33a6a88ffbc6f4d5d579023de65b28ace77896b9
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 #include "hammer.h"
36 #include <vm/vm_extern.h>
37
38 static int      hammer_unload_inode(struct hammer_inode *ip);
39 static void     hammer_free_inode(hammer_inode_t ip);
40 static void     hammer_flush_inode_core(hammer_inode_t ip,
41                                         hammer_flush_group_t flg, int flags);
42 static int      hammer_setup_child_callback(hammer_record_t rec, void *data);
43 #if 0
44 static int      hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
45 #endif
46 static int      hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
47                                         hammer_flush_group_t flg);
48 static int      hammer_setup_parent_inodes_helper(hammer_record_t record,
49                                         int depth, hammer_flush_group_t flg);
50 static void     hammer_inode_wakereclaims(hammer_inode_t ip);
51 static struct hammer_inostats *hammer_inode_inostats(hammer_mount_t hmp,
52                                         pid_t pid);
53
54 #ifdef DEBUG_TRUNCATE
55 extern struct hammer_inode *HammerTruncIp;
56 #endif
57
58 struct krate hammer_gen_krate = { 1 };
59
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66         if (ip1->obj_localization < ip2->obj_localization)
67                 return(-1);
68         if (ip1->obj_localization > ip2->obj_localization)
69                 return(1);
70         if (ip1->obj_id < ip2->obj_id)
71                 return(-1);
72         if (ip1->obj_id > ip2->obj_id)
73                 return(1);
74         if (ip1->obj_asof < ip2->obj_asof)
75                 return(-1);
76         if (ip1->obj_asof > ip2->obj_asof)
77                 return(1);
78         return(0);
79 }
80
81 int
82 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
83 {
84         if (ip1->redo_fifo_start < ip2->redo_fifo_start)
85                 return(-1);
86         if (ip1->redo_fifo_start > ip2->redo_fifo_start)
87                 return(1);
88         return(0);
89 }
90
91 /*
92  * RB-Tree support for inode structures / special LOOKUP_INFO
93  */
94 static int
95 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
96 {
97         if (info->obj_localization < ip->obj_localization)
98                 return(-1);
99         if (info->obj_localization > ip->obj_localization)
100                 return(1);
101         if (info->obj_id < ip->obj_id)
102                 return(-1);
103         if (info->obj_id > ip->obj_id)
104                 return(1);
105         if (info->obj_asof < ip->obj_asof)
106                 return(-1);
107         if (info->obj_asof > ip->obj_asof)
108                 return(1);
109         return(0);
110 }
111
112 /*
113  * Used by hammer_scan_inode_snapshots() to locate all of an object's
114  * snapshots.  Note that the asof field is not tested, which we can get
115  * away with because it is the lowest-priority field.
116  */
117 static int
118 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
119 {
120         hammer_inode_info_t info = data;
121
122         if (ip->obj_localization > info->obj_localization)
123                 return(1);
124         if (ip->obj_localization < info->obj_localization)
125                 return(-1);
126         if (ip->obj_id > info->obj_id)
127                 return(1);
128         if (ip->obj_id < info->obj_id)
129                 return(-1);
130         return(0);
131 }
132
133 /*
134  * Used by hammer_unload_pseudofs() to locate all inodes associated with
135  * a particular PFS.
136  */
137 static int
138 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
139 {
140         u_int32_t localization = *(u_int32_t *)data;
141         if (ip->obj_localization > localization)
142                 return(1);
143         if (ip->obj_localization < localization)
144                 return(-1);
145         return(0);
146 }
147
148 /*
149  * RB-Tree support for pseudofs structures
150  */
151 static int
152 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
153 {
154         if (p1->localization < p2->localization)
155                 return(-1);
156         if (p1->localization > p2->localization)
157                 return(1);
158         return(0);
159 }
160
161
162 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
163 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
164                 hammer_inode_info_cmp, hammer_inode_info_t);
165 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
166              hammer_pfs_rb_compare, u_int32_t, localization);
167
168 /*
169  * The kernel is not actively referencing this vnode but is still holding
170  * it cached.
171  *
172  * This is called from the frontend.
173  *
174  * MPALMOSTSAFE
175  */
176 int
177 hammer_vop_inactive(struct vop_inactive_args *ap)
178 {
179         struct hammer_inode *ip = VTOI(ap->a_vp);
180         hammer_mount_t hmp;
181
182         /*
183          * Degenerate case
184          */
185         if (ip == NULL) {
186                 vrecycle(ap->a_vp);
187                 return(0);
188         }
189
190         /*
191          * If the inode no longer has visibility in the filesystem try to
192          * recycle it immediately, even if the inode is dirty.  Recycling
193          * it quickly allows the system to reclaim buffer cache and VM
194          * resources which can matter a lot in a heavily loaded system.
195          *
196          * This can deadlock in vfsync() if we aren't careful.
197          * 
198          * Do not queue the inode to the flusher if we still have visibility,
199          * otherwise namespace calls such as chmod will unnecessarily generate
200          * multiple inode updates.
201          */
202         if (ip->ino_data.nlinks == 0) {
203                 hmp = ip->hmp;
204                 lwkt_gettoken(&hmp->fs_token);
205                 hammer_inode_unloadable_check(ip, 0);
206                 if (ip->flags & HAMMER_INODE_MODMASK)
207                         hammer_flush_inode(ip, 0);
208                 lwkt_reltoken(&hmp->fs_token);
209                 vrecycle(ap->a_vp);
210         }
211         return(0);
212 }
213
214 /*
215  * Release the vnode association.  This is typically (but not always)
216  * the last reference on the inode.
217  *
218  * Once the association is lost we are on our own with regards to
219  * flushing the inode.
220  *
221  * We must interlock ip->vp so hammer_get_vnode() can avoid races.
222  */
223 int
224 hammer_vop_reclaim(struct vop_reclaim_args *ap)
225 {
226         struct hammer_inode *ip;
227         hammer_mount_t hmp;
228         struct vnode *vp;
229
230         vp = ap->a_vp;
231
232         if ((ip = vp->v_data) != NULL) {
233                 hmp = ip->hmp;
234                 lwkt_gettoken(&hmp->fs_token);
235                 hammer_lock_ex(&ip->lock);
236                 vp->v_data = NULL;
237                 ip->vp = NULL;
238
239                 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
240                         ++hammer_count_reclaims;
241                         ++hmp->count_reclaims;
242                         ip->flags |= HAMMER_INODE_RECLAIM;
243                 }
244                 hammer_unlock(&ip->lock);
245                 vclrisdirty(vp);
246                 hammer_rel_inode(ip, 1);
247                 lwkt_reltoken(&hmp->fs_token);
248         }
249         return(0);
250 }
251
252 /*
253  * Inform the kernel that the inode is dirty.  This will be checked
254  * by vn_unlock().
255  *
256  * Theoretically in order to reclaim a vnode the hammer_vop_reclaim()
257  * must be called which will interlock against our inode lock, so
258  * if VRECLAIMED is not set vp->v_mount (as used by vsetisdirty())
259  * should be stable without having to acquire any new locks.
260  */
261 void
262 hammer_inode_dirty(struct hammer_inode *ip)
263 {
264         struct vnode *vp;
265
266         if ((ip->flags & HAMMER_INODE_MODMASK) &&
267             (vp = ip->vp) != NULL &&
268             (vp->v_flag & (VRECLAIMED | VISDIRTY)) == 0) {
269                 vsetisdirty(vp);
270         }
271 }
272
273 /*
274  * Return a locked vnode for the specified inode.  The inode must be
275  * referenced but NOT LOCKED on entry and will remain referenced on
276  * return.
277  *
278  * Called from the frontend.
279  */
280 int
281 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
282 {
283         hammer_mount_t hmp;
284         struct vnode *vp;
285         int error = 0;
286         u_int8_t obj_type;
287
288         hmp = ip->hmp;
289
290         for (;;) {
291                 if ((vp = ip->vp) == NULL) {
292                         error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
293                         if (error)
294                                 break;
295                         hammer_lock_ex(&ip->lock);
296                         if (ip->vp != NULL) {
297                                 hammer_unlock(&ip->lock);
298                                 vp = *vpp;
299                                 vp->v_type = VBAD;
300                                 vx_put(vp);
301                                 continue;
302                         }
303                         hammer_ref(&ip->lock);
304                         vp = *vpp;
305                         ip->vp = vp;
306
307                         obj_type = ip->ino_data.obj_type;
308                         vp->v_type = hammer_get_vnode_type(obj_type);
309
310                         hammer_inode_wakereclaims(ip);
311
312                         switch(ip->ino_data.obj_type) {
313                         case HAMMER_OBJTYPE_CDEV:
314                         case HAMMER_OBJTYPE_BDEV:
315                                 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
316                                 addaliasu(vp, ip->ino_data.rmajor,
317                                           ip->ino_data.rminor);
318                                 break;
319                         case HAMMER_OBJTYPE_FIFO:
320                                 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
321                                 break;
322                         case HAMMER_OBJTYPE_REGFILE:
323                                 break;
324                         default:
325                                 break;
326                         }
327
328                         /*
329                          * Only mark as the root vnode if the ip is not
330                          * historical, otherwise the VFS cache will get
331                          * confused.  The other half of the special handling
332                          * is in hammer_vop_nlookupdotdot().
333                          *
334                          * Pseudo-filesystem roots can be accessed via
335                          * non-root filesystem paths and setting VROOT may
336                          * confuse the namecache.  Set VPFSROOT instead.
337                          */
338                         if (ip->obj_id == HAMMER_OBJID_ROOT &&
339                             ip->obj_asof == hmp->asof) {
340                                 if (ip->obj_localization == 0)
341                                         vsetflags(vp, VROOT);
342                                 else
343                                         vsetflags(vp, VPFSROOT);
344                         }
345
346                         vp->v_data = (void *)ip;
347                         /* vnode locked by getnewvnode() */
348                         /* make related vnode dirty if inode dirty? */
349                         hammer_unlock(&ip->lock);
350                         if (vp->v_type == VREG) {
351                                 vinitvmio(vp, ip->ino_data.size,
352                                           hammer_blocksize(ip->ino_data.size),
353                                           hammer_blockoff(ip->ino_data.size));
354                         }
355                         break;
356                 }
357
358                 /*
359                  * Interlock vnode clearing.  This does not prevent the
360                  * vnode from going into a reclaimed state but it does
361                  * prevent it from being destroyed or reused so the vget()
362                  * will properly fail.
363                  */
364                 hammer_lock_ex(&ip->lock);
365                 if ((vp = ip->vp) == NULL) {
366                         hammer_unlock(&ip->lock);
367                         continue;
368                 }
369                 vhold(vp);
370                 hammer_unlock(&ip->lock);
371
372                 /*
373                  * loop if the vget fails (aka races), or if the vp
374                  * no longer matches ip->vp.
375                  */
376                 if (vget(vp, LK_EXCLUSIVE) == 0) {
377                         if (vp == ip->vp) {
378                                 vdrop(vp);
379                                 break;
380                         }
381                         vput(vp);
382                 }
383                 vdrop(vp);
384         }
385         *vpp = vp;
386         return(error);
387 }
388
389 /*
390  * Locate all copies of the inode for obj_id compatible with the specified
391  * asof, reference, and issue the related call-back.  This routine is used
392  * for direct-io invalidation and does not create any new inodes.
393  */
394 void
395 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
396                             int (*callback)(hammer_inode_t ip, void *data),
397                             void *data)
398 {
399         hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
400                                    hammer_inode_info_cmp_all_history,
401                                    callback, iinfo);
402 }
403
404 /*
405  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
406  * do not attach or detach the related vnode (use hammer_get_vnode() for
407  * that).
408  *
409  * The flags argument is only applied for newly created inodes, and only
410  * certain flags are inherited.
411  *
412  * Called from the frontend.
413  */
414 struct hammer_inode *
415 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
416                  int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
417                  int flags, int *errorp)
418 {
419         hammer_mount_t hmp = trans->hmp;
420         struct hammer_node_cache *cachep;
421         struct hammer_inode_info iinfo;
422         struct hammer_cursor cursor;
423         struct hammer_inode *ip;
424
425
426         /*
427          * Determine if we already have an inode cached.  If we do then
428          * we are golden.
429          *
430          * If we find an inode with no vnode we have to mark the
431          * transaction such that hammer_inode_waitreclaims() is
432          * called later on to avoid building up an infinite number
433          * of inodes.  Otherwise we can continue to * add new inodes
434          * faster then they can be disposed of, even with the tsleep
435          * delay.
436          *
437          * If we find a dummy inode we return a failure so dounlink
438          * (which does another lookup) doesn't try to mess with the
439          * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
440          * to ref dummy inodes.
441          */
442         iinfo.obj_id = obj_id;
443         iinfo.obj_asof = asof;
444         iinfo.obj_localization = localization;
445 loop:
446         ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
447         if (ip) {
448                 if (ip->flags & HAMMER_INODE_DUMMY) {
449                         *errorp = ENOENT;
450                         return(NULL);
451                 }
452                 hammer_ref(&ip->lock);
453                 *errorp = 0;
454                 return(ip);
455         }
456
457         /*
458          * Allocate a new inode structure and deal with races later.
459          */
460         ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
461         ++hammer_count_inodes;
462         ++hmp->count_inodes;
463         ip->obj_id = obj_id;
464         ip->obj_asof = iinfo.obj_asof;
465         ip->obj_localization = localization;
466         ip->hmp = hmp;
467         ip->flags = flags & HAMMER_INODE_RO;
468         ip->cache[0].ip = ip;
469         ip->cache[1].ip = ip;
470         ip->cache[2].ip = ip;
471         ip->cache[3].ip = ip;
472         if (hmp->ronly)
473                 ip->flags |= HAMMER_INODE_RO;
474         ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
475                 0x7FFFFFFFFFFFFFFFLL;
476         RB_INIT(&ip->rec_tree);
477         TAILQ_INIT(&ip->target_list);
478         hammer_ref(&ip->lock);
479
480         /*
481          * Locate the on-disk inode.  If this is a PFS root we always
482          * access the current version of the root inode and (if it is not
483          * a master) always access information under it with a snapshot
484          * TID.
485          *
486          * We cache recent inode lookups in this directory in dip->cache[2].
487          * If we can't find it we assume the inode we are looking for is
488          * close to the directory inode.
