hammer2 - Stabilize new I/O infrastructure and work on bulkfree
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static int hammer2_indirect_optimize;   /* XXX SYSCTL */
68
69 static hammer2_chain_t *hammer2_chain_create_indirect(
70                 hammer2_trans_t *trans, hammer2_chain_t *parent,
71                 hammer2_key_t key, int keybits, int for_type, int *errorp);
72 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
73 static hammer2_chain_t *hammer2_combined_find(
74                 hammer2_chain_t *parent,
75                 hammer2_blockref_t *base, int count,
76                 int *cache_indexp, hammer2_key_t *key_nextp,
77                 hammer2_key_t key_beg, hammer2_key_t key_end,
78                 hammer2_blockref_t **bresp);
79
80 /*
81  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
82  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
83  * dbtree or to dbq.
84  *
85  * Chains in delete-duplicate sequences can always iterate through core_entry
86  * to locate the live version of the chain.
87  */
88 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
89
90 int
91 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
92 {
93         hammer2_key_t c1_beg;
94         hammer2_key_t c1_end;
95         hammer2_key_t c2_beg;
96         hammer2_key_t c2_end;
97
98         /*
99          * Compare chains.  Overlaps are not supposed to happen and catch
100          * any software issues early we count overlaps as a match.
101          */
102         c1_beg = chain1->bref.key;
103         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
104         c2_beg = chain2->bref.key;
105         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
106
107         if (c1_end < c2_beg)    /* fully to the left */
108                 return(-1);
109         if (c1_beg > c2_end)    /* fully to the right */
110                 return(1);
111         return(0);              /* overlap (must not cross edge boundary) */
112 }
113
114 static __inline
115 int
116 hammer2_isclusterable(hammer2_chain_t *chain)
117 {
118         if (hammer2_cluster_enable) {
119                 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
120                     chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
121                     chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
122                         return(1);
123                 }
124         }
125         return(0);
126 }
127
128 /*
129  * Make a chain visible to the flusher.  The flusher needs to be able to
130  * do flushes of a subdirectory chains or single files so it does a top-down
131  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
132  * or UPDATE chains and flushes back up the chain to the root.
133  */
134 void
135 hammer2_chain_setflush(hammer2_trans_t *trans, hammer2_chain_t *chain)
136 {
137         hammer2_chain_t *parent;
138
139         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
140                 spin_lock(&chain->core.cst.spin);
141                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
142                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
143                         if ((parent = chain->parent) == NULL)
144                                 break;
145                         spin_lock(&parent->core.cst.spin);
146                         spin_unlock(&chain->core.cst.spin);
147                         chain = parent;
148                 }
149                 spin_unlock(&chain->core.cst.spin);
150         }
151 }
152
153 /*
154  * Allocate a new disconnected chain element representing the specified
155  * bref.  chain->refs is set to 1 and the passed bref is copied to
156  * chain->bref.  chain->bytes is derived from the bref.
157  *
158  * chain->core is NOT allocated and the media data and bp pointers are left
159  * NULL.  The caller must call chain_core_alloc() to allocate or associate
160  * a core with the chain.
161  *
162  * chain->pmp inherits pmp unless the chain is an inode (other than the
163  * super-root inode).
164  *
165  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
166  */
167 hammer2_chain_t *
168 hammer2_chain_alloc(hammer2_mount_t *hmp, hammer2_pfsmount_t *pmp,
169                     hammer2_trans_t *trans, hammer2_blockref_t *bref)
170 {
171         hammer2_chain_t *chain;
172         u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
173
174         /*
175          * Construct the appropriate system structure.
176          */
177         switch(bref->type) {
178         case HAMMER2_BREF_TYPE_INODE:
179         case HAMMER2_BREF_TYPE_INDIRECT:
180         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
181         case HAMMER2_BREF_TYPE_DATA:
182         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
183                 /*
184                  * Chain's are really only associated with the hmp but we
185                  * maintain a pmp association for per-mount memory tracking
186                  * purposes.  The pmp can be NULL.
187                  */
188                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
189                 break;
190         case HAMMER2_BREF_TYPE_VOLUME:
191         case HAMMER2_BREF_TYPE_FREEMAP:
192                 chain = NULL;
193                 panic("hammer2_chain_alloc volume type illegal for op");
194         default:
195                 chain = NULL;
196                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
197                       bref->type);
198         }
199
200         /*
201          * Initialize the new chain structure.
202          */
203         chain->pmp = pmp;
204         chain->hmp = hmp;
205         chain->bref = *bref;
206         chain->bytes = bytes;
207         chain->refs = 1;
208         chain->flags = HAMMER2_CHAIN_ALLOCATED;
209
210         /*
211          * Set the PFS boundary flag if this chain represents a PFS root.
212          */
213         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
214                 chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
215
216         return (chain);
217 }
218
219 /*
220  * Associate an existing core with the chain or allocate a new core.
221  *
222  * The core is not locked.  No additional refs on the chain are made.
223  * (trans) must not be NULL if (core) is not NULL.
224  *
225  * When chains are delete-duplicated during flushes we insert nchain on
226  * the ownerq after ochain instead of at the end in order to give the
227  * drop code visibility in the correct order, otherwise drops can be missed.
228  */
229 void
230 hammer2_chain_core_alloc(hammer2_trans_t *trans, hammer2_chain_t *chain)
231 {
232         hammer2_chain_core_t *core = &chain->core;
233
234         /*
235          * Fresh core under nchain (no multi-homing of ochain's
236          * sub-tree).
237          */
238         RB_INIT(&core->rbtree); /* live chains */
239         ccms_cst_init(&core->cst, chain);
240 }
241
242 /*
243  * Add a reference to a chain element, preventing its destruction.
244  *
245  * (can be called with spinlock held)
246  */
247 void
248 hammer2_chain_ref(hammer2_chain_t *chain)
249 {
250         atomic_add_int(&chain->refs, 1);
251 }
252
253 /*
254  * Insert the chain in the core rbtree.
255  *
256  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
257  * chain is a special case used by the flush code that is placed on the
258  * unstaged deleted list to avoid confusing the live view.
259  */
260 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
261 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
262 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
263
264 static
265 int
266 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
267                      int flags, int generation)
268 {
269         hammer2_chain_t *xchain;
270         int error = 0;
271
272         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
273                 spin_lock(&parent->core.cst.spin);
274
275         /*
276          * Interlocked by spinlock, check for race
277          */
278         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
279             parent->core.generation != generation) {
280                 error = EAGAIN;
281                 goto failed;
282         }
283
284         /*
285          * Insert chain
286          */
287         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
288         KASSERT(xchain == NULL,
289                 ("hammer2_chain_insert: collision %p %p", chain, xchain));
290         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
291         chain->parent = parent;
292         ++parent->core.chain_count;
293         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
294
295         /*
296          * We have to keep track of the effective live-view blockref count
297          * so the create code knows when to push an indirect block.
298          */
299         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
300                 atomic_add_int(&parent->core.live_count, 1);
301 failed:
302         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
303                 spin_unlock(&parent->core.cst.spin);
304         return error;
305 }
306
307 /*
308  * Drop the caller's reference to the chain.  When the ref count drops to
309  * zero this function will try to disassociate the chain from its parent and
310  * deallocate it, then recursely drop the parent using the implied ref
311  * from the chain's chain->parent.
312  */
313 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
314
315 void
316 hammer2_chain_drop(hammer2_chain_t *chain)
317 {
318         u_int refs;
319         u_int need = 0;
320
321         if (hammer2_debug & 0x200000)
322                 Debugger("drop");
323
324         if (chain->flags & HAMMER2_CHAIN_UPDATE)
325                 ++need;
326         if (chain->flags & HAMMER2_CHAIN_MODIFIED)
327                 ++need;
328         KKASSERT(chain->refs > need);
329
330         while (chain) {
331                 refs = chain->refs;
332                 cpu_ccfence();
333                 KKASSERT(refs > 0);
334
335                 if (refs == 1) {
336                         chain = hammer2_chain_lastdrop(chain);
337                 } else {
338                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
339                                 break;
340                         /* retry the same chain */
341                 }
342         }
343 }
344
345 /*
346  * Safe handling of the 1->0 transition on chain.  Returns a chain for
347  * recursive drop or NULL, possibly returning the same chain if the atomic
348  * op fails.
349  *
350  * Whem two chains need to be recursively dropped we use the chain
351  * we would otherwise free to placehold the additional chain.  It's a bit
352  * convoluted but we can't just recurse without potentially blowing out
353  * the kernel stack.
354  *
355  * The chain cannot be freed if it has a non-empty core (children) or
356  * it is not at the head of ownerq.
357  *
358  * The cst spinlock is allowed nest child-to-parent (not parent-to-child).
359  */
360 static
361 hammer2_chain_t *
362 hammer2_chain_lastdrop(hammer2_chain_t *chain)
363 {
364         hammer2_pfsmount_t *pmp;
365         hammer2_mount_t *hmp;
366         hammer2_chain_t *parent;
367         hammer2_chain_t *rdrop;
368
369         /*
370          * Spinlock the core and check to see if it is empty.  If it is
371          * not empty we leave chain intact with refs == 0.  The elements
372          * in core->rbtree are associated with other chains contemporary
373          * with ours but not with our chain directly.
374          */
375         spin_lock(&chain->core.cst.spin);
376
377         /*
378          * We can't free non-stale chains with children until we are
379          * able to free the children because there might be a flush
380          * dependency.  Flushes of stale children (which should also
381          * have their deleted flag set) short-cut recursive flush
382          * dependencies and can be freed here.  Any flushes which run
383          * through stale children due to the flush synchronization
384          * point should have a FLUSH_* bit set in the chain and not
385          * reach lastdrop at this time.
386          *
387          * NOTE: We return (chain) on failure to retry.
388          */
389         if (chain->core.chain_count) {
390                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
391                         spin_unlock(&chain->core.cst.spin);
392                         chain = NULL;   /* success */
393                 } else {
394                         spin_unlock(&chain->core.cst.spin);
395                 }
396                 return(chain);
397         }
398         /* no chains left under us */
399
400         /*
401          * chain->core has no children left so no accessors can get to our
402          * chain from there.  Now we have to lock the parent core to interlock
403          * remaining possible accessors that might bump chain's refs before
404          * we can safely drop chain's refs with intent to free the chain.
405          */
406         hmp = chain->hmp;
407         pmp = chain->pmp;       /* can be NULL */
408         rdrop = NULL;
409
410         /*
411          * Spinlock the parent and try to drop the last ref on chain.
412          * On success remove chain from its parent, otherwise return NULL.
413          *
414          * (normal core locks are top-down recursive but we define core
415          *  spinlocks as bottom-up recursive, so this is safe).
416          */
417         if ((parent = chain->parent) != NULL) {
418                 spin_lock(&parent->core.cst.spin);
419                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
420                         /* 1->0 transition failed */
421                         spin_unlock(&parent->core.cst.spin);
422                         spin_unlock(&chain->core.cst.spin);
423                         return(chain);  /* retry */
424                 }
425
426                 /*
427                  * 1->0 transition successful, remove chain from its
428                  * above core.
429                  */
430                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
431                         RB_REMOVE(hammer2_chain_tree,
432                                   &parent->core.rbtree, chain);
433                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
434                         --parent->core.chain_count;
435                         chain->parent = NULL;
436                 }
437
438                 /*
439                  * If our chain was the last chain in the parent's core the
440                  * core is now empty and its parent might have to be
441                  * re-dropped if it has 0 refs.
442                  */
443                 if (parent->core.chain_count == 0) {
444                         rdrop = parent;
445                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0) {
446                                 rdrop = NULL;
447                         }
448                 }
449                 spin_unlock(&parent->core.cst.spin);
450                 parent = NULL;  /* safety */
451         }
452
453         /*
454          * Successful 1->0 transition and the chain can be destroyed now.
455          *
456          * We still have the core spinlock, and core's chain_count is 0.
457          * Any parent spinlock is gone.
458          */
459         spin_unlock(&chain->core.cst.spin);
460         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
461                  chain->core.chain_count == 0);
462         KKASSERT(chain->core.cst.count == 0);
463         KKASSERT(chain->core.cst.upgrade == 0);
464
465         /*
466          * All spin locks are gone, finish freeing stuff.
467          */
468         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
469                                   HAMMER2_CHAIN_MODIFIED)) == 0);
470         hammer2_chain_drop_data(chain, 1);
471
472         KKASSERT(chain->dio == NULL);
473
474         /*
475          * Once chain resources are gone we can use the now dead chain
476          * structure to placehold what might otherwise require a recursive
477          * drop, because we have potentially two things to drop and can only
478          * return one directly.
479          */
480         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
481                 chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
482                 chain->hmp = NULL;
483                 kfree(chain, hmp->mchain);
484         }
485
486         /*
487          * Possible chaining loop when parent re-drop needed.
488          */
489         return(rdrop);
490 }
491
492 /*
493  * On either last lock release or last drop
494  */
495 static void
496 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
497 {
498         /*hammer2_mount_t *hmp = chain->hmp;*/
499
500         switch(chain->bref.type) {
501         case HAMMER2_BREF_TYPE_VOLUME:
502         case HAMMER2_BREF_TYPE_FREEMAP:
503                 if (lastdrop)
504                         chain->data = NULL;
505                 break;
506         default:
507                 KKASSERT(chain->data == NULL);
508                 break;
509         }
510 }
511
512 /*
513  * Ref and lock a chain element, acquiring its data with I/O if necessary,
514  * and specify how you would like the data to be resolved.
515  *
516  * Returns 0 on success or an error code if the data could not be acquired.
517  * The chain element is locked on return regardless of whether an error
518  * occurred or not.
519  *
520  * The lock is allowed to recurse, multiple locking ops will aggregate
521  * the requested resolve types.  Once data is assigned it will not be
522  * removed until the last unlock.
523  *
524  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
525  *                         (typically used to avoid device/logical buffer
526  *                          aliasing for data)
527  *
528  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
529  *                         the INITIAL-create state (indirect blocks only).
530  *
531  *                         Do not resolve data elements for DATA chains.
532  *                         (typically used to avoid device/logical buffer
533  *                          aliasing for data)
534  *
535  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
536  *
537  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
538  *                         it will be locked exclusive.
539  *
540  * NOTE: Embedded elements (volume header, inodes) are always resolved
541  *       regardless.
542  *
543  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
544  *       element will instantiate and zero its buffer, and flush it on
545  *       release.
546  *
547  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
548  *       so as not to instantiate a device buffer, which could alias against
549  *       a logical file buffer.  However, if ALWAYS is specified the
550  *       device buffer will be instantiated anyway.
551  *
552  * WARNING! If data must be fetched a shared lock will temporarily be
553  *          upgraded to exclusive.  However, a deadlock can occur if
554  *          the caller owns more than one shared lock.
555  */
556 int
557 hammer2_chain_lock(hammer2_chain_t *chain, int how)
558 {
559         hammer2_mount_t *hmp;
560         hammer2_blockref_t *bref;
561         ccms_state_t ostate;
562         char *bdata;
563         int error;
564
565         /*
566          * Ref and lock the element.  Recursive locks are allowed.
567          */
568         if ((how & HAMMER2_RESOLVE_NOREF) == 0)
569                 hammer2_chain_ref(chain);
570         atomic_add_int(&chain->lockcnt, 1);
571
572         hmp = chain->hmp;
573         KKASSERT(hmp != NULL);
574
575         /*
576          * Get the appropriate lock.
577          */
578         if (how & HAMMER2_RESOLVE_SHARED)
579                 ccms_thread_lock(&chain->core.cst, CCMS_STATE_SHARED);
580         else
581                 ccms_thread_lock(&chain->core.cst, CCMS_STATE_EXCLUSIVE);
582
583         /*
584          * If we already have a valid data pointer no further action is
585          * necessary.
