sc->mbuf_alloc_size = MCLBYTES;
4791         }
4792
4793         /* Calculate the RX Ethernet frame size for rx_bd's. */
4794         sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4795
4796         DBPRINT(sc, BCE_INFO,
4797                 "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4798                 "max_frame_size = %d\n",
4799                 __func__, (int)MCLBYTES, sc->mbuf_alloc_size,
4800                 sc->max_frame_size);
4801
4802         /* Program appropriate promiscuous/multicast filtering. */
4803         bce_set_rx_mode(sc);
4804
4805         /* Init RX buffer descriptor chain. */
4806         bce_init_rx_chain(sc);  /* XXX return value */
4807
4808         /* Init TX buffer descriptor chain. */
4809         bce_init_tx_chain(sc);  /* XXX return value */
4810
4811 #ifdef IFPOLL_ENABLE
4812         /* Disable interrupts if we are polling. */
4813         if (ifp->if_flags & IFF_NPOLLING) {
4814                 bce_disable_intr(sc);
4815
4816                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4817                        (1 << 16) | sc->bce_rx_quick_cons_trip);
4818                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4819                        (1 << 16) | sc->bce_tx_quick_cons_trip);
4820         } else
4821 #endif
4822         /* Enable host interrupts. */
4823         bce_enable_intr(sc);
4824
4825         bce_ifmedia_upd(ifp);
4826
4827         ifp->if_flags |= IFF_RUNNING;
4828         ifq_clr_oactive(&ifp->if_snd);
4829
4830         callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc,
4831             sc->bce_intr_cpuid);
4832 back:
4833         if (error)
4834                 bce_stop(sc);
4835 }
4836
4837
4838 /****************************************************************************/
4839 /* Initialize the controller just enough so that any management firmware    */
4840 /* running on the device will continue to operate corectly.                 */
4841 /*                                                                          */
4842 /* Returns:                                                                 */
4843 /*   Nothing.                                                               */
4844 /****************************************************************************/
4845 static void
4846 bce_mgmt_init(struct bce_softc *sc)
4847 {
4848         struct ifnet *ifp = &sc->arpcom.ac_if;
4849
4850         /* Bail out if management firmware is not running. */
4851         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
4852                 return;
4853
4854         /* Enable all critical blocks in the MAC. */
4855         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4856             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4857                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4858                     BCE_MISC_ENABLE_DEFAULT_XI);
4859         } else {
4860                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4861         }
4862         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4863         DELAY(20);
4864
4865         bce_ifmedia_upd(ifp);
4866 }
4867
4868
4869 /****************************************************************************/
4870 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4871 /* memory visible to the controller.                                        */
4872 /*                                                                          */
4873 /* Returns:                                                                 */
4874 /*   0 for success, positive value for failure.                             */
4875 /****************************************************************************/
4876 static int
4877 bce_encap(struct bce_softc *sc, struct mbuf **m_head, int *nsegs_used)
4878 {
4879         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4880         bus_dmamap_t map, tmp_map;
4881         struct mbuf *m0 = *m_head;
4882         struct tx_bd *txbd = NULL;
4883         uint16_t vlan_tag = 0, flags = 0, mss = 0;
4884         uint16_t chain_prod, chain_prod_start, prod;
4885         uint32_t prod_bseq;
4886         int i, error, maxsegs, nsegs;
4887
4888         /* Transfer any checksum offload flags to the bd. */
4889         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
4890                 error = bce_tso_setup(sc, m_head, &flags, &mss);
4891                 if (error)
4892                         return ENOBUFS;
4893                 m0 = *m_head;
4894         } else if (m0->m_pkthdr.csum_flags & BCE_CSUM_FEATURES) {
4895                 if (m0->m_pkthdr.csum_flags & CSUM_IP)
4896                         flags |= TX_BD_FLAGS_IP_CKSUM;
4897                 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
4898                         flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4899         }
4900
4901         /* Transfer any VLAN tags to the bd. */
4902         if (m0->m_flags & M_VLANTAG) {
4903                 flags |= TX_BD_FLAGS_VLAN_TAG;
4904                 vlan_tag = m0->m_pkthdr.ether_vlantag;
4905         }
4906
4907         prod = sc->tx_prod;
4908         chain_prod_start = chain_prod = TX_CHAIN_IDX(sc, prod);
4909
4910         /* Map the mbuf into DMAable memory. */
4911         map = sc->tx_mbuf_map[chain_prod_start];
4912
4913         maxsegs = sc->max_tx_bd - sc->used_tx_bd;
4914         KASSERT(maxsegs >= BCE_TX_SPARE_SPACE,
4915                 ("not enough segments %d", maxsegs));
4916         if (maxsegs > BCE_MAX_SEGMENTS)
4917                 maxsegs = BCE_MAX_SEGMENTS;
4918
4919         /* Map the mbuf into our DMA address space. */
4920         error = bus_dmamap_load_mbuf_defrag(sc->tx_mbuf_tag, map, m_head,
4921                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
4922         if (error)
4923                 goto back;
4924         bus_dmamap_sync(sc->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE);
4925
4926         *nsegs_used += nsegs;
4927
4928         /* Reset m0 */
4929         m0 = *m_head;
4930
4931         /* prod points to an empty tx_bd at this point. */
4932         prod_bseq  = sc->tx_prod_bseq;
4933
4934         /*
4935          * Cycle through each mbuf segment that makes up
4936          * the outgoing frame, gathering the mapping info
4937          * for that segment and creating a tx_bd to for
4938          * the mbuf.
4939          */
4940         for (i = 0; i < nsegs; i++) {
4941                 chain_prod = TX_CHAIN_IDX(sc, prod);
4942                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4943
4944                 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
4945                 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
4946                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
4947                     htole16(segs[i].ds_len);
4948                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4949                 txbd->tx_bd_flags = htole16(flags);
4950
4951                 prod_bseq += segs[i].ds_len;
4952                 if (i == 0)
4953                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4954                 prod = NEXT_TX_BD(prod);
4955         }
4956
4957         /* Set the END flag on the last TX buffer descriptor. */
4958         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4959
4960         /*
4961          * Ensure that the mbuf pointer for this transmission
4962          * is placed at the array index of the last
4963          * descriptor in this chain.  This is done
4964          * because a single map is used for all 
4965          * segments of the mbuf and we don't want to
4966          * unload the map before all of the segments
4967          * have been freed.
4968          */
4969         sc->tx_mbuf_ptr[chain_prod] = m0;
4970
4971         tmp_map = sc->tx_mbuf_map[chain_prod];
4972         sc->tx_mbuf_map[chain_prod] = map;
4973         sc->tx_mbuf_map[chain_prod_start] = tmp_map;
4974
4975         sc->used_tx_bd += nsegs;
4976
4977         /* prod points to the next free tx_bd at this point. */
4978         sc->tx_prod = prod;
4979         sc->tx_prod_bseq = prod_bseq;
4980 back:
4981         if (error) {
4982                 m_freem(*m_head);
4983                 *m_head = NULL;
4984         }
4985         return error;
4986 }
4987
4988
4989 /****************************************************************************/
4990 /* Main transmit routine when called from another routine with a lock.      */
4991 /*                                                                          */
4992 /* Returns:                                                                 */
4993 /*   Nothing.                                                               */
4994 /****************************************************************************/
4995 static void
4996 bce_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4997 {
4998         struct bce_softc *sc = ifp->if_softc;
4999         int count = 0;
5000
5001         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
5002         ASSERT_SERIALIZED(ifp->if_serializer);
5003
5004         /* If there's no link or the transmit queue is empty then just exit. */
5005         if (!sc->bce_link) {
5006                 ifq_purge(&ifp->if_snd);
5007                 return;
5008         }
5009
5010         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
5011                 return;
5012
5013         for (;;) {
5014                 struct mbuf *m_head;
5015
5016                 /*
5017                  * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is
5018                  * unlikely to fail.
5019                  */
5020                 if (sc->max_tx_bd - sc->used_tx_bd < BCE_TX_SPARE_SPACE) {
5021                         ifq_set_oactive(&ifp->if_snd);
5022                         break;
5023                 }
5024
5025                 /* Check for any frames to send. */
5026                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
5027                 if (m_head == NULL)
5028                         break;
5029
5030                 /*
5031                  * Pack the data into the transmit ring. If we
5032                  * don't have room, place the mbuf back at the
5033                  * head of the queue and set the OACTIVE flag
5034                  * to wait for the NIC to drain the chain.
5035                  */
5036                 if (bce_encap(sc, &m_head, &count)) {
5037                         ifp->if_oerrors++;
5038                         if (sc->used_tx_bd == 0) {
5039                                 continue;
5040                         } else {
5041                                 ifq_set_oactive(&ifp->if_snd);
5042                                 break;
5043                         }
5044                 }
5045
5046                 if (count >= sc->tx_wreg) {
5047                         /* Start the transmit. */
5048                         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
5049                             BCE_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5050                         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
5051                             BCE_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5052                         count = 0;
5053                 }
5054
5055                 /* Send a copy of the frame to any BPF listeners. */
5056                 ETHER_BPF_MTAP(ifp, m_head);
5057
5058                 /* Set the tx timeout. */
5059                 ifp->if_timer = BCE_TX_TIMEOUT;
5060         }
5061         if (count > 0) {
5062                 /* Start the transmit. */
5063                 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BIDX,
5064                     sc->tx_prod);
5065                 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BSEQ,
5066                     sc->tx_prod_bseq);
5067         }
5068 }
5069
5070
5071 /****************************************************************************/
5072 /* Handles any IOCTL calls from the operating system.                       */
5073 /*                                                                          */
5074 /* Returns:                                                                 */
5075 /*   0 for success, positive value for failure.                             */
5076 /****************************************************************************/
5077 static int
5078 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
5079 {
5080         struct bce_softc *sc = ifp->if_softc;
5081         struct ifreq *ifr = (struct ifreq *)data;
5082         struct mii_data *mii;
5083         int mask, error = 0;
5084
5085         ASSERT_SERIALIZED(ifp->if_serializer);
5086
5087         switch(command) {
5088         case SIOCSIFMTU:
5089                 /* Check that the MTU setting is supported. */
5090                 if (ifr->ifr_mtu < BCE_MIN_MTU ||
5091 #ifdef notyet
5092                     ifr->ifr_mtu > BCE_MAX_JUMBO_MTU
5093 #else
5094                     ifr->ifr_mtu > ETHERMTU
5095 #endif
5096                    ) {
5097                         error = EINVAL;
5098                         break;
5099                 }
5100
5101                 DBPRINT(sc, BCE_INFO, "Setting new MTU of %d\n", ifr->ifr_mtu);
5102
5103                 ifp->if_mtu = ifr->ifr_mtu;
5104                 ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5105                 bce_init(sc);
5106                 break;
5107
5108         case SIOCSIFFLAGS:
5109                 if (ifp->if_flags & IFF_UP) {
5110                         if (ifp->if_flags & IFF_RUNNING) {
5111                                 mask = ifp->if_flags ^ sc->bce_if_flags;
5112
5113                                 if (mask & (IFF_PROMISC | IFF_ALLMULTI))
5114                                         bce_set_rx_mode(sc);
5115                         } else {
5116                                 bce_init(sc);
5117                         }
5118                 } else if (ifp->if_flags & IFF_RUNNING) {
5119                         bce_stop(sc);
5120
5121                         /* If MFW is running, restart the controller a bit. */
5122                         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5123                                 bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
5124                                 bce_chipinit(sc);
5125                                 bce_mgmt_init(sc);
5126                         }
5127                 }
5128                 sc->bce_if_flags = ifp->if_flags;
5129                 break;
5130
5131         case SIOCADDMULTI:
5132         case SIOCDELMULTI:
5133                 if (ifp->if_flags & IFF_RUNNING)
5134                         bce_set_rx_mode(sc);
5135                 break;
5136
5137         case SIOCSIFMEDIA:
5138         case SIOCGIFMEDIA:
5139                 DBPRINT(sc, BCE_VERBOSE, "bce_phy_flags = 0x%08X\n",
5140                         sc->bce_phy_flags);
5141                 DBPRINT(sc, BCE_VERBOSE, "Copper media set/get\n");
5142
5143                 mii = device_get_softc(sc->bce_miibus);
5144                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5145                 break;
5146
5147         case SIOCSIFCAP:
5148                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5149                 DBPRINT(sc, BCE_INFO, "Received SIOCSIFCAP = 0x%08X\n",
5150                         (uint32_t) mask);
5151
5152                 if (mask & IFCAP_HWCSUM) {
5153                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
5154                         if (ifp->if_capenable & IFCAP_TXCSUM)
5155                                 ifp->if_hwassist |= BCE_CSUM_FEATURES;
5156                         else
5157                                 ifp->if_hwassist &= ~BCE_CSUM_FEATURES;
5158                 }
5159                 if (mask & IFCAP_TSO) {
5160                         ifp->if_capenable ^= IFCAP_TSO;
5161                         if (ifp->if_capenable & IFCAP_TSO)
5162                                 ifp->if_hwassist |= CSUM_TSO;
5163                         else
5164                                 ifp->if_hwassist &= ~CSUM_TSO;
5165                 }
5166                 break;
5167
5168         default:
5169                 error = ether_ioctl(ifp, command, data);
5170                 break;
5171         }
5172         return error;
5173 }
5174
5175
5176 /****************************************************************************/
5177 /* Transmit timeout handler.                                                */
5178 /*                                                                          */
5179 /* Returns:                                                                 */
5180 /*   Nothing.                                                               */
5181 /****************************************************************************/
5182 static void
5183 bce_watchdog(struct ifnet *ifp)
5184 {
5185         struct bce_softc *sc = ifp->if_softc;
5186
5187         ASSERT_SERIALIZED(ifp->if_serializer);
5188
5189         DBRUN(BCE_VERBOSE_SEND,
5190               bce_dump_driver_state(sc);
5191               bce_dump_status_block(sc));
5192
5193         /*
5194          * If we are in this routine because of pause frames, then
5195          * don't reset the hardware.