489          */
490 retry:
491         cachep = NULL;
492         if (dip) {
493                 if (dip->cache[2].node)
494                         cachep = &dip->cache[2];
495                 else
496                         cachep = &dip->cache[0];
497         }
498         hammer_init_cursor(trans, &cursor, cachep, NULL);
499         cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
500         cursor.key_beg.obj_id = ip->obj_id;
501         cursor.key_beg.key = 0;
502         cursor.key_beg.create_tid = 0;
503         cursor.key_beg.delete_tid = 0;
504         cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
505         cursor.key_beg.obj_type = 0;
506
507         cursor.asof = iinfo.obj_asof;
508         cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
509                        HAMMER_CURSOR_ASOF;
510
511         *errorp = hammer_btree_lookup(&cursor);
512         if (*errorp == EDEADLK) {
513                 hammer_done_cursor(&cursor);
514                 goto retry;
515         }
516
517         /*
518          * On success the B-Tree lookup will hold the appropriate
519          * buffer cache buffers and provide a pointer to the requested
520          * information.  Copy the information to the in-memory inode
521          * and cache the B-Tree node to improve future operations.
522          */
523         if (*errorp == 0) {
524                 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
525                 ip->ino_data = cursor.data->inode;
526
527                 /*
528                  * cache[0] tries to cache the location of the object inode.
529                  * The assumption is that it is near the directory inode.
530                  *
531                  * cache[1] tries to cache the location of the object data.
532                  * We might have something in the governing directory from
533                  * scan optimizations (see the strategy code in
534                  * hammer_vnops.c).
535                  *
536                  * We update dip->cache[2], if possible, with the location
537                  * of the object inode for future directory shortcuts.
538                  */
539                 hammer_cache_node(&ip->cache[0], cursor.node);
540                 if (dip) {
541                         if (dip->cache[3].node) {
542                                 hammer_cache_node(&ip->cache[1],
543                                                   dip->cache[3].node);
544                         }
545                         hammer_cache_node(&dip->cache[2], cursor.node);
546                 }
547
548                 /*
549                  * The file should not contain any data past the file size
550                  * stored in the inode.  Setting save_trunc_off to the
551                  * file size instead of max reduces B-Tree lookup overheads
552                  * on append by allowing the flusher to avoid checking for
553                  * record overwrites.
554                  */
555                 ip->save_trunc_off = ip->ino_data.size;
556
557                 /*
558                  * Locate and assign the pseudofs management structure to
559                  * the inode.
560                  */
561                 if (dip && dip->obj_localization == ip->obj_localization) {
562                         ip->pfsm = dip->pfsm;
563                         hammer_ref(&ip->pfsm->lock);
564                 } else {
565                         ip->pfsm = hammer_load_pseudofs(trans,
566                                                         ip->obj_localization,
567                                                         errorp);
568                         *errorp = 0;    /* ignore ENOENT */
569                 }
570         }
571
572         /*
573          * The inode is placed on the red-black tree and will be synced to
574          * the media when flushed or by the filesystem sync.  If this races
575          * another instantiation/lookup the insertion will fail.
576          */
577         if (*errorp == 0) {
578                 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
579                         hammer_free_inode(ip);
580                         hammer_done_cursor(&cursor);
581                         goto loop;
582                 }
583                 ip->flags |= HAMMER_INODE_ONDISK;
584         } else {
585                 if (ip->flags & HAMMER_INODE_RSV_INODES) {
586                         ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
587                         --hmp->rsv_inodes;
588                 }
589
590                 hammer_free_inode(ip);
591                 ip = NULL;
592         }
593         hammer_done_cursor(&cursor);
594
595         /*
596          * NEWINODE is only set if the inode becomes dirty later,
597          * setting it here just leads to unnecessary stalls.
598          *
599          * trans->flags |= HAMMER_TRANSF_NEWINODE;
600          */
601         return (ip);
602 }
603
604 /*
605  * Get a dummy inode to placemark a broken directory entry.
606  */
607 struct hammer_inode *
608 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
609                  int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
610                  int flags, int *errorp)
611 {
612         hammer_mount_t hmp = trans->hmp;
613         struct hammer_inode_info iinfo;
614         struct hammer_inode *ip;
615
616         /*
617          * Determine if we already have an inode cached.  If we do then
618          * we are golden.
619          *
620          * If we find an inode with no vnode we have to mark the
621          * transaction such that hammer_inode_waitreclaims() is
622          * called later on to avoid building up an infinite number
623          * of inodes.  Otherwise we can continue to * add new inodes
624          * faster then they can be disposed of, even with the tsleep
625          * delay.
626          *
627          * If we find a non-fake inode we return an error.  Only fake
628          * inodes can be returned by this routine.
629          */
630         iinfo.obj_id = obj_id;
631         iinfo.obj_asof = asof;
632         iinfo.obj_localization = localization;
633 loop:
634         *errorp = 0;
635         ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
636         if (ip) {
637                 if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
638                         *errorp = ENOENT;
639                         return(NULL);
640                 }
641                 hammer_ref(&ip->lock);
642                 return(ip);
643         }
644
645         /*
646          * Allocate a new inode structure and deal with races later.
647          */
648         ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
649         ++hammer_count_inodes;
650         ++hmp->count_inodes;
651         ip->obj_id = obj_id;
652         ip->obj_asof = iinfo.obj_asof;
653         ip->obj_localization = localization;
654         ip->hmp = hmp;
655         ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
656         ip->cache[0].ip = ip;
657         ip->cache[1].ip = ip;
658         ip->cache[2].ip = ip;
659         ip->cache[3].ip = ip;
660         ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
661                 0x7FFFFFFFFFFFFFFFLL;
662         RB_INIT(&ip->rec_tree);
663         TAILQ_INIT(&ip->target_list);
664         hammer_ref(&ip->lock);
665
666         /*
667          * Populate the dummy inode.  Leave everything zero'd out.
668          *
669          * (ip->ino_leaf and ip->ino_data)
670          *
671          * Make the dummy inode a FIFO object which most copy programs
672          * will properly ignore.
673          */
674         ip->save_trunc_off = ip->ino_data.size;
675         ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
676
677         /*
678          * Locate and assign the pseudofs management structure to
679          * the inode.
680          */
681         if (dip && dip->obj_localization == ip->obj_localization) {
682                 ip->pfsm = dip->pfsm;
683                 hammer_ref(&ip->pfsm->lock);
684         } else {
685                 ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
686                                                 errorp);
687                 *errorp = 0;    /* ignore ENOENT */
688         }
689
690         /*
691          * The inode is placed on the red-black tree and will be synced to
692          * the media when flushed or by the filesystem sync.  If this races
693          * another instantiation/lookup the insertion will fail.
694          *
695          * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
696          */
697         if (*errorp == 0) {
698                 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
699                         hammer_free_inode(ip);
700                         goto loop;
701                 }
702         } else {
703                 if (ip->flags & HAMMER_INODE_RSV_INODES) {
704                         ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
705                         --hmp->rsv_inodes;
706                 }
707                 hammer_free_inode(ip);
708                 ip = NULL;
709         }
710         trans->flags |= HAMMER_TRANSF_NEWINODE;
711         return (ip);
712 }
713
714 /*
715  * Return a referenced inode only if it is in our inode cache.
716  *
717  * Dummy inodes do not count.
718  */
719 struct hammer_inode *
720 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
721                   hammer_tid_t asof, u_int32_t localization)
722 {
723         hammer_mount_t hmp = trans->hmp;
724         struct hammer_inode_info iinfo;
725         struct hammer_inode *ip;
726
727         iinfo.obj_id = obj_id;
728         iinfo.obj_asof = asof;
729         iinfo.obj_localization = localization;
730
731         ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
732         if (ip) {
733                 if (ip->flags & HAMMER_INODE_DUMMY)
734                         ip = NULL;
735                 else
736                         hammer_ref(&ip->lock);
737         }
738         return(ip);
739 }
740
741 /*
742  * Create a new filesystem object, returning the inode in *ipp.  The
743  * returned inode will be referenced.  The inode is created in-memory.
744  *
745  * If pfsm is non-NULL the caller wishes to create the root inode for
746  * a master PFS.
747  */
748 int
749 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
750                     struct ucred *cred,
751                     hammer_inode_t dip, const char *name, int namelen,
752                     hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
753 {
754         hammer_mount_t hmp;
755         hammer_inode_t ip;
756         uid_t xuid;
757         int error;
758         int64_t namekey;
759         u_int32_t dummy;
760
761         hmp = trans->hmp;
762
763         /*
764          * Disallow the creation of new inodes in directories which
765          * have been deleted.  In HAMMER, this will cause a record
766          * syncing assertion later on in the flush code.
767          */
768         if (dip && dip->ino_data.nlinks == 0) {
769                 *ipp = NULL;
770                 return (EINVAL);
771         }
772
773         /*
774          * Allocate inode
775          */
776         ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
777         ++hammer_count_inodes;
778         ++hmp->count_inodes;
779         trans->flags |= HAMMER_TRANSF_NEWINODE;
780
781         if (pfsm) {
782                 KKASSERT(pfsm->localization != 0);
783                 ip->obj_id = HAMMER_OBJID_ROOT;
784                 ip->obj_localization = pfsm->localization;
785         } else {
786                 KKASSERT(dip != NULL);
787                 namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
788                 ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
789                 ip->obj_localization = dip->obj_localization;
790         }
791
792         KKASSERT(ip->obj_id != 0);
793         ip->obj_asof = hmp->asof;
794         ip->hmp = hmp;
795         ip->flush_state = HAMMER_FST_IDLE;
796         ip->flags = HAMMER_INODE_DDIRTY |
797                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
798         ip->cache[0].ip = ip;
799         ip->cache[1].ip = ip;
800         ip->cache[2].ip = ip;
801         ip->cache[3].ip = ip;
802
803         ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
804         /* ip->save_trunc_off = 0; (already zero) */
805         RB_INIT(&ip->rec_tree);
806         TAILQ_INIT(&ip->target_list);
807
808         ip->ino_data.atime = trans->time;
809         ip->ino_data.mtime = trans->time;
810         ip->ino_data.size = 0;
811         ip->ino_data.nlinks = 0;
812
813         /*
814          * A nohistory designator on the parent directory is inherited by
815          * the child.  We will do this even for pseudo-fs creation... the
816          * sysad can turn it off.
817          */
818         if (dip) {
819                 ip->ino_data.uflags = dip->ino_data.uflags &
820                                       (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
821         }
822
823         ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
824         ip->ino_leaf.base.localization = ip->obj_localization +
825                                          HAMMER_LOCALIZE_INODE;
826         ip->ino_leaf.base.obj_id = ip->obj_id;
827         ip->ino_leaf.base.key = 0;
828         ip->ino_leaf.base.create_tid = 0;
829         ip->ino_leaf.base.delete_tid = 0;
830         ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
831         ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
832
833         ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
834         ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
835         ip->ino_data.mode = vap->va_mode;
836         ip->ino_data.ctime = trans->time;
837
838         /*
839          * If we are running version 2 or greater directory entries are
840          * inode-localized instead of data-localized.
841          */
842         if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
843                 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
844                         ip->ino_data.cap_flags |=
845                                 HAMMER_INODE_CAP_DIR_LOCAL_INO;
846                 }
847         }
848         if (trans->hmp->version >= HAMMER_VOL_VERSION_SIX) {
849                 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
850                         ip->ino_data.cap_flags |=
851                                 HAMMER_INODE_CAP_DIRHASH_ALG1;
852                 }
853         }
854
855         /*
856          * Setup the ".." pointer.  This only needs to be done for directories
857          * but we do it for all objects as a recovery aid.
858          */
859         if (dip)
860                 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
861 #if 0
862         /*
863          * The parent_obj_localization field only applies to pseudo-fs roots.
864          * XXX this is no longer applicable, PFSs are no longer directly
865          * tied into the parent's directory structure.
866          */
867         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
868             ip->obj_id == HAMMER_OBJID_ROOT) {
869                 ip->ino_data.ext.obj.parent_obj_localization = 
870                                                 dip->obj_localization;
871         }
872 #endif
873
874         switch(ip->ino_leaf.base.obj_type) {
875         case HAMMER_OBJTYPE_CDEV:
876         case HAMMER_OBJTYPE_BDEV:
877                 ip->ino_data.rmajor = vap->va_rmajor;
878                 ip->ino_data.rminor = vap->va_rminor;
879                 break;
880         default:
881                 break;
882         }
883
884         /*
885          * Calculate default uid/gid and overwrite with information from
886          * the vap.
887          */
888         if (dip) {
889                 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
890                 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
891                                              xuid, cred, &vap->va_mode);
892         } else {
893                 xuid = 0;
894         }
895         ip->ino_data.mode = vap->va_mode;
896
897         if (vap->va_vaflags & VA_UID_UUID_VALID)
898                 ip->ino_data.uid = vap->va_uid_uuid;
899         else if (vap->va_uid != (uid_t)VNOVAL)
900                 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
901         else
902                 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
903
904         if (vap->va_vaflags & VA_GID_UUID_VALID)
905                 ip->ino_data.gid = vap->va_gid_uuid;
906         else if (vap->va_gid != (gid_t)VNOVAL)
907                 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
908         else if (dip)
909                 ip->ino_data.gid = dip->ino_data.gid;
910
911         hammer_ref(&ip->lock);
912
913         if (pfsm) {
914                 ip->pfsm = pfsm;
915                 hammer_ref(&pfsm->lock);
916                 error = 0;
917         } else if (dip->obj_localization == ip->obj_localization) {
918                 ip->pfsm = dip->pfsm;
919                 hammer_ref(&ip->pfsm->lock);
920                 error = 0;
921         } else {
922                 ip->pfsm = hammer_load_pseudofs(trans,
923                                                 ip->obj_localization,
924                                                 &error);
925                 error = 0;      /* ignore ENOENT */
926         }
927
928         if (error) {
929                 hammer_free_inode(ip);
930                 ip = NULL;
931         } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
932                 panic("hammer_create_inode: duplicate obj_id %llx",
933                       (long long)ip->obj_id);
934                 /* not reached */
935                 hammer_free_inode(ip);
936         }
937         *ipp = ip;
938         return(error);
939 }
940
941 /*
942  * Final cleanup / freeing of an inode structure
943  */
944 static void
945 hammer_free_inode(hammer_inode_t ip)
946 {
947         struct hammer_mount *hmp;
948
949         hmp = ip->hmp;
950         KKASSERT(hammer_oneref(&ip->lock));
951         hammer_uncache_node(&ip->cache[0]);
952         hammer_uncache_node(&ip->cache[1]);
953         hammer_uncache_node(&ip->cache[2]);
954         hammer_uncache_node(&ip->cache[3]);
955         hammer_inode_wakereclaims(ip);
956         if (ip->objid_cache)
957                 hammer_clear_objid(ip);
958         --hammer_count_inodes;
959         --hmp->count_inodes;
960         if (ip->pfsm) {
961                 hammer_rel_pseudofs(hmp, ip->pfsm);
962                 ip->pfsm = NULL;
963         }
964         kfree(ip, hmp->m_inodes);
965         ip = NULL;
966 }
967
968 /*
969  * Retrieve pseudo-fs data.  NULL will never be returned.