586          */
587         if (chain->data)
588                 return (0);
589
590         /*
591          * Do we have to resolve the data?
592          */
593         switch(how & HAMMER2_RESOLVE_MASK) {
594         case HAMMER2_RESOLVE_NEVER:
595                 return(0);
596         case HAMMER2_RESOLVE_MAYBE:
597                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
598                         return(0);
599                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
600                         return(0);
601 #if 0
602                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
603                         return(0);
604                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
605                         return(0);
606 #endif
607                 /* fall through */
608         case HAMMER2_RESOLVE_ALWAYS:
609                 break;
610         }
611
612         /*
613          * Upgrade to an exclusive lock so we can safely manipulate the
614          * buffer cache.  If another thread got to it before us we
615          * can just return.
616          */
617         ostate = ccms_thread_lock_upgrade(&chain->core.cst);
618         if (chain->data) {
619                 ccms_thread_lock_downgrade(&chain->core.cst, ostate);
620                 return (0);
621         }
622
623         /*
624          * We must resolve to a device buffer, either by issuing I/O or
625          * by creating a zero-fill element.  We do not mark the buffer
626          * dirty when creating a zero-fill element (the hammer2_chain_modify()
627          * API must still be used to do that).
628          *
629          * The device buffer is variable-sized in powers of 2 down
630          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
631          * chunk always contains buffers of the same size. (XXX)
632          *
633          * The minimum physical IO size may be larger than the variable
634          * block size.
635          */
636         bref = &chain->bref;
637
638         /*
639          * The getblk() optimization can only be used on newly created
640          * elements if the physical block size matches the request.
641          */
642         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
643                 error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
644                                         &chain->dio);
645         } else {
646                 error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
647                                          &chain->dio);
648                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
649         }
650
651         if (error) {
652                 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
653                         (intmax_t)bref->data_off, error);
654                 hammer2_io_bqrelse(&chain->dio);
655                 ccms_thread_lock_downgrade(&chain->core.cst, ostate);
656                 return (error);
657         }
658
659 #if 0
660         /*
661          * No need for this, always require that hammer2_chain_modify()
662          * be called before any modifying operations, which ensures that
663          * the underlying dio is dirty.
664          */
665         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) &&
666             !hammer2_io_isdirty(chain->dio)) {
667                 hammer2_io_setdirty(chain->dio);
668         }
669 #endif
670
671         /*
672          * Clear INITIAL.  In this case we used io_new() and the buffer has
673          * been zero'd and marked dirty.
674          */
675         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
676         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
677                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
678                 chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
679         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
680                 /*
681                  * check data not currently synchronized due to
682                  * modification.  XXX assumes data stays in the buffer
683                  * cache, which might not be true (need biodep on flush
684                  * to calculate crc?  or simple crc?).
685                  */
686         } else {
687                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
688                         kprintf("chain %016jx.%02x meth=%02x CHECK FAIL %08x (flags=%08x)\n",
689
690                                 chain->bref.data_off,
691                                 chain->bref.type,
692                                 chain->bref.methods,
693                                 hammer2_icrc32(bdata, chain->bytes),
694                                 chain->flags);
695                 }
696         }
697
698         /*
699          * Setup the data pointer, either pointing it to an embedded data
700          * structure and copying the data from the buffer, or pointing it
701          * into the buffer.
702          *
703          * The buffer is not retained when copying to an embedded data
704          * structure in order to avoid potential deadlocks or recursions
705          * on the same physical buffer.
706          */
707         switch (bref->type) {
708         case HAMMER2_BREF_TYPE_VOLUME:
709         case HAMMER2_BREF_TYPE_FREEMAP:
710                 /*
711                  * Copy data from bp to embedded buffer
712                  */
713                 panic("hammer2_chain_lock: called on unresolved volume header");
714                 break;
715         case HAMMER2_BREF_TYPE_INODE:
716         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
717         case HAMMER2_BREF_TYPE_INDIRECT:
718         case HAMMER2_BREF_TYPE_DATA:
719         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
720         default:
721                 /*
722                  * Point data at the device buffer and leave dio intact.
723                  */
724                 chain->data = (void *)bdata;
725                 break;
726         }
727         ccms_thread_lock_downgrade(&chain->core.cst, ostate);
728         return (0);
729 }
730
731 /*
732  * Unlock and deref a chain element.
733  *
734  * On the last lock release any non-embedded data (chain->dio) will be
735  * retired.
736  */
737 void
738 hammer2_chain_unlock(hammer2_chain_t *chain)
739 {
740         ccms_state_t ostate;
741         long *counterp;
742         u_int lockcnt;
743
744         /*
745          * The core->cst lock can be shared across several chains so we
746          * need to track the per-chain lockcnt separately.
747          *
748          * If multiple locks are present (or being attempted) on this
749          * particular chain we can just unlock, drop refs, and return.
750          *
751          * Otherwise fall-through on the 1->0 transition.
752          */
753         for (;;) {
754                 lockcnt = chain->lockcnt;
755                 KKASSERT(lockcnt > 0);
756                 cpu_ccfence();
757                 if (lockcnt > 1) {
758                         if (atomic_cmpset_int(&chain->lockcnt,
759                                               lockcnt, lockcnt - 1)) {
760                                 ccms_thread_unlock(&chain->core.cst);
761                                 hammer2_chain_drop(chain);
762                                 return;
763                         }
764                 } else {
765                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
766                                 break;
767                 }
768                 /* retry */
769         }
770
771         /*
772          * On the 1->0 transition we upgrade the core lock (if necessary)
773          * to exclusive for terminal processing.  If after upgrading we find
774          * that lockcnt is non-zero, another thread is racing us and will
775          * handle the unload for us later on, so just cleanup and return
776          * leaving the data/io intact
777          *
778          * Otherwise if lockcnt is still 0 it is possible for it to become
779          * non-zero and race, but since we hold the core->cst lock
780          * exclusively all that will happen is that the chain will be
781          * reloaded after we unload it.
782          */
783         ostate = ccms_thread_lock_upgrade(&chain->core.cst);
784         if (chain->lockcnt) {
785                 ccms_thread_unlock_upgraded(&chain->core.cst, ostate);
786                 hammer2_chain_drop(chain);
787                 return;
788         }
789
790         /*
791          * Shortcut the case if the data is embedded or not resolved.
792          *
793          * Do NOT NULL out chain->data (e.g. inode data), it might be
794          * dirty.
795          */
796         if (chain->dio == NULL) {
797                 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
798                         hammer2_chain_drop_data(chain, 0);
799                 ccms_thread_unlock_upgraded(&chain->core.cst, ostate);
800                 hammer2_chain_drop(chain);
801                 return;
802         }
803
804         /*
805          * Statistics
806          */
807         if (hammer2_io_isdirty(chain->dio) == 0) {
808                 ;
809         } else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
810                 switch(chain->bref.type) {
811                 case HAMMER2_BREF_TYPE_DATA:
812                         counterp = &hammer2_ioa_file_write;
813                         break;
814                 case HAMMER2_BREF_TYPE_INODE:
815                         counterp = &hammer2_ioa_meta_write;
816                         break;
817                 case HAMMER2_BREF_TYPE_INDIRECT:
818                         counterp = &hammer2_ioa_indr_write;
819                         break;
820                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
821                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
822                         counterp = &hammer2_ioa_fmap_write;
823                         break;
824                 default:
825                         counterp = &hammer2_ioa_volu_write;
826                         break;
827                 }
828                 *counterp += chain->bytes;
829         } else {
830                 switch(chain->bref.type) {
831                 case HAMMER2_BREF_TYPE_DATA:
832                         counterp = &hammer2_iod_file_write;
833                         break;
834                 case HAMMER2_BREF_TYPE_INODE:
835                         counterp = &hammer2_iod_meta_write;
836                         break;
837                 case HAMMER2_BREF_TYPE_INDIRECT:
838                         counterp = &hammer2_iod_indr_write;
839                         break;
840                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
841                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
842                         counterp = &hammer2_iod_fmap_write;
843                         break;
844                 default:
845                         counterp = &hammer2_iod_volu_write;
846                         break;
847                 }
848                 *counterp += chain->bytes;
849         }
850
851         /*
852          * Clean out the dio.
853          *
854          * If a device buffer was used for data be sure to destroy the
855          * buffer when we are done to avoid aliases (XXX what about the
856          * underlying VM pages?).
857          *
858          * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
859          *       is possible.
860          *
861          * NOTE: The isdirty check tracks whether we have to bdwrite() the
862          *       buffer or not.  The buffer might already be dirty.  The
863          *       flag is re-set when chain_modify() is called, even if
864          *       MODIFIED is already set, allowing the OS to retire the
865          *       buffer independent of a hammer2 flush.
866          */
867         chain->data = NULL;
868         if ((chain->flags & HAMMER2_CHAIN_IOFLUSH) &&
869             hammer2_io_isdirty(chain->dio)) {
870                 hammer2_io_bawrite(&chain->dio);
871         } else {
872                 hammer2_io_bqrelse(&chain->dio);
873         }
874         ccms_thread_unlock_upgraded(&chain->core.cst, ostate);
875         hammer2_chain_drop(chain);
876 }
877
878 /*
879  * This counts the number of live blockrefs in a block array and
880  * also calculates the point at which all remaining blockrefs are empty.
881  * This routine can only be called on a live chain (DUPLICATED flag not set).
882  *
883  * NOTE: Flag is not set until after the count is complete, allowing
884  *       callers to test the flag without holding the spinlock.
885  *
886  * NOTE: If base is NULL the related chain is still in the INITIAL
887  *       state and there are no blockrefs to count.
888  *
889  * NOTE: live_count may already have some counts accumulated due to
890  *       creation and deletion and could even be initially negative.
891  */
892 void
893 hammer2_chain_countbrefs(hammer2_chain_t *chain,
894                          hammer2_blockref_t *base, int count)
895 {
896         spin_lock(&chain->core.cst.spin);
897         if ((chain->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0) {
898                 if (base) {
899                         while (--count >= 0) {
900                                 if (base[count].type)
901                                         break;
902                         }
903                         chain->core.live_zero = count + 1;
904                         while (count >= 0) {
905                                 if (base[count].type)
906                                         atomic_add_int(&chain->core.live_count,
907                                                        1);
908                                 --count;
909                         }
910                 } else {
911                         chain->core.live_zero = 0;
912                 }
913                 /* else do not modify live_count */
914                 atomic_set_int(&chain->core.flags, HAMMER2_CORE_COUNTEDBREFS);
915         }
916         spin_unlock(&chain->core.cst.spin);
917 }
918
919 /*
920  * Resize the chain's physical storage allocation in-place.  This function does
921  * not adjust the data pointer and must be followed by (typically) a
922  * hammer2_chain_modify() call to copy any old data over and adjust the
923  * data pointer.
924  *
925  * Chains can be resized smaller without reallocating the storage.  Resizing
926  * larger will reallocate the storage.  Excess or prior storage is reclaimed
927  * asynchronously at a later time.
928  *
929  * Must be passed an exclusively locked parent and chain.
930  *
931  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
932  * to avoid instantiating a device buffer that conflicts with the vnode data
933  * buffer.  However, because H2 can compress or encrypt data, the chain may
934  * have a dio assigned to it in those situations, and they do not conflict.
935  *
936  * XXX return error if cannot resize.
937  */
938 void
939 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
940                      hammer2_chain_t *parent, hammer2_chain_t *chain,
941                      int nradix, int flags)
942 {
943         hammer2_mount_t *hmp;
944         size_t obytes;
945         size_t nbytes;
946
947         hmp = chain->hmp;
948
949         /*
950          * Only data and indirect blocks can be resized for now.
951          * (The volu root, inodes, and freemap elements use a fixed size).
952          */
953         KKASSERT(chain != &hmp->vchain);
954         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
955                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
956
957         /*
958          * Nothing to do if the element is already the proper size
959          */
960         obytes = chain->bytes;
961         nbytes = 1U << nradix;
962         if (obytes == nbytes)
963                 return;
964         chain->data_count += (ssize_t)(nbytes - obytes);
965
966         /*
967          * Make sure the old data is instantiated so we can copy it.  If this
968          * is a data block, the device data may be superfluous since the data
969          * might be in a logical block, but compressed or encrypted data is
970          * another matter.
971          *
972          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
973          */
974         hammer2_chain_modify(trans, chain, 0);
975
976         /*
977          * Relocate the block, even if making it smaller (because different
978          * block sizes may be in different regions).
979          *
980          * (data blocks only, we aren't copying the storage here).
981          */
982         hammer2_freemap_alloc(trans, chain, nbytes);
983         chain->bytes = nbytes;
984         /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
985
986         /*
987          * We don't want the followup chain_modify() to try to copy data
988          * from the old (wrong-sized) buffer.  It won't know how much to
989          * copy.  This case should only occur during writes when the
990          * originator already has the data to write in-hand.
991          */
992         if (chain->dio) {
993                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA);
994                 hammer2_io_brelse(&chain->dio);
995                 chain->data = NULL;
996         }
997 }
998
999 #if 0
1000
1001 /*
1002  * REMOVED - see cluster code
1003  *
1004  * Set a chain modified, making it read-write and duplicating it if necessary.
1005  * This function will assign a new physical block to the chain if necessary
1006  *
1007  * Duplication of already-modified chains is possible when the modification
1008  * crosses a flush synchronization boundary.
1009  *
1010  * Non-data blocks - The chain should be locked to at least the RESOLVE_MAYBE
1011  *                   level or the COW operation will not work.
1012  *
1013  * Data blocks     - The chain is usually locked RESOLVE_NEVER so as not to
1014  *                   run the data through the device buffers.
1015  *
1016  * This function may return a different chain than was passed, in which case
1017  * the old chain will be unlocked and the new chain will be locked.
1018  *
1019  * ip->chain may be adjusted by hammer2_chain_modify_ip().
1020  */
1021 hammer2_inode_data_t *
1022 hammer2_chain_modify_ip(hammer2_trans_t *trans, hammer2_inode_t *ip,
1023                         hammer2_chain_t **chainp, int flags)
1024 {
1025         atomic_set_int(&ip->flags, HAMMER2_INODE_MODIFIED);
1026         hammer2_chain_modify(trans, chainp, flags);
1027         if (ip->chain != *chainp)
1028                 hammer2_inode_repoint(ip, NULL, *chainp);
1029         if (ip->vp)
1030                 vsetisdirty(ip->vp);
1031         return(&ip->chain->data->ipdata);
1032 }
1033
1034 #endif
1035
1036 void
1037 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t *chain, int flags)
1038 {
1039         hammer2_blockref_t obref;
1040         hammer2_mount_t *hmp;
1041         hammer2_io_t *dio;
1042         int error;
1043         int wasinitial;
1044         int newmod;
1045         char *bdata;
1046
1047         hmp = chain->hmp;
1048         obref = chain->bref;
1049
1050         /*
1051          * Data is not optional for freemap chains (we must always be sure
1052          * to copy the data on COW storage allocations).
1053          */
1054         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1055             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1056                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1057                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1058         }
1059
1060         /*
1061          * Data must be resolved if already assigned unless explicitly
1062          * flagged otherwise.
1063          */
1064         if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1065             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1066                 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1067                 hammer2_chain_unlock(chain);
1068         }
1069
1070         /*
1071          * Otherwise do initial-chain handling.  Set MODIFIED to indicate
1072          * that the chain has been modified.  Set UPDATE to ensure that
1073          * the blockref is updated in the parent.
1074          */
1075         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1076                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1077                 hammer2_chain_ref(chain);
1078                 hammer2_pfs_memory_inc(chain->pmp);
1079                 newmod = 1;
1080         } else {
1081                 newmod = 0;
1082         }
1083         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1084                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1085                 hammer2_chain_ref(chain);
1086         }
1087
1088         /*
1089          * The modification or re-modification requires an allocation and
1090          * possible COW.