5196          */
5197         if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 
5198                 return;
5199
5200         if_printf(ifp, "Watchdog timeout occurred, resetting!\n");
5201
5202         /* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */
5203
5204         ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5205         bce_init(sc);
5206
5207         ifp->if_oerrors++;
5208
5209         if (!ifq_is_empty(&ifp->if_snd))
5210                 if_devstart(ifp);
5211 }
5212
5213
5214 #ifdef IFPOLL_ENABLE
5215
5216 static void
5217 bce_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
5218 {
5219         struct bce_softc *sc = ifp->if_softc;
5220         struct status_block *sblk = sc->status_block;
5221         uint16_t hw_tx_cons, hw_rx_cons;
5222
5223         ASSERT_SERIALIZED(ifp->if_serializer);
5224
5225         /*
5226          * Save the status block index value for use when enabling
5227          * the interrupt.
5228          */
5229         sc->last_status_idx = sblk->status_idx;
5230
5231         /* Make sure status index is extracted before rx/tx cons */
5232         cpu_lfence();
5233
5234         if (sc->bce_npoll.ifpc_stcount-- == 0) {
5235                 uint32_t status_attn_bits;
5236
5237                 sc->bce_npoll.ifpc_stcount = sc->bce_npoll.ifpc_stfrac;
5238
5239                 status_attn_bits = sblk->status_attn_bits;
5240
5241                 /* Was it a link change interrupt? */
5242                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5243                     (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
5244                         bce_phy_intr(sc);
5245
5246                 /*
5247                  * Clear any transient status updates during link state change.
5248                  */
5249                 REG_WR(sc, BCE_HC_COMMAND,
5250                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5251                 REG_RD(sc, BCE_HC_COMMAND);
5252
5253                 /*
5254                  * If any other attention is asserted then the chip is toast.
5255                  */
5256                 if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5257                      (sblk->status_attn_bits_ack &
5258                       ~STATUS_ATTN_BITS_LINK_STATE)) {
5259                         if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5260                                   sblk->status_attn_bits);
5261                         bce_init(sc);
5262                         return;
5263                 }
5264         }
5265
5266         hw_rx_cons = bce_get_hw_rx_cons(sc);
5267         hw_tx_cons = bce_get_hw_tx_cons(sc);
5268
5269         /* Check for any completed RX frames. */
5270         if (hw_rx_cons != sc->rx_cons)
5271                 bce_rx_intr(sc, count, hw_rx_cons);
5272
5273         /* Check for any completed TX frames. */
5274         if (hw_tx_cons != sc->tx_cons)
5275                 bce_tx_intr(sc, hw_tx_cons);
5276
5277         if (sc->bce_coalchg_mask)
5278                 bce_coal_change(sc);
5279
5280         /* Check for new frames to transmit. */
5281         if (!ifq_is_empty(&ifp->if_snd))
5282                 if_devstart(ifp);
5283 }
5284
5285 static void
5286 bce_npoll(struct ifnet *ifp, struct ifpoll_info *info)
5287 {
5288         struct bce_softc *sc = ifp->if_softc;
5289
5290         ASSERT_SERIALIZED(ifp->if_serializer);
5291
5292         if (info != NULL) {
5293                 int cpuid = sc->bce_npoll.ifpc_cpuid;
5294
5295                 info->ifpi_rx[cpuid].poll_func = bce_npoll_compat;
5296                 info->ifpi_rx[cpuid].arg = NULL;
5297                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
5298
5299                 if (ifp->if_flags & IFF_RUNNING) {
5300                         bce_disable_intr(sc);
5301
5302                         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5303                                (1 << 16) | sc->bce_rx_quick_cons_trip);
5304                         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5305                                (1 << 16) | sc->bce_tx_quick_cons_trip);
5306                 }
5307                 ifq_set_cpuid(&ifp->if_snd, cpuid);
5308         } else {
5309                 if (ifp->if_flags & IFF_RUNNING) {
5310                         bce_enable_intr(sc);
5311
5312                         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5313                                (sc->bce_tx_quick_cons_trip_int << 16) |
5314                                sc->bce_tx_quick_cons_trip);
5315                         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5316                                (sc->bce_rx_quick_cons_trip_int << 16) |
5317                                sc->bce_rx_quick_cons_trip);
5318                 }
5319                 ifq_set_cpuid(&ifp->if_snd, sc->bce_intr_cpuid);
5320         }
5321 }
5322
5323 #endif  /* IFPOLL_ENABLE */
5324
5325
5326 /*
5327  * Interrupt handler.
5328  */
5329 /****************************************************************************/
5330 /* Main interrupt entry point.  Verifies that the controller generated the  */
5331 /* interrupt and then calls a separate routine for handle the various       */
5332 /* interrupt causes (PHY, TX, RX).                                          */
5333 /*                                                                          */
5334 /* Returns:                                                                 */
5335 /*   0 for success, positive value for failure.                             */
5336 /****************************************************************************/
5337 static void
5338 bce_intr(struct bce_softc *sc)
5339 {
5340         struct ifnet *ifp = &sc->arpcom.ac_if;
5341         struct status_block *sblk;
5342         uint16_t hw_rx_cons, hw_tx_cons;
5343         uint32_t status_attn_bits;
5344
5345         ASSERT_SERIALIZED(ifp->if_serializer);
5346
5347         sblk = sc->status_block;
5348
5349         /*
5350          * Save the status block index value for use during
5351          * the next interrupt.
5352          */
5353         sc->last_status_idx = sblk->status_idx;
5354
5355         /* Make sure status index is extracted before rx/tx cons */
5356         cpu_lfence();
5357
5358         /* Check if the hardware has finished any work. */
5359         hw_rx_cons = bce_get_hw_rx_cons(sc);
5360         hw_tx_cons = bce_get_hw_tx_cons(sc);
5361
5362         status_attn_bits = sblk->status_attn_bits;
5363
5364         /* Was it a link change interrupt? */
5365         if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5366             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5367                 bce_phy_intr(sc);
5368
5369                 /*
5370                  * Clear any transient status updates during link state
5371                  * change.
5372                  */
5373                 REG_WR(sc, BCE_HC_COMMAND,
5374                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5375                 REG_RD(sc, BCE_HC_COMMAND);
5376         }
5377
5378         /*
5379          * If any other attention is asserted then
5380          * the chip is toast.
5381          */
5382         if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5383             (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5384                 if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5385                           sblk->status_attn_bits);
5386                 bce_init(sc);
5387                 return;
5388         }
5389
5390         /* Check for any completed RX frames. */
5391         if (hw_rx_cons != sc->rx_cons)
5392                 bce_rx_intr(sc, -1, hw_rx_cons);
5393
5394         /* Check for any completed TX frames. */
5395         if (hw_tx_cons != sc->tx_cons)
5396                 bce_tx_intr(sc, hw_tx_cons);
5397
5398         /* Re-enable interrupts. */
5399         bce_reenable_intr(sc);
5400
5401         if (sc->bce_coalchg_mask)
5402                 bce_coal_change(sc);
5403
5404         /* Handle any frames that arrived while handling the interrupt. */
5405         if (!ifq_is_empty(&ifp->if_snd))
5406                 if_devstart(ifp);
5407 }
5408
5409 static void
5410 bce_intr_legacy(void *xsc)
5411 {
5412         struct bce_softc *sc = xsc;
5413         struct status_block *sblk;
5414
5415         sblk = sc->status_block;
5416
5417         /*
5418          * If the hardware status block index matches the last value
5419          * read by the driver and we haven't asserted our interrupt
5420          * then there's nothing to do.
5421          */
5422         if (sblk->status_idx == sc->last_status_idx &&
5423             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
5424              BCE_PCICFG_MISC_STATUS_INTA_VALUE))
5425                 return;
5426
5427         /* Ack the interrupt and stop others from occuring. */
5428         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5429                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5430                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5431
5432         /*
5433          * Read back to deassert IRQ immediately to avoid too
5434          * many spurious interrupts.
5435          */
5436         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
5437
5438         bce_intr(sc);
5439 }
5440
5441 static void
5442 bce_intr_msi(void *xsc)
5443 {
5444         struct bce_softc *sc = xsc;
5445
5446         /* Ack the interrupt and stop others from occuring. */
5447         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5448                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5449                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5450
5451         bce_intr(sc);
5452 }
5453
5454 static void
5455 bce_intr_msi_oneshot(void *xsc)
5456 {
5457         bce_intr(xsc);
5458 }
5459
5460
5461 /****************************************************************************/
5462 /* Programs the various packet receive modes (broadcast and multicast).     */
5463 /*                                                                          */
5464 /* Returns:                                                                 */
5465 /*   Nothing.                                                               */
5466 /****************************************************************************/
5467 static void
5468 bce_set_rx_mode(struct bce_softc *sc)
5469 {
5470         struct ifnet *ifp = &sc->arpcom.ac_if;
5471         struct ifmultiaddr *ifma;
5472         uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5473         uint32_t rx_mode, sort_mode;
5474         int h, i;
5475
5476         ASSERT_SERIALIZED(ifp->if_serializer);
5477
5478         /* Initialize receive mode default settings. */
5479         rx_mode = sc->rx_mode &
5480                   ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
5481                     BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
5482         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
5483
5484         /*
5485          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5486          * be enbled.
5487          */
5488         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
5489             !(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
5490                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
5491
5492         /*
5493          * Check for promiscuous, all multicast, or selected
5494          * multicast address filtering.
5495          */
5496         if (ifp->if_flags & IFF_PROMISC) {
5497                 DBPRINT(sc, BCE_INFO, "Enabling promiscuous mode.\n");
5498
5499                 /* Enable promiscuous mode. */
5500                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
5501                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
5502         } else if (ifp->if_flags & IFF_ALLMULTI) {
5503                 DBPRINT(sc, BCE_INFO, "Enabling all multicast mode.\n");
5504
5505                 /* Enable all multicast addresses. */
5506                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5507                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5508                                0xffffffff);
5509                 }
5510                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
5511         } else {
5512                 /* Accept one or more multicast(s). */
5513                 DBPRINT(sc, BCE_INFO, "Enabling selective multicast mode.\n");
5514
5515                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
5516                         if (ifma->ifma_addr->sa_family != AF_LINK)
5517                                 continue;
5518                         h = ether_crc32_le(
5519                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
5520                             ETHER_ADDR_LEN) & 0xFF;
5521                         hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5522                 }
5523
5524                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5525                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5526                                hashes[i]);
5527                 }
5528                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
5529         }
5530
5531         /* Only make changes if the recive mode has actually changed. */
5532         if (rx_mode != sc->rx_mode) {
5533                 DBPRINT(sc, BCE_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5534                         rx_mode);
5535
5536                 sc->rx_mode = rx_mode;
5537                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
5538         }
5539
5540         /* Disable and clear the exisitng sort before enabling a new sort. */
5541         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
5542         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
5543         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
5544 }
5545
5546
5547 /****************************************************************************/
5548 /* Called periodically to updates statistics from the controllers           */
5549 /* statistics block.                                                        */
5550 /*                                                                          */
5551 /* Returns:                                                                 */
5552 /*   Nothing.                                                               */
5553 /****************************************************************************/
5554 static void
5555 bce_stats_update(struct bce_softc *sc)
5556 {
5557         struct ifnet *ifp = &sc->arpcom.ac_if;
5558         struct statistics_block *stats = sc->stats_block;
5559
5560         DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __func__);
5561
5562         ASSERT_SERIALIZED(ifp->if_serializer);
5563
5564         /* 
5565          * Certain controllers don't report carrier sense errors correctly.
5566          * See errata E11_5708CA0_1165.
5567          */
5568         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5569             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) {
5570                 ifp->if_oerrors +=
5571                         (u_long)stats->stat_Dot3StatsCarrierSenseErrors;
5572         }
5573
5574         /*
5575          * Update the sysctl statistics from the hardware statistics.