970  *
971  * If an error occurs *errorp will be set and a default template is returned,
972  * otherwise *errorp is set to 0.  Typically when an error occurs it will
973  * be ENOENT.
974  */
975 hammer_pseudofs_inmem_t
976 hammer_load_pseudofs(hammer_transaction_t trans,
977                      u_int32_t localization, int *errorp)
978 {
979         hammer_mount_t hmp = trans->hmp;
980         hammer_inode_t ip;
981         hammer_pseudofs_inmem_t pfsm;
982         struct hammer_cursor cursor;
983         int bytes;
984
985 retry:
986         pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
987         if (pfsm) {
988                 hammer_ref(&pfsm->lock);
989                 *errorp = 0;
990                 return(pfsm);
991         }
992
993         /*
994          * PFS records are stored in the root inode (not the PFS root inode,
995          * but the real root).  Avoid an infinite recursion if loading
996          * the PFS for the real root.
997          */
998         if (localization) {
999                 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
1000                                       HAMMER_MAX_TID,
1001                                       HAMMER_DEF_LOCALIZATION, 0, errorp);
1002         } else {
1003                 ip = NULL;
1004         }
1005
1006         pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
1007         pfsm->localization = localization;
1008         pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
1009         pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
1010
1011         hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
1012         cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
1013                                       HAMMER_LOCALIZE_MISC;
1014         cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1015         cursor.key_beg.create_tid = 0;
1016         cursor.key_beg.delete_tid = 0;
1017         cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1018         cursor.key_beg.obj_type = 0;
1019         cursor.key_beg.key = localization;
1020         cursor.asof = HAMMER_MAX_TID;
1021         cursor.flags |= HAMMER_CURSOR_ASOF;
1022
1023         if (ip)
1024                 *errorp = hammer_ip_lookup(&cursor);
1025         else
1026                 *errorp = hammer_btree_lookup(&cursor);
1027         if (*errorp == 0) {
1028                 *errorp = hammer_ip_resolve_data(&cursor);
1029                 if (*errorp == 0) {
1030                         if (cursor.data->pfsd.mirror_flags &
1031                             HAMMER_PFSD_DELETED) {
1032                                 *errorp = ENOENT;
1033                         } else {
1034                                 bytes = cursor.leaf->data_len;
1035                                 if (bytes > sizeof(pfsm->pfsd))
1036                                         bytes = sizeof(pfsm->pfsd);
1037                                 bcopy(cursor.data, &pfsm->pfsd, bytes);
1038                         }
1039                 }
1040         }
1041         hammer_done_cursor(&cursor);
1042
1043         pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1044         hammer_ref(&pfsm->lock);
1045         if (ip)
1046                 hammer_rel_inode(ip, 0);
1047         if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
1048                 kfree(pfsm, hmp->m_misc);
1049                 goto retry;
1050         }
1051         return(pfsm);
1052 }
1053
1054 /*
1055  * Store pseudo-fs data.  The backend will automatically delete any prior
1056  * on-disk pseudo-fs data but we have to delete in-memory versions.
1057  */
1058 int
1059 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1060 {
1061         struct hammer_cursor cursor;
1062         hammer_record_t record;
1063         hammer_inode_t ip;
1064         int error;
1065
1066         ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1067                               HAMMER_DEF_LOCALIZATION, 0, &error);
1068 retry:
1069         pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1070         hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1071         cursor.key_beg.localization = ip->obj_localization +
1072                                       HAMMER_LOCALIZE_MISC;
1073         cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1074         cursor.key_beg.create_tid = 0;
1075         cursor.key_beg.delete_tid = 0;
1076         cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1077         cursor.key_beg.obj_type = 0;
1078         cursor.key_beg.key = pfsm->localization;
1079         cursor.asof = HAMMER_MAX_TID;
1080         cursor.flags |= HAMMER_CURSOR_ASOF;
1081
1082         /*
1083          * Replace any in-memory version of the record.
1084          */
1085         error = hammer_ip_lookup(&cursor);
1086         if (error == 0 && hammer_cursor_inmem(&cursor)) {
1087                 record = cursor.iprec;
1088                 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1089                         KKASSERT(cursor.deadlk_rec == NULL);
1090                         hammer_ref(&record->lock);
1091                         cursor.deadlk_rec = record;
1092                         error = EDEADLK;
1093                 } else {
1094                         record->flags |= HAMMER_RECF_DELETED_FE;
1095                         error = 0;
1096                 }
1097         }
1098
1099         /*
1100          * Allocate replacement general record.  The backend flush will
1101          * delete any on-disk version of the record.
1102          */
1103         if (error == 0 || error == ENOENT) {
1104                 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1105                 record->type = HAMMER_MEM_RECORD_GENERAL;
1106
1107                 record->leaf.base.localization = ip->obj_localization +
1108                                                  HAMMER_LOCALIZE_MISC;
1109                 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1110                 record->leaf.base.key = pfsm->localization;
1111                 record->leaf.data_len = sizeof(pfsm->pfsd);
1112                 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1113                 error = hammer_ip_add_record(trans, record);
1114         }
1115         hammer_done_cursor(&cursor);
1116         if (error == EDEADLK)
1117                 goto retry;
1118         hammer_rel_inode(ip, 0);
1119         return(error);
1120 }
1121
1122 /*
1123  * Create a root directory for a PFS if one does not alredy exist.
1124  *
1125  * The PFS root stands alone so we must also bump the nlinks count
1126  * to prevent it from being destroyed on release.
1127  */
1128 int
1129 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1130                        hammer_pseudofs_inmem_t pfsm)
1131 {
1132         hammer_inode_t ip;
1133         struct vattr vap;
1134         int error;
1135
1136         ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1137                               pfsm->localization, 0, &error);
1138         if (ip == NULL) {
1139                 vattr_null(&vap);
1140                 vap.va_mode = 0755;
1141                 vap.va_type = VDIR;
1142                 error = hammer_create_inode(trans, &vap, cred,
1143                                             NULL, NULL, 0,
1144                                             pfsm, &ip);
1145                 if (error == 0) {
1146                         ++ip->ino_data.nlinks;
1147                         hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
1148                 }
1149         }
1150         if (ip)
1151                 hammer_rel_inode(ip, 0);
1152         return(error);
1153 }
1154
1155 /*
1156  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1157  * if we are unable to disassociate all the inodes.
1158  */
1159 static
1160 int
1161 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1162 {
1163         int res;
1164
1165         hammer_ref(&ip->lock);
1166         if (hammer_isactive(&ip->lock) == 2 && ip->vp)
1167                 vclean_unlocked(ip->vp);
1168         if (hammer_isactive(&ip->lock) == 1 && ip->vp == NULL)
1169                 res = 0;
1170         else
1171                 res = -1;       /* stop, someone is using the inode */
1172         hammer_rel_inode(ip, 0);
1173         return(res);
1174 }
1175
1176 int
1177 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1178 {
1179         int res;
1180         int try;
1181
1182         for (try = res = 0; try < 4; ++try) {
1183                 res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1184                                            hammer_inode_pfs_cmp,
1185                                            hammer_unload_pseudofs_callback,
1186                                            &localization);
1187                 if (res == 0 && try > 1)
1188                         break;
1189                 hammer_flusher_sync(trans->hmp);
1190         }
1191         if (res != 0)
1192                 res = ENOTEMPTY;
1193         return(res);
1194 }
1195
1196
1197 /*
1198  * Release a reference on a PFS
1199  */
1200 void
1201 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1202 {
1203         hammer_rel(&pfsm->lock);
1204         if (hammer_norefs(&pfsm->lock)) {
1205                 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1206                 kfree(pfsm, hmp->m_misc);
1207         }
1208 }
1209
1210 /*
1211  * Called by hammer_sync_inode().
1212  */
1213 static int
1214 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1215 {
1216         hammer_transaction_t trans = cursor->trans;
1217         hammer_record_t record;
1218         int error;
1219         int redirty;
1220
1221 retry:
1222         error = 0;
1223
1224         /*
1225          * If the inode has a presence on-disk then locate it and mark
1226          * it deleted, setting DELONDISK.
1227          *
1228          * The record may or may not be physically deleted, depending on
1229          * the retention policy.
1230          */
1231         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1232             HAMMER_INODE_ONDISK) {
1233                 hammer_normalize_cursor(cursor);
1234                 cursor->key_beg.localization = ip->obj_localization + 
1235                                                HAMMER_LOCALIZE_INODE;
1236                 cursor->key_beg.obj_id = ip->obj_id;
1237                 cursor->key_beg.key = 0;
1238                 cursor->key_beg.create_tid = 0;
1239                 cursor->key_beg.delete_tid = 0;
1240                 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1241                 cursor->key_beg.obj_type = 0;
1242                 cursor->asof = ip->obj_asof;
1243                 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1244                 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1245                 cursor->flags |= HAMMER_CURSOR_BACKEND;
1246
1247                 error = hammer_btree_lookup(cursor);
1248                 if (hammer_debug_inode)
1249                         kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1250
1251                 if (error == 0) {
1252                         error = hammer_ip_delete_record(cursor, ip, trans->tid);
1253                         if (hammer_debug_inode)
1254                                 kprintf(" error %d\n", error);
1255                         if (error == 0) {
1256                                 ip->flags |= HAMMER_INODE_DELONDISK;
1257                         }
1258                         if (cursor->node)
1259                                 hammer_cache_node(&ip->cache[0], cursor->node);
1260                 }
1261                 if (error == EDEADLK) {
1262                         hammer_done_cursor(cursor);
1263                         error = hammer_init_cursor(trans, cursor,
1264                                                    &ip->cache[0], ip);
1265                         if (hammer_debug_inode)
1266                                 kprintf("IPDED %p %d\n", ip, error);
1267                         if (error == 0)
1268                                 goto retry;
1269                 }
1270         }
1271
1272         /*
1273          * Ok, write out the initial record or a new record (after deleting
1274          * the old one), unless the DELETED flag is set.  This routine will
1275          * clear DELONDISK if it writes out a record.
1276          *
1277          * Update our inode statistics if this is the first application of
1278          * the inode on-disk.
1279          */
1280         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1281                 /*
1282                  * Generate a record and write it to the media.  We clean-up
1283                  * the state before releasing so we do not have to set-up
1284                  * a flush_group.
1285                  */
1286                 record = hammer_alloc_mem_record(ip, 0);
1287                 record->type = HAMMER_MEM_RECORD_INODE;
1288                 record->flush_state = HAMMER_FST_FLUSH;
1289                 record->leaf = ip->sync_ino_leaf;
1290                 record->leaf.base.create_tid = trans->tid;
1291                 record->leaf.data_len = sizeof(ip->sync_ino_data);
1292                 record->leaf.create_ts = trans->time32;
1293                 record->data = (void *)&ip->sync_ino_data;
1294                 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1295
1296                 /*
1297                  * If this flag is set we cannot sync the new file size
1298                  * because we haven't finished related truncations.  The
1299                  * inode will be flushed in another flush group to finish
1300                  * the job.
1301                  */
1302                 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1303                     ip->sync_ino_data.size != ip->ino_data.size) {
1304                         redirty = 1;
1305                         ip->sync_ino_data.size = ip->ino_data.size;
1306                 } else {
1307                         redirty = 0;
1308                 }
1309
1310                 for (;;) {
1311                         error = hammer_ip_sync_record_cursor(cursor, record);
1312                         if (hammer_debug_inode)
1313                                 kprintf("GENREC %p rec %08x %d\n",      
1314                                         ip, record->flags, error);
1315                         if (error != EDEADLK)
1316                                 break;
1317                         hammer_done_cursor(cursor);
1318                         error = hammer_init_cursor(trans, cursor,
1319                                                    &ip->cache[0], ip);
1320                         if (hammer_debug_inode)
1321                                 kprintf("GENREC reinit %d\n", error);
1322                         if (error)
1323                                 break;
1324                 }
1325
1326                 /*
1327                  * Note:  The record was never on the inode's record tree
1328                  * so just wave our hands importantly and destroy it.
1329                  */
1330                 record->flags |= HAMMER_RECF_COMMITTED;
1331                 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1332                 record->flush_state = HAMMER_FST_IDLE;
1333                 ++ip->rec_generation;
1334                 hammer_rel_mem_record(record);
1335
1336                 /*
1337                  * Finish up.
1338                  */
1339                 if (error == 0) {
1340                         if (hammer_debug_inode)
1341                                 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1342                         ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1343                                             HAMMER_INODE_SDIRTY |
1344                                             HAMMER_INODE_ATIME |
1345                                             HAMMER_INODE_MTIME);
1346                         ip->flags &= ~HAMMER_INODE_DELONDISK;
1347                         if (redirty)
1348                                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1349
1350                         /*
1351                          * Root volume count of inodes
1352                          */
1353                         hammer_sync_lock_sh(trans);
1354                         if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1355                                 hammer_modify_volume_field(trans,
1356                                                            trans->rootvol,
1357                                                            vol0_stat_inodes);
1358                                 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1359                                 hammer_modify_volume_done(trans->rootvol);
1360                                 ip->flags |= HAMMER_INODE_ONDISK;
1361                                 if (hammer_debug_inode)
1362                                         kprintf("NOWONDISK %p\n", ip);
1363                         }
1364                         hammer_sync_unlock(trans);
1365                 }
1366         }
1367
1368         /*
1369          * If the inode has been destroyed, clean out any left-over flags
1370          * that may have been set by the frontend.