1091          *
1092          * We normally always allocate new storage here.  If storage exists
1093          * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1094          */
1095         if (chain != &hmp->vchain && chain != &hmp->fchain) {
1096                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1097                      ((flags & HAMMER2_MODIFY_NOREALLOC) == 0 && newmod)
1098                 ) {
1099                         hammer2_freemap_alloc(trans, chain, chain->bytes);
1100                         /* XXX failed allocation */
1101                 }
1102         }
1103
1104         /*
1105          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1106          * requires updating as well as to tell the delete code that the
1107          * chain's blockref might not exactly match (in terms of physical size
1108          * or block offset) the one in the parent's blocktable.  The base key
1109          * of course will still match.
1110          */
1111         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1112                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1113
1114         /*
1115          * Short-cut data blocks which the caller does not need an actual
1116          * data reference to (aka OPTDATA), as long as the chain does not
1117          * already have a data pointer to the data.  This generally means
1118          * that the modifications are being done via the logical buffer cache.
1119          * The INITIAL flag relates only to the device data buffer and thus
1120          * remains unchange in this situation.
1121          */
1122         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1123             (flags & HAMMER2_MODIFY_OPTDATA) &&
1124             chain->data == NULL) {
1125                 goto skip2;
1126         }
1127
1128         /*
1129          * Clearing the INITIAL flag (for indirect blocks) indicates that
1130          * we've processed the uninitialized storage allocation.
1131          *
1132          * If this flag is already clear we are likely in a copy-on-write
1133          * situation but we have to be sure NOT to bzero the storage if
1134          * no data is present.
1135          */
1136         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1137                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1138                 wasinitial = 1;
1139         } else {
1140                 wasinitial = 0;
1141         }
1142
1143         /*
1144          * Instantiate data buffer and possibly execute COW operation
1145          */
1146         switch(chain->bref.type) {
1147         case HAMMER2_BREF_TYPE_VOLUME:
1148         case HAMMER2_BREF_TYPE_FREEMAP:
1149                 /*
1150                  * The data is embedded, no copy-on-write operation is
1151                  * needed.
1152                  */
1153                 KKASSERT(chain->dio == NULL);
1154                 break;
1155         case HAMMER2_BREF_TYPE_INODE:
1156         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1157         case HAMMER2_BREF_TYPE_DATA:
1158         case HAMMER2_BREF_TYPE_INDIRECT:
1159         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1160                 /*
1161                  * Perform the copy-on-write operation
1162                  *
1163                  * zero-fill or copy-on-write depending on whether
1164                  * chain->data exists or not and set the dirty state for
1165                  * the new buffer.  hammer2_io_new() will handle the
1166                  * zero-fill.
1167                  */
1168                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1169
1170                 if (wasinitial) {
1171                         error = hammer2_io_new(hmp, chain->bref.data_off,
1172                                                chain->bytes, &dio);
1173                 } else {
1174                         error = hammer2_io_bread(hmp, chain->bref.data_off,
1175                                                  chain->bytes, &dio);
1176                 }
1177                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1178                 KKASSERT(error == 0);
1179
1180                 bdata = hammer2_io_data(dio, chain->bref.data_off);
1181
1182                 if (chain->data) {
1183                         KKASSERT(chain->dio != NULL);
1184                         if (chain->data != (void *)bdata) {
1185                                 bcopy(chain->data, bdata, chain->bytes);
1186                         }
1187                 } else if (wasinitial == 0) {
1188                         /*
1189                          * We have a problem.  We were asked to COW but
1190                          * we don't have any data to COW with!
1191                          */
1192                         panic("hammer2_chain_modify: having a COW %p\n",
1193                               chain);
1194                 }
1195
1196                 /*
1197                  * Retire the old buffer, replace with the new.  Dirty or
1198                  * redirty the new buffer.
1199                  *
1200                  * WARNING! The system buffer cache may have already flushed
1201                  *          the buffer, so we must be sure to [re]dirty it
1202                  *          for further modification.
1203                  */
1204                 if (chain->dio)
1205                         hammer2_io_brelse(&chain->dio);
1206                 chain->data = (void *)bdata;
1207                 chain->dio = dio;
1208                 hammer2_io_setdirty(dio);       /* modified by bcopy above */
1209                 break;
1210         default:
1211                 panic("hammer2_chain_modify: illegal non-embedded type %d",
1212                       chain->bref.type);
1213                 break;
1214
1215         }
1216 skip2:
1217         /*
1218          * setflush on parent indicating that the parent must recurse down
1219          * to us.  Do not call on chain itself which might already have it
1220          * set.
1221          */
1222         if (chain->parent)
1223                 hammer2_chain_setflush(trans, chain->parent);
1224
1225 #if 0
1226         /*
1227          * Adjust the freemap bitmap to indicate that the related blocks
1228          * MIGHT be freeable.  Bulkfree must still determine that the blocks
1229          * are actually freeable.
1230          *
1231          * We no longer do this in the normal filesystem operations path
1232          * as it interferes with the bulkfree algorithm.
1233          */
1234         if (obref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
1235             obref.type != HAMMER2_BREF_TYPE_FREEMAP_LEAF &&
1236             (obref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1237                 hammer2_freemap_adjust(trans, hmp,
1238                                        &obref, HAMMER2_FREEMAP_DOMAYFREE);
1239         }
1240 #endif
1241 }
1242
1243 /*
1244  * Volume header data locks
1245  */
1246 void
1247 hammer2_voldata_lock(hammer2_mount_t *hmp)
1248 {
1249         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1250 }
1251
1252 void
1253 hammer2_voldata_unlock(hammer2_mount_t *hmp)
1254 {
1255         lockmgr(&hmp->vollk, LK_RELEASE);
1256 }
1257
1258 void
1259 hammer2_voldata_modify(hammer2_mount_t *hmp)
1260 {
1261         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1262                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1263                 hammer2_chain_ref(&hmp->vchain);
1264                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
1265         }
1266 }
1267
1268 /*
1269  * This function returns the chain at the nearest key within the specified
1270  * range.  The returned chain will be referenced but not locked.
1271  *
1272  * This function will recurse through chain->rbtree as necessary and will
1273  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1274  * the iteration value is less than the current value of *key_nextp.
1275  *
1276  * The caller should use (*key_nextp) to calculate the actual range of
1277  * the returned element, which will be (key_beg to *key_nextp - 1), because
1278  * there might be another element which is superior to the returned element
1279  * and overlaps it.
1280  *
1281  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1282  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1283  * it will wind up being (key_end + 1).
1284  *
1285  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
1286  *           held through the operation.
1287  */
1288 struct hammer2_chain_find_info {
1289         hammer2_chain_t         *best;
1290         hammer2_key_t           key_beg;
1291         hammer2_key_t           key_end;
1292         hammer2_key_t           key_next;
1293 };
1294
1295 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1296 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1297
1298 static
1299 hammer2_chain_t *
1300 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1301                           hammer2_key_t key_beg, hammer2_key_t key_end)
1302 {
1303         struct hammer2_chain_find_info info;
1304
1305         info.best = NULL;
1306         info.key_beg = key_beg;
1307         info.key_end = key_end;
1308         info.key_next = *key_nextp;
1309
1310         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1311                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1312                 &info);
1313         *key_nextp = info.key_next;
1314 #if 0
1315         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1316                 parent, key_beg, key_end, *key_nextp);
1317 #endif
1318
1319         return (info.best);
1320 }
1321
1322 static
1323 int
1324 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1325 {
1326         struct hammer2_chain_find_info *info = data;
1327         hammer2_key_t child_beg;
1328         hammer2_key_t child_end;
1329
1330         child_beg = child->bref.key;
1331         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1332
1333         if (child_end < info->key_beg)
1334                 return(-1);
1335         if (child_beg > info->key_end)
1336                 return(1);
1337         return(0);
1338 }
1339
1340 static
1341 int
1342 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1343 {
1344         struct hammer2_chain_find_info *info = data;
1345         hammer2_chain_t *best;
1346         hammer2_key_t child_end;
1347
1348         /*
1349          * WARNING! Do not discard DUPLICATED chains, it is possible that
1350          *          we are catching an insertion half-way done.  If a
1351          *          duplicated chain turns out to be the best choice the
1352          *          caller will re-check its flags after locking it.
1353          *
1354          * WARNING! Layerq is scanned forwards, exact matches should keep
1355          *          the existing info->best.
1356          */
1357         if ((best = info->best) == NULL) {
1358                 /*
1359                  * No previous best.  Assign best
1360                  */
1361                 info->best = child;
1362         } else if (best->bref.key <= info->key_beg &&
1363                    child->bref.key <= info->key_beg) {
1364                 /*
1365                  * Illegal overlap.
1366                  */
1367                 KKASSERT(0);
1368                 /*info->best = child;*/
1369         } else if (child->bref.key < best->bref.key) {
1370                 /*
1371                  * Child has a nearer key and best is not flush with key_beg.
1372                  * Set best to child.  Truncate key_next to the old best key.
1373                  */
1374                 info->best = child;
1375                 if (info->key_next > best->bref.key || info->key_next == 0)
1376                         info->key_next = best->bref.key;
1377         } else if (child->bref.key == best->bref.key) {
1378                 /*
1379                  * If our current best is flush with the child then this
1380                  * is an illegal overlap.
1381                  *
1382                  * key_next will automatically be limited to the smaller of
1383                  * the two end-points.
1384                  */
1385                 KKASSERT(0);
1386                 info->best = child;
1387         } else {
1388                 /*
1389                  * Keep the current best but truncate key_next to the child's
1390                  * base.
1391                  *
1392                  * key_next will also automatically be limited to the smaller
1393                  * of the two end-points (probably not necessary for this case
1394                  * but we do it anyway).
1395                  */
1396                 if (info->key_next > child->bref.key || info->key_next == 0)
1397                         info->key_next = child->bref.key;
1398         }
1399
1400         /*
1401          * Always truncate key_next based on child's end-of-range.
1402          */
1403         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1404         if (child_end && (info->key_next > child_end || info->key_next == 0))
1405                 info->key_next = child_end;
1406
1407         return(0);
1408 }
1409
1410 /*
1411  * Retrieve the specified chain from a media blockref, creating the
1412  * in-memory chain structure which reflects it.
1413  *
1414  * To handle insertion races pass the INSERT_RACE flag along with the
1415  * generation number of the core.  NULL will be returned if the generation
1416  * number changes before we have a chance to insert the chain.  Insert
1417  * races can occur because the parent might be held shared.
1418  *
1419  * Caller must hold the parent locked shared or exclusive since we may
1420  * need the parent's bref array to find our block.
1421  *
1422  * WARNING! chain->pmp is left NULL if the bref represents a PFS mount
1423  *          point.
1424  */
1425 hammer2_chain_t *
1426 hammer2_chain_get(hammer2_chain_t *parent, int generation,
1427                   hammer2_blockref_t *bref)
1428 {
1429         hammer2_mount_t *hmp = parent->hmp;
1430         hammer2_chain_t *chain;
1431         int error;
1432
1433         /*
1434          * Allocate a chain structure representing the existing media
1435          * entry.  Resulting chain has one ref and is not locked.
1436          */
1437         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1438                 chain = hammer2_chain_alloc(hmp, NULL, NULL, bref);
1439         else
1440                 chain = hammer2_chain_alloc(hmp, parent->pmp, NULL, bref);
1441         hammer2_chain_core_alloc(NULL, chain);
1442         /* ref'd chain returned */
1443
1444         /*
1445          * Flag that the chain is in the parent's blockmap so delete/flush
1446          * knows what to do with it.
1447          */
1448         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1449
1450         /*
1451          * Link the chain into its parent.  A spinlock is required to safely
1452          * access the RBTREE, and it is possible to collide with another
1453          * hammer2_chain_get() operation because the caller might only hold
1454          * a shared lock on the parent.
1455          */
1456         KKASSERT(parent->refs > 0);
1457         error = hammer2_chain_insert(parent, chain,
1458                                      HAMMER2_CHAIN_INSERT_SPIN |
1459                                      HAMMER2_CHAIN_INSERT_RACE,
1460                                      generation);
1461         if (error) {
1462                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
1463                 kprintf("chain %p get race\n", chain);
1464                 hammer2_chain_drop(chain);
1465                 chain = NULL;
1466         } else {
1467                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1468         }
1469
1470         /*
1471          * Return our new chain referenced but not locked, or NULL if
1472          * a race occurred.
1473          */
1474         return (chain);
1475 }
1476
1477 /*
1478  * Lookup initialization/completion API
1479  */
1480 hammer2_chain_t *
1481 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1482 {
1483         if (flags & HAMMER2_LOOKUP_SHARED) {
1484                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1485                                            HAMMER2_RESOLVE_SHARED);
1486         } else {
1487                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1488         }
1489         return (parent);
1490 }
1491
1492 void
1493 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1494 {
1495         if (parent)
1496                 hammer2_chain_unlock(parent);
1497 }
1498
1499 static
1500 hammer2_chain_t *
1501 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1502 {
1503         hammer2_chain_t *oparent;
1504         hammer2_chain_t *nparent;
1505
1506         /*
1507          * Be careful of order, oparent must be unlocked before nparent
1508          * is locked below to avoid a deadlock.
1509          */
1510         oparent = *parentp;
1511         spin_lock(&oparent->core.cst.spin);
1512         nparent = oparent->parent;
1513         hammer2_chain_ref(nparent);
1514         spin_unlock(&oparent->core.cst.spin);
1515         if (oparent) {
1516                 hammer2_chain_unlock(oparent);
1517                 oparent = NULL;
1518         }
1519
1520         hammer2_chain_lock(nparent, how | HAMMER2_RESOLVE_NOREF);
1521         *parentp = nparent;
1522
1523         return (nparent);
1524 }
1525
1526 /*
1527  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1528  * (*parentp) typically points to an inode but can also point to a related
1529  * indirect block and this function will recurse upwards and find the inode
1530  * again.
1531  *
1532  * (*parentp) must be exclusively locked and referenced and can be an inode
1533  * or an existing indirect block within the inode.
1534  *
1535  * On return (*parentp) will be modified to point at the deepest parent chain
1536  * element encountered during the search, as a helper for an insertion or
1537  * deletion.   The new (*parentp) will be locked and referenced and the old
1538  * will be unlocked and dereferenced (no change if they are both the same).
1539  *
1540  * The matching chain will be returned exclusively locked.  If NOLOCK is
1541  * requested the chain will be returned only referenced.
1542  *
1543  * NULL is returned if no match was found, but (*parentp) will still
1544  * potentially be adjusted.
1545  *
1546  * On return (*key_nextp) will point to an iterative value for key_beg.
1547  * (If NULL is returned (*key_nextp) is set to key_end).
1548  *
1549  * This function will also recurse up the chain if the key is not within the
1550  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1551  * can simply allow (*parentp) to float inside the loop.
1552  *
1553  * NOTE!  chain->data is not always resolved.  By default it will not be
1554  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1555  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1556  *        BREF_TYPE_DATA as the device buffer can alias the logical file
1557  *        buffer).