5576          */
5577         sc->stat_IfHCInOctets =
5578                 ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5579                  (uint64_t)stats->stat_IfHCInOctets_lo;
5580
5581         sc->stat_IfHCInBadOctets =
5582                 ((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) +
5583                  (uint64_t)stats->stat_IfHCInBadOctets_lo;
5584
5585         sc->stat_IfHCOutOctets =
5586                 ((uint64_t)stats->stat_IfHCOutOctets_hi << 32) +
5587                  (uint64_t)stats->stat_IfHCOutOctets_lo;
5588
5589         sc->stat_IfHCOutBadOctets =
5590                 ((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) +
5591                  (uint64_t)stats->stat_IfHCOutBadOctets_lo;
5592
5593         sc->stat_IfHCInUcastPkts =
5594                 ((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) +
5595                  (uint64_t)stats->stat_IfHCInUcastPkts_lo;
5596
5597         sc->stat_IfHCInMulticastPkts =
5598                 ((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) +
5599                  (uint64_t)stats->stat_IfHCInMulticastPkts_lo;
5600
5601         sc->stat_IfHCInBroadcastPkts =
5602                 ((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) +
5603                  (uint64_t)stats->stat_IfHCInBroadcastPkts_lo;
5604
5605         sc->stat_IfHCOutUcastPkts =
5606                 ((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) +
5607                  (uint64_t)stats->stat_IfHCOutUcastPkts_lo;
5608
5609         sc->stat_IfHCOutMulticastPkts =
5610                 ((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) +
5611                  (uint64_t)stats->stat_IfHCOutMulticastPkts_lo;
5612
5613         sc->stat_IfHCOutBroadcastPkts =
5614                 ((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5615                  (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo;
5616
5617         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5618                 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5619
5620         sc->stat_Dot3StatsCarrierSenseErrors =
5621                 stats->stat_Dot3StatsCarrierSenseErrors;
5622
5623         sc->stat_Dot3StatsFCSErrors =
5624                 stats->stat_Dot3StatsFCSErrors;
5625
5626         sc->stat_Dot3StatsAlignmentErrors =
5627                 stats->stat_Dot3StatsAlignmentErrors;
5628
5629         sc->stat_Dot3StatsSingleCollisionFrames =
5630                 stats->stat_Dot3StatsSingleCollisionFrames;
5631
5632         sc->stat_Dot3StatsMultipleCollisionFrames =
5633                 stats->stat_Dot3StatsMultipleCollisionFrames;
5634
5635         sc->stat_Dot3StatsDeferredTransmissions =
5636                 stats->stat_Dot3StatsDeferredTransmissions;
5637
5638         sc->stat_Dot3StatsExcessiveCollisions =
5639                 stats->stat_Dot3StatsExcessiveCollisions;
5640
5641         sc->stat_Dot3StatsLateCollisions =
5642                 stats->stat_Dot3StatsLateCollisions;
5643
5644         sc->stat_EtherStatsCollisions =
5645                 stats->stat_EtherStatsCollisions;
5646
5647         sc->stat_EtherStatsFragments =
5648                 stats->stat_EtherStatsFragments;
5649
5650         sc->stat_EtherStatsJabbers =
5651                 stats->stat_EtherStatsJabbers;
5652
5653         sc->stat_EtherStatsUndersizePkts =
5654                 stats->stat_EtherStatsUndersizePkts;
5655
5656         sc->stat_EtherStatsOverrsizePkts =
5657                 stats->stat_EtherStatsOverrsizePkts;
5658
5659         sc->stat_EtherStatsPktsRx64Octets =
5660                 stats->stat_EtherStatsPktsRx64Octets;
5661
5662         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5663                 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5664
5665         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5666                 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5667
5668         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5669                 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5670
5671         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5672                 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5673
5674         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5675                 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5676
5677         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5678                 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5679
5680         sc->stat_EtherStatsPktsTx64Octets =
5681                 stats->stat_EtherStatsPktsTx64Octets;
5682
5683         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5684                 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5685
5686         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5687                 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5688
5689         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5690                 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5691
5692         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5693                 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5694
5695         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5696                 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5697
5698         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5699                 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5700
5701         sc->stat_XonPauseFramesReceived =
5702                 stats->stat_XonPauseFramesReceived;
5703
5704         sc->stat_XoffPauseFramesReceived =
5705                 stats->stat_XoffPauseFramesReceived;
5706
5707         sc->stat_OutXonSent =
5708                 stats->stat_OutXonSent;
5709
5710         sc->stat_OutXoffSent =
5711                 stats->stat_OutXoffSent;
5712
5713         sc->stat_FlowControlDone =
5714                 stats->stat_FlowControlDone;
5715
5716         sc->stat_MacControlFramesReceived =
5717                 stats->stat_MacControlFramesReceived;
5718
5719         sc->stat_XoffStateEntered =
5720                 stats->stat_XoffStateEntered;
5721
5722         sc->stat_IfInFramesL2FilterDiscards =
5723                 stats->stat_IfInFramesL2FilterDiscards;
5724
5725         sc->stat_IfInRuleCheckerDiscards =
5726                 stats->stat_IfInRuleCheckerDiscards;
5727
5728         sc->stat_IfInFTQDiscards =
5729                 stats->stat_IfInFTQDiscards;
5730
5731         sc->stat_IfInMBUFDiscards =
5732                 stats->stat_IfInMBUFDiscards;
5733
5734         sc->stat_IfInRuleCheckerP4Hit =
5735                 stats->stat_IfInRuleCheckerP4Hit;
5736
5737         sc->stat_CatchupInRuleCheckerDiscards =
5738                 stats->stat_CatchupInRuleCheckerDiscards;
5739
5740         sc->stat_CatchupInFTQDiscards =
5741                 stats->stat_CatchupInFTQDiscards;
5742
5743         sc->stat_CatchupInMBUFDiscards =
5744                 stats->stat_CatchupInMBUFDiscards;
5745
5746         sc->stat_CatchupInRuleCheckerP4Hit =
5747                 stats->stat_CatchupInRuleCheckerP4Hit;
5748
5749         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
5750
5751         /*
5752          * Update the interface statistics from the
5753          * hardware statistics.
5754          */
5755         ifp->if_collisions = (u_long)sc->stat_EtherStatsCollisions;
5756
5757         ifp->if_ierrors = (u_long)sc->stat_EtherStatsUndersizePkts +
5758             (u_long)sc->stat_EtherStatsOverrsizePkts +
5759             (u_long)sc->stat_IfInMBUFDiscards +
5760             (u_long)sc->stat_Dot3StatsAlignmentErrors +
5761             (u_long)sc->stat_Dot3StatsFCSErrors +
5762             (u_long)sc->stat_IfInRuleCheckerDiscards +
5763             (u_long)sc->stat_IfInFTQDiscards +
5764             (u_long)sc->com_no_buffers;
5765
5766         ifp->if_oerrors =
5767             (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5768             (u_long)sc->stat_Dot3StatsExcessiveCollisions +
5769             (u_long)sc->stat_Dot3StatsLateCollisions;
5770
5771         DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __func__);
5772 }
5773
5774
5775 /****************************************************************************/
5776 /* Periodic function to notify the bootcode that the driver is still        */
5777 /* present.                                                                 */
5778 /*                                                                          */
5779 /* Returns:                                                                 */
5780 /*   Nothing.                                                               */
5781 /****************************************************************************/
5782 static void
5783 bce_pulse(void *xsc)
5784 {
5785         struct bce_softc *sc = xsc;
5786         struct ifnet *ifp = &sc->arpcom.ac_if;
5787         uint32_t msg;
5788
5789         lwkt_serialize_enter(ifp->if_serializer);
5790
5791         /* Tell the firmware that the driver is still running. */
5792         msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq;
5793         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
5794
5795         /* Update the bootcode condition. */
5796         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
5797
5798         /* Report whether the bootcode still knows the driver is running. */
5799         if (!sc->bce_drv_cardiac_arrest) {
5800                 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
5801                         sc->bce_drv_cardiac_arrest = 1;
5802                         if_printf(ifp, "Bootcode lost the driver pulse! "
5803                             "(bc_state = 0x%08X)\n", sc->bc_state);
5804                 }
5805         } else {
5806                 /*
5807                  * Not supported by all bootcode versions.
5808                  * (v5.0.11+ and v5.2.1+)  Older bootcode
5809                  * will require the driver to reset the
5810                  * controller to clear this condition.
5811                  */
5812                 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
5813                         sc->bce_drv_cardiac_arrest = 0;
5814                         if_printf(ifp, "Bootcode found the driver pulse! "
5815                             "(bc_state = 0x%08X)\n", sc->bc_state);
5816                 }
5817         }
5818
5819         /* Schedule the next pulse. */
5820         callout_reset_bycpu(&sc->bce_pulse_callout, hz, bce_pulse, sc,
5821             sc->bce_intr_cpuid);
5822
5823         lwkt_serialize_exit(ifp->if_serializer);
5824 }
5825
5826
5827 /****************************************************************************/
5828 /* Periodic function to check whether MSI is lost                           */
5829 /*                                                                          */
5830 /* Returns:                                                                 */
5831 /*   Nothing.                                                               */
5832 /****************************************************************************/
5833 static void
5834 bce_check_msi(void *xsc)
5835 {
5836         struct bce_softc *sc = xsc;
5837         struct ifnet *ifp = &sc->arpcom.ac_if;
5838         struct status_block *sblk = sc->status_block;
5839
5840         lwkt_serialize_enter(ifp->if_serializer);
5841
5842         KKASSERT(mycpuid == sc->bce_intr_cpuid);
5843
5844         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
5845                 lwkt_serialize_exit(ifp->if_serializer);
5846                 return;
5847         }
5848
5849         if (bce_get_hw_rx_cons(sc) != sc->rx_cons ||
5850             bce_get_hw_tx_cons(sc) != sc->tx_cons ||
5851             (sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5852             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5853                 if (sc->bce_check_rx_cons == sc->rx_cons &&
5854                     sc->bce_check_tx_cons == sc->tx_cons &&
5855                     sc->bce_check_status_idx == sc->last_status_idx) {
5856                         uint32_t msi_ctrl;
5857
5858                         if (!sc->bce_msi_maylose) {
5859                                 sc->bce_msi_maylose = TRUE;
5860                                 goto done;
5861                         }
5862
5863                         msi_ctrl = REG_RD(sc, BCE_PCICFG_MSI_CONTROL);
5864                         if (msi_ctrl & BCE_PCICFG_MSI_CONTROL_ENABLE) {
5865                                 if (bootverbose)
5866                                         if_printf(ifp, "lost MSI\n");
5867
5868                                 REG_WR(sc, BCE_PCICFG_MSI_CONTROL,
5869                                     msi_ctrl & ~BCE_PCICFG_MSI_CONTROL_ENABLE);
5870                                 REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl);
5871
5872                                 bce_intr_msi(sc);
5873                         } else if (bootverbose) {
5874                                 if_printf(ifp, "MSI may be lost\n");
5875                         }
5876                 }
5877         }
5878         sc->bce_msi_maylose = FALSE;
5879         sc->bce_check_rx_cons = sc->rx_cons;
5880         sc->bce_check_tx_cons = sc->tx_cons;
5881         sc->bce_check_status_idx = sc->last_status_idx;
5882
5883 done:
5884         callout_reset(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
5885             bce_check_msi, sc);
5886         lwkt_serialize_exit(ifp->if_serializer);
5887 }
5888
5889
5890 /****************************************************************************/
5891 /* Periodic function to perform maintenance tasks.                          */
5892 /*                                                                          */
5893 /* Returns:                                                                 */
5894 /*   Nothing.                                                               */
5895 /****************************************************************************/
5896 static void
5897 bce_tick_serialized(struct bce_softc *sc)
5898 {
5899         struct ifnet *ifp = &sc->arpcom.ac_if;
5900         struct mii_data *mii;
5901
5902         ASSERT_SERIALIZED(ifp->if_serializer);
5903
5904         /* Update the statistics from the hardware statistics block. */
5905         bce_stats_update(sc);
5906
5907         /* Schedule the next tick. */
5908         callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc,
5909             sc->bce_intr_cpuid);
5910
5911         /* If link is up already up then we're done. */
5912         if (sc->bce_link)
5913                 return;
5914
5915         mii = device_get_softc(sc->bce_miibus);
5916         mii_tick(mii);
5917
5918         /* Check if the link has come up. */
5919         if ((mii->mii_media_status & IFM_ACTIVE) &&
5920             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5921                 sc->bce_link++;
5922                 /* Now that link is up, handle any outstanding TX traffic. */
5923                 if (!ifq_is_empty(&ifp->if_snd))
5924                         if_devstart(ifp);
5925         }
5926 }
5927
5928
5929 static void
5930 bce_tick(void *xsc)
5931 {
5932         struct bce_softc *sc = xsc;
5933         struct ifnet *ifp = &sc->arpcom.ac_if;
5934
5935         lwkt_serialize_enter(ifp->if_serializer);
5936         bce_tick_serialized(sc);
5937         lwkt_serialize_exit(ifp->if_serializer);
5938 }
5939
5940
5941 #ifdef BCE_DEBUG
5942 /****************************************************************************/
5943 /* Allows the driver state to be dumped through the sysctl interface.       */
5944 /*                                                                          */
5945 /* Returns:                                                                 */
5946 /*   0 for success, positive value for failure.                             */
5947 /****************************************************************************/
5948 static int
5949 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
5950 {
5951         int error;
5952         int result;
5953         struct bce_softc *sc;
5954
5955         result = -1;
5956         error = sysctl_handle_int(oidp, &result, 0, req);
5957
5958         if (error || !req->newptr)
5959                 return (error);
5960
5961         if (result == 1) {
5962                 sc = (struct bce_softc *)arg1;
5963                 bce_dump_driver_state(sc);
5964         }
5965
5966         return error;
5967 }
5968
5969
5970 /****************************************************************************/
5971 /* Allows the hardware state to be dumped through the sysctl interface.     */
5972 /*                                                                          */
5973 /* Returns:                                                                 */
5974 /*   0 for success, positive value for failure.                             */
5975 /****************************************************************************/
5976 static int
5977 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
5978 {
5979         int error;
5980         int result;
5981         struct bce_softc *sc;
5982
5983         result = -1;
5984         error = sysctl_handle_int(oidp, &result, 0, req);
5985
5986         if (error || !req->newptr)
5987                 return (error);
5988
5989         if (result == 1) {
5990                 sc = (struct bce_softc *)arg1;
5991                 bce_dump_hw_state(sc);
5992         }
5993
5994         return error;
5995 }
5996
5997
5998 /****************************************************************************/
5999 /* Provides a sysctl interface to allows dumping the RX chain.              */
6000 /*                                                                          */
6001 /* Returns:                                                                 */
6002 /*   0 for success, positive value for failure.                             */
6003 /****************************************************************************/
6004 static int
6005 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
6006 {
6007         int error;
6008         int result;
6009         struct bce_softc *sc;
6010
6011         result = -1;