1371          */
1372         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) { 
1373                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1374                                     HAMMER_INODE_SDIRTY |
1375                                     HAMMER_INODE_ATIME |
1376                                     HAMMER_INODE_MTIME);
1377         }
1378         return(error);
1379 }
1380
1381 /*
1382  * Update only the itimes fields.
1383  *
1384  * ATIME can be updated without generating any UNDO.  MTIME is updated
1385  * with UNDO so it is guaranteed to be synchronized properly in case of
1386  * a crash.
1387  *
1388  * Neither field is included in the B-Tree leaf element's CRC, which is how
1389  * we can get away with updating ATIME the way we do.
1390  */
1391 static int
1392 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1393 {
1394         hammer_transaction_t trans = cursor->trans;
1395         int error;
1396
1397 retry:
1398         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1399             HAMMER_INODE_ONDISK) {
1400                 return(0);
1401         }
1402
1403         hammer_normalize_cursor(cursor);
1404         cursor->key_beg.localization = ip->obj_localization + 
1405                                        HAMMER_LOCALIZE_INODE;
1406         cursor->key_beg.obj_id = ip->obj_id;
1407         cursor->key_beg.key = 0;
1408         cursor->key_beg.create_tid = 0;
1409         cursor->key_beg.delete_tid = 0;
1410         cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1411         cursor->key_beg.obj_type = 0;
1412         cursor->asof = ip->obj_asof;
1413         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1414         cursor->flags |= HAMMER_CURSOR_ASOF;
1415         cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1416         cursor->flags |= HAMMER_CURSOR_GET_DATA;
1417         cursor->flags |= HAMMER_CURSOR_BACKEND;
1418
1419         error = hammer_btree_lookup(cursor);
1420         if (error == 0) {
1421                 hammer_cache_node(&ip->cache[0], cursor->node);
1422                 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1423                         /*
1424                          * Updating MTIME requires an UNDO.  Just cover
1425                          * both atime and mtime.
1426                          */
1427                         hammer_sync_lock_sh(trans);
1428                         hammer_modify_buffer(trans, cursor->data_buffer,
1429                                      HAMMER_ITIMES_BASE(&cursor->data->inode),
1430                                      HAMMER_ITIMES_BYTES);
1431                         cursor->data->inode.atime = ip->sync_ino_data.atime;
1432                         cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1433                         hammer_modify_buffer_done(cursor->data_buffer);
1434                         hammer_sync_unlock(trans);
1435                 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1436                         /*
1437                          * Updating atime only can be done in-place with
1438                          * no UNDO.
1439                          */
1440                         hammer_sync_lock_sh(trans);
1441                         hammer_modify_buffer(trans, cursor->data_buffer,
1442                                              NULL, 0);
1443                         cursor->data->inode.atime = ip->sync_ino_data.atime;
1444                         hammer_modify_buffer_done(cursor->data_buffer);
1445                         hammer_sync_unlock(trans);
1446                 }
1447                 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1448         }
1449         if (error == EDEADLK) {
1450                 hammer_done_cursor(cursor);
1451                 error = hammer_init_cursor(trans, cursor,
1452                                            &ip->cache[0], ip);
1453                 if (error == 0)
1454                         goto retry;
1455         }
1456         return(error);
1457 }
1458
1459 /*
1460  * Release a reference on an inode, flush as requested.
1461  *
1462  * On the last reference we queue the inode to the flusher for its final
1463  * disposition.
1464  */
1465 void
1466 hammer_rel_inode(struct hammer_inode *ip, int flush)
1467 {
1468         /*hammer_mount_t hmp = ip->hmp;*/
1469
1470         /*
1471          * Handle disposition when dropping the last ref.
1472          */
1473         for (;;) {
1474                 if (hammer_oneref(&ip->lock)) {
1475                         /*
1476                          * Determine whether on-disk action is needed for
1477                          * the inode's final disposition.
1478                          */
1479                         KKASSERT(ip->vp == NULL);
1480                         hammer_inode_unloadable_check(ip, 0);
1481                         if (ip->flags & HAMMER_INODE_MODMASK) {
1482                                 hammer_flush_inode(ip, 0);
1483                         } else if (hammer_oneref(&ip->lock)) {
1484                                 hammer_unload_inode(ip);
1485                                 break;
1486                         }
1487                 } else {
1488                         if (flush)
1489                                 hammer_flush_inode(ip, 0);
1490
1491                         /*
1492                          * The inode still has multiple refs, try to drop
1493                          * one ref.
1494                          */
1495                         KKASSERT(hammer_isactive(&ip->lock) >= 1);
1496                         if (hammer_isactive(&ip->lock) > 1) {
1497                                 hammer_rel(&ip->lock);
1498                                 break;
1499                         }
1500                 }
1501         }
1502 }
1503
1504 /*
1505  * Unload and destroy the specified inode.  Must be called with one remaining
1506  * reference.  The reference is disposed of.
1507  *
1508  * The inode must be completely clean.
1509  */
1510 static int
1511 hammer_unload_inode(struct hammer_inode *ip)
1512 {
1513         hammer_mount_t hmp = ip->hmp;
1514
1515         KASSERT(hammer_oneref(&ip->lock),
1516                 ("hammer_unload_inode: %d refs", hammer_isactive(&ip->lock)));
1517         KKASSERT(ip->vp == NULL);
1518         KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1519         KKASSERT(ip->cursor_ip_refs == 0);
1520         KKASSERT(hammer_notlocked(&ip->lock));
1521         KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1522
1523         KKASSERT(RB_EMPTY(&ip->rec_tree));
1524         KKASSERT(TAILQ_EMPTY(&ip->target_list));
1525
1526         if (ip->flags & HAMMER_INODE_RDIRTY) {
1527                 RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1528                 ip->flags &= ~HAMMER_INODE_RDIRTY;
1529         }
1530         RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1531
1532         hammer_free_inode(ip);
1533         return(0);
1534 }
1535
1536 /*
1537  * Called during unmounting if a critical error occured.  The in-memory
1538  * inode and all related structures are destroyed.
1539  *
1540  * If a critical error did not occur the unmount code calls the standard
1541  * release and asserts that the inode is gone.
1542  */
1543 int
1544 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1545 {
1546         hammer_record_t rec;
1547
1548         /*
1549          * Get rid of the inodes in-memory records, regardless of their
1550          * state, and clear the mod-mask.
1551          */
1552         while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1553                 TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1554                 rec->target_ip = NULL;
1555                 if (rec->flush_state == HAMMER_FST_SETUP)
1556                         rec->flush_state = HAMMER_FST_IDLE;
1557         }
1558         while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1559                 if (rec->flush_state == HAMMER_FST_FLUSH)
1560                         --rec->flush_group->refs;
1561                 else
1562                         hammer_ref(&rec->lock);
1563                 KKASSERT(hammer_oneref(&rec->lock));
1564                 rec->flush_state = HAMMER_FST_IDLE;
1565                 rec->flush_group = NULL;
1566                 rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1567                 rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1568                 ++ip->rec_generation;
1569                 hammer_rel_mem_record(rec);
1570         }
1571         ip->flags &= ~HAMMER_INODE_MODMASK;
1572         ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1573         KKASSERT(ip->vp == NULL);
1574
1575         /*
1576          * Remove the inode from any flush group, force it idle.  FLUSH
1577          * and SETUP states have an inode ref.
1578          */
1579         switch(ip->flush_state) {
1580         case HAMMER_FST_FLUSH:
1581                 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1582                 --ip->flush_group->refs;
1583                 ip->flush_group = NULL;
1584                 /* fall through */
1585         case HAMMER_FST_SETUP:
1586                 hammer_rel(&ip->lock);
1587                 ip->flush_state = HAMMER_FST_IDLE;
1588                 /* fall through */
1589         case HAMMER_FST_IDLE:
1590                 break;
1591         }
1592
1593         /*
1594          * There shouldn't be any associated vnode.  The unload needs at
1595          * least one ref, if we do have a vp steal its ip ref.
1596          */
1597         if (ip->vp) {
1598                 kprintf("hammer_destroy_inode_callback: Unexpected "
1599                         "vnode association ip %p vp %p\n", ip, ip->vp);
1600                 ip->vp->v_data = NULL;
1601                 ip->vp = NULL;
1602         } else {
1603                 hammer_ref(&ip->lock);
1604         }
1605         hammer_unload_inode(ip);
1606         return(0);
1607 }
1608
1609 /*
1610  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1611  * the read-only flag for cached inodes.
1612  *
1613  * This routine is called from a RB_SCAN().
1614  */
1615 int
1616 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1617 {
1618         hammer_mount_t hmp = ip->hmp;
1619
1620         if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1621                 ip->flags |= HAMMER_INODE_RO;
1622         else
1623                 ip->flags &= ~HAMMER_INODE_RO;
1624         return(0);
1625 }
1626
1627 /*
1628  * A transaction has modified an inode, requiring updates as specified by
1629  * the passed flags.
1630  *
1631  * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1632  *                      and not including size changes due to write-append
1633  *                      (but other size changes are included).
1634  * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1635  *                      write-append.
1636  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1637  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1638  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1639  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1640  */
1641 void
1642 hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
1643 {
1644         /* 
1645          * ronly of 0 or 2 does not trigger assertion.
1646          * 2 is a special error state 
1647          */
1648         KKASSERT(ip->hmp->ronly != 1 ||
1649                   (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY | 
1650                             HAMMER_INODE_SDIRTY |
1651                             HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1652                             HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1653         if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1654                 ip->flags |= HAMMER_INODE_RSV_INODES;
1655                 ++ip->hmp->rsv_inodes;
1656         }
1657
1658         /*
1659          * Set the NEWINODE flag in the transaction if the inode
1660          * transitions to a dirty state.  This is used to track
1661          * the load on the inode cache.
1662          */
1663         if (trans &&
1664             (ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1665             (flags & HAMMER_INODE_MODMASK)) {
1666                 trans->flags |= HAMMER_TRANSF_NEWINODE;
1667         }
1668         if (flags & HAMMER_INODE_MODMASK)
1669                 hammer_inode_dirty(ip);
1670         ip->flags |= flags;
1671 }
1672
1673 /*
1674  * Attempt to quickly update the atime for a hammer inode.  Return 0 on
1675  * success, -1 on failure.
1676  *
1677  * We attempt to update the atime with only the ip lock and not the
1678  * whole filesystem lock in order to improve concurrency.  We can only
1679  * do this safely if the ATIME flag is already pending on the inode.
1680  *
1681  * This function is called via a vnops path (ip pointer is stable) without
1682  * fs_token held.
1683  */
1684 int
1685 hammer_update_atime_quick(hammer_inode_t ip)
1686 {
1687         struct timeval tv;
1688         int res = -1;
1689
1690         if ((ip->flags & HAMMER_INODE_RO) ||
1691             (ip->hmp->mp->mnt_flag & MNT_NOATIME)) {
1692                 /*
1693                  * Silently indicate success on read-only mount/snap
1694                  */
1695                 res = 0;
1696         } else if (ip->flags & HAMMER_INODE_ATIME) {
1697                 /*
1698                  * Double check with inode lock held against backend.  This
1699                  * is only safe if all we need to do is update
1700                  * ino_data.atime.
1701                  */
1702                 getmicrotime(&tv);
1703                 hammer_lock_ex(&ip->lock);
1704                 if (ip->flags & HAMMER_INODE_ATIME) {
1705                         ip->ino_data.atime =
1706                             (unsigned long)tv.tv_sec * 1000000ULL + tv.tv_usec;
1707                         res = 0;
1708                 }
1709                 hammer_unlock(&ip->lock);
1710         }
1711         return res;
1712 }
1713
1714 /*
1715  * Request that an inode be flushed.  This whole mess cannot block and may
1716  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1717  * actively flush the inode until the flush can be done.
1718  *
1719  * The inode may already be flushing, or may be in a setup state.  We can
1720  * place the inode in a flushing state if it is currently idle and flag it
1721  * to reflush if it is currently flushing.
1722  *
1723  * Upon return if the inode could not be flushed due to a setup
1724  * dependancy, then it will be automatically flushed when the dependancy
1725  * is satisfied.
1726  */
1727 void
1728 hammer_flush_inode(hammer_inode_t ip, int flags)
1729 {
1730         hammer_mount_t hmp;
1731         hammer_flush_group_t flg;
1732         int good;
1733
1734         /*
1735          * fill_flush_group is the first flush group we may be able to
1736          * continue filling, it may be open or closed but it will always
1737          * be past the currently flushing (running) flg.
1738          *
1739          * next_flush_group is the next open flush group.
1740          */
1741         hmp = ip->hmp;
1742         while ((flg = hmp->fill_flush_group) != NULL) {
1743                 KKASSERT(flg->running == 0);
1744                 if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit &&
1745                     flg->total_count <= hammer_autoflush) {
1746                         break;
1747                 }
1748                 hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
1749                 hammer_flusher_async(ip->hmp, flg);
1750         }
1751         if (flg == NULL) {
1752                 flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1753                 flg->seq = hmp->flusher.next++;
1754                 if (hmp->next_flush_group == NULL)
1755                         hmp->next_flush_group = flg;
1756                 if (hmp->fill_flush_group == NULL)
1757                         hmp->fill_flush_group = flg;
1758                 RB_INIT(&flg->flush_tree);
1759                 TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1760         }
1761
1762         /*
1763          * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1764          * state we have to put it back into an IDLE state so we can
1765          * drop the extra ref.
1766          *
1767          * If we have a parent dependancy we must still fall through
1768          * so we can run it.
1769          */
1770         if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1771                 if (ip->flush_state == HAMMER_FST_SETUP &&
1772                     TAILQ_EMPTY(&ip->target_list)) {
1773                         ip->flush_state = HAMMER_FST_IDLE;
1774                         hammer_rel_inode(ip, 0);
1775                 }
1776                 if (ip->flush_state == HAMMER_FST_IDLE)
1777                         return;
1778         }
1779
1780         /*
1781          * Our flush action will depend on the current state.
1782          */
1783         switch(ip->flush_state) {
1784         case HAMMER_FST_IDLE:
1785                 /*
1786                  * We have no dependancies and can flush immediately.  Some
1787                  * our children may not be flushable so we have to re-test
1788                  * with that additional knowledge.