1558  */
1559 hammer2_chain_t *
1560 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1561                      hammer2_key_t key_beg, hammer2_key_t key_end,
1562                      int *cache_indexp, int flags, int *ddflagp)
1563 {
1564         hammer2_mount_t *hmp;
1565         hammer2_chain_t *parent;
1566         hammer2_chain_t *chain;
1567         hammer2_blockref_t *base;
1568         hammer2_blockref_t *bref;
1569         hammer2_blockref_t bcopy;
1570         hammer2_key_t scan_beg;
1571         hammer2_key_t scan_end;
1572         int count = 0;
1573         int how_always = HAMMER2_RESOLVE_ALWAYS;
1574         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1575         int how;
1576         int generation;
1577         int maxloops = 300000;
1578
1579         *ddflagp = 0;
1580         if (flags & HAMMER2_LOOKUP_ALWAYS) {
1581                 how_maybe = how_always;
1582                 how = HAMMER2_RESOLVE_ALWAYS;
1583         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1584                 how = HAMMER2_RESOLVE_NEVER;
1585         } else {
1586                 how = HAMMER2_RESOLVE_MAYBE;
1587         }
1588         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1589                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1590                 how_always |= HAMMER2_RESOLVE_SHARED;
1591                 how |= HAMMER2_RESOLVE_SHARED;
1592         }
1593
1594         /*
1595          * Recurse (*parentp) upward if necessary until the parent completely
1596          * encloses the key range or we hit the inode.
1597          *
1598          * This function handles races against the flusher doing a delete-
1599          * duplicate above us and re-homes the parent to the duplicate in
1600          * that case, otherwise we'd wind up recursing down a stale chain.
1601          */
1602         parent = *parentp;
1603         hmp = parent->hmp;
1604
1605         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1606                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1607                 scan_beg = parent->bref.key;
1608                 scan_end = scan_beg +
1609                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1610                 if (key_beg >= scan_beg && key_end <= scan_end)
1611                         break;
1612                 parent = hammer2_chain_getparent(parentp, how_maybe);
1613         }
1614
1615 again:
1616         if (--maxloops == 0)
1617                 panic("hammer2_chain_lookup: maxloops");
1618         /*
1619          * Locate the blockref array.  Currently we do a fully associative
1620          * search through the array.
1621          */
1622         switch(parent->bref.type) {
1623         case HAMMER2_BREF_TYPE_INODE:
1624                 /*
1625                  * Special shortcut for embedded data returns the inode
1626                  * itself.  Callers must detect this condition and access
1627                  * the embedded data (the strategy code does this for us).
1628                  *
1629                  * This is only applicable to regular files and softlinks.
1630                  */
1631                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
1632                         if (flags & HAMMER2_LOOKUP_NOLOCK)
1633                                 hammer2_chain_ref(parent);
1634                         else
1635                                 hammer2_chain_lock(parent, how_always);
1636                         *key_nextp = key_end + 1;
1637                         *ddflagp = 1;
1638                         return (parent);
1639                 }
1640                 base = &parent->data->ipdata.u.blockset.blockref[0];
1641                 count = HAMMER2_SET_COUNT;
1642                 break;
1643         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1644         case HAMMER2_BREF_TYPE_INDIRECT:
1645                 /*
1646                  * Handle MATCHIND on the parent
1647                  */
1648                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
1649                         scan_beg = parent->bref.key;
1650                         scan_end = scan_beg +
1651                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1652                         if (key_beg == scan_beg && key_end == scan_end) {
1653                                 chain = parent;
1654                                 hammer2_chain_lock(chain, how_maybe);
1655                                 *key_nextp = scan_end + 1;
1656                                 goto done;
1657                         }
1658                 }
1659                 /*
1660                  * Optimize indirect blocks in the INITIAL state to avoid
1661                  * I/O.
1662                  */
1663                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1664                         base = NULL;
1665                 } else {
1666                         if (parent->data == NULL)
1667                                 panic("parent->data is NULL");
1668                         base = &parent->data->npdata[0];
1669                 }
1670                 count = parent->bytes / sizeof(hammer2_blockref_t);
1671                 break;
1672         case HAMMER2_BREF_TYPE_VOLUME:
1673                 base = &hmp->voldata.sroot_blockset.blockref[0];
1674                 count = HAMMER2_SET_COUNT;
1675                 break;
1676         case HAMMER2_BREF_TYPE_FREEMAP:
1677                 base = &hmp->voldata.freemap_blockset.blockref[0];
1678                 count = HAMMER2_SET_COUNT;
1679                 break;
1680         default:
1681                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1682                       parent->bref.type);
1683                 base = NULL;    /* safety */
1684                 count = 0;      /* safety */
1685         }
1686
1687         /*
1688          * Merged scan to find next candidate.
1689          *
1690          * hammer2_base_*() functions require the parent->core.live_* fields
1691          * to be synchronized.
1692          *
1693          * We need to hold the spinlock to access the block array and RB tree
1694          * and to interlock chain creation.
1695          */
1696         if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
1697                 hammer2_chain_countbrefs(parent, base, count);
1698
1699         /*
1700          * Combined search
1701          */
1702         spin_lock(&parent->core.cst.spin);
1703         chain = hammer2_combined_find(parent, base, count,
1704                                       cache_indexp, key_nextp,
1705                                       key_beg, key_end,
1706                                       &bref);
1707         generation = parent->core.generation;
1708
1709         /*
1710          * Exhausted parent chain, iterate.
1711          */
1712         if (bref == NULL) {
1713                 spin_unlock(&parent->core.cst.spin);
1714                 if (key_beg == key_end) /* short cut single-key case */
1715                         return (NULL);
1716
1717                 /*
1718                  * Stop if we reached the end of the iteration.
1719                  */
1720                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1721                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1722                         return (NULL);
1723                 }
1724
1725                 /*
1726                  * Calculate next key, stop if we reached the end of the
1727                  * iteration, otherwise go up one level and loop.
1728                  */
1729                 key_beg = parent->bref.key +
1730                           ((hammer2_key_t)1 << parent->bref.keybits);
1731                 if (key_beg == 0 || key_beg > key_end)
1732                         return (NULL);
1733                 parent = hammer2_chain_getparent(parentp, how_maybe);
1734                 goto again;
1735         }
1736
1737         /*
1738          * Selected from blockref or in-memory chain.
1739          */
1740         if (chain == NULL) {
1741                 bcopy = *bref;
1742                 spin_unlock(&parent->core.cst.spin);
1743                 chain = hammer2_chain_get(parent, generation,
1744                                           &bcopy);
1745                 if (chain == NULL) {
1746                         kprintf("retry lookup parent %p keys %016jx:%016jx\n",
1747                                 parent, key_beg, key_end);
1748                         goto again;
1749                 }
1750                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
1751                         hammer2_chain_drop(chain);
1752                         goto again;
1753                 }
1754         } else {
1755                 hammer2_chain_ref(chain);
1756                 spin_unlock(&parent->core.cst.spin);
1757         }
1758
1759         /*
1760          * chain is referenced but not locked.  We must lock the chain
1761          * to obtain definitive DUPLICATED/DELETED state
1762          */
1763         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1764             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1765                 hammer2_chain_lock(chain, how_maybe | HAMMER2_RESOLVE_NOREF);
1766         } else {
1767                 hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
1768         }
1769
1770         /*
1771          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
1772          *
1773          * NOTE: Chain's key range is not relevant as there might be
1774          *       one-offs within the range that are not deleted.
1775          *
1776          * NOTE: Lookups can race delete-duplicate because
1777          *       delete-duplicate does not lock the parent's core
1778          *       (they just use the spinlock on the core).  We must
1779          *       check for races by comparing the DUPLICATED flag before
1780          *       releasing the spinlock with the flag after locking the
1781          *       chain.
1782          */
1783         if (chain->flags & HAMMER2_CHAIN_DELETED) {
1784                 hammer2_chain_unlock(chain);
1785                 key_beg = *key_nextp;
1786                 if (key_beg == 0 || key_beg > key_end)
1787                         return(NULL);
1788                 goto again;
1789         }
1790
1791         /*
1792          * If the chain element is an indirect block it becomes the new
1793          * parent and we loop on it.  We must maintain our top-down locks
1794          * to prevent the flusher from interfering (i.e. doing a
1795          * delete-duplicate and leaving us recursing down a deleted chain).
1796          *
1797          * The parent always has to be locked with at least RESOLVE_MAYBE
1798          * so we can access its data.  It might need a fixup if the caller
1799          * passed incompatible flags.  Be careful not to cause a deadlock
1800          * as a data-load requires an exclusive lock.
1801          *
1802          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1803          * range is within the requested key range we return the indirect
1804          * block and do NOT loop.  This is usually only used to acquire
1805          * freemap nodes.
1806          */
1807         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1808             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1809                 hammer2_chain_unlock(parent);
1810                 *parentp = parent = chain;
1811                 goto again;
1812         }
1813 done:
1814         /*
1815          * All done, return the chain
1816          */
1817         return (chain);
1818 }
1819
1820 /*
1821  * After having issued a lookup we can iterate all matching keys.
1822  *
1823  * If chain is non-NULL we continue the iteration from just after it's index.
1824  *
1825  * If chain is NULL we assume the parent was exhausted and continue the
1826  * iteration at the next parent.
1827  *
1828  * parent must be locked on entry and remains locked throughout.  chain's
1829  * lock status must match flags.  Chain is always at least referenced.
1830  *
1831  * WARNING!  The MATCHIND flag does not apply to this function.
1832  */
1833 hammer2_chain_t *
1834 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1835                    hammer2_key_t *key_nextp,
1836                    hammer2_key_t key_beg, hammer2_key_t key_end,
1837                    int *cache_indexp, int flags)
1838 {
1839         hammer2_chain_t *parent;
1840         int how_maybe;
1841         int ddflag;
1842
1843         /*
1844          * Calculate locking flags for upward recursion.
1845          */
1846         how_maybe = HAMMER2_RESOLVE_MAYBE;
1847         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
1848                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1849
1850         parent = *parentp;
1851
1852         /*
1853          * Calculate the next index and recalculate the parent if necessary.
1854          */
1855         if (chain) {
1856                 key_beg = chain->bref.key +
1857                           ((hammer2_key_t)1 << chain->bref.keybits);
1858                 if (flags & HAMMER2_LOOKUP_NOLOCK)
1859                         hammer2_chain_drop(chain);
1860                 else
1861                         hammer2_chain_unlock(chain);
1862
1863                 /*
1864                  * Any scan where the lookup returned degenerate data embedded
1865                  * in the inode has an invalid index and must terminate.
1866                  */
1867                 if (chain == parent)
1868                         return(NULL);
1869                 if (key_beg == 0 || key_beg > key_end)
1870                         return(NULL);
1871                 chain = NULL;
1872         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1873                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1874                 /*
1875                  * We reached the end of the iteration.
1876                  */
1877                 return (NULL);
1878         } else {
1879                 /*
1880                  * Continue iteration with next parent unless the current
1881                  * parent covers the range.
1882                  */
1883                 key_beg = parent->bref.key +
1884                           ((hammer2_key_t)1 << parent->bref.keybits);
1885                 if (key_beg == 0 || key_beg > key_end)
1886                         return (NULL);
1887                 parent = hammer2_chain_getparent(parentp, how_maybe);
1888         }
1889
1890         /*
1891          * And execute
1892          */
1893         return (hammer2_chain_lookup(parentp, key_nextp,
1894                                      key_beg, key_end,
1895                                      cache_indexp, flags, &ddflag));
1896 }
1897
1898 /*
1899  * The raw scan function is similar to lookup/next but does not seek to a key.
1900  * Blockrefs are iterated via first_chain = (parent, NULL) and
1901  * next_chain = (parent, chain).
1902  *
1903  * The passed-in parent must be locked and its data resolved.  The returned
1904  * chain will be locked.  Pass chain == NULL to acquire the first sub-chain
1905  * under parent and then iterate with the passed-in chain (which this
1906  * function will unlock).
1907  */
1908 hammer2_chain_t *
1909 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t *chain,
1910                    int *cache_indexp, int flags)
1911 {
1912         hammer2_mount_t *hmp;
1913         hammer2_blockref_t *base;
1914         hammer2_blockref_t *bref;
1915         hammer2_blockref_t bcopy;
1916         hammer2_key_t key;
1917         hammer2_key_t next_key;
1918         int count = 0;
1919         int how_always = HAMMER2_RESOLVE_ALWAYS;
1920         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1921         int how;
1922         int generation;
1923         int maxloops = 300000;
1924
1925         hmp = parent->hmp;
1926
1927         /*
1928          * Scan flags borrowed from lookup
1929          */
1930         if (flags & HAMMER2_LOOKUP_ALWAYS) {
1931                 how_maybe = how_always;
1932                 how = HAMMER2_RESOLVE_ALWAYS;
1933         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1934                 how = HAMMER2_RESOLVE_NEVER;
1935         } else {
1936                 how = HAMMER2_RESOLVE_MAYBE;
1937         }
1938         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1939                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1940                 how_always |= HAMMER2_RESOLVE_SHARED;
1941                 how |= HAMMER2_RESOLVE_SHARED;
1942         }
1943
1944         /*
1945          * Calculate key to locate first/next element, unlocking the previous
1946          * element as we go.  Be careful, the key calculation can overflow.
1947          */
1948         if (chain) {
1949                 key = chain->bref.key +
1950                       ((hammer2_key_t)1 << chain->bref.keybits);
1951                 hammer2_chain_unlock(chain);
1952                 chain = NULL;
1953                 if (key == 0)
1954                         goto done;
1955         } else {
1956                 key = 0;
1957         }
1958
1959 again:
1960         if (--maxloops == 0)
1961                 panic("hammer2_chain_scan: maxloops");
1962         /*
1963          * Locate the blockref array.  Currently we do a fully associative
1964          * search through the array.
1965          */
1966         switch(parent->bref.type) {
1967         case HAMMER2_BREF_TYPE_INODE:
1968                 /*
1969                  * An inode with embedded data has no sub-chains.
1970                  */
1971                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
1972                         goto done;
1973                 base = &parent->data->ipdata.u.blockset.blockref[0];
1974                 count = HAMMER2_SET_COUNT;
1975                 break;
1976         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1977         case HAMMER2_BREF_TYPE_INDIRECT:
1978                 /*
1979                  * Optimize indirect blocks in the INITIAL state to avoid
1980                  * I/O.
1981                  */
1982                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1983                         base = NULL;
1984                 } else {
1985                         if (parent->data == NULL)
1986                                 panic("parent->data is NULL");
1987                         base = &parent->data->npdata[0];
1988                 }
1989                 count = parent->bytes / sizeof(hammer2_blockref_t);
1990                 break;
1991         case HAMMER2_BREF_TYPE_VOLUME:
1992                 base = &hmp->voldata.sroot_blockset.blockref[0];
1993                 count = HAMMER2_SET_COUNT;
1994                 break;
1995         case HAMMER2_BREF_TYPE_FREEMAP:
1996                 base = &hmp->voldata.freemap_blockset.blockref[0];
1997                 count = HAMMER2_SET_COUNT;
1998                 break;
1999         default:
2000                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2001                       parent->bref.type);
2002                 base = NULL;    /* safety */
2003                 count = 0;      /* safety */
2004         }
2005
2006         /*
2007          * Merged scan to find next candidate.
2008          *
2009          * hammer2_base_*() functions require the parent->core.live_* fields
2010          * to be synchronized.
2011          *
2012          * We need to hold the spinlock to access the block array and RB tree
2013          * and to interlock chain creation.
2014          */
2015         if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2016                 hammer2_chain_countbrefs(parent, base, count);
2017
2018         next_key = 0;
2019         spin_lock(&parent->core.cst.spin);
2020         chain = hammer2_combined_find(parent, base, count,
2021                                       cache_indexp, &next_key,
2022                                       key, HAMMER2_KEY_MAX,
2023                                       &bref);
2024         generation = parent->core.generation;
2025
2026         /*
2027          * Exhausted parent chain, we're done.
2028          */
2029         if (bref == NULL) {
2030                 spin_unlock(&parent->core.cst.spin);
2031                 KKASSERT(chain == NULL);
2032                 goto done;
2033         }
2034
2035         /*
2036          * Selected from blockref or in-memory chain.