6012         error = sysctl_handle_int(oidp, &result, 0, req);
6013
6014         if (error || !req->newptr)
6015                 return (error);
6016
6017         if (result == 1) {
6018                 sc = (struct bce_softc *)arg1;
6019                 bce_dump_rx_chain(sc, 0, USABLE_RX_BD(sc));
6020         }
6021
6022         return error;
6023 }
6024
6025
6026 /****************************************************************************/
6027 /* Provides a sysctl interface to allows dumping the TX chain.              */
6028 /*                                                                          */
6029 /* Returns:                                                                 */
6030 /*   0 for success, positive value for failure.                             */
6031 /****************************************************************************/
6032 static int
6033 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
6034 {
6035         int error;
6036         int result;
6037         struct bce_softc *sc;
6038
6039         result = -1;
6040         error = sysctl_handle_int(oidp, &result, 0, req);
6041
6042         if (error || !req->newptr)
6043                 return (error);
6044
6045         if (result == 1) {
6046                 sc = (struct bce_softc *)arg1;
6047                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD(sc));
6048         }
6049
6050         return error;
6051 }
6052
6053
6054 /****************************************************************************/
6055 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
6056 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
6057 /*                                                                          */
6058 /* Returns:                                                                 */
6059 /*   0 for success, positive value for failure.                             */
6060 /****************************************************************************/
6061 static int
6062 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6063 {
6064         struct bce_softc *sc;
6065         int error;
6066         uint32_t val, result;
6067
6068         result = -1;
6069         error = sysctl_handle_int(oidp, &result, 0, req);
6070         if (error || (req->newptr == NULL))
6071                 return (error);
6072
6073         /* Make sure the register is accessible. */
6074         if (result < 0x8000) {
6075                 sc = (struct bce_softc *)arg1;
6076                 val = REG_RD(sc, result);
6077                 if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
6078                           result, val);
6079         } else if (result < 0x0280000) {
6080                 sc = (struct bce_softc *)arg1;
6081                 val = REG_RD_IND(sc, result);
6082                 if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
6083                           result, val);
6084         }
6085         return (error);
6086 }
6087
6088
6089 /****************************************************************************/
6090 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
6091 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
6092 /*                                                                          */
6093 /* Returns:                                                                 */
6094 /*   0 for success, positive value for failure.                             */
6095 /****************************************************************************/
6096 static int
6097 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
6098 {
6099         struct bce_softc *sc;
6100         device_t dev;
6101         int error, result;
6102         uint16_t val;
6103
6104         result = -1;
6105         error = sysctl_handle_int(oidp, &result, 0, req);
6106         if (error || (req->newptr == NULL))
6107                 return (error);
6108
6109         /* Make sure the register is accessible. */
6110         if (result < 0x20) {
6111                 sc = (struct bce_softc *)arg1;
6112                 dev = sc->bce_dev;
6113                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
6114                 if_printf(&sc->arpcom.ac_if,
6115                           "phy 0x%02X = 0x%04X\n", result, val);
6116         }
6117         return (error);
6118 }
6119
6120
6121 /****************************************************************************/
6122 /* Provides a sysctl interface to forcing the driver to dump state and      */
6123 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
6124 /*                                                                          */
6125 /* Returns:                                                                 */
6126 /*   0 for success, positive value for failure.                             */
6127 /****************************************************************************/
6128 static int
6129 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
6130 {
6131         int error;
6132         int result;
6133         struct bce_softc *sc;
6134
6135         result = -1;
6136         error = sysctl_handle_int(oidp, &result, 0, req);
6137
6138         if (error || !req->newptr)
6139                 return (error);
6140
6141         if (result == 1) {
6142                 sc = (struct bce_softc *)arg1;
6143                 bce_breakpoint(sc);
6144         }
6145
6146         return error;
6147 }
6148 #endif
6149
6150
6151 /****************************************************************************/
6152 /* Adds any sysctl parameters for tuning or debugging purposes.             */
6153 /*                                                                          */
6154 /* Returns:                                                                 */
6155 /*   0 for success, positive value for failure.                             */
6156 /****************************************************************************/
6157 static void
6158 bce_add_sysctls(struct bce_softc *sc)
6159 {
6160         struct sysctl_ctx_list *ctx;
6161         struct sysctl_oid_list *children;
6162
6163         sysctl_ctx_init(&sc->bce_sysctl_ctx);
6164         sc->bce_sysctl_tree = SYSCTL_ADD_NODE(&sc->bce_sysctl_ctx,
6165                                               SYSCTL_STATIC_CHILDREN(_hw),
6166                                               OID_AUTO,
6167                                               device_get_nameunit(sc->bce_dev),
6168                                               CTLFLAG_RD, 0, "");
6169         if (sc->bce_sysctl_tree == NULL) {
6170                 device_printf(sc->bce_dev, "can't add sysctl node\n");
6171                 return;
6172         }
6173
6174         ctx = &sc->bce_sysctl_ctx;
6175         children = SYSCTL_CHILDREN(sc->bce_sysctl_tree);
6176
6177         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int",
6178                         CTLTYPE_INT | CTLFLAG_RW,
6179                         sc, 0, bce_sysctl_tx_bds_int, "I",
6180                         "Send max coalesced BD count during interrupt");
6181         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds",
6182                         CTLTYPE_INT | CTLFLAG_RW,
6183                         sc, 0, bce_sysctl_tx_bds, "I",
6184                         "Send max coalesced BD count");
6185         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int",
6186                         CTLTYPE_INT | CTLFLAG_RW,
6187                         sc, 0, bce_sysctl_tx_ticks_int, "I",
6188                         "Send coalescing ticks during interrupt");
6189         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks",
6190                         CTLTYPE_INT | CTLFLAG_RW,
6191                         sc, 0, bce_sysctl_tx_ticks, "I",
6192                         "Send coalescing ticks");
6193
6194         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int",
6195                         CTLTYPE_INT | CTLFLAG_RW,
6196                         sc, 0, bce_sysctl_rx_bds_int, "I",
6197                         "Receive max coalesced BD count during interrupt");
6198         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds",
6199                         CTLTYPE_INT | CTLFLAG_RW,
6200                         sc, 0, bce_sysctl_rx_bds, "I",
6201                         "Receive max coalesced BD count");
6202         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int",
6203                         CTLTYPE_INT | CTLFLAG_RW,
6204                         sc, 0, bce_sysctl_rx_ticks_int, "I",
6205                         "Receive coalescing ticks during interrupt");
6206         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks",
6207                         CTLTYPE_INT | CTLFLAG_RW,
6208                         sc, 0, bce_sysctl_rx_ticks, "I",
6209                         "Receive coalescing ticks");
6210
6211         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_pages",
6212                 CTLFLAG_RD, &sc->rx_pages, 0, "# of RX pages");
6213         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_pages",
6214                 CTLFLAG_RD, &sc->tx_pages, 0, "# of TX pages");
6215
6216         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_wreg",
6217                 CTLFLAG_RW, &sc->tx_wreg, 0,
6218                 "# segments before write to hardware registers");
6219
6220 #ifdef BCE_DEBUG
6221         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6222                 "rx_low_watermark",
6223                 CTLFLAG_RD, &sc->rx_low_watermark,
6224                 0, "Lowest level of free rx_bd's");
6225
6226         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6227                 "rx_empty_count",
6228                 CTLFLAG_RD, &sc->rx_empty_count,
6229                 0, "Number of times the RX chain was empty");
6230
6231         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6232                 "tx_hi_watermark",
6233                 CTLFLAG_RD, &sc->tx_hi_watermark,
6234                 0, "Highest level of used tx_bd's");
6235
6236         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6237                 "tx_full_count",
6238                 CTLFLAG_RD, &sc->tx_full_count,
6239                 0, "Number of times the TX chain was full");
6240
6241         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6242                 "l2fhdr_status_errors",
6243                 CTLFLAG_RD, &sc->l2fhdr_status_errors,
6244                 0, "l2_fhdr status errors");
6245
6246         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6247                 "unexpected_attentions",
6248                 CTLFLAG_RD, &sc->unexpected_attentions,
6249                 0, "unexpected attentions");
6250
6251         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6252                 "lost_status_block_updates",
6253                 CTLFLAG_RD, &sc->lost_status_block_updates,
6254                 0, "lost status block updates");
6255
6256         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6257                 "mbuf_alloc_failed",
6258                 CTLFLAG_RD, &sc->mbuf_alloc_failed,
6259                 0, "mbuf cluster allocation failures");
6260 #endif
6261
6262         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6263                 "stat_IfHCInOctets",
6264                 CTLFLAG_RD, &sc->stat_IfHCInOctets,
6265                 "Bytes received");
6266
6267         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6268                 "stat_IfHCInBadOctets",
6269                 CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
6270                 "Bad bytes received");
6271
6272         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6273                 "stat_IfHCOutOctets",
6274                 CTLFLAG_RD, &sc->stat_IfHCOutOctets,
6275                 "Bytes sent");
6276
6277         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6278                 "stat_IfHCOutBadOctets",
6279                 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
6280                 "Bad bytes sent");
6281
6282         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6283                 "stat_IfHCInUcastPkts",
6284                 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
6285                 "Unicast packets received");
6286
6287         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6288                 "stat_IfHCInMulticastPkts",
6289                 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
6290                 "Multicast packets received");
6291
6292         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6293                 "stat_IfHCInBroadcastPkts",
6294                 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
6295                 "Broadcast packets received");
6296
6297         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6298                 "stat_IfHCOutUcastPkts",
6299                 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
6300                 "Unicast packets sent");
6301
6302         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6303                 "stat_IfHCOutMulticastPkts",
6304                 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
6305                 "Multicast packets sent");
6306
6307         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6308                 "stat_IfHCOutBroadcastPkts",
6309                 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
6310                 "Broadcast packets sent");
6311
6312         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6313                 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
6314                 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
6315                 0, "Internal MAC transmit errors");
6316
6317         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6318                 "stat_Dot3StatsCarrierSenseErrors",
6319                 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
6320                 0, "Carrier sense errors");
6321
6322         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6323                 "stat_Dot3StatsFCSErrors",
6324                 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
6325                 0, "Frame check sequence errors");
6326
6327         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6328                 "stat_Dot3StatsAlignmentErrors",
6329                 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
6330                 0, "Alignment errors");
6331
6332         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6333                 "stat_Dot3StatsSingleCollisionFrames",
6334                 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
6335                 0, "Single Collision Frames");
6336
6337         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6338                 "stat_Dot3StatsMultipleCollisionFrames",
6339                 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
6340                 0, "Multiple Collision Frames");
6341
6342         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6343                 "stat_Dot3StatsDeferredTransmissions",
6344                 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
6345                 0, "Deferred Transmissions");
6346
6347         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6348                 "stat_Dot3StatsExcessiveCollisions",
6349                 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
6350                 0, "Excessive Collisions");
6351
6352         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6353                 "stat_Dot3StatsLateCollisions",
6354                 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
6355                 0, "Late Collisions");
6356
6357         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6358                 "stat_EtherStatsCollisions",
6359                 CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
6360                 0, "Collisions");
6361
6362         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6363                 "stat_EtherStatsFragments",
6364                 CTLFLAG_RD, &sc->stat_EtherStatsFragments,
6365                 0, "Fragments");
6366
6367         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6368                 "stat_EtherStatsJabbers",
6369                 CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
6370                 0, "Jabbers");
6371
6372         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6373                 "stat_EtherStatsUndersizePkts",
6374                 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
6375                 0, "Undersize packets");
6376
6377         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6378                 "stat_EtherStatsOverrsizePkts",
6379                 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
6380                 0, "stat_EtherStatsOverrsizePkts");
6381
6382         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6383                 "stat_EtherStatsPktsRx64Octets",
6384                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
6385                 0, "Bytes received in 64 byte packets");
6386
6387         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6388                 "stat_EtherStatsPktsRx65Octetsto127Octets",
6389                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
6390                 0, "Bytes received in 65 to 127 byte packets");
6391
6392         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6393                 "stat_EtherStatsPktsRx128Octetsto255Octets",
6394                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
6395                 0, "Bytes received in 128 to 255 byte packets");
6396
6397         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6398                 "stat_EtherStatsPktsRx256Octetsto511Octets",
6399                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
6400                 0, "Bytes received in 256 to 511 byte packets");
6401
6402         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6403                 "stat_EtherStatsPktsRx512Octetsto1023Octets",
6404                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