1789                  */
1790                 hammer_flush_inode_core(ip, flg, flags);
1791                 break;
1792         case HAMMER_FST_SETUP:
1793                 /*
1794                  * Recurse upwards through dependancies via target_list
1795                  * and start their flusher actions going if possible.
1796                  *
1797                  * 'good' is our connectivity.  -1 means we have none and
1798                  * can't flush, 0 means there weren't any dependancies, and
1799                  * 1 means we have good connectivity.
1800                  */
1801                 good = hammer_setup_parent_inodes(ip, 0, flg);
1802
1803                 if (good >= 0) {
1804                         /*
1805                          * We can continue if good >= 0.  Determine how 
1806                          * many records under our inode can be flushed (and
1807                          * mark them).
1808                          */
1809                         hammer_flush_inode_core(ip, flg, flags);
1810                 } else {
1811                         /*
1812                          * Parent has no connectivity, tell it to flush
1813                          * us as soon as it does.
1814                          *
1815                          * The REFLUSH flag is also needed to trigger
1816                          * dependancy wakeups.
1817                          */
1818                         ip->flags |= HAMMER_INODE_CONN_DOWN |
1819                                      HAMMER_INODE_REFLUSH;
1820                         if (flags & HAMMER_FLUSH_SIGNAL) {
1821                                 ip->flags |= HAMMER_INODE_RESIGNAL;
1822                                 hammer_flusher_async(ip->hmp, flg);
1823                         }
1824                 }
1825                 break;
1826         case HAMMER_FST_FLUSH:
1827                 /*
1828                  * We are already flushing, flag the inode to reflush
1829                  * if needed after it completes its current flush.
1830                  *
1831                  * The REFLUSH flag is also needed to trigger
1832                  * dependancy wakeups.
1833                  */
1834                 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1835                         ip->flags |= HAMMER_INODE_REFLUSH;
1836                 if (flags & HAMMER_FLUSH_SIGNAL) {
1837                         ip->flags |= HAMMER_INODE_RESIGNAL;
1838                         hammer_flusher_async(ip->hmp, flg);
1839                 }
1840                 break;
1841         }
1842 }
1843
1844 /*
1845  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1846  * ip which reference our ip.
1847  *
1848  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1849  *     so for now do not ref/deref the structures.  Note that if we use the
1850  *     ref/rel code later, the rel CAN block.
1851  */
1852 static int
1853 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1854                            hammer_flush_group_t flg)
1855 {
1856         hammer_record_t depend;
1857         int good;
1858         int r;
1859
1860         /*
1861          * If we hit our recursion limit and we have parent dependencies
1862          * We cannot continue.  Returning < 0 will cause us to be flagged
1863          * for reflush.  Returning -2 cuts off additional dependency checks
1864          * because they are likely to also hit the depth limit.
1865          *
1866          * We cannot return < 0 if there are no dependencies or there might
1867          * not be anything to wakeup (ip).
1868          */
1869         if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1870                 if (hammer_debug_general & 0x10000)
1871                         krateprintf(&hammer_gen_krate,
1872                             "HAMMER Warning: depth limit reached on "
1873                             "setup recursion, inode %p %016llx\n",
1874                             ip, (long long)ip->obj_id);
1875                 return(-2);
1876         }
1877
1878         /*
1879          * Scan dependencies
1880          */
1881         good = 0;
1882         TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1883                 r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1884                 KKASSERT(depend->target_ip == ip);
1885                 if (r < 0 && good == 0)
1886                         good = -1;
1887                 if (r > 0)
1888                         good = 1;
1889
1890                 /*
1891                  * If we failed due to the recursion depth limit then stop
1892                  * now.
1893                  */
1894                 if (r == -2)
1895                         break;
1896         }
1897         return(good);
1898 }
1899
1900 /*
1901  * This helper function takes a record representing the dependancy between
1902  * the parent inode and child inode.
1903  *
1904  * record->ip           = parent inode
1905  * record->target_ip    = child inode
1906  * 
1907  * We are asked to recurse upwards and convert the record from SETUP
1908  * to FLUSH if possible.
1909  *
1910  * Return 1 if the record gives us connectivity
1911  *
1912  * Return 0 if the record is not relevant 
1913  *
1914  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1915  */
1916 static int
1917 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1918                                   hammer_flush_group_t flg)
1919 {
1920         hammer_inode_t pip;
1921         int good;
1922
1923         KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1924         pip = record->ip;
1925
1926         /*
1927          * If the record is already flushing, is it in our flush group?
1928          *
1929          * If it is in our flush group but it is a general record or a 
1930          * delete-on-disk, it does not improve our connectivity (return 0),
1931          * and if the target inode is not trying to destroy itself we can't
1932          * allow the operation yet anyway (the second return -1).
1933          */
1934         if (record->flush_state == HAMMER_FST_FLUSH) {
1935                 /*
1936                  * If not in our flush group ask the parent to reflush
1937                  * us as soon as possible.
1938                  */
1939                 if (record->flush_group != flg) {
1940                         pip->flags |= HAMMER_INODE_REFLUSH;
1941                         record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1942                         return(-1);
1943                 }
1944
1945                 /*
1946                  * If in our flush group everything is already set up,
1947                  * just return whether the record will improve our
1948                  * visibility or not.
1949                  */
1950                 if (record->type == HAMMER_MEM_RECORD_ADD)
1951                         return(1);
1952                 return(0);
1953         }
1954
1955         /*
1956          * It must be a setup record.  Try to resolve the setup dependancies
1957          * by recursing upwards so we can place ip on the flush list.
1958          *
1959          * Limit ourselves to 20 levels of recursion to avoid blowing out
1960          * the kernel stack.  If we hit the recursion limit we can't flush
1961          * until the parent flushes.  The parent will flush independantly
1962          * on its own and ultimately a deep recursion will be resolved.
1963          */
1964         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1965
1966         good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1967
1968         /*
1969          * If good < 0 the parent has no connectivity and we cannot safely
1970          * flush the directory entry, which also means we can't flush our
1971          * ip.  Flag us for downward recursion once the parent's
1972          * connectivity is resolved.  Flag the parent for [re]flush or it
1973          * may not check for downward recursions.
1974          */
1975         if (good < 0) {
1976                 pip->flags |= HAMMER_INODE_REFLUSH;
1977                 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1978                 return(good);
1979         }
1980
1981         /*
1982          * We are go, place the parent inode in a flushing state so we can
1983          * place its record in a flushing state.  Note that the parent
1984          * may already be flushing.  The record must be in the same flush
1985          * group as the parent.
1986          */
1987         if (pip->flush_state != HAMMER_FST_FLUSH)
1988                 hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1989         KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1990
1991         /*
1992          * It is possible for a rename to create a loop in the recursion
1993          * and revisit a record.  This will result in the record being
1994          * placed in a flush state unexpectedly.  This check deals with
1995          * the case.
1996          */
1997         if (record->flush_state == HAMMER_FST_FLUSH) {
1998                 if (record->type == HAMMER_MEM_RECORD_ADD)
1999                         return(1);
2000                 return(0);
2001         }
2002
2003         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
2004
2005 #if 0
2006         if (record->type == HAMMER_MEM_RECORD_DEL &&
2007             (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
2008                 /*
2009                  * Regardless of flushing state we cannot sync this path if the
2010                  * record represents a delete-on-disk but the target inode
2011                  * is not ready to sync its own deletion.
2012                  *
2013                  * XXX need to count effective nlinks to determine whether
2014                  * the flush is ok, otherwise removing a hardlink will
2015                  * just leave the DEL record to rot.
2016                  */
2017                 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
2018                 return(-1);
2019         } else
2020 #endif
2021         if (pip->flush_group == flg) {
2022                 /*
2023                  * Because we have not calculated nlinks yet we can just
2024                  * set records to the flush state if the parent is in
2025                  * the same flush group as we are.
2026                  */
2027                 record->flush_state = HAMMER_FST_FLUSH;
2028                 record->flush_group = flg;
2029                 ++record->flush_group->refs;
2030                 hammer_ref(&record->lock);
2031
2032                 /*
2033                  * A general directory-add contributes to our visibility.
2034                  *
2035                  * Otherwise it is probably a directory-delete or 
2036                  * delete-on-disk record and does not contribute to our
2037                  * visbility (but we can still flush it).
2038                  */
2039                 if (record->type == HAMMER_MEM_RECORD_ADD)
2040                         return(1);
2041                 return(0);
2042         } else {
2043                 /*
2044                  * If the parent is not in our flush group we cannot
2045                  * flush this record yet, there is no visibility.
2046                  * We tell the parent to reflush and mark ourselves
2047                  * so the parent knows it should flush us too.
2048                  */
2049                 pip->flags |= HAMMER_INODE_REFLUSH;
2050                 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2051                 return(-1);
2052         }
2053 }
2054
2055 /*
2056  * This is the core routine placing an inode into the FST_FLUSH state.
2057  */
2058 static void
2059 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
2060 {
2061         hammer_mount_t hmp = ip->hmp;
2062         int go_count;
2063
2064         /*
2065          * Set flush state and prevent the flusher from cycling into
2066          * the next flush group.  Do not place the ip on the list yet.
2067          * Inodes not in the idle state get an extra reference.
2068          */
2069         KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
2070         if (ip->flush_state == HAMMER_FST_IDLE)
2071                 hammer_ref(&ip->lock);
2072         ip->flush_state = HAMMER_FST_FLUSH;
2073         ip->flush_group = flg;
2074         ++hmp->flusher.group_lock;
2075         ++hmp->count_iqueued;
2076         ++hammer_count_iqueued;
2077         ++flg->total_count;
2078         hammer_redo_fifo_start_flush(ip);
2079
2080 #if 0
2081         /*
2082          * We need to be able to vfsync/truncate from the backend.
2083          *
2084          * XXX Any truncation from the backend will acquire the vnode
2085          *     independently.
2086          */
2087         KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
2088         if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
2089                 ip->flags |= HAMMER_INODE_VHELD;
2090                 vref(ip->vp);
2091         }
2092 #endif
2093
2094         /*
2095          * Figure out how many in-memory records we can actually flush
2096          * (not including inode meta-data, buffers, etc).
2097          */
2098         KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
2099         if (flags & HAMMER_FLUSH_RECURSION) {
2100                 /*
2101                  * If this is a upwards recursion we do not want to
2102                  * recurse down again!
2103                  */
2104                 go_count = 1;
2105 #if 0
2106         } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2107                 /*
2108                  * No new records are added if we must complete a flush
2109                  * from a previous cycle, but we do have to move the records
2110                  * from the previous cycle to the current one.
2111                  */
2112 #if 0
2113                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2114                                    hammer_syncgrp_child_callback, NULL);
2115 #endif
2116                 go_count = 1;
2117 #endif
2118         } else {
2119                 /*
2120                  * Normal flush, scan records and bring them into the flush.
2121                  * Directory adds and deletes are usually skipped (they are
2122                  * grouped with the related inode rather then with the
2123                  * directory).
2124                  *
2125                  * go_count can be negative, which means the scan aborted
2126                  * due to the flush group being over-full and we should
2127                  * flush what we have.
2128                  */
2129                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2130                                    hammer_setup_child_callback, NULL);
2131         }
2132
2133         /*
2134          * This is a more involved test that includes go_count.  If we
2135          * can't flush, flag the inode and return.  If go_count is 0 we
2136          * were are unable to flush any records in our rec_tree and
2137          * must ignore the XDIRTY flag.
2138          */
2139         if (go_count == 0) {
2140                 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2141                         --hmp->count_iqueued;
2142                         --hammer_count_iqueued;
2143
2144                         --flg->total_count;
2145                         ip->flush_state = HAMMER_FST_SETUP;
2146                         ip->flush_group = NULL;
2147                         if (flags & HAMMER_FLUSH_SIGNAL) {
2148                                 ip->flags |= HAMMER_INODE_REFLUSH |
2149                                              HAMMER_INODE_RESIGNAL;
2150                         } else {
2151                                 ip->flags |= HAMMER_INODE_REFLUSH;
2152                         }
2153 #if 0
2154                         if (ip->flags & HAMMER_INODE_VHELD) {
2155                                 ip->flags &= ~HAMMER_INODE_VHELD;
2156                                 vrele(ip->vp);
2157                         }
2158 #endif
2159
2160                         /*
2161                          * REFLUSH is needed to trigger dependancy wakeups
2162                          * when an inode is in SETUP.
2163                          */
2164                         ip->flags |= HAMMER_INODE_REFLUSH;
2165                         if (--hmp->flusher.group_lock == 0)
2166                                 wakeup(&hmp->flusher.group_lock);
2167                         return;
2168                 }
2169         }
2170
2171         /*
2172          * Snapshot the state of the inode for the backend flusher.
2173          *
2174          * We continue to retain save_trunc_off even when all truncations
2175          * have been resolved as an optimization to determine if we can
2176          * skip the B-Tree lookup for overwrite deletions.
2177          *
2178          * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2179          * and stays in ip->flags.  Once set, it stays set until the
2180          * inode is destroyed.
2181          */
2182         if (ip->flags & HAMMER_INODE_TRUNCATED) {
2183                 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2184                 ip->sync_trunc_off = ip->trunc_off;
2185                 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2186                 ip->flags &= ~HAMMER_INODE_TRUNCATED;
2187                 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2188
2189                 /*
2190                  * The save_trunc_off used to cache whether the B-Tree
2191                  * holds any records past that point is not used until
2192                  * after the truncation has succeeded, so we can safely
2193                  * set it now.
2194                  */
2195                 if (ip->save_trunc_off > ip->sync_trunc_off)
2196                         ip->save_trunc_off = ip->sync_trunc_off;
2197         }
2198         ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2199                            ~HAMMER_INODE_TRUNCATED);
2200         ip->sync_ino_leaf = ip->ino_leaf;
2201         ip->sync_ino_data = ip->ino_data;
2202         ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2203 #ifdef DEBUG_TRUNCATE
2204         if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2205                 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2206 #endif
2207
2208         /*
2209          * The flusher list inherits our inode and reference.
2210          */
2211         KKASSERT(flg->running == 0);
2212         RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2213         if (--hmp->flusher.group_lock == 0)
2214                 wakeup(&hmp->flusher.group_lock);
2215
2216         /*
2217          * Auto-flush the group if it grows too large.  Make sure the
2218          * inode reclaim wait pipeline continues to work.