2037          */
2038         if (chain == NULL) {
2039                 bcopy = *bref;
2040                 spin_unlock(&parent->core.cst.spin);
2041                 chain = hammer2_chain_get(parent, generation, &bcopy);
2042                 if (chain == NULL) {
2043                         kprintf("retry scan parent %p keys %016jx\n",
2044                                 parent, key);
2045                         goto again;
2046                 }
2047                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2048                         hammer2_chain_drop(chain);
2049                         chain = NULL;
2050                         goto again;
2051                 }
2052         } else {
2053                 hammer2_chain_ref(chain);
2054                 spin_unlock(&parent->core.cst.spin);
2055         }
2056
2057         /*
2058          * chain is referenced but not locked.  We must lock the chain
2059          * to obtain definitive DUPLICATED/DELETED state
2060          */
2061         hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
2062
2063         /*
2064          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2065          *
2066          * NOTE: chain's key range is not relevant as there might be
2067          *       one-offs within the range that are not deleted.
2068          *
2069          * NOTE: XXX this could create problems with scans used in
2070          *       situations other than mount-time recovery.
2071          *
2072          * NOTE: Lookups can race delete-duplicate because
2073          *       delete-duplicate does not lock the parent's core
2074          *       (they just use the spinlock on the core).  We must
2075          *       check for races by comparing the DUPLICATED flag before
2076          *       releasing the spinlock with the flag after locking the
2077          *       chain.
2078          */
2079         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2080                 hammer2_chain_unlock(chain);
2081                 chain = NULL;
2082
2083                 key = next_key;
2084                 if (key == 0)
2085                         goto done;
2086                 goto again;
2087         }
2088
2089 done:
2090         /*
2091          * All done, return the chain or NULL
2092          */
2093         return (chain);
2094 }
2095
2096 /*
2097  * Create and return a new hammer2 system memory structure of the specified
2098  * key, type and size and insert it under (*parentp).  This is a full
2099  * insertion, based on the supplied key/keybits, and may involve creating
2100  * indirect blocks and moving other chains around via delete/duplicate.
2101  *
2102  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2103  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2104  * FULL.  This typically means that the caller is creating the chain after
2105  * doing a hammer2_chain_lookup().
2106  *
2107  * (*parentp) must be exclusive locked and may be replaced on return
2108  * depending on how much work the function had to do.
2109  *
2110  * (*chainp) usually starts out NULL and returns the newly created chain,
2111  * but if the caller desires the caller may allocate a disconnected chain
2112  * and pass it in instead.
2113  *
2114  * This function should NOT be used to insert INDIRECT blocks.  It is
2115  * typically used to create/insert inodes and data blocks.
2116  *
2117  * Caller must pass-in an exclusively locked parent the new chain is to
2118  * be inserted under, and optionally pass-in a disconnected, exclusively
2119  * locked chain to insert (else we create a new chain).  The function will
2120  * adjust (*parentp) as necessary, create or connect the chain, and
2121  * return an exclusively locked chain in *chainp.
2122  */
2123 int
2124 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2125                      hammer2_chain_t **chainp, hammer2_pfsmount_t *pmp,
2126                      hammer2_key_t key, int keybits, int type, size_t bytes,
2127                      int flags)
2128 {
2129         hammer2_mount_t *hmp;
2130         hammer2_chain_t *chain;
2131         hammer2_chain_t *parent;
2132         hammer2_blockref_t *base;
2133         hammer2_blockref_t dummy;
2134         int allocated = 0;
2135         int error = 0;
2136         int count;
2137         int maxloops = 300000;
2138
2139         /*
2140          * Topology may be crossing a PFS boundary.
2141          */
2142         parent = *parentp;
2143         KKASSERT(ccms_thread_lock_owned(&parent->core.cst));
2144         hmp = parent->hmp;
2145         chain = *chainp;
2146
2147         if (chain == NULL) {
2148                 /*
2149                  * First allocate media space and construct the dummy bref,
2150                  * then allocate the in-memory chain structure.  Set the
2151                  * INITIAL flag for fresh chains which do not have embedded
2152                  * data.
2153                  */
2154                 bzero(&dummy, sizeof(dummy));
2155                 dummy.type = type;
2156                 dummy.key = key;
2157                 dummy.keybits = keybits;
2158                 dummy.data_off = hammer2_getradix(bytes);
2159                 dummy.methods = parent->bref.methods;
2160                 chain = hammer2_chain_alloc(hmp, pmp, trans, &dummy);
2161                 hammer2_chain_core_alloc(trans, chain);
2162
2163                 /*
2164                  * Lock the chain manually, chain_lock will load the chain
2165                  * which we do NOT want to do.  (note: chain->refs is set
2166                  * to 1 by chain_alloc() for us, but lockcnt is not).
2167                  */
2168                 chain->lockcnt = 1;
2169                 ccms_thread_lock(&chain->core.cst, CCMS_STATE_EXCLUSIVE);
2170                 allocated = 1;
2171
2172                 /*
2173                  * We do NOT set INITIAL here (yet).  INITIAL is only
2174                  * used for indirect blocks.
2175                  *
2176                  * Recalculate bytes to reflect the actual media block
2177                  * allocation.
2178                  */
2179                 bytes = (hammer2_off_t)1 <<
2180                         (int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2181                 chain->bytes = bytes;
2182
2183                 switch(type) {
2184                 case HAMMER2_BREF_TYPE_VOLUME:
2185                 case HAMMER2_BREF_TYPE_FREEMAP:
2186                         panic("hammer2_chain_create: called with volume type");
2187                         break;
2188                 case HAMMER2_BREF_TYPE_INDIRECT:
2189                         panic("hammer2_chain_create: cannot be used to"
2190                               "create indirect block");
2191                         break;
2192                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2193                         panic("hammer2_chain_create: cannot be used to"
2194                               "create freemap root or node");
2195                         break;
2196                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2197                         KKASSERT(bytes == sizeof(chain->data->bmdata));
2198                         /* fall through */
2199                 case HAMMER2_BREF_TYPE_INODE:
2200                 case HAMMER2_BREF_TYPE_DATA:
2201                 default:
2202                         /*
2203                          * leave chain->data NULL, set INITIAL
2204                          */
2205                         KKASSERT(chain->data == NULL);
2206                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2207                         break;
2208                 }
2209
2210                 /*
2211                  * Set statistics for pending updates.  These will be
2212                  * synchronized by the flush code.
2213                  */
2214                 switch(type) {
2215                 case HAMMER2_BREF_TYPE_INODE:
2216                         chain->inode_count = 1;
2217                         break;
2218                 case HAMMER2_BREF_TYPE_DATA:
2219                 case HAMMER2_BREF_TYPE_INDIRECT:
2220                         chain->data_count = chain->bytes;
2221                         break;
2222                 }
2223         } else {
2224                 /*
2225                  * We are reattaching a previously deleted chain, possibly
2226                  * under a new parent and possibly with a new key/keybits.
2227                  * The chain does not have to be in a modified state.  The
2228                  * UPDATE flag will be set later on in this routine.
2229                  *
2230                  * Do NOT mess with the current state of the INITIAL flag.
2231                  */
2232                 chain->bref.key = key;
2233                 chain->bref.keybits = keybits;
2234                 if (chain->flags & HAMMER2_CHAIN_DELETED)
2235                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2236                 KKASSERT(chain->parent == NULL);
2237         }
2238
2239         /*
2240          * Calculate how many entries we have in the blockref array and
2241          * determine if an indirect block is required.
2242          */
2243 again:
2244         if (--maxloops == 0)
2245                 panic("hammer2_chain_create: maxloops");
2246
2247         switch(parent->bref.type) {
2248         case HAMMER2_BREF_TYPE_INODE:
2249                 KKASSERT((parent->data->ipdata.op_flags &
2250                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
2251                 KKASSERT(parent->data != NULL);
2252                 base = &parent->data->ipdata.u.blockset.blockref[0];
2253                 count = HAMMER2_SET_COUNT;
2254                 break;
2255         case HAMMER2_BREF_TYPE_INDIRECT:
2256         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2257                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
2258                         base = NULL;
2259                 else
2260                         base = &parent->data->npdata[0];
2261                 count = parent->bytes / sizeof(hammer2_blockref_t);
2262                 break;
2263         case HAMMER2_BREF_TYPE_VOLUME:
2264                 KKASSERT(parent->data != NULL);
2265                 base = &hmp->voldata.sroot_blockset.blockref[0];
2266                 count = HAMMER2_SET_COUNT;
2267                 break;
2268         case HAMMER2_BREF_TYPE_FREEMAP:
2269                 KKASSERT(parent->data != NULL);
2270                 base = &hmp->voldata.freemap_blockset.blockref[0];
2271                 count = HAMMER2_SET_COUNT;
2272                 break;
2273         default:
2274                 panic("hammer2_chain_create: unrecognized blockref type: %d",
2275                       parent->bref.type);
2276                 base = NULL;
2277                 count = 0;
2278                 break;
2279         }
2280
2281         /*
2282          * Make sure we've counted the brefs
2283          */
2284         if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2285                 hammer2_chain_countbrefs(parent, base, count);
2286
2287         KKASSERT(parent->core.live_count >= 0 &&
2288                  parent->core.live_count <= count);
2289
2290         /*
2291          * If no free blockref could be found we must create an indirect
2292          * block and move a number of blockrefs into it.  With the parent
2293          * locked we can safely lock each child in order to delete+duplicate
2294          * it without causing a deadlock.
2295          *
2296          * This may return the new indirect block or the old parent depending
2297          * on where the key falls.  NULL is returned on error.
2298          */
2299         if (parent->core.live_count == count) {
2300                 hammer2_chain_t *nparent;
2301
2302                 nparent = hammer2_chain_create_indirect(trans, parent,
2303                                                         key, keybits,
2304                                                         type, &error);
2305                 if (nparent == NULL) {
2306                         if (allocated)
2307                                 hammer2_chain_drop(chain);
2308                         chain = NULL;
2309                         goto done;
2310                 }
2311                 if (parent != nparent) {
2312                         hammer2_chain_unlock(parent);
2313                         parent = *parentp = nparent;
2314                 }
2315                 goto again;
2316         }
2317
2318         /*
2319          * Link the chain into its parent.
2320          */
2321         if (chain->parent != NULL)
2322                 panic("hammer2: hammer2_chain_create: chain already connected");
2323         KKASSERT(chain->parent == NULL);
2324         hammer2_chain_insert(parent, chain,
2325                              HAMMER2_CHAIN_INSERT_SPIN |
2326                              HAMMER2_CHAIN_INSERT_LIVE,
2327                              0);
2328
2329         if (allocated) {
2330                 /*
2331                  * Mark the newly created chain modified.  This will cause
2332                  * UPDATE to be set.
2333                  *
2334                  * Device buffers are not instantiated for DATA elements
2335                  * as these are handled by logical buffers.
2336                  *
2337                  * Indirect and freemap node indirect blocks are handled
2338                  * by hammer2_chain_create_indirect() and not by this
2339                  * function.
2340                  *
2341                  * Data for all other bref types is expected to be
2342                  * instantiated (INODE, LEAF).
2343                  */
2344                 switch(chain->bref.type) {
2345                 case HAMMER2_BREF_TYPE_DATA:
2346                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2347                 case HAMMER2_BREF_TYPE_INODE:
2348                         hammer2_chain_modify(trans, chain,
2349                                              HAMMER2_MODIFY_OPTDATA);
2350                         break;
2351                 default:
2352                         /*
2353                          * Remaining types are not supported by this function.
2354                          * In particular, INDIRECT and LEAF_NODE types are
2355                          * handled by create_indirect().
2356                          */
2357                         panic("hammer2_chain_create: bad type: %d",
2358                               chain->bref.type);
2359                         /* NOT REACHED */
2360                         break;
2361                 }
2362         } else {
2363                 /*
2364                  * When reconnecting a chain we must set UPDATE and
2365                  * setflush so the flush recognizes that it must update
2366                  * the bref in the parent.
2367                  */
2368                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
2369                         hammer2_chain_ref(chain);
2370                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
2371                 }
2372                 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2373                     (flags & HAMMER2_INSERT_NOSTATS) == 0) {
2374                         KKASSERT(chain->data);
2375                         chain->inode_count_up +=
2376                                 chain->data->ipdata.inode_count;
2377                         chain->data_count_up +=
2378                                 chain->data->ipdata.data_count;
2379                 }
2380         }
2381
2382         /*
2383          * We must setflush(parent) to ensure that it recurses through to
2384          * chain.  setflush(chain) might not work because ONFLUSH is possibly
2385          * already set in the chain (so it won't recurse up to set it in the
2386          * parent).
2387          */
2388         hammer2_chain_setflush(trans, parent);
2389
2390 done:
2391         *chainp = chain;
2392
2393         return (error);
2394 }
2395
2396 /*
2397  * Move the chain from its old parent to a new parent.  The chain must have
2398  * already been deleted or already disconnected (or never associated) with
2399  * a parent.  The chain is reassociated with the new parent and the deleted
2400  * flag will be cleared (no longer deleted).  The chain's modification state
2401  * is not altered.
2402  *
2403  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
2404  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2405  * FULL.  This typically means that the caller is creating the chain after
2406  * doing a hammer2_chain_lookup().
2407  *
2408  * A non-NULL bref is typically passed when key and keybits must be overridden.
2409  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2410  * from a passed-in bref and uses the old chain's bref for everything else.
2411  *
2412  * If (parent) is non-NULL then the new duplicated chain is inserted under
2413  * the parent.
2414  *
2415  * If (parent) is NULL then the newly duplicated chain is not inserted
2416  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2417  * passing into hammer2_chain_create() after this function returns).
2418  *
2419  * WARNING! This function calls create which means it can insert indirect
2420  *          blocks.  This can cause other unrelated chains in the parent to
2421  *          be moved to a newly inserted indirect block in addition to the
2422  *          specific chain.
2423  */
2424 void
2425 hammer2_chain_rename(hammer2_trans_t *trans, hammer2_blockref_t *bref,
2426                      hammer2_chain_t **parentp, hammer2_chain_t *chain,
2427                      int flags)
2428 {
2429         hammer2_mount_t *hmp;
2430         hammer2_chain_t *parent;
2431         size_t bytes;
2432
2433         /*
2434          * WARNING!  We should never resolve DATA to device buffers
2435          *           (XXX allow it if the caller did?), and since
2436          *           we currently do not have the logical buffer cache
2437          *           buffer in-hand to fix its cached physical offset
2438          *           we also force the modify code to not COW it. XXX
2439          */
2440         hmp = chain->hmp;
2441         KKASSERT(chain->parent == NULL);
2442
2443         /*
2444          * Now create a duplicate of the chain structure, associating
2445          * it with the same core, making it the same size, pointing it
2446          * to the same bref (the same media block).
2447          */
2448         if (bref == NULL)
2449                 bref = &chain->bref;
2450         bytes = (hammer2_off_t)1 <<
2451                 (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2452
2453         /*
2454          * If parent is not NULL the duplicated chain will be entered under
2455          * the parent and the UPDATE bit set to tell flush to update
2456          * the blockref.
2457          *
2458          * We must setflush(parent) to ensure that it recurses through to
2459          * chain.  setflush(chain) might not work because ONFLUSH is possibly
2460          * already set in the chain (so it won't recurse up to set it in the
2461          * parent).
2462          *
2463          * Having both chains locked is extremely important for atomicy.
2464          */
2465         if (parentp && (parent = *parentp) != NULL) {
2466                 KKASSERT(ccms_thread_lock_owned(&parent->core.cst));
2467                 KKASSERT(parent->refs > 0);
2468
2469                 hammer2_chain_create(trans, parentp, &chain, chain->pmp,
2470                                      bref->key, bref->keybits, bref->type,
2471                                      chain->bytes, flags);
2472                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
2473                 hammer2_chain_setflush(trans, *parentp);
2474         }
2475 }
2476
2477 /*
2478  * Helper function for deleting chains.
2479  *
2480  * The chain is removed from the live view (the RBTREE) as well as the parent's
2481  * blockmap.  Both chain and its parent must be locked.