6405                 0, "Bytes received in 512 to 1023 byte packets");
6406
6407         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6408                 "stat_EtherStatsPktsRx1024Octetsto1522Octets",
6409                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
6410                 0, "Bytes received in 1024 t0 1522 byte packets");
6411
6412         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6413                 "stat_EtherStatsPktsRx1523Octetsto9022Octets",
6414                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
6415                 0, "Bytes received in 1523 to 9022 byte packets");
6416
6417         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6418                 "stat_EtherStatsPktsTx64Octets",
6419                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
6420                 0, "Bytes sent in 64 byte packets");
6421
6422         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6423                 "stat_EtherStatsPktsTx65Octetsto127Octets",
6424                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
6425                 0, "Bytes sent in 65 to 127 byte packets");
6426
6427         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6428                 "stat_EtherStatsPktsTx128Octetsto255Octets",
6429                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
6430                 0, "Bytes sent in 128 to 255 byte packets");
6431
6432         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6433                 "stat_EtherStatsPktsTx256Octetsto511Octets",
6434                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
6435                 0, "Bytes sent in 256 to 511 byte packets");
6436
6437         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6438                 "stat_EtherStatsPktsTx512Octetsto1023Octets",
6439                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
6440                 0, "Bytes sent in 512 to 1023 byte packets");
6441
6442         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6443                 "stat_EtherStatsPktsTx1024Octetsto1522Octets",
6444                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
6445                 0, "Bytes sent in 1024 to 1522 byte packets");
6446
6447         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6448                 "stat_EtherStatsPktsTx1523Octetsto9022Octets",
6449                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
6450                 0, "Bytes sent in 1523 to 9022 byte packets");
6451
6452         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6453                 "stat_XonPauseFramesReceived",
6454                 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
6455                 0, "XON pause frames receved");
6456
6457         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6458                 "stat_XoffPauseFramesReceived",
6459                 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
6460                 0, "XOFF pause frames received");
6461
6462         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6463                 "stat_OutXonSent",
6464                 CTLFLAG_RD, &sc->stat_OutXonSent,
6465                 0, "XON pause frames sent");
6466
6467         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6468                 "stat_OutXoffSent",
6469                 CTLFLAG_RD, &sc->stat_OutXoffSent,
6470                 0, "XOFF pause frames sent");
6471
6472         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6473                 "stat_FlowControlDone",
6474                 CTLFLAG_RD, &sc->stat_FlowControlDone,
6475                 0, "Flow control done");
6476
6477         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6478                 "stat_MacControlFramesReceived",
6479                 CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
6480                 0, "MAC control frames received");
6481
6482         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6483                 "stat_XoffStateEntered",
6484                 CTLFLAG_RD, &sc->stat_XoffStateEntered,
6485                 0, "XOFF state entered");
6486
6487         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6488                 "stat_IfInFramesL2FilterDiscards",
6489                 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
6490                 0, "Received L2 packets discarded");
6491
6492         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6493                 "stat_IfInRuleCheckerDiscards",
6494                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
6495                 0, "Received packets discarded by rule");
6496
6497         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6498                 "stat_IfInFTQDiscards",
6499                 CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
6500                 0, "Received packet FTQ discards");
6501
6502         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6503                 "stat_IfInMBUFDiscards",
6504                 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
6505                 0, "Received packets discarded due to lack of controller buffer memory");
6506
6507         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6508                 "stat_IfInRuleCheckerP4Hit",
6509                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
6510                 0, "Received packets rule checker hits");
6511
6512         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6513                 "stat_CatchupInRuleCheckerDiscards",
6514                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
6515                 0, "Received packets discarded in Catchup path");
6516
6517         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6518                 "stat_CatchupInFTQDiscards",
6519                 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
6520                 0, "Received packets discarded in FTQ in Catchup path");
6521
6522         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6523                 "stat_CatchupInMBUFDiscards",
6524                 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
6525                 0, "Received packets discarded in controller buffer memory in Catchup path");
6526
6527         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6528                 "stat_CatchupInRuleCheckerP4Hit",
6529                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
6530                 0, "Received packets rule checker hits in Catchup path");
6531
6532         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6533                 "com_no_buffers",
6534                 CTLFLAG_RD, &sc->com_no_buffers,
6535                 0, "Valid packets received but no RX buffers available");
6536
6537 #ifdef BCE_DEBUG
6538         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6539                 "driver_state", CTLTYPE_INT | CTLFLAG_RW,
6540                 (void *)sc, 0,
6541                 bce_sysctl_driver_state, "I", "Drive state information");
6542
6543         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6544                 "hw_state", CTLTYPE_INT | CTLFLAG_RW,
6545                 (void *)sc, 0,
6546                 bce_sysctl_hw_state, "I", "Hardware state information");
6547
6548         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6549                 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
6550                 (void *)sc, 0,
6551                 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
6552
6553         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6554                 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
6555                 (void *)sc, 0,
6556                 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
6557
6558         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6559                 "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
6560                 (void *)sc, 0,
6561                 bce_sysctl_breakpoint, "I", "Driver breakpoint");
6562
6563         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6564                 "reg_read", CTLTYPE_INT | CTLFLAG_RW,
6565                 (void *)sc, 0,
6566                 bce_sysctl_reg_read, "I", "Register read");
6567
6568         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6569                 "phy_read", CTLTYPE_INT | CTLFLAG_RW,
6570                 (void *)sc, 0,
6571                 bce_sysctl_phy_read, "I", "PHY register read");
6572
6573 #endif
6574
6575 }
6576
6577
6578 /****************************************************************************/
6579 /* BCE Debug Routines                                                       */
6580 /****************************************************************************/
6581 #ifdef BCE_DEBUG
6582
6583 /****************************************************************************/
6584 /* Freezes the controller to allow for a cohesive state dump.               */
6585 /*                                                                          */
6586 /* Returns:                                                                 */
6587 /*   Nothing.                                                               */
6588 /****************************************************************************/
6589 static void
6590 bce_freeze_controller(struct bce_softc *sc)
6591 {
6592         uint32_t val;
6593
6594         val = REG_RD(sc, BCE_MISC_COMMAND);
6595         val |= BCE_MISC_COMMAND_DISABLE_ALL;
6596         REG_WR(sc, BCE_MISC_COMMAND, val);
6597 }
6598
6599
6600 /****************************************************************************/
6601 /* Unfreezes the controller after a freeze operation.  This may not always  */
6602 /* work and the controller will require a reset!                            */
6603 /*                                                                          */
6604 /* Returns:                                                                 */
6605 /*   Nothing.                                                               */
6606 /****************************************************************************/
6607 static void
6608 bce_unfreeze_controller(struct bce_softc *sc)
6609 {
6610         uint32_t val;
6611
6612         val = REG_RD(sc, BCE_MISC_COMMAND);
6613         val |= BCE_MISC_COMMAND_ENABLE_ALL;
6614         REG_WR(sc, BCE_MISC_COMMAND, val);
6615 }
6616
6617
6618 /****************************************************************************/
6619 /* Prints out information about an mbuf.                                    */
6620 /*                                                                          */
6621 /* Returns:                                                                 */
6622 /*   Nothing.                                                               */
6623 /****************************************************************************/
6624 static void
6625 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
6626 {
6627         struct ifnet *ifp = &sc->arpcom.ac_if;
6628         uint32_t val_hi, val_lo;
6629         struct mbuf *mp = m;
6630
6631         if (m == NULL) {
6632                 /* Index out of range. */
6633                 if_printf(ifp, "mbuf: null pointer\n");
6634                 return;
6635         }
6636
6637         while (mp) {
6638                 val_hi = BCE_ADDR_HI(mp);
6639                 val_lo = BCE_ADDR_LO(mp);
6640                 if_printf(ifp, "mbuf: vaddr = 0x%08X:%08X, m_len = %d, "
6641                           "m_flags = ( ", val_hi, val_lo, mp->m_len);
6642
6643                 if (mp->m_flags & M_EXT)
6644                         kprintf("M_EXT ");
6645                 if (mp->m_flags & M_PKTHDR)
6646                         kprintf("M_PKTHDR ");
6647                 if (mp->m_flags & M_EOR)
6648                         kprintf("M_EOR ");
6649 #ifdef M_RDONLY
6650                 if (mp->m_flags & M_RDONLY)
6651                         kprintf("M_RDONLY ");
6652 #endif
6653
6654                 val_hi = BCE_ADDR_HI(mp->m_data);
6655                 val_lo = BCE_ADDR_LO(mp->m_data);
6656                 kprintf(") m_data = 0x%08X:%08X\n", val_hi, val_lo);
6657
6658                 if (mp->m_flags & M_PKTHDR) {
6659                         if_printf(ifp, "- m_pkthdr: flags = ( ");
6660                         if (mp->m_flags & M_BCAST) 
6661                                 kprintf("M_BCAST ");
6662                         if (mp->m_flags & M_MCAST)
6663                                 kprintf("M_MCAST ");
6664                         if (mp->m_flags & M_FRAG)
6665                                 kprintf("M_FRAG ");
6666                         if (mp->m_flags & M_FIRSTFRAG)
6667                                 kprintf("M_FIRSTFRAG ");
6668                         if (mp->m_flags & M_LASTFRAG)
6669                                 kprintf("M_LASTFRAG ");
6670 #ifdef M_VLANTAG
6671                         if (mp->m_flags & M_VLANTAG)
6672                                 kprintf("M_VLANTAG ");
6673 #endif
6674 #ifdef M_PROMISC
6675                         if (mp->m_flags & M_PROMISC)
6676                                 kprintf("M_PROMISC ");
6677 #endif
6678                         kprintf(") csum_flags = ( ");
6679                         if (mp->m_pkthdr.csum_flags & CSUM_IP)
6680                                 kprintf("CSUM_IP ");
6681                         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
6682                                 kprintf("CSUM_TCP ");
6683                         if (mp->m_pkthdr.csum_flags & CSUM_UDP)
6684                                 kprintf("CSUM_UDP ");
6685                         if (mp->m_pkthdr.csum_flags & CSUM_IP_FRAGS)
6686                                 kprintf("CSUM_IP_FRAGS ");
6687                         if (mp->m_pkthdr.csum_flags & CSUM_FRAGMENT)
6688                                 kprintf("CSUM_FRAGMENT ");
6689 #ifdef CSUM_TSO
6690                         if (mp->m_pkthdr.csum_flags & CSUM_TSO)
6691                                 kprintf("CSUM_TSO ");
6692 #endif
6693                         if (mp->m_pkthdr.csum_flags & CSUM_IP_CHECKED)
6694                                 kprintf("CSUM_IP_CHECKED ");
6695                         if (mp->m_pkthdr.csum_flags & CSUM_IP_VALID)
6696                                 kprintf("CSUM_IP_VALID ");
6697                         if (mp->m_pkthdr.csum_flags & CSUM_DATA_VALID)
6698                                 kprintf("CSUM_DATA_VALID ");
6699                         kprintf(")\n");
6700                 }
6701
6702                 if (mp->m_flags & M_EXT) {
6703                         val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf);
6704                         val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf);
6705                         if_printf(ifp, "- m_ext: vaddr = 0x%08X:%08X, "
6706                                   "ext_size = %d\n",
6707                                   val_hi, val_lo, mp->m_ext.ext_size);
6708                 }
6709                 mp = mp->m_next;
6710         }
6711 }
6712
6713
6714 /****************************************************************************/
6715 /* Prints out the mbufs in the RX mbuf chain.                               */
6716 /*                                                                          */
6717 /* Returns:                                                                 */
6718 /*   Nothing.                                                               */
6719 /****************************************************************************/
6720 static void
6721 bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
6722 {
6723         struct ifnet *ifp = &sc->arpcom.ac_if;
6724         int i;
6725
6726         if_printf(ifp,
6727         "----------------------------"
6728         "  rx mbuf data  "
6729         "----------------------------\n");
6730
6731         for (i = 0; i < count; i++) {
6732                 if_printf(ifp, "rxmbuf[0x%04X]\n", chain_prod);
6733                 bce_dump_mbuf(sc, sc->rx_mbuf_ptr[chain_prod]);
6734                 chain_prod = RX_CHAIN_IDX(sc, NEXT_RX_BD(chain_prod));
6735         }
6736
6737         if_printf(ifp,
6738         "----------------------------"
6739         "----------------"
6740         "----------------------------\n");
6741 }
6742
6743
6744 /****************************************************************************/
6745 /* Prints out a tx_bd structure.                                            */
6746 /*                                                                          */
6747 /* Returns:                                                                 */
6748 /*   Nothing.                                                               */
6749 /****************************************************************************/
6750 static void
6751 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
6752 {
6753         struct ifnet *ifp = &sc->arpcom.ac_if;
6754
6755         if (idx > MAX_TX_BD(sc)) {
6756                 /* Index out of range. */
6757                 if_printf(ifp, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6758         } else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) {
6759                 /* TX Chain page pointer. */
6760                 if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6761                           "chain page pointer\n",
6762                           idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
6763         } else {
6764                 /* Normal tx_bd entry. */
6765                 if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6766                           "nbytes = 0x%08X, "
6767                           "vlan tag= 0x%04X, flags = 0x%04X (",
6768                           idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6769                           txbd->tx_bd_mss_nbytes,
6770                           txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
6771
6772                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT)
6773                         kprintf(" CONN_FAULT");
6774
6775                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM)