2219          */
2220         if (flg->total_count >= hammer_autoflush ||
2221             flg->total_count >= hammer_limit_reclaims / 4) {
2222                 if (hmp->fill_flush_group == flg)
2223                         hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
2224                 hammer_flusher_async(hmp, flg);
2225         }
2226 }
2227
2228 /*
2229  * Callback for scan of ip->rec_tree.  Try to include each record in our
2230  * flush.  ip->flush_group has been set but the inode has not yet been
2231  * moved into a flushing state.
2232  *
2233  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2234  * both inodes.
2235  *
2236  * We return 1 for any record placed or found in FST_FLUSH, which prevents
2237  * the caller from shortcutting the flush.
2238  */
2239 static int
2240 hammer_setup_child_callback(hammer_record_t rec, void *data)
2241 {
2242         hammer_flush_group_t flg;
2243         hammer_inode_t target_ip;
2244         hammer_inode_t ip;
2245         int r;
2246
2247         /*
2248          * Records deleted or committed by the backend are ignored.
2249          * Note that the flush detects deleted frontend records at
2250          * multiple points to deal with races.  This is just the first
2251          * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
2252          * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2253          * messes up link-count calculations.
2254          *
2255          * NOTE: Don't get confused between record deletion and, say,
2256          * directory entry deletion.  The deletion of a directory entry
2257          * which is on-media has nothing to do with the record deletion
2258          * flags.
2259          */
2260         if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2261                           HAMMER_RECF_COMMITTED)) {
2262                 if (rec->flush_state == HAMMER_FST_FLUSH) {
2263                         KKASSERT(rec->flush_group == rec->ip->flush_group);
2264                         r = 1;
2265                 } else {
2266                         r = 0;
2267                 }
2268                 return(r);
2269         }
2270
2271         /*
2272          * If the record is in an idle state it has no dependancies and
2273          * can be flushed.
2274          */
2275         ip = rec->ip;
2276         flg = ip->flush_group;
2277         r = 0;
2278
2279         switch(rec->flush_state) {
2280         case HAMMER_FST_IDLE:
2281                 /*
2282                  * The record has no setup dependancy, we can flush it.
2283                  */
2284                 KKASSERT(rec->target_ip == NULL);
2285                 rec->flush_state = HAMMER_FST_FLUSH;
2286                 rec->flush_group = flg;
2287                 ++flg->refs;
2288                 hammer_ref(&rec->lock);
2289                 r = 1;
2290                 break;
2291         case HAMMER_FST_SETUP:
2292                 /*
2293                  * The record has a setup dependancy.  These are typically
2294                  * directory entry adds and deletes.  Such entries will be
2295                  * flushed when their inodes are flushed so we do not
2296                  * usually have to add them to the flush here.  However,
2297                  * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2298                  * it is asking us to flush this record (and it).
2299                  */
2300                 target_ip = rec->target_ip;
2301                 KKASSERT(target_ip != NULL);
2302                 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2303
2304                 /*
2305                  * If the target IP is already flushing in our group
2306                  * we could associate the record, but target_ip has
2307                  * already synced ino_data to sync_ino_data and we
2308                  * would also have to adjust nlinks.   Plus there are
2309                  * ordering issues for adds and deletes.
2310                  *
2311                  * Reflush downward if this is an ADD, and upward if
2312                  * this is a DEL.
2313                  */
2314                 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2315                         if (rec->type == HAMMER_MEM_RECORD_ADD)
2316                                 ip->flags |= HAMMER_INODE_REFLUSH;
2317                         else
2318                                 target_ip->flags |= HAMMER_INODE_REFLUSH;
2319                         break;
2320                 } 
2321
2322                 /*
2323                  * Target IP is not yet flushing.  This can get complex
2324                  * because we have to be careful about the recursion.
2325                  *
2326                  * Directories create an issue for us in that if a flush
2327                  * of a directory is requested the expectation is to flush
2328                  * any pending directory entries, but this will cause the
2329                  * related inodes to recursively flush as well.  We can't
2330                  * really defer the operation so just get as many as we
2331                  * can and
2332                  */
2333 #if 0
2334                 if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2335                     (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2336                         /*
2337                          * We aren't reclaiming and the target ip was not
2338                          * previously prevented from flushing due to this
2339                          * record dependancy.  Do not flush this record.
2340                          */
2341                         /*r = 0;*/
2342                 } else
2343 #endif
2344                 if (flg->total_count + flg->refs >
2345                            ip->hmp->undo_rec_limit) {
2346                         /*
2347                          * Our flush group is over-full and we risk blowing
2348                          * out the UNDO FIFO.  Stop the scan, flush what we
2349                          * have, then reflush the directory.
2350                          *
2351                          * The directory may be forced through multiple
2352                          * flush groups before it can be completely
2353                          * flushed.
2354                          */
2355                         ip->flags |= HAMMER_INODE_RESIGNAL |
2356                                      HAMMER_INODE_REFLUSH;
2357                         r = -1;
2358                 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2359                         /*
2360                          * If the target IP is not flushing we can force
2361                          * it to flush, even if it is unable to write out
2362                          * any of its own records we have at least one in
2363                          * hand that we CAN deal with.
2364                          */
2365                         rec->flush_state = HAMMER_FST_FLUSH;
2366                         rec->flush_group = flg;
2367                         ++flg->refs;
2368                         hammer_ref(&rec->lock);
2369                         hammer_flush_inode_core(target_ip, flg,
2370                                                 HAMMER_FLUSH_RECURSION);
2371                         r = 1;
2372                 } else {
2373                         /*
2374                          * General or delete-on-disk record.
2375                          *
2376                          * XXX this needs help.  If a delete-on-disk we could
2377                          * disconnect the target.  If the target has its own
2378                          * dependancies they really need to be flushed.
2379                          *
2380                          * XXX
2381                          */
2382                         rec->flush_state = HAMMER_FST_FLUSH;
2383                         rec->flush_group = flg;
2384                         ++flg->refs;
2385                         hammer_ref(&rec->lock);
2386                         hammer_flush_inode_core(target_ip, flg,
2387                                                 HAMMER_FLUSH_RECURSION);
2388                         r = 1;
2389                 }
2390                 break;
2391         case HAMMER_FST_FLUSH:
2392                 /* 
2393                  * The record could be part of a previous flush group if the
2394                  * inode is a directory (the record being a directory entry).
2395                  * Once the flush group was closed a hammer_test_inode()
2396                  * function can cause a new flush group to be setup, placing
2397                  * the directory inode itself in a new flush group.
2398                  *
2399                  * When associated with a previous flush group we count it
2400                  * as if it were in our current flush group, since it will
2401                  * effectively be flushed by the time we flush our current
2402                  * flush group.
2403                  */
2404                 KKASSERT(
2405                     rec->ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY ||
2406                     rec->flush_group == flg);
2407                 r = 1;
2408                 break;
2409         }
2410         return(r);
2411 }
2412
2413 #if 0
2414 /*
2415  * This version just moves records already in a flush state to the new
2416  * flush group and that is it.
2417  */
2418 static int
2419 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2420 {
2421         hammer_inode_t ip = rec->ip;
2422
2423         switch(rec->flush_state) {
2424         case HAMMER_FST_FLUSH:
2425                 KKASSERT(rec->flush_group == ip->flush_group);
2426                 break;
2427         default:
2428                 break;
2429         }
2430         return(0);
2431 }
2432 #endif
2433
2434 /*
2435  * Wait for a previously queued flush to complete.
2436  *
2437  * If a critical error occured we don't try to wait.
2438  */
2439 void
2440 hammer_wait_inode(hammer_inode_t ip)
2441 {
2442         /*
2443          * The inode can be in a SETUP state in which case RESIGNAL
2444          * should be set.  If RESIGNAL is not set then the previous
2445          * flush completed and a later operation placed the inode
2446          * in a passive setup state again, so we're done.
2447          *
2448          * The inode can be in a FLUSH state in which case we
2449          * can just wait for completion.
2450          */
2451         while (ip->flush_state == HAMMER_FST_FLUSH ||
2452             (ip->flush_state == HAMMER_FST_SETUP &&
2453              (ip->flags & HAMMER_INODE_RESIGNAL))) {
2454                 /*
2455                  * Don't try to flush on a critical error
2456                  */
2457                 if (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
2458                         break;
2459
2460                 /*
2461                  * If the inode was already being flushed its flg
2462                  * may not have been queued to the backend.  We
2463                  * have to make sure it gets queued or we can wind
2464                  * up blocked or deadlocked (particularly if we are
2465                  * the vnlru thread).
2466                  */
2467                 if (ip->flush_state == HAMMER_FST_FLUSH) {
2468                         KKASSERT(ip->flush_group);
2469                         if (ip->flush_group->closed == 0) {
2470                                 if (hammer_debug_inode) {
2471                                         kprintf("hammer: debug: forcing "
2472                                                 "async flush ip %016jx\n",
2473                                                 (intmax_t)ip->obj_id);
2474                                 }
2475                                 hammer_flusher_async(ip->hmp,
2476                                                      ip->flush_group);
2477                                 continue; /* retest */
2478                         }
2479                 }
2480
2481                 /*
2482                  * In a flush state with the flg queued to the backend
2483                  * or in a setup state with RESIGNAL set, we can safely
2484                  * wait.
2485                  */
2486                 ip->flags |= HAMMER_INODE_FLUSHW;
2487                 tsleep(&ip->flags, 0, "hmrwin", 0);
2488         }
2489
2490 #if 0
2491         /*
2492          * The inode may have been in a passive setup state,
2493          * call flush to make sure we get signaled.
2494          */
2495         if (ip->flush_state == HAMMER_FST_SETUP)
2496                 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2497 #endif
2498
2499 }
2500
2501 /*
2502  * Called by the backend code when a flush has been completed.
2503  * The inode has already been removed from the flush list.
2504  *
2505  * A pipelined flush can occur, in which case we must re-enter the
2506  * inode on the list and re-copy its fields.
2507  */
2508 void
2509 hammer_flush_inode_done(hammer_inode_t ip, int error)
2510 {
2511         hammer_mount_t hmp;
2512         int dorel;
2513
2514         KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2515
2516         hmp = ip->hmp;
2517
2518         /*
2519          * Auto-reflush if the backend could not completely flush
2520          * the inode.  This fixes a case where a deferred buffer flush
2521          * could cause fsync to return early.
2522          */
2523         if (ip->sync_flags & HAMMER_INODE_MODMASK)
2524                 ip->flags |= HAMMER_INODE_REFLUSH;
2525
2526         /*
2527          * Merge left-over flags back into the frontend and fix the state.
2528          * Incomplete truncations are retained by the backend.
2529          */
2530         ip->error = error;
2531         ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2532         ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2533
2534         /*
2535          * The backend may have adjusted nlinks, so if the adjusted nlinks
2536          * does not match the fronttend set the frontend's DDIRTY flag again.
2537          */
2538         if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2539                 ip->flags |= HAMMER_INODE_DDIRTY;
2540
2541         /*
2542          * Fix up the dirty buffer status.
2543          */
2544         if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2545                 ip->flags |= HAMMER_INODE_BUFS;
2546         }
2547         hammer_redo_fifo_end_flush(ip);
2548
2549         /*
2550          * Re-set the XDIRTY flag if some of the inode's in-memory records
2551          * could not be flushed.
2552          */
2553         KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2554                   (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2555                  (!RB_EMPTY(&ip->rec_tree) &&
2556                   (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2557
2558         /*
2559          * Do not lose track of inodes which no longer have vnode
2560          * assocations, otherwise they may never get flushed again.
2561          *
2562          * The reflush flag can be set superfluously, causing extra pain
2563          * for no reason.  If the inode is no longer modified it no longer
2564          * needs to be flushed.
2565          */
2566         if (ip->flags & HAMMER_INODE_MODMASK) {
2567                 if (ip->vp == NULL)
2568                         ip->flags |= HAMMER_INODE_REFLUSH;
2569         } else {
2570                 ip->flags &= ~HAMMER_INODE_REFLUSH;
2571         }
2572         if (ip->flags & HAMMER_INODE_MODMASK)
2573                 hammer_inode_dirty(ip);
2574
2575         /*
2576          * Adjust the flush state.
2577          */
2578         if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2579                 /*
2580                  * We were unable to flush out all our records, leave the
2581                  * inode in a flush state and in the current flush group.
2582                  * The flush group will be re-run.
2583                  *
2584                  * This occurs if the UNDO block gets too full or there is
2585                  * too much dirty meta-data and allows the flusher to
2586                  * finalize the UNDO block and then re-flush.
2587                  */
2588                 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2589                 dorel = 0;
2590         } else {
2591                 /*
2592                  * Remove from the flush_group
2593                  */
2594                 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2595                 ip->flush_group = NULL;
2596
2597 #if 0
2598                 /*
2599                  * Clean up the vnode ref and tracking counts.
2600                  */
2601                 if (ip->flags & HAMMER_INODE_VHELD) {
2602                         ip->flags &= ~HAMMER_INODE_VHELD;
2603                         vrele(ip->vp);
2604                 }
2605 #endif
2606                 --hmp->count_iqueued;
2607                 --hammer_count_iqueued;
2608
2609                 /*
2610                  * And adjust the state.
2611                  */
2612                 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2613                         ip->flush_state = HAMMER_FST_IDLE;
2614                         dorel = 1;
2615                 } else {
2616                         ip->flush_state = HAMMER_FST_SETUP;
2617                         dorel = 0;
2618                 }
2619
2620                 /*
2621                  * If the frontend is waiting for a flush to complete,
2622                  * wake it up.
2623                  */
2624                 if (ip->flags & HAMMER_INODE_FLUSHW) {
2625                         ip->flags &= ~HAMMER_INODE_FLUSHW;
2626                         wakeup(&ip->flags);
2627                 }
2628
2629                 /*
2630                  * If the frontend made more changes and requested another
2631                  * flush, then try to get it running.
2632                  *
2633                  * Reflushes are aborted when the inode is errored out.