2482  */
2483 static void
2484 _hammer2_chain_delete_helper(hammer2_trans_t *trans,
2485                              hammer2_chain_t *parent, hammer2_chain_t *chain,
2486                              int flags)
2487 {
2488         hammer2_mount_t *hmp;
2489
2490         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
2491         hmp = chain->hmp;
2492
2493         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2494                 /*
2495                  * Chain is blockmapped, so there must be a parent.
2496                  * Atomically remove the chain from the parent and remove
2497                  * the blockmap entry.
2498                  */
2499                 hammer2_blockref_t *base;
2500                 int count;
2501
2502                 KKASSERT(parent != NULL);
2503                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
2504                 hammer2_chain_modify(trans, parent,
2505                                      HAMMER2_MODIFY_OPTDATA);
2506
2507                 /*
2508                  * Calculate blockmap pointer
2509                  */
2510                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2511                 spin_lock(&parent->core.cst.spin);
2512
2513                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2514                 atomic_add_int(&parent->core.live_count, -1);
2515                 ++parent->core.generation;
2516                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2517                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2518                 --parent->core.chain_count;
2519                 chain->parent = NULL;
2520
2521                 switch(parent->bref.type) {
2522                 case HAMMER2_BREF_TYPE_INODE:
2523                         /*
2524                          * Access the inode's block array.  However, there
2525                          * is no block array if the inode is flagged
2526                          * DIRECTDATA.  The DIRECTDATA case typicaly only
2527                          * occurs when a hardlink has been shifted up the
2528                          * tree and the original inode gets replaced with
2529                          * an OBJTYPE_HARDLINK placeholding inode.
2530                          */
2531                         if (parent->data &&
2532                             (parent->data->ipdata.op_flags &
2533                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
2534                                 base =
2535                                    &parent->data->ipdata.u.blockset.blockref[0];
2536                         } else {
2537                                 base = NULL;
2538                         }
2539                         count = HAMMER2_SET_COUNT;
2540                         break;
2541                 case HAMMER2_BREF_TYPE_INDIRECT:
2542                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2543                         if (parent->data)
2544                                 base = &parent->data->npdata[0];
2545                         else
2546                                 base = NULL;
2547                         count = parent->bytes / sizeof(hammer2_blockref_t);
2548                         break;
2549                 case HAMMER2_BREF_TYPE_VOLUME:
2550                         base = &hmp->voldata.sroot_blockset.blockref[0];
2551                         count = HAMMER2_SET_COUNT;
2552                         break;
2553                 case HAMMER2_BREF_TYPE_FREEMAP:
2554                         base = &parent->data->npdata[0];
2555                         count = HAMMER2_SET_COUNT;
2556                         break;
2557                 default:
2558                         base = NULL;
2559                         count = 0;
2560                         panic("hammer2_flush_pass2: "
2561                               "unrecognized blockref type: %d",
2562                               parent->bref.type);
2563                 }
2564
2565                 /*
2566                  * delete blockmapped chain from its parent.
2567                  *
2568                  * The parent is not affected by any statistics in chain
2569                  * which are pending synchronization.  That is, there is
2570                  * nothing to undo in the parent since they have not yet
2571                  * been incorporated into the parent.
2572                  *
2573                  * The parent is affected by statistics stored in inodes.
2574                  * Those have already been synchronized, so they must be
2575                  * undone.  XXX split update possible w/delete in middle?
2576                  */
2577                 if (base) {
2578                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2579                             (flags & HAMMER2_DELETE_NOSTATS) == 0) {
2580                                 KKASSERT(chain->data != NULL);
2581                                 parent->data_count -=
2582                                         chain->data->ipdata.data_count;
2583                                 parent->inode_count -=
2584                                         chain->data->ipdata.inode_count;
2585                         }
2586
2587                         int cache_index = -1;
2588                         hammer2_base_delete(trans, parent, base, count,
2589                                             &cache_index, chain);
2590                 }
2591                 spin_unlock(&parent->core.cst.spin);
2592         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
2593                 /*
2594                  * Chain is not blockmapped but a parent is present.
2595                  * Atomically remove the chain from the parent.  There is
2596                  * no blockmap entry to remove.
2597                  *
2598                  * Because chain was associated with a parent but not
2599                  * synchronized, the chain's *_count_up fields contain
2600                  * inode adjustment statistics which must be undone.
2601                  */
2602                 spin_lock(&parent->core.cst.spin);
2603                 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2604                     (flags & HAMMER2_DELETE_NOSTATS) == 0) {
2605                         KKASSERT(chain->data != NULL);
2606                         chain->data_count_up -=
2607                                 chain->data->ipdata.data_count;
2608                         chain->inode_count_up -=
2609                                 chain->data->ipdata.inode_count;
2610                 }
2611                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2612                 atomic_add_int(&parent->core.live_count, -1);
2613                 ++parent->core.generation;
2614                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2615                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2616                 --parent->core.chain_count;
2617                 chain->parent = NULL;
2618                 spin_unlock(&parent->core.cst.spin);
2619         } else {
2620                 /*
2621                  * Chain is not blockmapped and has no parent.  This
2622                  * is a degenerate case.
2623                  */
2624                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2625         }
2626
2627 #if 0
2628         /*
2629          * If the deletion is permanent (i.e. the chain is not simply being
2630          * moved within the topology), adjust the freemap to indicate that
2631          * the block *might* be freeable.  bulkfree must still determine
2632          * that it is actually freeable.
2633          *
2634          * We no longer do this in the normal filesystem operations path
2635          * as it interferes with the bulkfree algorithm.
2636          */
2637         if ((flags & HAMMER2_DELETE_PERMANENT) &&
2638             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
2639             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP_LEAF &&
2640             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
2641                 hammer2_freemap_adjust(trans, hmp, &chain->bref,
2642                                        HAMMER2_FREEMAP_DOMAYFREE);
2643         }
2644 #endif
2645 }
2646
2647 /*
2648  * Create an indirect block that covers one or more of the elements in the
2649  * current parent.  Either returns the existing parent with no locking or
2650  * ref changes or returns the new indirect block locked and referenced
2651  * and leaving the original parent lock/ref intact as well.
2652  *
2653  * If an error occurs, NULL is returned and *errorp is set to the error.
2654  *
2655  * The returned chain depends on where the specified key falls.
2656  *
2657  * The key/keybits for the indirect mode only needs to follow three rules:
2658  *
2659  * (1) That all elements underneath it fit within its key space and
2660  *
2661  * (2) That all elements outside it are outside its key space.
2662  *
2663  * (3) When creating the new indirect block any elements in the current
2664  *     parent that fit within the new indirect block's keyspace must be
2665  *     moved into the new indirect block.
2666  *
2667  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2668  *     keyspace the the current parent, but lookup/iteration rules will
2669  *     ensure (and must ensure) that rule (2) for all parents leading up
2670  *     to the nearest inode or the root volume header is adhered to.  This
2671  *     is accomplished by always recursing through matching keyspaces in
2672  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
2673  *
2674  * The current implementation calculates the current worst-case keyspace by
2675  * iterating the current parent and then divides it into two halves, choosing
2676  * whichever half has the most elements (not necessarily the half containing
2677  * the requested key).
2678  *
2679  * We can also opt to use the half with the least number of elements.  This
2680  * causes lower-numbered keys (aka logical file offsets) to recurse through
2681  * fewer indirect blocks and higher-numbered keys to recurse through more.
2682  * This also has the risk of not moving enough elements to the new indirect
2683  * block and being forced to create several indirect blocks before the element
2684  * can be inserted.
2685  *
2686  * Must be called with an exclusively locked parent.
2687  */
2688 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
2689                                 hammer2_key_t *keyp, int keybits,
2690                                 hammer2_blockref_t *base, int count);
2691 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
2692                                 hammer2_key_t *keyp, int keybits,
2693                                 hammer2_blockref_t *base, int count);
2694 static
2695 hammer2_chain_t *
2696 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
2697                               hammer2_key_t create_key, int create_bits,
2698                               int for_type, int *errorp)
2699 {
2700         hammer2_mount_t *hmp;
2701         hammer2_blockref_t *base;
2702         hammer2_blockref_t *bref;
2703         hammer2_blockref_t bcopy;
2704         hammer2_chain_t *chain;
2705         hammer2_chain_t *ichain;
2706         hammer2_chain_t dummy;
2707         hammer2_key_t key = create_key;
2708         hammer2_key_t key_beg;
2709         hammer2_key_t key_end;
2710         hammer2_key_t key_next;
2711         int keybits = create_bits;
2712         int count;
2713         int nbytes;
2714         int cache_index;
2715         int loops;
2716         int reason;
2717         int generation;
2718         int maxloops = 300000;
2719
2720         /*
2721          * Calculate the base blockref pointer or NULL if the chain
2722          * is known to be empty.  We need to calculate the array count
2723          * for RB lookups either way.
2724          */
2725         hmp = parent->hmp;
2726         *errorp = 0;
2727         KKASSERT(ccms_thread_lock_owned(&parent->core.cst));
2728
2729         /*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
2730         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2731                 base = NULL;
2732
2733                 switch(parent->bref.type) {
2734                 case HAMMER2_BREF_TYPE_INODE:
2735                         count = HAMMER2_SET_COUNT;
2736                         break;
2737                 case HAMMER2_BREF_TYPE_INDIRECT:
2738                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2739                         count = parent->bytes / sizeof(hammer2_blockref_t);
2740                         break;
2741                 case HAMMER2_BREF_TYPE_VOLUME:
2742                         count = HAMMER2_SET_COUNT;
2743                         break;
2744                 case HAMMER2_BREF_TYPE_FREEMAP:
2745                         count = HAMMER2_SET_COUNT;
2746                         break;
2747                 default:
2748                         panic("hammer2_chain_create_indirect: "
2749                               "unrecognized blockref type: %d",
2750                               parent->bref.type);
2751                         count = 0;
2752                         break;
2753                 }
2754         } else {
2755                 switch(parent->bref.type) {
2756                 case HAMMER2_BREF_TYPE_INODE:
2757                         base = &parent->data->ipdata.u.blockset.blockref[0];
2758                         count = HAMMER2_SET_COUNT;
2759                         break;
2760                 case HAMMER2_BREF_TYPE_INDIRECT:
2761                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2762                         base = &parent->data->npdata[0];
2763                         count = parent->bytes / sizeof(hammer2_blockref_t);
2764                         break;
2765                 case HAMMER2_BREF_TYPE_VOLUME:
2766                         base = &hmp->voldata.sroot_blockset.blockref[0];
2767                         count = HAMMER2_SET_COUNT;
2768                         break;
2769                 case HAMMER2_BREF_TYPE_FREEMAP:
2770                         base = &hmp->voldata.freemap_blockset.blockref[0];
2771                         count = HAMMER2_SET_COUNT;
2772                         break;
2773                 default:
2774                         panic("hammer2_chain_create_indirect: "
2775                               "unrecognized blockref type: %d",
2776                               parent->bref.type);
2777                         count = 0;
2778                         break;
2779                 }
2780         }
2781
2782         /*
2783          * dummy used in later chain allocation (no longer used for lookups).
2784          */
2785         bzero(&dummy, sizeof(dummy));
2786
2787         /*
2788          * When creating an indirect block for a freemap node or leaf
2789          * the key/keybits must be fitted to static radix levels because
2790          * particular radix levels use particular reserved blocks in the
2791          * related zone.
2792          *
2793          * This routine calculates the key/radix of the indirect block
2794          * we need to create, and whether it is on the high-side or the
2795          * low-side.
2796          */
2797         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2798             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2799                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
2800                                                        base, count);
2801         } else {
2802                 keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
2803                                                       base, count);
2804         }
2805
2806         /*
2807          * Normalize the key for the radix being represented, keeping the
2808          * high bits and throwing away the low bits.
2809          */
2810         key &= ~(((hammer2_key_t)1 << keybits) - 1);
2811
2812         /*
2813          * How big should our new indirect block be?  It has to be at least
2814          * as large as its parent.
2815          */
2816         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
2817                 nbytes = HAMMER2_IND_BYTES_MIN;
2818         else
2819                 nbytes = HAMMER2_IND_BYTES_MAX;
2820         if (nbytes < count * sizeof(hammer2_blockref_t))
2821                 nbytes = count * sizeof(hammer2_blockref_t);
2822
2823         /*
2824          * Ok, create our new indirect block
2825          */
2826         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2827             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2828                 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
2829         } else {
2830                 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
2831         }
2832         dummy.bref.key = key;
2833         dummy.bref.keybits = keybits;
2834         dummy.bref.data_off = hammer2_getradix(nbytes);
2835         dummy.bref.methods = parent->bref.methods;
2836
2837         ichain = hammer2_chain_alloc(hmp, parent->pmp, trans, &dummy.bref);
2838         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
2839         hammer2_chain_core_alloc(trans, ichain);
2840         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
2841         hammer2_chain_drop(ichain);     /* excess ref from alloc */
2842
2843         /*
2844          * We have to mark it modified to allocate its block, but use
2845          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
2846          * it won't be acted upon by the flush code.
2847          */
2848         hammer2_chain_modify(trans, ichain, HAMMER2_MODIFY_OPTDATA);
2849
2850         /*
2851          * Iterate the original parent and move the matching brefs into
2852          * the new indirect block.
2853          *
2854          * XXX handle flushes.
2855          */
2856         key_beg = 0;
2857         key_end = HAMMER2_KEY_MAX;
2858         cache_index = 0;
2859         spin_lock(&parent->core.cst.spin);
2860         loops = 0;
2861         reason = 0;
2862
2863         for (;;) {
2864                 if (++loops > 100000) {
2865                     spin_unlock(&parent->core.cst.spin);
2866                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
2867                           reason, parent, base, count, key_next);
2868                 }
2869
2870                 /*
2871                  * NOTE: spinlock stays intact, returned chain (if not NULL)
2872                  *       is not referenced or locked which means that we
2873                  *       cannot safely check its flagged / deletion status
2874                  *       until we lock it.
2875                  */
2876                 chain = hammer2_combined_find(parent, base, count,
2877                                               &cache_index, &key_next,
2878                                               key_beg, key_end,
2879                                               &bref);
2880                 generation = parent->core.generation;
2881                 if (bref == NULL)
2882                         break;
2883                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
2884
2885                 /*
2886                  * Skip keys that are not within the key/radix of the new
2887                  * indirect block.  They stay in the parent.
2888                  */
2889                 if ((~(((hammer2_key_t)1 << keybits) - 1) &
2890                     (key ^ bref->key)) != 0) {
2891                         goto next_key_spinlocked;
2892                 }
2893
2894                 /*
2895                  * Load the new indirect block by acquiring the related
2896                  * chains (potentially from media as it might not be
2897                  * in-memory).  Then move it to the new parent (ichain)
2898                  * via DELETE-DUPLICATE.
2899                  *
2900                  * chain is referenced but not locked.  We must lock the
2901                  * chain to obtain definitive DUPLICATED/DELETED state
2902                  */
2903                 if (chain) {
2904                         /*
2905                          * Use chain already present in the RBTREE
2906                          */
2907                         hammer2_chain_ref(chain);
2908                         spin_unlock(&parent->core.cst.spin);
2909                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
2910                                                   HAMMER2_RESOLVE_NOREF);
2911                 } else {
2912                         /*
2913                          * Get chain for blockref element.  _get returns NULL
2914                          * on insertion race.