6776                         kprintf(" TCP_UDP_CKSUM");
6777
6778                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM)
6779                         kprintf(" IP_CKSUM");
6780
6781                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG)
6782                         kprintf("  VLAN");
6783
6784                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW)
6785                         kprintf(" COAL_NOW");
6786
6787                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC)
6788                         kprintf(" DONT_GEN_CRC");
6789
6790                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START)
6791                         kprintf(" START");
6792
6793                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END)
6794                         kprintf(" END");
6795
6796                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO)
6797                         kprintf(" LSO");
6798
6799                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD)
6800                         kprintf(" OPTION_WORD");
6801
6802                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS)
6803                         kprintf(" FLAGS");
6804
6805                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP)
6806                         kprintf(" SNAP");
6807
6808                 kprintf(" )\n");
6809         }
6810 }
6811
6812
6813 /****************************************************************************/
6814 /* Prints out a rx_bd structure.                                            */
6815 /*                                                                          */
6816 /* Returns:                                                                 */
6817 /*   Nothing.                                                               */
6818 /****************************************************************************/
6819 static void
6820 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
6821 {
6822         struct ifnet *ifp = &sc->arpcom.ac_if;
6823
6824         if (idx > MAX_RX_BD(sc)) {
6825                 /* Index out of range. */
6826                 if_printf(ifp, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6827         } else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) {
6828                 /* TX Chain page pointer. */
6829                 if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6830                           "chain page pointer\n",
6831                           idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
6832         } else {
6833                 /* Normal tx_bd entry. */
6834                 if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6835                           "nbytes = 0x%08X, flags = 0x%08X\n",
6836                           idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6837                           rxbd->rx_bd_len, rxbd->rx_bd_flags);
6838         }
6839 }
6840
6841
6842 /****************************************************************************/
6843 /* Prints out a l2_fhdr structure.                                          */
6844 /*                                                                          */
6845 /* Returns:                                                                 */
6846 /*   Nothing.                                                               */
6847 /****************************************************************************/
6848 static void
6849 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6850 {
6851         if_printf(&sc->arpcom.ac_if, "l2_fhdr[0x%04X]: status = 0x%08X, "
6852                   "pkt_len = 0x%04X, vlan = 0x%04x, "
6853                   "ip_xsum = 0x%04X, tcp_udp_xsum = 0x%04X\n",
6854                   idx, l2fhdr->l2_fhdr_status,
6855                   l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
6856                   l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
6857 }
6858
6859
6860 /****************************************************************************/
6861 /* Prints out the tx chain.                                                 */
6862 /*                                                                          */
6863 /* Returns:                                                                 */
6864 /*   Nothing.                                                               */
6865 /****************************************************************************/
6866 static void
6867 bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count)
6868 {
6869         struct ifnet *ifp = &sc->arpcom.ac_if;
6870         int i;
6871
6872         /* First some info about the tx_bd chain structure. */
6873         if_printf(ifp,
6874         "----------------------------"
6875         "  tx_bd  chain  "
6876         "----------------------------\n");
6877
6878         if_printf(ifp, "page size      = 0x%08X, "
6879                   "tx chain pages        = 0x%08X\n",
6880                   (uint32_t)BCM_PAGE_SIZE, (uint32_t)sc->tx_pages);
6881
6882         if_printf(ifp, "tx_bd per page = 0x%08X, "
6883                   "usable tx_bd per page = 0x%08X\n",
6884                   (uint32_t)TOTAL_TX_BD_PER_PAGE,
6885                   (uint32_t)USABLE_TX_BD_PER_PAGE);
6886
6887         if_printf(ifp, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD(sc));
6888
6889         if_printf(ifp,
6890         "----------------------------"
6891         "  tx_bd data    "
6892         "----------------------------\n");
6893
6894         /* Now print out the tx_bd's themselves. */
6895         for (i = 0; i < count; i++) {
6896                 struct tx_bd *txbd;
6897
6898                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6899                 bce_dump_txbd(sc, tx_prod, txbd);
6900                 tx_prod = TX_CHAIN_IDX(sc, NEXT_TX_BD(tx_prod));
6901         }
6902
6903         if_printf(ifp,
6904         "----------------------------"
6905         "----------------"
6906         "----------------------------\n");
6907 }
6908
6909
6910 /****************************************************************************/
6911 /* Prints out the rx chain.                                                 */
6912 /*                                                                          */
6913 /* Returns:                                                                 */
6914 /*   Nothing.                                                               */
6915 /****************************************************************************/
6916 static void
6917 bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count)
6918 {
6919         struct ifnet *ifp = &sc->arpcom.ac_if;
6920         int i;
6921
6922         /* First some info about the tx_bd chain structure. */
6923         if_printf(ifp,
6924         "----------------------------"
6925         "  rx_bd  chain  "
6926         "----------------------------\n");
6927
6928         if_printf(ifp, "page size      = 0x%08X, "
6929                   "rx chain pages        = 0x%08X\n",
6930                   (uint32_t)BCM_PAGE_SIZE, (uint32_t)sc->rx_pages);
6931
6932         if_printf(ifp, "rx_bd per page = 0x%08X, "
6933                   "usable rx_bd per page = 0x%08X\n",
6934                   (uint32_t)TOTAL_RX_BD_PER_PAGE,
6935                   (uint32_t)USABLE_RX_BD_PER_PAGE);
6936
6937         if_printf(ifp, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD(sc));
6938
6939         if_printf(ifp,
6940         "----------------------------"
6941         "   rx_bd data   "
6942         "----------------------------\n");
6943
6944         /* Now print out the rx_bd's themselves. */
6945         for (i = 0; i < count; i++) {
6946                 struct rx_bd *rxbd;
6947
6948                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6949                 bce_dump_rxbd(sc, rx_prod, rxbd);
6950                 rx_prod = RX_CHAIN_IDX(sc, NEXT_RX_BD(rx_prod));
6951         }
6952
6953         if_printf(ifp,
6954         "----------------------------"
6955         "----------------"
6956         "----------------------------\n");
6957 }
6958
6959
6960 /****************************************************************************/
6961 /* Prints out the status block from host memory.                            */
6962 /*                                                                          */
6963 /* Returns:                                                                 */
6964 /*   Nothing.                                                               */
6965 /****************************************************************************/
6966 static void
6967 bce_dump_status_block(struct bce_softc *sc)
6968 {
6969         struct status_block *sblk = sc->status_block;
6970         struct ifnet *ifp = &sc->arpcom.ac_if;
6971
6972         if_printf(ifp,
6973         "----------------------------"
6974         "  Status Block  "
6975         "----------------------------\n");
6976
6977         if_printf(ifp, "    0x%08X - attn_bits\n", sblk->status_attn_bits);
6978
6979         if_printf(ifp, "    0x%08X - attn_bits_ack\n",
6980                   sblk->status_attn_bits_ack);
6981
6982         if_printf(ifp, "0x%04X(0x%04X) - rx_cons0\n",
6983             sblk->status_rx_quick_consumer_index0,
6984             (uint16_t)RX_CHAIN_IDX(sc, sblk->status_rx_quick_consumer_index0));
6985
6986         if_printf(ifp, "0x%04X(0x%04X) - tx_cons0\n",
6987             sblk->status_tx_quick_consumer_index0,
6988             (uint16_t)TX_CHAIN_IDX(sc, sblk->status_tx_quick_consumer_index0));
6989
6990         if_printf(ifp, "        0x%04X - status_idx\n", sblk->status_idx);
6991
6992         /* Theses indices are not used for normal L2 drivers. */
6993         if (sblk->status_rx_quick_consumer_index1) {
6994                 if_printf(ifp, "0x%04X(0x%04X) - rx_cons1\n",
6995                 sblk->status_rx_quick_consumer_index1,
6996                 (uint16_t)RX_CHAIN_IDX(sc,
6997                     sblk->status_rx_quick_consumer_index1));
6998         }
6999
7000         if (sblk->status_tx_quick_consumer_index1) {
7001                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons1\n",
7002                 sblk->status_tx_quick_consumer_index1,
7003                 (uint16_t)TX_CHAIN_IDX(sc,
7004                     sblk->status_tx_quick_consumer_index1));
7005         }
7006
7007         if (sblk->status_rx_quick_consumer_index2) {
7008                 if_printf(ifp, "0x%04X(0x%04X)- rx_cons2\n",
7009                 sblk->status_rx_quick_consumer_index2,
7010                 (uint16_t)RX_CHAIN_IDX(sc,
7011                     sblk->status_rx_quick_consumer_index2));
7012         }
7013
7014         if (sblk->status_tx_quick_consumer_index2) {
7015                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons2\n",
7016                 sblk->status_tx_quick_consumer_index2,
7017                 (uint16_t)TX_CHAIN_IDX(sc,
7018                     sblk->status_tx_quick_consumer_index2));
7019         }
7020
7021         if (sblk->status_rx_quick_consumer_index3) {
7022                 if_printf(ifp, "0x%04X(0x%04X) - rx_cons3\n",
7023                 sblk->status_rx_quick_consumer_index3,
7024                 (uint16_t)RX_CHAIN_IDX(sc,
7025                     sblk->status_rx_quick_consumer_index3));
7026         }
7027
7028         if (sblk->status_tx_quick_consumer_index3) {
7029                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons3\n",
7030                 sblk->status_tx_quick_consumer_index3,
7031                 (uint16_t)TX_CHAIN_IDX(sc,
7032                     sblk->status_tx_quick_consumer_index3));
7033         }
7034
7035         if (sblk->status_rx_quick_consumer_index4 ||
7036             sblk->status_rx_quick_consumer_index5) {
7037                 if_printf(ifp, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
7038                           sblk->status_rx_quick_consumer_index4,
7039                           sblk->status_rx_quick_consumer_index5);
7040         }
7041
7042         if (sblk->status_rx_quick_consumer_index6 ||
7043             sblk->status_rx_quick_consumer_index7) {
7044                 if_printf(ifp, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
7045                           sblk->status_rx_quick_consumer_index6,
7046                           sblk->status_rx_quick_consumer_index7);
7047         }
7048
7049         if (sblk->status_rx_quick_consumer_index8 ||
7050             sblk->status_rx_quick_consumer_index9) {
7051                 if_printf(ifp, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
7052                           sblk->status_rx_quick_consumer_index8,
7053                           sblk->status_rx_quick_consumer_index9);
7054         }
7055
7056         if (sblk->status_rx_quick_consumer_index10 ||
7057             sblk->status_rx_quick_consumer_index11) {
7058                 if_printf(ifp, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
7059                           sblk->status_rx_quick_consumer_index10,
7060                           sblk->status_rx_quick_consumer_index11);
7061         }
7062
7063         if (sblk->status_rx_quick_consumer_index12 ||
7064             sblk->status_rx_quick_consumer_index13) {
7065                 if_printf(ifp, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
7066                           sblk->status_rx_quick_consumer_index12,
7067                           sblk->status_rx_quick_consumer_index13);
7068         }
7069
7070         if (sblk->status_rx_quick_consumer_index14 ||
7071             sblk->status_rx_quick_consumer_index15) {
7072                 if_printf(ifp, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
7073                           sblk->status_rx_quick_consumer_index14,
7074                           sblk->status_rx_quick_consumer_index15);
7075         }
7076
7077         if (sblk->status_completion_producer_index ||
7078             sblk->status_cmd_consumer_index) {
7079                 if_printf(ifp, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
7080                           sblk->status_completion_producer_index,
7081                           sblk->status_cmd_consumer_index);
7082         }
7083
7084         if_printf(ifp,
7085         "----------------------------"
7086         "----------------"
7087         "----------------------------\n");
7088 }
7089
7090
7091 /****************************************************************************/
7092 /* Prints out the statistics block.                                         */
7093 /*                                                                          */
7094 /* Returns:                                                                 */
7095 /*   Nothing.                                                               */
7096 /****************************************************************************/
7097 static void
7098 bce_dump_stats_block(struct bce_softc *sc)
7099 {
7100         struct statistics_block *sblk = sc->stats_block;
7101         struct ifnet *ifp = &sc->arpcom.ac_if;
7102
7103         if_printf(ifp,
7104         "---------------"
7105         " Stats Block  (All Stats Not Shown Are 0) "
7106         "---------------\n");
7107
7108         if (sblk->stat_IfHCInOctets_hi || sblk->stat_IfHCInOctets_lo) {
7109                 if_printf(ifp, "0x%08X:%08X : IfHcInOctets\n",
7110                           sblk->stat_IfHCInOctets_hi,
7111                           sblk->stat_IfHCInOctets_lo);
7112         }
7113
7114         if (sblk->stat_IfHCInBadOctets_hi || sblk->stat_IfHCInBadOctets_lo) {
7115                 if_printf(ifp, "0x%08X:%08X : IfHcInBadOctets\n",
7116                           sblk->stat_IfHCInBadOctets_hi,
7117                           sblk->stat_IfHCInBadOctets_lo);
7118         }
7119
7120         if (sblk->stat_IfHCOutOctets_hi || sblk->stat_IfHCOutOctets_lo) {
7121                 if_printf(ifp, "0x%08X:%08X : IfHcOutOctets\n",
7122                           sblk->stat_IfHCOutOctets_hi,
7123                           sblk->stat_IfHCOutOctets_lo);
7124         }
7125
7126         if (sblk->stat_IfHCOutBadOctets_hi || sblk->stat_IfHCOutBadOctets_lo) {
7127                 if_printf(ifp, "0x%08X:%08X : IfHcOutBadOctets\n",
7128                           sblk->stat_IfHCOutBadOctets_hi,
7129                           sblk->stat_IfHCOutBadOctets_lo);
7130         }
7131
7132         if (sblk->stat_IfHCInUcastPkts_hi || sblk->stat_IfHCInUcastPkts_lo) {
7133                 if_printf(ifp, "0x%08X:%08X : IfHcInUcastPkts\n",
7134                           sblk->stat_IfHCInUcastPkts_hi,
7135                           sblk->stat_IfHCInUcastPkts_lo);
7136         }
7137
7138         if (sblk->stat_IfHCInBroadcastPkts_hi ||
7139             sblk->stat_IfHCInBroadcastPkts_lo) {
7140                 if_printf(ifp, "0x%08X:%08X : IfHcInBroadcastPkts\n",
7141                           sblk->stat_IfHCInBroadcastPkts_hi,
7142                           sblk->stat_IfHCInBroadcastPkts_lo);
7143         }
7144
7145         if (sblk->stat_IfHCInMulticastPkts_hi ||
7146             sblk->stat_IfHCInMulticastPkts_lo) {
7147                 if_printf(ifp, "0x%08X:%08X : IfHcInMulticastPkts\n",
7148                           sblk->stat_IfHCInMulticastPkts_hi,
7149                           sblk->stat_IfHCInMulticastPkts_lo);
7150         }
7151
7152         if (sblk->stat_IfHCOutUcastPkts_hi || sblk->stat_IfHCOutUcastPkts_lo) {
7153                 if_printf(ifp, "0x%08X:%08X : IfHcOutUcastPkts\n",
7154                           sblk->stat_IfHCOutUcastPkts_hi,
7155                           sblk->stat_IfHCOutUcastPkts_lo);
7156         }
7157
7158         if (sblk->stat_IfHCOutBroadcastPkts_hi ||
7159             sblk->stat_IfHCOutBroadcastPkts_lo) {
7160                 if_printf(ifp, "0x%08X:%08X : IfHcOutBroadcastPkts\n",
7161                           sblk->stat_IfHCOutBroadcastPkts_hi,
7162                           sblk->stat_IfHCOutBroadcastPkts_lo);
7163         }
7164
7165         if (sblk->stat_IfHCOutMulticastPkts_hi ||
7166             sblk->stat_IfHCOutMulticastPkts_lo) {
7167                 if_printf(ifp, "0x%08X:%08X : IfHcOutMulticastPkts\n",
7168                           sblk->stat_IfHCOutMulticastPkts_hi,