2634                  */
2635                 if (ip->flags & HAMMER_INODE_REFLUSH) {
2636                         ip->flags &= ~HAMMER_INODE_REFLUSH;
2637                         if (ip->flags & HAMMER_INODE_RESIGNAL) {
2638                                 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2639                                 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2640                         } else {
2641                                 hammer_flush_inode(ip, 0);
2642                         }
2643                 }
2644         }
2645
2646         /*
2647          * If we have no parent dependancies we can clear CONN_DOWN
2648          */
2649         if (TAILQ_EMPTY(&ip->target_list))
2650                 ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2651
2652         /*
2653          * If the inode is now clean drop the space reservation.
2654          */
2655         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2656             (ip->flags & HAMMER_INODE_RSV_INODES)) {
2657                 ip->flags &= ~HAMMER_INODE_RSV_INODES;
2658                 --hmp->rsv_inodes;
2659         }
2660
2661         ip->flags &= ~HAMMER_INODE_SLAVEFLUSH;
2662
2663         if (dorel)
2664                 hammer_rel_inode(ip, 0);
2665 }
2666
2667 /*
2668  * Called from hammer_sync_inode() to synchronize in-memory records
2669  * to the media.
2670  */
2671 static int
2672 hammer_sync_record_callback(hammer_record_t record, void *data)
2673 {
2674         hammer_cursor_t cursor = data;
2675         hammer_transaction_t trans = cursor->trans;
2676         hammer_mount_t hmp = trans->hmp;
2677         int error;
2678
2679         /*
2680          * Skip records that do not belong to the current flush.
2681          */
2682         ++hammer_stats_record_iterations;
2683         if (record->flush_state != HAMMER_FST_FLUSH)
2684                 return(0);
2685
2686 #if 1
2687         if (record->flush_group != record->ip->flush_group) {
2688                 kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2689                 if (hammer_debug_critical)
2690                         Debugger("blah2");
2691                 return(0);
2692         }
2693 #endif
2694         KKASSERT(record->flush_group == record->ip->flush_group);
2695
2696         /*
2697          * Interlock the record using the BE flag.  Once BE is set the
2698          * frontend cannot change the state of FE.
2699          *
2700          * NOTE: If FE is set prior to us setting BE we still sync the
2701          * record out, but the flush completion code converts it to 
2702          * a delete-on-disk record instead of destroying it.
2703          */
2704         KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2705         record->flags |= HAMMER_RECF_INTERLOCK_BE;
2706
2707         /*
2708          * The backend has already disposed of the record.
2709          */
2710         if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2711                 error = 0;
2712                 goto done;
2713         }
2714
2715         /*
2716          * If the whole inode is being deleted and all on-disk records will
2717          * be deleted very soon, we can't sync any new records to disk
2718          * because they will be deleted in the same transaction they were
2719          * created in (delete_tid == create_tid), which will assert.
2720          *
2721          * XXX There may be a case with RECORD_ADD with DELETED_FE set
2722          * that we currently panic on.
2723          */
2724         if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2725                 switch(record->type) {
2726                 case HAMMER_MEM_RECORD_DATA:
2727                         /*
2728                          * We don't have to do anything, if the record was
2729                          * committed the space will have been accounted for
2730                          * in the blockmap.
2731                          */
2732                         /* fall through */
2733                 case HAMMER_MEM_RECORD_GENERAL:
2734                         /*
2735                          * Set deleted-by-backend flag.  Do not set the
2736                          * backend committed flag, because we are throwing
2737                          * the record away.
2738                          */
2739                         record->flags |= HAMMER_RECF_DELETED_BE;
2740                         ++record->ip->rec_generation;
2741                         error = 0;
2742                         goto done;
2743                 case HAMMER_MEM_RECORD_ADD:
2744                         panic("hammer_sync_record_callback: illegal add "
2745                               "during inode deletion record %p", record);
2746                         break; /* NOT REACHED */
2747                 case HAMMER_MEM_RECORD_INODE:
2748                         panic("hammer_sync_record_callback: attempt to "
2749                               "sync inode record %p?", record);
2750                         break; /* NOT REACHED */
2751                 case HAMMER_MEM_RECORD_DEL:
2752                         /* 
2753                          * Follow through and issue the on-disk deletion
2754                          */
2755                         break;
2756                 }
2757         }
2758
2759         /*
2760          * If DELETED_FE is set special handling is needed for directory
2761          * entries.  Dependant pieces related to the directory entry may
2762          * have already been synced to disk.  If this occurs we have to
2763          * sync the directory entry and then change the in-memory record
2764          * from an ADD to a DELETE to cover the fact that it's been
2765          * deleted by the frontend.
2766          *
2767          * A directory delete covering record (MEM_RECORD_DEL) can never
2768          * be deleted by the frontend.
2769          *
2770          * Any other record type (aka DATA) can be deleted by the frontend.
2771          * XXX At the moment the flusher must skip it because there may
2772          * be another data record in the flush group for the same block,
2773          * meaning that some frontend data changes can leak into the backend's
2774          * synchronization point.
2775          */
2776         if (record->flags & HAMMER_RECF_DELETED_FE) {
2777                 if (record->type == HAMMER_MEM_RECORD_ADD) {
2778                         /*
2779                          * Convert a front-end deleted directory-add to
2780                          * a directory-delete entry later.
2781                          */
2782                         record->flags |= HAMMER_RECF_CONVERT_DELETE;
2783                 } else {
2784                         /*
2785                          * Dispose of the record (race case).  Mark as
2786                          * deleted by backend (and not committed).
2787                          */
2788                         KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2789                         record->flags |= HAMMER_RECF_DELETED_BE;
2790                         ++record->ip->rec_generation;
2791                         error = 0;
2792                         goto done;
2793                 }
2794         }
2795
2796         /*
2797          * Assign the create_tid for new records.  Deletions already
2798          * have the record's entire key properly set up.
2799          */
2800         if (record->type != HAMMER_MEM_RECORD_DEL) {
2801                 record->leaf.base.create_tid = trans->tid;
2802                 record->leaf.create_ts = trans->time32;
2803         }
2804
2805         /*
2806          * This actually moves the record to the on-media B-Tree.  We
2807          * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2808          * indicating that the related REDO_WRITE(s) have been committed.
2809          *
2810          * During recovery any REDO_TERM's within the nominal recovery span
2811          * are ignored since the related meta-data is being undone, causing
2812          * any matching REDO_WRITEs to execute.  The REDO_TERMs outside
2813          * the nominal recovery span will match against REDO_WRITEs and
2814          * prevent them from being executed (because the meta-data has
2815          * already been synchronized).
2816          */
2817         if (record->flags & HAMMER_RECF_REDO) {
2818                 KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2819                 hammer_generate_redo(trans, record->ip,
2820                                      record->leaf.base.key -
2821                                          record->leaf.data_len,
2822                                      HAMMER_REDO_TERM_WRITE,
2823                                      NULL,
2824                                      record->leaf.data_len);
2825         }
2826
2827         for (;;) {
2828                 error = hammer_ip_sync_record_cursor(cursor, record);
2829                 if (error != EDEADLK)
2830                         break;
2831                 hammer_done_cursor(cursor);
2832                 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2833                                            record->ip);
2834                 if (error)
2835                         break;
2836         }
2837         record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2838
2839         if (error)
2840                 error = -error;
2841 done:
2842         hammer_flush_record_done(record, error);
2843
2844         /*
2845          * Do partial finalization if we have built up too many dirty
2846          * buffers.  Otherwise a buffer cache deadlock can occur when
2847          * doing things like creating tens of thousands of tiny files.
2848          *
2849          * We must release our cursor lock to avoid a 3-way deadlock
2850          * due to the exclusive sync lock the finalizer must get.
2851          *
2852          * WARNING: See warnings in hammer_unlock_cursor() function.
2853          */
2854         if (hammer_flusher_meta_limit(hmp) ||
2855             vm_page_count_severe()) {
2856                 hammer_unlock_cursor(cursor);
2857                 hammer_flusher_finalize(trans, 0);
2858                 hammer_lock_cursor(cursor);
2859         }
2860         return(error);
2861 }
2862
2863 /*
2864  * Backend function called by the flusher to sync an inode to media.
2865  */
2866 int
2867 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2868 {
2869         struct hammer_cursor cursor;
2870         hammer_node_t tmp_node;
2871         hammer_record_t depend;
2872         hammer_record_t next;
2873         int error, tmp_error;
2874         u_int64_t nlinks;
2875
2876         if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2877                 return(0);
2878
2879         error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2880         if (error)
2881                 goto done;
2882
2883         /*
2884          * Any directory records referencing this inode which are not in
2885          * our current flush group must adjust our nlink count for the
2886          * purposes of synchronizating to disk.
2887          *
2888          * Records which are in our flush group can be unlinked from our
2889          * inode now, potentially allowing the inode to be physically
2890          * deleted.
2891          *
2892          * This cannot block.
2893          */
2894         nlinks = ip->ino_data.nlinks;
2895         next = TAILQ_FIRST(&ip->target_list);
2896         while ((depend = next) != NULL) {
2897                 next = TAILQ_NEXT(depend, target_entry);
2898                 if (depend->flush_state == HAMMER_FST_FLUSH &&
2899                     depend->flush_group == ip->flush_group) {
2900                         /*
2901                          * If this is an ADD that was deleted by the frontend
2902                          * the frontend nlinks count will have already been
2903                          * decremented, but the backend is going to sync its
2904                          * directory entry and must account for it.  The
2905                          * record will be converted to a delete-on-disk when
2906                          * it gets synced.
2907                          *
2908                          * If the ADD was not deleted by the frontend we
2909                          * can remove the dependancy from our target_list.
2910                          */
2911                         if (depend->flags & HAMMER_RECF_DELETED_FE) {
2912                                 ++nlinks;
2913                         } else {
2914                                 TAILQ_REMOVE(&ip->target_list, depend,
2915                                              target_entry);
2916                                 depend->target_ip = NULL;
2917                         }
2918                 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2919                         /*
2920                          * Not part of our flush group and not deleted by
2921                          * the front-end, adjust the link count synced to
2922                          * the media (undo what the frontend did when it
2923                          * queued the record).
2924                          */
2925                         KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2926                         switch(depend->type) {
2927                         case HAMMER_MEM_RECORD_ADD:
2928                                 --nlinks;
2929                                 break;
2930                         case HAMMER_MEM_RECORD_DEL:
2931                                 ++nlinks;
2932                                 break;
2933                         default:
2934                                 break;
2935                         }
2936                 }
2937         }
2938
2939         /*
2940          * Set dirty if we had to modify the link count.
2941          */
2942         if (ip->sync_ino_data.nlinks != nlinks) {
2943                 KKASSERT((int64_t)nlinks >= 0);
2944                 ip->sync_ino_data.nlinks = nlinks;
2945                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2946         }
2947
2948         /*
2949          * If there is a trunction queued destroy any data past the (aligned)
2950          * truncation point.  Userland will have dealt with the buffer
2951          * containing the truncation point for us.
2952          *
2953          * We don't flush pending frontend data buffers until after we've
2954          * dealt with the truncation.
2955          */
2956         if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2957                 /*
2958                  * Interlock trunc_off.  The VOP front-end may continue to
2959                  * make adjustments to it while we are blocked.
2960                  */
2961                 off_t trunc_off;
2962                 off_t aligned_trunc_off;
2963                 int blkmask;
2964
2965                 trunc_off = ip->sync_trunc_off;
2966                 blkmask = hammer_blocksize(trunc_off) - 1;
2967                 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2968
2969                 /*
2970                  * Delete any whole blocks on-media.  The front-end has
2971                  * already cleaned out any partial block and made it
2972                  * pending.  The front-end may have updated trunc_off
2973                  * while we were blocked so we only use sync_trunc_off.
2974                  *
2975                  * This operation can blow out the buffer cache, EWOULDBLOCK
2976                  * means we were unable to complete the deletion.  The
2977                  * deletion will update sync_trunc_off in that case.
2978                  */
2979                 error = hammer_ip_delete_range(&cursor, ip,
2980                                                 aligned_trunc_off,
2981                                                 0x7FFFFFFFFFFFFFFFLL, 2);
2982                 if (error == EWOULDBLOCK) {
2983                         ip->flags |= HAMMER_INODE_WOULDBLOCK;
2984                         error = 0;
2985                         goto defer_buffer_flush;
2986                 }
2987
2988                 if (error)
2989                         goto done;
2990
2991                 /*
2992                  * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
2993                  *
2994                  * XXX we do this even if we did not previously generate
2995                  * a REDO_TRUNC record.  This operation may enclosed the
2996                  * range for multiple prior truncation entries in the REDO
2997                  * log.
2998                  */
2999                 if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
3000                     (ip->flags & HAMMER_INODE_RDIRTY)) {
3001                         hammer_generate_redo(trans, ip, aligned_trunc_off,
3002                                              HAMMER_REDO_TERM_TRUNC,
3003                                              NULL, 0);
3004                 }
3005
3006                 /*
3007                  * Clear the truncation flag on the backend after we have
3008                  * completed the deletions.  Backend data is now good again
3009                  * (including new records we are about to sync, below).
3010                  *
3011                  * Leave sync_trunc_off intact.  As we write additional
3012                  * records the backend will update sync_trunc_off.  This
3013                  * tells the backend whether it can skip the overwrite
3014                  * test.  This should work properly even when the backend
3015                  * writes full blocks where the truncation point straddles
3016                  * the block because the comparison is against the base
3017                  * offset of the record.
3018                  */
3019                 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3020                 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
3021         } else {
3022                 error = 0;
3023         }
3024
3025         /*
3026          * Now sync related records.  These will typically be directory
3027          * entries, records tracking direct-writes, or delete-on-disk records.
3028          */
3029         if (error == 0) {
3030                 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
3031                                     hammer_sync_record_callback, &cursor);
3032                 if (tmp_error < 0)
3033                         tmp_error = -error;
3034                 if (tmp_error)
3035                         error = tmp_error;
3036         }
3037         hammer_cache_node(&ip->cache[1], cursor.node);
3038
3039         /*
3040          * Re-seek for inode update, assuming our cache hasn't been ripped
3041          * out from under us.
3042          */
3043         if (error == 0) {
3044                 tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
3045                 if (tmp_node) {
3046                         hammer_cursor_downgrade(&cursor);
3047                         hammer_lock_sh(&tmp_node->lock);
3048                         if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
3049                                 hammer_cursor_seek(&cursor, tmp_node, 0);
3050                         hammer_unlock(&tmp_node->lock);
3051                         hammer_rel_node(tmp_node);
3052                 }
3053                 error = 0;
3054         }
3055
3056         /*
3057          * If we are deleting the inode the frontend had better not have
3058          * any active references on elements making up the inode.