2915                          */
2916                         bcopy = *bref;
2917                         spin_unlock(&parent->core.cst.spin);
2918                         chain = hammer2_chain_get(parent, generation, &bcopy);
2919                         if (chain == NULL) {
2920                                 reason = 1;
2921                                 spin_lock(&parent->core.cst.spin);
2922                                 continue;
2923                         }
2924                         if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2925                                 kprintf("REASON 2\n");
2926                                 reason = 2;
2927                                 hammer2_chain_drop(chain);
2928                                 spin_lock(&parent->core.cst.spin);
2929                                 continue;
2930                         }
2931                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
2932                                                   HAMMER2_RESOLVE_NOREF);
2933                 }
2934
2935                 /*
2936                  * This is always live so if the chain has been deleted
2937                  * we raced someone and we have to retry.
2938                  *
2939                  * NOTE: Lookups can race delete-duplicate because
2940                  *       delete-duplicate does not lock the parent's core
2941                  *       (they just use the spinlock on the core).  We must
2942                  *       check for races by comparing the DUPLICATED flag before
2943                  *       releasing the spinlock with the flag after locking the
2944                  *       chain.
2945                  *
2946                  *       (note reversed logic for this one)
2947                  */
2948                 if (chain->flags & HAMMER2_CHAIN_DELETED) {
2949                         hammer2_chain_unlock(chain);
2950                         goto next_key;
2951                 }
2952
2953                 /*
2954                  * Shift the chain to the indirect block.
2955                  *
2956                  * WARNING! No reason for us to load chain data, pass NOSTATS
2957                  *          to prevent delete/insert from trying to access
2958                  *          inode stats (and thus asserting if there is no
2959                  *          chain->data loaded).
2960                  */
2961                 hammer2_chain_delete(trans, parent, chain,
2962                                      HAMMER2_DELETE_NOSTATS);
2963                 hammer2_chain_rename(trans, NULL, &ichain, chain,
2964                                      HAMMER2_INSERT_NOSTATS);
2965                 hammer2_chain_unlock(chain);
2966                 KKASSERT(parent->refs > 0);
2967                 chain = NULL;
2968 next_key:
2969                 spin_lock(&parent->core.cst.spin);
2970 next_key_spinlocked:
2971                 if (--maxloops == 0)
2972                         panic("hammer2_chain_create_indirect: maxloops");
2973                 reason = 4;
2974                 if (key_next == 0 || key_next > key_end)
2975                         break;
2976                 key_beg = key_next;
2977                 /* loop */
2978         }
2979         spin_unlock(&parent->core.cst.spin);
2980
2981         /*
2982          * Insert the new indirect block into the parent now that we've
2983          * cleared out some entries in the parent.  We calculated a good
2984          * insertion index in the loop above (ichain->index).
2985          *
2986          * We don't have to set UPDATE here because we mark ichain
2987          * modified down below (so the normal modified -> flush -> set-moved
2988          * sequence applies).
2989          *
2990          * The insertion shouldn't race as this is a completely new block
2991          * and the parent is locked.
2992          */
2993         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2994         hammer2_chain_insert(parent, ichain,
2995                              HAMMER2_CHAIN_INSERT_SPIN |
2996                              HAMMER2_CHAIN_INSERT_LIVE,
2997                              0);
2998
2999         /*
3000          * Make sure flushes propogate after our manual insertion.
3001          */
3002         hammer2_chain_setflush(trans, ichain);
3003         hammer2_chain_setflush(trans, parent);
3004
3005         /*
3006          * Figure out what to return.
3007          */
3008         if (~(((hammer2_key_t)1 << keybits) - 1) &
3009                    (create_key ^ key)) {
3010                 /*
3011                  * Key being created is outside the key range,
3012                  * return the original parent.
3013                  */
3014                 hammer2_chain_unlock(ichain);
3015         } else {
3016                 /*
3017                  * Otherwise its in the range, return the new parent.
3018                  * (leave both the new and old parent locked).
3019                  */
3020                 parent = ichain;
3021         }
3022
3023         return(parent);
3024 }
3025
3026 /*
3027  * Calculate the keybits and highside/lowside of the freemap node the
3028  * caller is creating.
3029  *
3030  * This routine will specify the next higher-level freemap key/radix
3031  * representing the lowest-ordered set.  By doing so, eventually all
3032  * low-ordered sets will be moved one level down.
3033  *
3034  * We have to be careful here because the freemap reserves a limited
3035  * number of blocks for a limited number of levels.  So we can't just
3036  * push indiscriminately.
3037  */
3038 int
3039 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3040                              int keybits, hammer2_blockref_t *base, int count)
3041 {
3042         hammer2_chain_t *chain;
3043         hammer2_blockref_t *bref;
3044         hammer2_key_t key;
3045         hammer2_key_t key_beg;
3046         hammer2_key_t key_end;
3047         hammer2_key_t key_next;
3048         int cache_index;
3049         int locount;
3050         int hicount;
3051         int maxloops = 300000;
3052
3053         key = *keyp;
3054         locount = 0;
3055         hicount = 0;
3056         keybits = 64;
3057
3058         /*
3059          * Calculate the range of keys in the array being careful to skip
3060          * slots which are overridden with a deletion.
3061          */
3062         key_beg = 0;
3063         key_end = HAMMER2_KEY_MAX;
3064         cache_index = 0;
3065         spin_lock(&parent->core.cst.spin);
3066
3067         for (;;) {
3068                 if (--maxloops == 0) {
3069                         panic("indkey_freemap shit %p %p:%d\n",
3070                               parent, base, count);
3071                 }
3072                 chain = hammer2_combined_find(parent, base, count,
3073                                               &cache_index, &key_next,
3074                                               key_beg, key_end,
3075                                               &bref);
3076
3077                 /*
3078                  * Exhausted search
3079                  */
3080                 if (bref == NULL)
3081                         break;
3082
3083                 /*
3084                  * Skip deleted chains.
3085                  */
3086                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3087                         if (key_next == 0 || key_next > key_end)
3088                                 break;
3089                         key_beg = key_next;
3090                         continue;
3091                 }
3092
3093                 /*
3094                  * Use the full live (not deleted) element for the scan
3095                  * iteration.  HAMMER2 does not allow partial replacements.
3096                  *
3097                  * XXX should be built into hammer2_combined_find().
3098                  */
3099                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3100
3101                 if (keybits > bref->keybits) {
3102                         key = bref->key;
3103                         keybits = bref->keybits;
3104                 } else if (keybits == bref->keybits && bref->key < key) {
3105                         key = bref->key;
3106                 }
3107                 if (key_next == 0)
3108                         break;
3109                 key_beg = key_next;
3110         }
3111         spin_unlock(&parent->core.cst.spin);
3112
3113         /*
3114          * Return the keybits for a higher-level FREEMAP_NODE covering
3115          * this node.
3116          */
3117         switch(keybits) {
3118         case HAMMER2_FREEMAP_LEVEL0_RADIX:
3119                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3120                 break;
3121         case HAMMER2_FREEMAP_LEVEL1_RADIX:
3122                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3123                 break;
3124         case HAMMER2_FREEMAP_LEVEL2_RADIX:
3125                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3126                 break;
3127         case HAMMER2_FREEMAP_LEVEL3_RADIX:
3128                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3129                 break;
3130         case HAMMER2_FREEMAP_LEVEL4_RADIX:
3131                 panic("hammer2_chain_indkey_freemap: level too high");
3132                 break;
3133         default:
3134                 panic("hammer2_chain_indkey_freemap: bad radix");
3135                 break;
3136         }
3137         *keyp = key;
3138
3139         return (keybits);
3140 }
3141
3142 /*
3143  * Calculate the keybits and highside/lowside of the indirect block the
3144  * caller is creating.
3145  */
3146 static int
3147 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3148                             int keybits, hammer2_blockref_t *base, int count)
3149 {
3150         hammer2_blockref_t *bref;
3151         hammer2_chain_t *chain;
3152         hammer2_key_t key_beg;
3153         hammer2_key_t key_end;
3154         hammer2_key_t key_next;
3155         hammer2_key_t key;
3156         int nkeybits;
3157         int locount;
3158         int hicount;
3159         int cache_index;
3160         int maxloops = 300000;
3161
3162         key = *keyp;
3163         locount = 0;
3164         hicount = 0;
3165
3166         /*
3167          * Calculate the range of keys in the array being careful to skip
3168          * slots which are overridden with a deletion.  Once the scan
3169          * completes we will cut the key range in half and shift half the
3170          * range into the new indirect block.
3171          */
3172         key_beg = 0;
3173         key_end = HAMMER2_KEY_MAX;
3174         cache_index = 0;
3175         spin_lock(&parent->core.cst.spin);
3176
3177         for (;;) {
3178                 if (--maxloops == 0) {
3179                         panic("indkey_freemap shit %p %p:%d\n",
3180                               parent, base, count);
3181                 }
3182                 chain = hammer2_combined_find(parent, base, count,
3183                                               &cache_index, &key_next,
3184                                               key_beg, key_end,
3185                                               &bref);
3186
3187                 /*
3188                  * Exhausted search
3189                  */
3190                 if (bref == NULL)
3191                         break;
3192
3193                 /*
3194                  * NOTE: No need to check DUPLICATED here because we do
3195                  *       not release the spinlock.
3196                  */
3197                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3198                         if (key_next == 0 || key_next > key_end)
3199                                 break;
3200                         key_beg = key_next;
3201                         continue;
3202                 }
3203
3204                 /*
3205                  * Use the full live (not deleted) element for the scan
3206                  * iteration.  HAMMER2 does not allow partial replacements.
3207                  *
3208                  * XXX should be built into hammer2_combined_find().
3209                  */
3210                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3211
3212                 /*
3213                  * Expand our calculated key range (key, keybits) to fit
3214                  * the scanned key.  nkeybits represents the full range
3215                  * that we will later cut in half (two halves @ nkeybits - 1).
3216                  */
3217                 nkeybits = keybits;
3218                 if (nkeybits < bref->keybits) {
3219                         if (bref->keybits > 64) {
3220                                 kprintf("bad bref chain %p bref %p\n",
3221                                         chain, bref);
3222                                 Debugger("fubar");
3223                         }
3224                         nkeybits = bref->keybits;
3225                 }
3226                 while (nkeybits < 64 &&
3227                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
3228                         (key ^ bref->key)) != 0) {
3229                         ++nkeybits;
3230                 }
3231
3232                 /*
3233                  * If the new key range is larger we have to determine
3234                  * which side of the new key range the existing keys fall
3235                  * under by checking the high bit, then collapsing the
3236                  * locount into the hicount or vise-versa.
3237                  */
3238                 if (keybits != nkeybits) {
3239                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3240                                 hicount += locount;
3241                                 locount = 0;
3242                         } else {
3243                                 locount += hicount;
3244                                 hicount = 0;
3245                         }
3246                         keybits = nkeybits;
3247                 }
3248
3249                 /*
3250                  * The newly scanned key will be in the lower half or the
3251                  * upper half of the (new) key range.
3252                  */
3253                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3254                         ++hicount;
3255                 else
3256                         ++locount;
3257
3258                 if (key_next == 0)
3259                         break;
3260                 key_beg = key_next;
3261         }
3262         spin_unlock(&parent->core.cst.spin);
3263         bref = NULL;    /* now invalid (safety) */
3264
3265         /*
3266          * Adjust keybits to represent half of the full range calculated
3267          * above (radix 63 max)
3268          */
3269         --keybits;
3270
3271         /*
3272          * Select whichever half contains the most elements.  Theoretically
3273          * we can select either side as long as it contains at least one
3274          * element (in order to ensure that a free slot is present to hold
3275          * the indirect block).
3276          */
3277         if (hammer2_indirect_optimize) {
3278                 /*
3279                  * Insert node for least number of keys, this will arrange
3280                  * the first few blocks of a large file or the first few
3281                  * inodes in a directory with fewer indirect blocks when
3282                  * created linearly.
3283                  */
3284                 if (hicount < locount && hicount != 0)
3285                         key |= (hammer2_key_t)1 << keybits;
3286                 else
3287                         key &= ~(hammer2_key_t)1 << keybits;
3288         } else {
3289                 /*
3290                  * Insert node for most number of keys, best for heavily
3291                  * fragmented files.
3292                  */
3293                 if (hicount > locount)
3294                         key |= (hammer2_key_t)1 << keybits;
3295                 else
3296                         key &= ~(hammer2_key_t)1 << keybits;
3297         }
3298         *keyp = key;
3299
3300         return (keybits);
3301 }
3302
3303 /*
3304  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
3305  * it exists.
3306  *
3307  * Both parent and chain must be locked exclusively.
3308  *
3309  * This function will modify the parent if the blockref requires removal
3310  * from the parent's block table.
3311  *
3312  * This function is NOT recursive.  Any entity already pushed into the
3313  * chain (such as an inode) may still need visibility into its contents,
3314  * as well as the ability to read and modify the contents.  For example,
3315  * for an unlinked file which is still open.
3316  */
3317 void
3318 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
3319                      hammer2_chain_t *chain, int flags)
3320 {
3321         KKASSERT(ccms_thread_lock_owned(&chain->core.cst));
3322
3323         /*
3324          * Nothing to do if already marked.
3325          *
3326          * We need the spinlock on the core whos RBTREE contains chain
3327          * to protect against races.
3328          */
3329         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
3330                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
3331                          chain->parent == parent);
3332                 _hammer2_chain_delete_helper(trans, parent, chain, flags);
3333         }
3334
3335         if (flags & HAMMER2_DELETE_PERMANENT) {
3336                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
3337                 hammer2_flush(trans, chain);
3338         } else {
3339                 /* XXX might not be needed */
3340                 hammer2_chain_setflush(trans, chain);
3341         }
3342 }
3343
3344 /*
3345  * Returns the index of the nearest element in the blockref array >= elm.
3346  * Returns (count) if no element could be found.
3347  *
3348  * Sets *key_nextp to the next key for loop purposes but does not modify
3349  * it if the next key would be higher than the current value of *key_nextp.
3350  * Note that *key_nexp can overflow to 0, which should be tested by the
3351  * caller.
3352  *
3353  * (*cache_indexp) is a heuristic and can be any value without effecting
3354  * the result.
3355  *
3356  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3357  *           held through the operation.
3358  */
3359 static int
3360 hammer2_base_find(hammer2_chain_t *parent,
3361                   hammer2_blockref_t *base, int count,
3362                   int *cache_indexp, hammer2_key_t *key_nextp,
3363                   hammer2_key_t key_beg, hammer2_key_t key_end)
3364 {
3365         hammer2_blockref_t *scan;
3366         hammer2_key_t scan_end;
3367         int i;
3368         int limit;
3369
3370         /*
3371          * Require the live chain's already have their core's counted
3372          * so we can optimize operations.
3373          */
3374         KKASSERT(parent->core.flags & HAMMER2_CORE_COUNTEDBREFS);
3375
3376         /*
3377          * Degenerate case
3378          */
3379         if (count == 0 || base == NULL)
3380                 return(count);
3381
3382         /*
3383          * Sequential optimization using *cache_indexp.  This is the most
3384          * likely scenario.
3385          *
3386          * We can avoid trailing empty entries on live chains, otherwise
3387          * we might have to check the whole block array.
3388          */
3389         i = *cache_indexp;
3390         cpu_ccfence();
3391         limit = parent->core.live_zero;
3392         if (i >= limit)
3393                 i = limit - 1;
3394         if (i < 0)
3395                 i = 0;
3396         KKASSERT(i < count);
3397
3398         /*
3399          * Search backwards
3400          */
3401         scan = &base[i];
3402         while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3403                 --scan;
3404                 --i;
3405         }
3406         *cache_indexp = i;
3407
3408         /*
3409          * Search forwards, stop when we find a scan element which
3410          * encloses the key or until we know that there are no further
3411          * elements.