7169                           sblk->stat_IfHCOutMulticastPkts_lo);
7170         }
7171
7172         if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) {
7173                 if_printf(ifp, "         0x%08X : "
7174                 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 
7175                 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
7176         }
7177
7178         if (sblk->stat_Dot3StatsCarrierSenseErrors) {
7179                 if_printf(ifp, "         0x%08X : "
7180                           "Dot3StatsCarrierSenseErrors\n",
7181                           sblk->stat_Dot3StatsCarrierSenseErrors);
7182         }
7183
7184         if (sblk->stat_Dot3StatsFCSErrors) {
7185                 if_printf(ifp, "         0x%08X : Dot3StatsFCSErrors\n",
7186                           sblk->stat_Dot3StatsFCSErrors);
7187         }
7188
7189         if (sblk->stat_Dot3StatsAlignmentErrors) {
7190                 if_printf(ifp, "         0x%08X : Dot3StatsAlignmentErrors\n",
7191                           sblk->stat_Dot3StatsAlignmentErrors);
7192         }
7193
7194         if (sblk->stat_Dot3StatsSingleCollisionFrames) {
7195                 if_printf(ifp, "         0x%08X : "
7196                           "Dot3StatsSingleCollisionFrames\n",
7197                           sblk->stat_Dot3StatsSingleCollisionFrames);
7198         }
7199
7200         if (sblk->stat_Dot3StatsMultipleCollisionFrames) {
7201                 if_printf(ifp, "         0x%08X : "
7202                           "Dot3StatsMultipleCollisionFrames\n",
7203                           sblk->stat_Dot3StatsMultipleCollisionFrames);
7204         }
7205
7206         if (sblk->stat_Dot3StatsDeferredTransmissions) {
7207                 if_printf(ifp, "         0x%08X : "
7208                           "Dot3StatsDeferredTransmissions\n",
7209                           sblk->stat_Dot3StatsDeferredTransmissions);
7210         }
7211
7212         if (sblk->stat_Dot3StatsExcessiveCollisions) {
7213                 if_printf(ifp, "         0x%08X : "
7214                           "Dot3StatsExcessiveCollisions\n",
7215                           sblk->stat_Dot3StatsExcessiveCollisions);
7216         }
7217
7218         if (sblk->stat_Dot3StatsLateCollisions) {
7219                 if_printf(ifp, "         0x%08X : Dot3StatsLateCollisions\n",
7220                           sblk->stat_Dot3StatsLateCollisions);
7221         }
7222
7223         if (sblk->stat_EtherStatsCollisions) {
7224                 if_printf(ifp, "         0x%08X : EtherStatsCollisions\n",
7225                           sblk->stat_EtherStatsCollisions);
7226         }
7227
7228         if (sblk->stat_EtherStatsFragments)  {
7229                 if_printf(ifp, "         0x%08X : EtherStatsFragments\n",
7230                           sblk->stat_EtherStatsFragments);
7231         }
7232
7233         if (sblk->stat_EtherStatsJabbers) {
7234                 if_printf(ifp, "         0x%08X : EtherStatsJabbers\n",
7235                           sblk->stat_EtherStatsJabbers);
7236         }
7237
7238         if (sblk->stat_EtherStatsUndersizePkts) {
7239                 if_printf(ifp, "         0x%08X : EtherStatsUndersizePkts\n",
7240                           sblk->stat_EtherStatsUndersizePkts);
7241         }
7242
7243         if (sblk->stat_EtherStatsOverrsizePkts) {
7244                 if_printf(ifp, "         0x%08X : EtherStatsOverrsizePkts\n",
7245                           sblk->stat_EtherStatsOverrsizePkts);
7246         }
7247
7248         if (sblk->stat_EtherStatsPktsRx64Octets) {
7249                 if_printf(ifp, "         0x%08X : EtherStatsPktsRx64Octets\n",
7250                           sblk->stat_EtherStatsPktsRx64Octets);
7251         }
7252
7253         if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) {
7254                 if_printf(ifp, "         0x%08X : "
7255                           "EtherStatsPktsRx65Octetsto127Octets\n",
7256                           sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
7257         }
7258
7259         if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) {
7260                 if_printf(ifp, "         0x%08X : "
7261                           "EtherStatsPktsRx128Octetsto255Octets\n",
7262                           sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
7263         }
7264
7265         if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) {
7266                 if_printf(ifp, "         0x%08X : "
7267                           "EtherStatsPktsRx256Octetsto511Octets\n",
7268                           sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
7269         }
7270
7271         if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) {
7272                 if_printf(ifp, "         0x%08X : "
7273                           "EtherStatsPktsRx512Octetsto1023Octets\n",
7274                           sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
7275         }
7276
7277         if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) {
7278                 if_printf(ifp, "         0x%08X : "
7279                           "EtherStatsPktsRx1024Octetsto1522Octets\n",
7280                           sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
7281         }
7282
7283         if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) {
7284                 if_printf(ifp, "         0x%08X : "
7285                           "EtherStatsPktsRx1523Octetsto9022Octets\n",
7286                           sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
7287         }
7288
7289         if (sblk->stat_EtherStatsPktsTx64Octets) {
7290                 if_printf(ifp, "         0x%08X : EtherStatsPktsTx64Octets\n",
7291                           sblk->stat_EtherStatsPktsTx64Octets);
7292         }
7293
7294         if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) {
7295                 if_printf(ifp, "         0x%08X : "
7296                           "EtherStatsPktsTx65Octetsto127Octets\n",
7297                           sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
7298         }
7299
7300         if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) {
7301                 if_printf(ifp, "         0x%08X : "
7302                           "EtherStatsPktsTx128Octetsto255Octets\n",
7303                           sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
7304         }
7305
7306         if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) {
7307                 if_printf(ifp, "         0x%08X : "
7308                           "EtherStatsPktsTx256Octetsto511Octets\n",
7309                           sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
7310         }
7311
7312         if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) {
7313                 if_printf(ifp, "         0x%08X : "
7314                           "EtherStatsPktsTx512Octetsto1023Octets\n",
7315                           sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
7316         }
7317
7318         if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) {
7319                 if_printf(ifp, "         0x%08X : "
7320                           "EtherStatsPktsTx1024Octetsto1522Octets\n",
7321                           sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
7322         }
7323
7324         if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) {
7325                 if_printf(ifp, "         0x%08X : "
7326                           "EtherStatsPktsTx1523Octetsto9022Octets\n",
7327                           sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
7328         }
7329
7330         if (sblk->stat_XonPauseFramesReceived) {
7331                 if_printf(ifp, "         0x%08X : XonPauseFramesReceived\n",
7332                           sblk->stat_XonPauseFramesReceived);
7333         }
7334
7335         if (sblk->stat_XoffPauseFramesReceived) {
7336                 if_printf(ifp, "          0x%08X : XoffPauseFramesReceived\n",
7337                           sblk->stat_XoffPauseFramesReceived);
7338         }
7339
7340         if (sblk->stat_OutXonSent) {
7341                 if_printf(ifp, "         0x%08X : OutXoffSent\n",
7342                           sblk->stat_OutXonSent);
7343         }
7344
7345         if (sblk->stat_OutXoffSent) {
7346                 if_printf(ifp, "         0x%08X : OutXoffSent\n",
7347                           sblk->stat_OutXoffSent);
7348         }
7349
7350         if (sblk->stat_FlowControlDone) {
7351                 if_printf(ifp, "         0x%08X : FlowControlDone\n",
7352                           sblk->stat_FlowControlDone);
7353         }
7354
7355         if (sblk->stat_MacControlFramesReceived) {
7356                 if_printf(ifp, "         0x%08X : MacControlFramesReceived\n",
7357                           sblk->stat_MacControlFramesReceived);
7358         }
7359
7360         if (sblk->stat_XoffStateEntered) {
7361                 if_printf(ifp, "         0x%08X : XoffStateEntered\n",
7362                           sblk->stat_XoffStateEntered);
7363         }
7364
7365         if (sblk->stat_IfInFramesL2FilterDiscards) {
7366                 if_printf(ifp, "         0x%08X : IfInFramesL2FilterDiscards\n",                          sblk->stat_IfInFramesL2FilterDiscards);
7367         }
7368
7369         if (sblk->stat_IfInRuleCheckerDiscards) {
7370                 if_printf(ifp, "         0x%08X : IfInRuleCheckerDiscards\n",
7371                           sblk->stat_IfInRuleCheckerDiscards);
7372         }
7373
7374         if (sblk->stat_IfInFTQDiscards) {
7375                 if_printf(ifp, "         0x%08X : IfInFTQDiscards\n",
7376                           sblk->stat_IfInFTQDiscards);
7377         }
7378
7379         if (sblk->stat_IfInMBUFDiscards) {
7380                 if_printf(ifp, "         0x%08X : IfInMBUFDiscards\n",
7381                           sblk->stat_IfInMBUFDiscards);
7382         }
7383
7384         if (sblk->stat_IfInRuleCheckerP4Hit) {
7385                 if_printf(ifp, "         0x%08X : IfInRuleCheckerP4Hit\n",
7386                           sblk->stat_IfInRuleCheckerP4Hit);
7387         }
7388
7389         if (sblk->stat_CatchupInRuleCheckerDiscards) {
7390                 if_printf(ifp, "         0x%08X : "
7391                           "CatchupInRuleCheckerDiscards\n",
7392                           sblk->stat_CatchupInRuleCheckerDiscards);
7393         }
7394
7395         if (sblk->stat_CatchupInFTQDiscards) {
7396                 if_printf(ifp, "         0x%08X : CatchupInFTQDiscards\n",
7397                           sblk->stat_CatchupInFTQDiscards);
7398         }
7399
7400         if (sblk->stat_CatchupInMBUFDiscards) {
7401                 if_printf(ifp, "         0x%08X : CatchupInMBUFDiscards\n",
7402                           sblk->stat_CatchupInMBUFDiscards);
7403         }
7404
7405         if (sblk->stat_CatchupInRuleCheckerP4Hit) {
7406                 if_printf(ifp, "         0x%08X : CatchupInRuleCheckerP4Hit\n",
7407                           sblk->stat_CatchupInRuleCheckerP4Hit);
7408         }
7409
7410         if_printf(ifp,
7411         "----------------------------"
7412         "----------------"
7413         "----------------------------\n");
7414 }
7415
7416
7417 /****************************************************************************/
7418 /* Prints out a summary of the driver state.                                */
7419 /*                                                                          */
7420 /* Returns:                                                                 */
7421 /*   Nothing.                                                               */
7422 /****************************************************************************/
7423 static void
7424 bce_dump_driver_state(struct bce_softc *sc)
7425 {
7426         struct ifnet *ifp = &sc->arpcom.ac_if;
7427         uint32_t val_hi, val_lo;
7428
7429         if_printf(ifp,
7430         "-----------------------------"
7431         " Driver State "
7432         "-----------------------------\n");
7433
7434         val_hi = BCE_ADDR_HI(sc);
7435         val_lo = BCE_ADDR_LO(sc);
7436         if_printf(ifp, "0x%08X:%08X - (sc) driver softc structure "
7437                   "virtual address\n", val_hi, val_lo);
7438
7439         val_hi = BCE_ADDR_HI(sc->status_block);
7440         val_lo = BCE_ADDR_LO(sc->status_block);
7441         if_printf(ifp, "0x%08X:%08X - (sc->status_block) status block "
7442                   "virtual address\n", val_hi, val_lo);
7443
7444         val_hi = BCE_ADDR_HI(sc->stats_block);
7445         val_lo = BCE_ADDR_LO(sc->stats_block);
7446         if_printf(ifp, "0x%08X:%08X - (sc->stats_block) statistics block "
7447                   "virtual address\n", val_hi, val_lo);
7448
7449         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
7450         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
7451         if_printf(ifp, "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
7452                   "virtual address\n", val_hi, val_lo);
7453
7454         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
7455         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
7456         if_printf(ifp, "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
7457                   "virtual address\n", val_hi, val_lo);
7458
7459         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
7460         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
7461         if_printf(ifp, "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
7462                   "virtual address\n", val_hi, val_lo);
7463
7464         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
7465         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
7466         if_printf(ifp, "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
7467                   "virtual address\n", val_hi, val_lo);
7468
7469         if_printf(ifp, "         0x%08X - (sc->interrupts_generated) "
7470                   "h/w intrs\n", sc->interrupts_generated);
7471
7472         if_printf(ifp, "         0x%08X - (sc->rx_interrupts) "
7473                   "rx interrupts handled\n", sc->rx_interrupts);
7474
7475         if_printf(ifp, "         0x%08X - (sc->tx_interrupts) "
7476                   "tx interrupts handled\n", sc->tx_interrupts);
7477
7478         if_printf(ifp, "         0x%08X - (sc->last_status_idx) "
7479                   "status block index\n", sc->last_status_idx);
7480
7481         if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_prod) "
7482                   "tx producer index\n",
7483                   sc->tx_prod, (uint16_t)TX_CHAIN_IDX(sc, sc->tx_prod));
7484
7485         if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_cons) "
7486                   "tx consumer index\n",
7487                   sc->tx_cons, (uint16_t)TX_CHAIN_IDX(sc, sc->tx_cons));
7488
7489         if_printf(ifp, "         0x%08X - (sc->tx_prod_bseq) "
7490                   "tx producer bseq index\n", sc->tx_prod_bseq);
7491
7492         if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_prod) "
7493                   "rx producer index\n",
7494                   sc->rx_prod, (uint16_t)RX_CHAIN_IDX(sc, sc->rx_prod));
7495
7496         if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_cons) "
7497                   "rx consumer index\n",
7498                   sc->rx_cons, (uint16_t)RX_CHAIN_IDX(sc, sc->rx_cons));
7499
7500         if_printf(ifp, "         0x%08X - (sc->rx_prod_bseq) "
7501                   "rx producer bseq index\n", sc->rx_prod_bseq);
7502
7503         if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7504                   "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7505
7506         if_printf(ifp, "         0x%08X - (sc->free_rx_bd) "
7507                   "free rx_bd's\n", sc->free_rx_bd);
7508
7509         if_printf(ifp, "0x%08X/%08X - (sc->rx_low_watermark) rx "
7510                   "low watermark\n", sc->rx_low_watermark, sc->max_rx_bd);
7511
7512         if_printf(ifp, "         0x%08X - (sc->txmbuf_alloc) "
7513                   "tx mbufs allocated\n", sc->tx_mbuf_alloc);
7514
7515         if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7516                   "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7517
7518         if_printf(ifp, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
7519                   sc->used_tx_bd);
7520
7521         if_printf(ifp, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
7522                   sc->tx_hi_watermark, sc->max_tx_bd);
7523
7524         if_printf(ifp, "         0x%08X - (sc->mbuf_alloc_failed) "
7525                   "failed mbuf alloc\n", sc->mbuf_alloc_failed);
7526
7527         if_printf(ifp,
7528         "----------------------------"
7529         "----------------"
7530         "----------------------------\n");
7531 }
7532
7533
7534 /****************************************************************************/
7535 /* Prints out the hardware state through a summary of important registers,  */
7536 /* followed by a complete register dump.                                    */
7537 /*                                                                          */
7538 /* Returns:                                                                 */
7539 /*   Nothing.                                                               */
7540 /****************************************************************************/
7541 static void
7542 bce_dump_hw_state(struct bce_softc *sc)
7543 {
7544         struct ifnet *ifp = &sc->arpcom.ac_if;
7545         uint32_t val1;
7546         int i;
7547
7548         if_printf(ifp,
7549         "----------------------------"
7550         " Hardware State "
7551         "----------------------------\n");
7552
7553         if_printf(ifp, "%s - bootcode version\n", sc->bce_bc_ver);
7554
7555         val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
7556         if_printf(ifp, "0x%08X - (0x%06X) misc_enable_status_bits\n",
7557                   val1, BCE_MISC_ENABLE_STATUS_BITS);
7558
7559         val1 = REG_RD(sc, BCE_DMA_STATUS);
7560         if_printf(ifp, "0x%08X - (0x%04X) dma_status\n", val1, BCE_DMA_STATUS);
7561
7562         val1 = REG_RD(sc, BCE_CTX_STATUS);