3059          *
3060          * The call to hammer_ip_delete_clean() cleans up auxillary records
3061          * but not DB or DATA records.  Those must have already been deleted
3062          * by the normal truncation mechanic.
3063          */
3064         if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
3065                 RB_EMPTY(&ip->rec_tree)  &&
3066             (ip->sync_flags & HAMMER_INODE_DELETING) &&
3067             (ip->flags & HAMMER_INODE_DELETED) == 0) {
3068                 int count1 = 0;
3069
3070                 error = hammer_ip_delete_clean(&cursor, ip, &count1);
3071                 if (error == 0) {
3072                         ip->flags |= HAMMER_INODE_DELETED;
3073                         ip->sync_flags &= ~HAMMER_INODE_DELETING;
3074                         ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3075                         KKASSERT(RB_EMPTY(&ip->rec_tree));
3076
3077                         /*
3078                          * Set delete_tid in both the frontend and backend
3079                          * copy of the inode record.  The DELETED flag handles
3080                          * this, do not set DDIRTY.
3081                          */
3082                         ip->ino_leaf.base.delete_tid = trans->tid;
3083                         ip->sync_ino_leaf.base.delete_tid = trans->tid;
3084                         ip->ino_leaf.delete_ts = trans->time32;
3085                         ip->sync_ino_leaf.delete_ts = trans->time32;
3086
3087
3088                         /*
3089                          * Adjust the inode count in the volume header
3090                          */
3091                         hammer_sync_lock_sh(trans);
3092                         if (ip->flags & HAMMER_INODE_ONDISK) {
3093                                 hammer_modify_volume_field(trans,
3094                                                            trans->rootvol,
3095                                                            vol0_stat_inodes);
3096                                 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
3097                                 hammer_modify_volume_done(trans->rootvol);
3098                         }
3099                         hammer_sync_unlock(trans);
3100                 }
3101         }
3102
3103         if (error)
3104                 goto done;
3105         ip->sync_flags &= ~HAMMER_INODE_BUFS;
3106
3107 defer_buffer_flush:
3108         /*
3109          * Now update the inode's on-disk inode-data and/or on-disk record.
3110          * DELETED and ONDISK are managed only in ip->flags.
3111          *
3112          * In the case of a defered buffer flush we still update the on-disk
3113          * inode to satisfy visibility requirements if there happen to be
3114          * directory dependancies.
3115          */
3116         switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
3117         case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
3118                 /*
3119                  * If deleted and on-disk, don't set any additional flags.
3120                  * the delete flag takes care of things.
3121                  *
3122                  * Clear flags which may have been set by the frontend.
3123                  */
3124                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3125                                     HAMMER_INODE_SDIRTY |
3126                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3127                                     HAMMER_INODE_DELETING);
3128                 break;
3129         case HAMMER_INODE_DELETED:
3130                 /*
3131                  * Take care of the case where a deleted inode was never
3132                  * flushed to the disk in the first place.
3133                  *
3134                  * Clear flags which may have been set by the frontend.
3135                  */
3136                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3137                                     HAMMER_INODE_SDIRTY |
3138                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3139                                     HAMMER_INODE_DELETING);
3140                 while (RB_ROOT(&ip->rec_tree)) {
3141                         hammer_record_t record = RB_ROOT(&ip->rec_tree);
3142                         hammer_ref(&record->lock);
3143                         KKASSERT(hammer_oneref(&record->lock));
3144                         record->flags |= HAMMER_RECF_DELETED_BE;
3145                         ++record->ip->rec_generation;
3146                         hammer_rel_mem_record(record);
3147                 }
3148                 break;
3149         case HAMMER_INODE_ONDISK:
3150                 /*
3151                  * If already on-disk, do not set any additional flags.
3152                  */
3153                 break;
3154         default:
3155                 /*
3156                  * If not on-disk and not deleted, set DDIRTY to force
3157                  * an initial record to be written.
3158                  *
3159                  * Also set the create_tid in both the frontend and backend
3160                  * copy of the inode record.
3161                  */
3162                 ip->ino_leaf.base.create_tid = trans->tid;
3163                 ip->ino_leaf.create_ts = trans->time32;
3164                 ip->sync_ino_leaf.base.create_tid = trans->tid;
3165                 ip->sync_ino_leaf.create_ts = trans->time32;
3166                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
3167                 break;
3168         }
3169
3170         /*
3171          * If DDIRTY or SDIRTY is set, write out a new record.
3172          * If the inode is already on-disk the old record is marked as
3173          * deleted.
3174          *
3175          * If DELETED is set hammer_update_inode() will delete the existing
3176          * record without writing out a new one.
3177          *
3178          * If *ONLY* the ITIMES flag is set we can update the record in-place.
3179          */
3180         if (ip->flags & HAMMER_INODE_DELETED) {
3181                 error = hammer_update_inode(&cursor, ip);
3182         } else 
3183         if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3184             (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3185                 error = hammer_update_itimes(&cursor, ip);
3186         } else
3187         if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3188                               HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3189                 error = hammer_update_inode(&cursor, ip);
3190         }
3191 done:
3192         if (ip->flags & HAMMER_INODE_MODMASK)
3193                 hammer_inode_dirty(ip);
3194         if (error) {
3195                 hammer_critical_error(ip->hmp, ip, error,
3196                                       "while syncing inode");
3197         }
3198         hammer_done_cursor(&cursor);
3199         return(error);
3200 }
3201
3202 /*
3203  * This routine is called when the OS is no longer actively referencing
3204  * the inode (but might still be keeping it cached), or when releasing
3205  * the last reference to an inode.
3206  *
3207  * At this point if the inode's nlinks count is zero we want to destroy
3208  * it, which may mean destroying it on-media too.
3209  */
3210 void
3211 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3212 {
3213         struct vnode *vp;
3214
3215         /*
3216          * Set the DELETING flag when the link count drops to 0 and the
3217          * OS no longer has any opens on the inode.
3218          *
3219          * The backend will clear DELETING (a mod flag) and set DELETED
3220          * (a state flag) when it is actually able to perform the
3221          * operation.
3222          *
3223          * Don't reflag the deletion if the flusher is currently syncing
3224          * one that was already flagged.  A previously set DELETING flag
3225          * may bounce around flags and sync_flags until the operation is
3226          * completely done.
3227          *
3228          * Do not attempt to modify a snapshot inode (one set to read-only).
3229          */
3230         if (ip->ino_data.nlinks == 0 &&
3231             ((ip->flags | ip->sync_flags) & (HAMMER_INODE_RO|HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3232                 ip->flags |= HAMMER_INODE_DELETING;
3233                 ip->flags |= HAMMER_INODE_TRUNCATED;
3234                 ip->trunc_off = 0;
3235                 vp = NULL;
3236                 if (getvp) {
3237                         if (hammer_get_vnode(ip, &vp) != 0)
3238                                 return;
3239                 }
3240
3241                 /*
3242                  * Final cleanup
3243                  */
3244                 if (ip->vp)
3245                         nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0, 0);
3246                 if (ip->flags & HAMMER_INODE_MODMASK)
3247                         hammer_inode_dirty(ip);
3248                 if (getvp)
3249                         vput(vp);
3250         }
3251 }
3252
3253 /*
3254  * After potentially resolving a dependancy the inode is tested
3255  * to determine whether it needs to be reflushed.
3256  */
3257 void
3258 hammer_test_inode(hammer_inode_t ip)
3259 {
3260         if (ip->flags & HAMMER_INODE_REFLUSH) {
3261                 ip->flags &= ~HAMMER_INODE_REFLUSH;
3262                 hammer_ref(&ip->lock);
3263                 if (ip->flags & HAMMER_INODE_RESIGNAL) {
3264                         ip->flags &= ~HAMMER_INODE_RESIGNAL;
3265                         hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3266                 } else {
3267                         hammer_flush_inode(ip, 0);
3268                 }
3269                 hammer_rel_inode(ip, 0);
3270         }
3271 }
3272
3273 /*
3274  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
3275  * reassociated with a vp or just before it gets freed.
3276  *
3277  * Pipeline wakeups to threads blocked due to an excessive number of
3278  * detached inodes.  This typically occurs when atime updates accumulate
3279  * while scanning a directory tree.
3280  */
3281 static void
3282 hammer_inode_wakereclaims(hammer_inode_t ip)
3283 {
3284         struct hammer_reclaim *reclaim;
3285         hammer_mount_t hmp = ip->hmp;
3286
3287         if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3288                 return;
3289
3290         --hammer_count_reclaims;
3291         --hmp->count_reclaims;
3292         ip->flags &= ~HAMMER_INODE_RECLAIM;
3293
3294         if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3295                 KKASSERT(reclaim->count > 0);
3296                 if (--reclaim->count == 0) {
3297                         TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3298                         wakeup(reclaim);
3299                 }
3300         }
3301 }
3302
3303 /*
3304  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
3305  * inodes build up before we start blocking.  This routine is called
3306  * if a new inode is created or an inode is loaded from media.
3307  *
3308  * When we block we don't care *which* inode has finished reclaiming,
3309  * as long as one does.
3310  *
3311  * The reclaim pipeline is primarily governed by the auto-flush which is
3312  * 1/4 hammer_limit_reclaims.  We don't want to block if the count is
3313  * less than 1/2 hammer_limit_reclaims.  From 1/2 to full count is
3314  * dynamically governed.
3315  */
3316 void
3317 hammer_inode_waitreclaims(hammer_transaction_t trans)
3318 {
3319         hammer_mount_t hmp = trans->hmp;
3320         struct hammer_reclaim reclaim;
3321         int lower_limit;
3322
3323         /*
3324          * Track inode load, delay if the number of reclaiming inodes is
3325          * between 2/4 and 4/4 hammer_limit_reclaims, depending.
3326          */
3327         if (curthread->td_proc) {
3328                 struct hammer_inostats *stats;
3329
3330                 stats = hammer_inode_inostats(hmp, curthread->td_proc->p_pid);
3331                 ++stats->count;
3332
3333                 if (stats->count > hammer_limit_reclaims / 2)
3334                         stats->count = hammer_limit_reclaims / 2;
3335                 lower_limit = hammer_limit_reclaims - stats->count;
3336                 if (hammer_debug_general & 0x10000) {
3337                         kprintf("pid %5d limit %d\n",
3338                                 (int)curthread->td_proc->p_pid, lower_limit);
3339                 }
3340         } else {
3341                 lower_limit = hammer_limit_reclaims * 3 / 4;
3342         }
3343         if (hmp->count_reclaims >= lower_limit) {
3344                 reclaim.count = 1;
3345                 TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3346                 tsleep(&reclaim, 0, "hmrrcm", hz);
3347                 if (reclaim.count > 0)
3348                         TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3349         }
3350 }
3351
3352 /*
3353  * Keep track of reclaim statistics on a per-pid basis using a loose
3354  * 4-way set associative hash table.  Collisions inherit the count of
3355  * the previous entry.
3356  *
3357  * NOTE: We want to be careful here to limit the chain size.  If the chain
3358  *       size is too large a pid will spread its stats out over too many
3359  *       entries under certain types of heavy filesystem activity and
3360  *       wind up not delaying long enough.
3361  */
3362 static
3363 struct hammer_inostats *
3364 hammer_inode_inostats(hammer_mount_t hmp, pid_t pid)
3365 {
3366         struct hammer_inostats *stats;
3367         int delta;
3368         int chain;
3369         static volatile int iterator;   /* we don't care about MP races */
3370
3371         /*
3372          * Chain up to 4 times to find our entry.
3373          */
3374         for (chain = 0; chain < 4; ++chain) {
3375                 stats = &hmp->inostats[(pid + chain) & HAMMER_INOSTATS_HMASK];
3376                 if (stats->pid == pid)
3377                         break;
3378         }
3379
3380         /*
3381          * Replace one of the four chaining entries with our new entry.
3382          */
3383         if (chain == 4) {
3384                 stats = &hmp->inostats[(pid + (iterator++ & 3)) &
3385                                        HAMMER_INOSTATS_HMASK];
3386                 stats->pid = pid;
3387         }
3388
3389         /*
3390          * Decay the entry
3391          */
3392         if (stats->count && stats->ltick != ticks) {
3393                 delta = ticks - stats->ltick;
3394                 stats->ltick = ticks;
3395                 if (delta <= 0 || delta > hz * 60)
3396                         stats->count = 0;
3397                 else
3398                         stats->count = stats->count * hz / (hz + delta);
3399         }
3400         if (hammer_debug_general & 0x10000)
3401                 kprintf("pid %5d stats %d\n", (int)pid, stats->count);
3402         return (stats);
3403 }
3404
3405 #if 0
3406
3407 /*
3408  * XXX not used, doesn't work very well due to the large batching nature
3409  * of flushes.
3410  *
3411  * A larger then normal backlog of inodes is sitting in the flusher,
3412  * enforce a general slowdown to let it catch up.  This routine is only
3413  * called on completion of a non-flusher-related transaction which
3414  * performed B-Tree node I/O.
3415  *
3416  * It is possible for the flusher to stall in a continuous load.
3417  * blogbench -i1000 -o seems to do a good job generating this sort of load.
3418  * If the flusher is unable to catch up the inode count can bloat until
3419  * we run out of kvm.
3420  *
3421  * This is a bit of a hack.
3422  */
3423 void
3424 hammer_inode_waithard(hammer_mount_t hmp)
3425 {
3426         /*
3427          * Hysteresis.
3428          */
3429         if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3430                 if (hmp->count_reclaims < hammer_limit_reclaims / 2 &&
3431                     hmp->count_iqueued < hmp->count_inodes / 20) {
3432                         hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3433                         return;
3434                 }
3435         } else {
3436                 if (hmp->count_reclaims < hammer_limit_reclaims ||
3437                     hmp->count_iqueued < hmp->count_inodes / 10) {
3438                         return;
3439                 }
3440                 hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3441         }
3442
3443         /*
3444          * Block for one flush cycle.
3445          */
3446         hammer_flusher_wait_next(hmp);
3447 }
3448
3449 #endif