3412          */
3413         while (i < count) {
3414                 if (scan->type != 0) {
3415                         scan_end = scan->key +
3416                                    ((hammer2_key_t)1 << scan->keybits) - 1;
3417                         if (scan->key > key_beg || scan_end >= key_beg)
3418                                 break;
3419                 }
3420                 if (i >= limit)
3421                         return (count);
3422                 ++scan;
3423                 ++i;
3424         }
3425         if (i != count) {
3426                 *cache_indexp = i;
3427                 if (i >= limit) {
3428                         i = count;
3429                 } else {
3430                         scan_end = scan->key +
3431                                    ((hammer2_key_t)1 << scan->keybits);
3432                         if (scan_end && (*key_nextp > scan_end ||
3433                                          *key_nextp == 0)) {
3434                                 *key_nextp = scan_end;
3435                         }
3436                 }
3437         }
3438         return (i);
3439 }
3440
3441 /*
3442  * Do a combined search and return the next match either from the blockref
3443  * array or from the in-memory chain.  Sets *bresp to the returned bref in
3444  * both cases, or sets it to NULL if the search exhausted.  Only returns
3445  * a non-NULL chain if the search matched from the in-memory chain.
3446  *
3447  * When no in-memory chain has been found and a non-NULL bref is returned
3448  * in *bresp.
3449  *
3450  *
3451  * The returned chain is not locked or referenced.  Use the returned bref
3452  * to determine if the search exhausted or not.  Iterate if the base find
3453  * is chosen but matches a deleted chain.
3454  *
3455  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3456  *           held through the operation.
3457  */
3458 static hammer2_chain_t *
3459 hammer2_combined_find(hammer2_chain_t *parent,
3460                       hammer2_blockref_t *base, int count,
3461                       int *cache_indexp, hammer2_key_t *key_nextp,
3462                       hammer2_key_t key_beg, hammer2_key_t key_end,
3463                       hammer2_blockref_t **bresp)
3464 {
3465         hammer2_blockref_t *bref;
3466         hammer2_chain_t *chain;
3467         int i;
3468
3469         /*
3470          * Lookup in block array and in rbtree.
3471          */
3472         *key_nextp = key_end + 1;
3473         i = hammer2_base_find(parent, base, count, cache_indexp,
3474                               key_nextp, key_beg, key_end);
3475         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3476
3477         /*
3478          * Neither matched
3479          */
3480         if (i == count && chain == NULL) {
3481                 *bresp = NULL;
3482                 return(NULL);
3483         }
3484
3485         /*
3486          * Only chain matched.
3487          */
3488         if (i == count) {
3489                 bref = &chain->bref;
3490                 goto found;
3491         }
3492
3493         /*
3494          * Only blockref matched.
3495          */
3496         if (chain == NULL) {
3497                 bref = &base[i];
3498                 goto found;
3499         }
3500
3501         /*
3502          * Both in-memory and blockref matched, select the nearer element.
3503          *
3504          * If both are flush with the left-hand side or both are the
3505          * same distance away, select the chain.  In this situation the
3506          * chain must have been loaded from the matching blockmap.
3507          */
3508         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
3509             chain->bref.key == base[i].key) {
3510                 KKASSERT(chain->bref.key == base[i].key);
3511                 bref = &chain->bref;
3512                 goto found;
3513         }
3514
3515         /*
3516          * Select the nearer key
3517          */
3518         if (chain->bref.key < base[i].key) {
3519                 bref = &chain->bref;
3520         } else {
3521                 bref = &base[i];
3522                 chain = NULL;
3523         }
3524
3525         /*
3526          * If the bref is out of bounds we've exhausted our search.
3527          */
3528 found:
3529         if (bref->key > key_end) {
3530                 *bresp = NULL;
3531                 chain = NULL;
3532         } else {
3533                 *bresp = bref;
3534         }
3535         return(chain);
3536 }
3537
3538 /*
3539  * Locate the specified block array element and delete it.  The element
3540  * must exist.
3541  *
3542  * The spin lock on the related chain must be held.
3543  *
3544  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3545  *       need to be adjusted when we commit the media change.
3546  */
3547 void
3548 hammer2_base_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
3549                     hammer2_blockref_t *base, int count,
3550                     int *cache_indexp, hammer2_chain_t *chain)
3551 {
3552         hammer2_blockref_t *elm = &chain->bref;
3553         hammer2_key_t key_next;
3554         int i;
3555
3556         /*
3557          * Delete element.  Expect the element to exist.
3558          *
3559          * XXX see caller, flush code not yet sophisticated enough to prevent
3560          *     re-flushed in some cases.
3561          */
3562         key_next = 0; /* max range */
3563         i = hammer2_base_find(parent, base, count, cache_indexp,
3564                               &key_next, elm->key, elm->key);
3565         if (i == count || base[i].type == 0 ||
3566             base[i].key != elm->key ||
3567             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
3568              base[i].keybits != elm->keybits)) {
3569                 spin_unlock(&parent->core.cst.spin);
3570                 panic("delete base %p element not found at %d/%d elm %p\n",
3571                       base, i, count, elm);
3572                 return;
3573         }
3574         bzero(&base[i], sizeof(*base));
3575
3576         /*
3577          * We can only optimize parent->core.live_zero for live chains.
3578          */
3579         if (parent->core.live_zero == i + 1) {
3580                 while (--i >= 0 && base[i].type == 0)
3581                         ;
3582                 parent->core.live_zero = i + 1;
3583         }
3584
3585         /*
3586          * Clear appropriate blockmap flags in chain.
3587          */
3588         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
3589                                         HAMMER2_CHAIN_BMAPUPD);
3590 }
3591
3592 /*
3593  * Insert the specified element.  The block array must not already have the
3594  * element and must have space available for the insertion.
3595  *
3596  * The spin lock on the related chain must be held.
3597  *
3598  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3599  *       need to be adjusted when we commit the media change.
3600  */
3601 void
3602 hammer2_base_insert(hammer2_trans_t *trans __unused, hammer2_chain_t *parent,
3603                     hammer2_blockref_t *base, int count,
3604                     int *cache_indexp, hammer2_chain_t *chain)
3605 {
3606         hammer2_blockref_t *elm = &chain->bref;
3607         hammer2_key_t key_next;
3608         hammer2_key_t xkey;
3609         int i;
3610         int j;
3611         int k;
3612         int l;
3613         int u = 1;
3614
3615         /*
3616          * Insert new element.  Expect the element to not already exist
3617          * unless we are replacing it.
3618          *
3619          * XXX see caller, flush code not yet sophisticated enough to prevent
3620          *     re-flushed in some cases.
3621          */
3622         key_next = 0; /* max range */
3623         i = hammer2_base_find(parent, base, count, cache_indexp,
3624                               &key_next, elm->key, elm->key);
3625
3626         /*
3627          * Shortcut fill optimization, typical ordered insertion(s) may not
3628          * require a search.
3629          */
3630         KKASSERT(i >= 0 && i <= count);
3631
3632         /*
3633          * Set appropriate blockmap flags in chain.
3634          */
3635         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
3636
3637         /*
3638          * We can only optimize parent->core.live_zero for live chains.
3639          */
3640         if (i == count && parent->core.live_zero < count) {
3641                 i = parent->core.live_zero++;
3642                 base[i] = *elm;
3643                 return;
3644         }
3645
3646         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
3647         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
3648                 spin_unlock(&parent->core.cst.spin);
3649                 panic("insert base %p overlapping elements at %d elm %p\n",
3650                       base, i, elm);
3651         }
3652
3653         /*
3654          * Try to find an empty slot before or after.
3655          */
3656         j = i;
3657         k = i;
3658         while (j > 0 || k < count) {
3659                 --j;
3660                 if (j >= 0 && base[j].type == 0) {
3661                         if (j == i - 1) {
3662                                 base[j] = *elm;
3663                         } else {
3664                                 bcopy(&base[j+1], &base[j],
3665                                       (i - j - 1) * sizeof(*base));
3666                                 base[i - 1] = *elm;
3667                         }
3668                         goto validate;
3669                 }
3670                 ++k;
3671                 if (k < count && base[k].type == 0) {
3672                         bcopy(&base[i], &base[i+1],
3673                               (k - i) * sizeof(hammer2_blockref_t));
3674                         base[i] = *elm;
3675
3676                         /*
3677                          * We can only update parent->core.live_zero for live
3678                          * chains.
3679                          */
3680                         if (parent->core.live_zero <= k)
3681                                 parent->core.live_zero = k + 1;
3682                         u = 2;
3683                         goto validate;
3684                 }
3685         }
3686         panic("hammer2_base_insert: no room!");
3687
3688         /*
3689          * Debugging
3690          */
3691 validate:
3692         key_next = 0;
3693         for (l = 0; l < count; ++l) {
3694                 if (base[l].type) {
3695                         key_next = base[l].key +
3696                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
3697                         break;
3698                 }
3699         }
3700         while (++l < count) {
3701                 if (base[l].type) {
3702                         if (base[l].key <= key_next)
3703                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
3704                         key_next = base[l].key +
3705                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
3706
3707                 }
3708         }
3709
3710 }
3711
3712 #if 0
3713
3714 /*
3715  * Sort the blockref array for the chain.  Used by the flush code to
3716  * sort the blockref[] array.
3717  *
3718  * The chain must be exclusively locked AND spin-locked.
3719  */
3720 typedef hammer2_blockref_t *hammer2_blockref_p;
3721
3722 static
3723 int
3724 hammer2_base_sort_callback(const void *v1, const void *v2)
3725 {
3726         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
3727         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
3728
3729         /*
3730          * Make sure empty elements are placed at the end of the array
3731          */
3732         if (bref1->type == 0) {
3733                 if (bref2->type == 0)
3734                         return(0);
3735                 return(1);
3736         } else if (bref2->type == 0) {
3737                 return(-1);
3738         }
3739
3740         /*
3741          * Sort by key
3742          */
3743         if (bref1->key < bref2->key)
3744                 return(-1);
3745         if (bref1->key > bref2->key)
3746                 return(1);
3747         return(0);
3748 }
3749
3750 void
3751 hammer2_base_sort(hammer2_chain_t *chain)
3752 {
3753         hammer2_blockref_t *base;
3754         int count;
3755
3756         switch(chain->bref.type) {
3757         case HAMMER2_BREF_TYPE_INODE:
3758                 /*
3759                  * Special shortcut for embedded data returns the inode
3760                  * itself.  Callers must detect this condition and access
3761                  * the embedded data (the strategy code does this for us).
3762                  *
3763                  * This is only applicable to regular files and softlinks.
3764                  */
3765                 if (chain->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
3766                         return;
3767                 base = &chain->data->ipdata.u.blockset.blockref[0];
3768                 count = HAMMER2_SET_COUNT;
3769                 break;
3770         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3771         case HAMMER2_BREF_TYPE_INDIRECT:
3772                 /*
3773                  * Optimize indirect blocks in the INITIAL state to avoid
3774                  * I/O.
3775                  */
3776                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
3777                 base = &chain->data->npdata[0];
3778                 count = chain->bytes / sizeof(hammer2_blockref_t);
3779                 break;
3780         case HAMMER2_BREF_TYPE_VOLUME:
3781                 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
3782                 count = HAMMER2_SET_COUNT;
3783                 break;
3784         case HAMMER2_BREF_TYPE_FREEMAP:
3785                 base = &chain->hmp->voldata.freemap_blockset.blockref[0];
3786                 count = HAMMER2_SET_COUNT;
3787                 break;
3788         default:
3789                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
3790                       chain->bref.type);
3791                 base = NULL;    /* safety */
3792                 count = 0;      /* safety */
3793         }
3794         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
3795 }
3796
3797 #endif
3798
3799 /*
3800  * Chain memory management
3801  */
3802 void
3803 hammer2_chain_wait(hammer2_chain_t *chain)
3804 {
3805         tsleep(chain, 0, "chnflw", 1);
3806 }
3807
3808 const hammer2_media_data_t *
3809 hammer2_chain_rdata(hammer2_chain_t *chain)
3810 {
3811         KKASSERT(chain->data != NULL);
3812         return (chain->data);
3813 }
3814
3815 hammer2_media_data_t *
3816 hammer2_chain_wdata(hammer2_chain_t *chain)
3817 {
3818         KKASSERT(chain->data != NULL);
3819         return (chain->data);
3820 }
3821
3822 /*
3823  * Set the check data for a chain.  This can be a heavy-weight operation
3824  * and typically only runs on-flush.  For file data check data is calculated
3825  * when the logical buffers are flushed.
3826  */
3827 void
3828 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
3829 {
3830         chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
3831
3832         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3833         case HAMMER2_CHECK_NONE:
3834                 break;
3835         case HAMMER2_CHECK_DISABLED:
3836                 break;
3837         case HAMMER2_CHECK_ISCSI32:
3838                 chain->bref.check.iscsi32.value =
3839                         hammer2_icrc32(bdata, chain->bytes);
3840                 break;
3841         case HAMMER2_CHECK_CRC64:
3842                 chain->bref.check.crc64.value = 0;
3843                 /* XXX */
3844                 break;
3845         case HAMMER2_CHECK_SHA192:
3846                 {
3847                         SHA256_CTX hash_ctx;
3848                         union {
3849                                 uint8_t digest[SHA256_DIGEST_LENGTH];
3850                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3851                         } u;
3852
3853                         SHA256_Init(&hash_ctx);
3854                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
3855                         SHA256_Final(u.digest, &hash_ctx);
3856                         u.digest64[2] ^= u.digest64[3];
3857                         bcopy(u.digest,
3858                               chain->bref.check.sha192.data,
3859                               sizeof(chain->bref.check.sha192.data));
3860                 }
3861                 break;
3862         case HAMMER2_CHECK_FREEMAP:
3863                 chain->bref.check.freemap.icrc32 =
3864                         hammer2_icrc32(bdata, chain->bytes);
3865                 break;
3866         default:
3867                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3868                         chain->bref.methods);
3869                 break;
3870         }
3871 }
3872
3873 int
3874 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
3875 {
3876         int r;
3877
3878         if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
3879                 return 1;
3880
3881         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3882         case HAMMER2_CHECK_NONE:
3883                 r = 1;
3884                 break;
3885         case HAMMER2_CHECK_DISABLED:
3886                 r = 1;
3887                 break;
3888         case HAMMER2_CHECK_ISCSI32:
3889                 r = (chain->bref.check.iscsi32.value ==
3890                      hammer2_icrc32(bdata, chain->bytes));
3891                 break;
3892         case HAMMER2_CHECK_CRC64:
3893                 r = (chain->bref.check.crc64.value == 0);
3894                 /* XXX */
3895                 break;
3896         case HAMMER2_CHECK_SHA192:
3897                 {
3898                         SHA256_CTX hash_ctx;
3899                         union {
3900                                 uint8_t digest[SHA256_DIGEST_LENGTH];
3901                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3902                         } u;
3903
3904                         SHA256_Init(&hash_ctx);
3905                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
3906                         SHA256_Final(u.digest, &hash_ctx);
3907                         u.digest64[2] ^= u.digest64[3];
3908                         if (bcmp(u.digest,
3909                                  chain->bref.check.sha192.data,
3910                                  sizeof(chain->bref.check.sha192.data)) == 0) {
3911                                 r = 1;
3912                         } else {
3913                                 r = 0;
3914                         }
3915                 }
3916                 break;
3917         case HAMMER2_CHECK_FREEMAP:
3918                 r = (chain->bref.check.freemap.icrc32 ==
3919                      hammer2_icrc32(bdata, chain->bytes));
3920                 if (r == 0) {
3921                         kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
3922                                 chain->bref.check.freemap.icrc32,
3923                                 hammer2_icrc32(bdata, chain->bytes), chain->bytes);
3924                         if (chain->dio)
3925                                 kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
3926                                         chain->dio, chain->dio->bp->b_loffset, chain->dio->bp->b_bufsize, bdata, chain->dio->bp->b_data);
3927                 }
3928
3929                 break;
3930         default:
3931                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3932                         chain->bref.methods);
3933                 r = 1;
3934                 break;
3935         }
3936         return r;
3937 }