7563         if_printf(ifp, "0x%08X - (0x%04X) ctx_status\n", val1, BCE_CTX_STATUS);
7564
7565         val1 = REG_RD(sc, BCE_EMAC_STATUS);
7566         if_printf(ifp, "0x%08X - (0x%04X) emac_status\n",
7567                   val1, BCE_EMAC_STATUS);
7568
7569         val1 = REG_RD(sc, BCE_RPM_STATUS);
7570         if_printf(ifp, "0x%08X - (0x%04X) rpm_status\n", val1, BCE_RPM_STATUS);
7571
7572         val1 = REG_RD(sc, BCE_TBDR_STATUS);
7573         if_printf(ifp, "0x%08X - (0x%04X) tbdr_status\n",
7574                   val1, BCE_TBDR_STATUS);
7575
7576         val1 = REG_RD(sc, BCE_TDMA_STATUS);
7577         if_printf(ifp, "0x%08X - (0x%04X) tdma_status\n",
7578                   val1, BCE_TDMA_STATUS);
7579
7580         val1 = REG_RD(sc, BCE_HC_STATUS);
7581         if_printf(ifp, "0x%08X - (0x%06X) hc_status\n", val1, BCE_HC_STATUS);
7582
7583         val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7584         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7585                   val1, BCE_TXP_CPU_STATE);
7586
7587         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7588         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7589                   val1, BCE_TPAT_CPU_STATE);
7590
7591         val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7592         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7593                   val1, BCE_RXP_CPU_STATE);
7594
7595         val1 = REG_RD_IND(sc, BCE_COM_CPU_STATE);
7596         if_printf(ifp, "0x%08X - (0x%06X) com_cpu_state\n",
7597                   val1, BCE_COM_CPU_STATE);
7598
7599         val1 = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
7600         if_printf(ifp, "0x%08X - (0x%06X) mcp_cpu_state\n",
7601                   val1, BCE_MCP_CPU_STATE);
7602
7603         val1 = REG_RD_IND(sc, BCE_CP_CPU_STATE);
7604         if_printf(ifp, "0x%08X - (0x%06X) cp_cpu_state\n",
7605                   val1, BCE_CP_CPU_STATE);
7606
7607         if_printf(ifp,
7608         "----------------------------"
7609         "----------------"
7610         "----------------------------\n");
7611
7612         if_printf(ifp,
7613         "----------------------------"
7614         " Register  Dump "
7615         "----------------------------\n");
7616
7617         for (i = 0x400; i < 0x8000; i += 0x10) {
7618                 if_printf(ifp, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7619                           REG_RD(sc, i),
7620                           REG_RD(sc, i + 0x4),
7621                           REG_RD(sc, i + 0x8),
7622                           REG_RD(sc, i + 0xc));
7623         }
7624
7625         if_printf(ifp,
7626         "----------------------------"
7627         "----------------"
7628         "----------------------------\n");
7629 }
7630
7631
7632 /****************************************************************************/
7633 /* Prints out the TXP state.                                                */
7634 /*                                                                          */
7635 /* Returns:                                                                 */
7636 /*   Nothing.                                                               */
7637 /****************************************************************************/
7638 static void
7639 bce_dump_txp_state(struct bce_softc *sc)
7640 {
7641         struct ifnet *ifp = &sc->arpcom.ac_if;
7642         uint32_t val1;
7643         int i;
7644
7645         if_printf(ifp,
7646         "----------------------------"
7647         "   TXP  State   "
7648         "----------------------------\n");
7649
7650         val1 = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
7651         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_mode\n",
7652                   val1, BCE_TXP_CPU_MODE);
7653
7654         val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7655         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7656                   val1, BCE_TXP_CPU_STATE);
7657
7658         val1 = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
7659         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_event_mask\n",
7660                   val1, BCE_TXP_CPU_EVENT_MASK);
7661
7662         if_printf(ifp,
7663         "----------------------------"
7664         " Register  Dump "
7665         "----------------------------\n");
7666
7667         for (i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
7668                 /* Skip the big blank spaces */
7669                 if (i < 0x454000 && i > 0x5ffff) {
7670                         if_printf(ifp, "0x%04X: "
7671                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7672                                   REG_RD_IND(sc, i),
7673                                   REG_RD_IND(sc, i + 0x4),
7674                                   REG_RD_IND(sc, i + 0x8),
7675                                   REG_RD_IND(sc, i + 0xc));
7676                 }
7677         }
7678
7679         if_printf(ifp,
7680         "----------------------------"
7681         "----------------"
7682         "----------------------------\n");
7683 }
7684
7685
7686 /****************************************************************************/
7687 /* Prints out the RXP state.                                                */
7688 /*                                                                          */
7689 /* Returns:                                                                 */
7690 /*   Nothing.                                                               */
7691 /****************************************************************************/
7692 static void
7693 bce_dump_rxp_state(struct bce_softc *sc)
7694 {
7695         struct ifnet *ifp = &sc->arpcom.ac_if;
7696         uint32_t val1;
7697         int i;
7698
7699         if_printf(ifp,
7700         "----------------------------"
7701         "   RXP  State   "
7702         "----------------------------\n");
7703
7704         val1 = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
7705         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_mode\n",
7706                   val1, BCE_RXP_CPU_MODE);
7707
7708         val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7709         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7710                   val1, BCE_RXP_CPU_STATE);
7711
7712         val1 = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
7713         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_event_mask\n",
7714                   val1, BCE_RXP_CPU_EVENT_MASK);
7715
7716         if_printf(ifp,
7717         "----------------------------"
7718         " Register  Dump "
7719         "----------------------------\n");
7720
7721         for (i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
7722                 /* Skip the big blank sapces */
7723                 if (i < 0xc5400 || i > 0xdffff) {
7724                         if_printf(ifp, "0x%04X: "
7725                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7726                                   REG_RD_IND(sc, i),
7727                                   REG_RD_IND(sc, i + 0x4),
7728                                   REG_RD_IND(sc, i + 0x8),
7729                                   REG_RD_IND(sc, i + 0xc));
7730                 }
7731         }
7732
7733         if_printf(ifp,
7734         "----------------------------"
7735         "----------------"
7736         "----------------------------\n");
7737 }
7738
7739
7740 /****************************************************************************/
7741 /* Prints out the TPAT state.                                               */
7742 /*                                                                          */
7743 /* Returns:                                                                 */
7744 /*   Nothing.                                                               */
7745 /****************************************************************************/
7746 static void
7747 bce_dump_tpat_state(struct bce_softc *sc)
7748 {
7749         struct ifnet *ifp = &sc->arpcom.ac_if;
7750         uint32_t val1;
7751         int i;
7752
7753         if_printf(ifp,
7754         "----------------------------"
7755         "   TPAT State   "
7756         "----------------------------\n");
7757
7758         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
7759         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_mode\n",
7760                   val1, BCE_TPAT_CPU_MODE);
7761
7762         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7763         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7764                   val1, BCE_TPAT_CPU_STATE);
7765
7766         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
7767         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_event_mask\n",
7768                   val1, BCE_TPAT_CPU_EVENT_MASK);
7769
7770         if_printf(ifp,
7771         "----------------------------"
7772         " Register  Dump "
7773         "----------------------------\n");
7774
7775         for (i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
7776                 /* Skip the big blank spaces */
7777                 if (i < 0x854000 && i > 0x9ffff) {
7778                         if_printf(ifp, "0x%04X: "
7779                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7780                                   REG_RD_IND(sc, i),
7781                                   REG_RD_IND(sc, i + 0x4),
7782                                   REG_RD_IND(sc, i + 0x8),
7783                                   REG_RD_IND(sc, i + 0xc));
7784                 }
7785         }
7786
7787         if_printf(ifp,
7788         "----------------------------"
7789         "----------------"
7790         "----------------------------\n");
7791 }
7792
7793
7794 /****************************************************************************/
7795 /* Prints out the driver state and then enters the debugger.                */
7796 /*                                                                          */
7797 /* Returns:                                                                 */
7798 /*   Nothing.                                                               */
7799 /****************************************************************************/
7800 static void
7801 bce_breakpoint(struct bce_softc *sc)
7802 {
7803 #if 0
7804         bce_freeze_controller(sc);
7805 #endif
7806
7807         bce_dump_driver_state(sc);
7808         bce_dump_status_block(sc);
7809         bce_dump_tx_chain(sc, 0, TOTAL_TX_BD(sc));
7810         bce_dump_hw_state(sc);
7811         bce_dump_txp_state(sc);
7812
7813 #if 0
7814         bce_unfreeze_controller(sc);
7815 #endif
7816
7817         /* Call the debugger. */
7818         breakpoint();
7819 }
7820
7821 #endif  /* BCE_DEBUG */
7822
7823 static int
7824 bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS)
7825 {
7826         struct bce_softc *sc = arg1;
7827
7828         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7829                         &sc->bce_tx_quick_cons_trip_int,
7830                         BCE_COALMASK_TX_BDS_INT);
7831 }
7832
7833 static int
7834 bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS)
7835 {
7836         struct bce_softc *sc = arg1;
7837
7838         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7839                         &sc->bce_tx_quick_cons_trip,
7840                         BCE_COALMASK_TX_BDS);
7841 }
7842
7843 static int
7844 bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS)
7845 {
7846         struct bce_softc *sc = arg1;
7847
7848         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7849                         &sc->bce_tx_ticks_int,
7850                         BCE_COALMASK_TX_TICKS_INT);
7851 }
7852
7853 static int
7854 bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS)
7855 {
7856         struct bce_softc *sc = arg1;
7857
7858         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7859                         &sc->bce_tx_ticks,
7860                         BCE_COALMASK_TX_TICKS);
7861 }
7862
7863 static int
7864 bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS)
7865 {
7866         struct bce_softc *sc = arg1;
7867
7868         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7869                         &sc->bce_rx_quick_cons_trip_int,
7870                         BCE_COALMASK_RX_BDS_INT);
7871 }
7872
7873 static int
7874 bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS)
7875 {
7876         struct bce_softc *sc = arg1;
7877
7878         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7879                         &sc->bce_rx_quick_cons_trip,
7880                         BCE_COALMASK_RX_BDS);
7881 }
7882
7883 static int
7884 bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS)
7885 {
7886         struct bce_softc *sc = arg1;
7887
7888         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7889                         &sc->bce_rx_ticks_int,
7890                         BCE_COALMASK_RX_TICKS_INT);
7891 }
7892
7893 static int
7894 bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS)
7895 {
7896         struct bce_softc *sc = arg1;
7897
7898         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7899                         &sc->bce_rx_ticks,
7900                         BCE_COALMASK_RX_TICKS);
7901 }
7902
7903 static int
7904 bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal,
7905                        uint32_t coalchg_mask)
7906 {
7907         struct bce_softc *sc = arg1;
7908         struct ifnet *ifp = &sc->arpcom.ac_if;
7909         int error = 0, v;
7910
7911         lwkt_serialize_enter(ifp->if_serializer);
7912
7913         v = *coal;
7914         error = sysctl_handle_int(oidp, &v, 0, req);
7915         if (!error && req->newptr != NULL) {
7916                 if (v < 0) {
7917                         error = EINVAL;
7918                 } else {
7919                         *coal = v;
7920                         sc->bce_coalchg_mask |= coalchg_mask;
7921                 }
7922         }
7923
7924         lwkt_serialize_exit(ifp->if_serializer);
7925         return error;
7926 }
7927
7928 static void
7929 bce_coal_change(struct bce_softc *sc)
7930 {
7931         struct ifnet *ifp = &sc->arpcom.ac_if;
7932
7933         ASSERT_SERIALIZED(ifp->if_serializer);
7934
7935         if ((ifp->if_flags & IFF_RUNNING) == 0) {
7936                 sc->bce_coalchg_mask = 0;
7937                 return;
7938         }
7939
7940         if (sc->bce_coalchg_mask &
7941             (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) {
7942                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
7943                        (sc->bce_tx_quick_cons_trip_int << 16) |
7944                        sc->bce_tx_quick_cons_trip);
7945                 if (bootverbose) {
7946                         if_printf(ifp, "tx_bds %u, tx_bds_int %u\n",
7947                                   sc->bce_tx_quick_cons_trip,
7948                                   sc->bce_tx_quick_cons_trip_int);
7949                 }
7950         }
7951
7952         if (sc->bce_coalchg_mask &
7953             (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) {
7954                 REG_WR(sc, BCE_HC_TX_TICKS,
7955                        (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
7956                 if (bootverbose) {
7957                         if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n",
7958                                   sc->bce_tx_ticks, sc->bce_tx_ticks_int);
7959                 }
7960         }
7961
7962         if (sc->bce_coalchg_mask &
7963             (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) {
7964                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
7965                        (sc->bce_rx_quick_cons_trip_int << 16) |
7966                        sc->bce_rx_quick_cons_trip);
7967                 if (bootverbose) {
7968                         if_printf(ifp, "rx_bds %u, rx_bds_int %u\n",
7969                                   sc->bce_rx_quick_cons_trip,
7970                                   sc->bce_rx_quick_cons_trip_int);
7971                 }
7972         }
7973
7974         if (sc->bce_coalchg_mask &
7975             (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) {
7976                 REG_WR(sc, BCE_HC_RX_TICKS,
7977                        (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
7978                 if (bootverbose) {
7979                         if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n",
7980                                   sc->bce_rx_ticks, sc->bce_rx_ticks_int);
7981                 }
7982         }
7983
7984         sc->bce_coalchg_mask = 0;
7985 }
7986
7987 static int
7988 bce_tso_setup(struct bce_softc *sc, struct mbuf **mp,
7989     uint16_t *flags0, uint16_t *mss0)
7990 {
7991         struct mbuf *m;
7992         uint16_t flags;
7993         int thoff, iphlen, hoff;
7994
7995         m = *mp;
7996         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
7997
7998         hoff = m->m_pkthdr.csum_lhlen;
7999         iphlen = m->m_pkthdr.csum_iphlen;
8000         thoff = m->m_pkthdr.csum_thlen;
8001
8002         KASSERT(hoff >= sizeof(struct ether_header),
8003             ("invalid ether header len %d", hoff));
8004         KASSERT(iphlen >= sizeof(struct ip),
8005             ("invalid ip header len %d", iphlen));
8006         KASSERT(thoff >= sizeof(struct tcphdr),
8007             ("invalid tcp header len %d", thoff));
8008
8009         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
8010                 m = m_pullup(m, hoff + iphlen + thoff);
8011                 if (m == NULL) {
8012                         *mp = NULL;
8013                         return ENOBUFS;
8014                 }
8015                 *mp = m;
8016         }
8017
8018         /* Set the LSO flag in the TX BD */
8019         flags = TX_BD_FLAGS_SW_LSO;
8020
8021         /* Set the length of IP + TCP options (in 32 bit words) */
8022         flags |= (((iphlen + thoff -
8023             sizeof(struct ip) - sizeof(struct tcphdr)) >> 2) << 8);
8024
8025         *mss0 = htole16(m->m_pkthdr.tso_segsz);
8026         *flags0 = flags;
8027
8028         return 0;
8029 }