sys/vfs/hammer: Use HAMMER_BUFFERS_PER_BIGBLOCK
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46
47 #include <sys/buf2.h>
48
49 static void hammer_free_volume(hammer_volume_t volume);
50 static int hammer_load_volume(hammer_volume_t volume);
51 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
52 static int hammer_load_node(hammer_transaction_t trans,
53                                 hammer_node_t node, int isnew);
54 static void _hammer_rel_node(hammer_node_t node, int locked);
55
56 static int
57 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
58 {
59         if (vol1->vol_no < vol2->vol_no)
60                 return(-1);
61         if (vol1->vol_no > vol2->vol_no)
62                 return(1);
63         return(0);
64 }
65
66 /*
67  * hammer_buffer structures are indexed via their zoneX_offset, not
68  * their zone2_offset.
69  */
70 static int
71 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
72 {
73         if (buf1->zoneX_offset < buf2->zoneX_offset)
74                 return(-1);
75         if (buf1->zoneX_offset > buf2->zoneX_offset)
76                 return(1);
77         return(0);
78 }
79
80 static int
81 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
82 {
83         if (node1->node_offset < node2->node_offset)
84                 return(-1);
85         if (node1->node_offset > node2->node_offset)
86                 return(1);
87         return(0);
88 }
89
90 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
91              hammer_vol_rb_compare, int32_t, vol_no);
92 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
93              hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
94 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
95              hammer_nod_rb_compare, hammer_off_t, node_offset);
96
97 /************************************************************************
98  *                              VOLUMES                                 *
99  ************************************************************************
100  *
101  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
102  * code on failure.  Volumes must be loaded at mount time, hammer_get_volume()
103  * will not load a new volume.
104  *
105  * The passed devvp is vref()'d but not locked.  This function consumes the
106  * ref (typically by associating it with the volume structure).
107  *
108  * Calls made to hammer_load_volume() or single-threaded
109  */
110 int
111 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
112                       struct vnode *devvp)
113 {
114         struct mount *mp;
115         hammer_volume_t volume;
116         struct hammer_volume_ondisk *ondisk;
117         struct nlookupdata nd;
118         struct buf *bp = NULL;
119         int error;
120         int ronly;
121         int setmp = 0;
122
123         mp = hmp->mp;
124         ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125
126         /*
127          * Allocate a volume structure
128          */
129         ++hammer_count_volumes;
130         volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131         volume->vol_name = kstrdup(volname, hmp->m_misc);
132         volume->io.hmp = hmp;   /* bootstrap */
133         hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
134         volume->io.offset = 0LL;
135         volume->io.bytes = HAMMER_BUFSIZE;
136
137         /*
138          * Get the device vnode
139          */
140         if (devvp == NULL) {
141                 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142                 if (error == 0)
143                         error = nlookup(&nd);
144                 if (error == 0)
145                         error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146                 nlookup_done(&nd);
147         } else {
148                 error = 0;
149                 volume->devvp = devvp;
150         }
151
152         if (error == 0) {
153                 if (vn_isdisk(volume->devvp, &error)) {
154                         error = vfs_mountedon(volume->devvp);
155                 }
156         }
157         if (error == 0 && vcount(volume->devvp) > 0)
158                 error = EBUSY;
159         if (error == 0) {
160                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161                 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162                 if (error == 0) {
163                         error = VOP_OPEN(volume->devvp,
164                                          (ronly ? FREAD : FREAD|FWRITE),
165                                          FSCRED, NULL);
166                 }
167                 vn_unlock(volume->devvp);
168         }
169         if (error) {
170                 hammer_free_volume(volume);
171                 return(error);
172         }
173         volume->devvp->v_rdev->si_mountpoint = mp;
174         setmp = 1;
175
176         /*
177          * Extract the volume number from the volume header and do various
178          * sanity checks.
179          */
180         error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181         if (error)
182                 goto late_failure;
183         ondisk = (void *)bp->b_data;
184         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
185                 kprintf("hammer_mount: volume %s has an invalid header\n",
186                         volume->vol_name);
187                 error = EFTYPE;
188                 goto late_failure;
189         }
190         volume->vol_no = ondisk->vol_no;
191         volume->buffer_base = ondisk->vol_buf_beg;
192         volume->vol_flags = ondisk->vol_flags;
193         volume->nblocks = ondisk->vol_nblocks;
194         volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
195                                     ondisk->vol_buf_end - ondisk->vol_buf_beg);
196         volume->maxraw_off = ondisk->vol_buf_end;
197
198         if (RB_EMPTY(&hmp->rb_vols_root)) {
199                 hmp->fsid = ondisk->vol_fsid;
200         } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
201                 kprintf("hammer_mount: volume %s's fsid does not match "
202                         "other volumes\n", volume->vol_name);
203                 error = EFTYPE;
204                 goto late_failure;
205         }
206
207         /*
208          * Insert the volume structure into the red-black tree.
209          */
210         if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
211                 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
212                         volume->vol_name, volume->vol_no);
213                 error = EEXIST;
214         }
215
216         /*
217          * Set the root volume .  HAMMER special cases rootvol the structure.
218          * We do not hold a ref because this would prevent related I/O
219          * from being flushed.
220          */
221         if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
222                 hmp->rootvol = volume;
223                 hmp->nvolumes = ondisk->vol_count;
224                 if (bp) {
225                         brelse(bp);
226                         bp = NULL;
227                 }
228                 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
229                                                 HAMMER_BUFFERS_PER_BIGBLOCK;
230                 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
231                                                 HAMMER_BUFFERS_PER_BIGBLOCK;
232         }
233 late_failure:
234         if (bp)
235                 brelse(bp);
236         if (error) {
237                 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
238                 if (setmp)
239                         volume->devvp->v_rdev->si_mountpoint = NULL;
240                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
241                 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
242                 vn_unlock(volume->devvp);
243                 hammer_free_volume(volume);
244         }
245         return (error);
246 }
247
248 /*
249  * This is called for each volume when updating the mount point from
250  * read-write to read-only or vise-versa.
251  */
252 int
253 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
254 {
255         if (volume->devvp) {
256                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
257                 if (volume->io.hmp->ronly) {
258                         /* do not call vinvalbuf */
259                         VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
260                         VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
261                 } else {
262                         /* do not call vinvalbuf */
263                         VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
264                         VOP_CLOSE(volume->devvp, FREAD, NULL);
265                 }
266                 vn_unlock(volume->devvp);
267         }
268         return(0);
269 }
270
271 /*
272  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
273  * so returns -1 on failure.
274  */
275 int
276 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
277 {
278         hammer_mount_t hmp = volume->io.hmp;
279         int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
280
281         /*
282          * Clean up the root volume pointer, which is held unlocked in hmp.
283          */
284         if (hmp->rootvol == volume)
285                 hmp->rootvol = NULL;
286
287         /*
288          * We must not flush a dirty buffer to disk on umount.  It should
289          * have already been dealt with by the flusher, or we may be in
290          * catastrophic failure.
291          */
292         hammer_io_clear_modify(&volume->io, 1);
293         volume->io.waitdep = 1;
294
295         /*
296          * Clean up the persistent ref ioerror might have on the volume
297          */
298         if (volume->io.ioerror)
299                 hammer_io_clear_error_noassert(&volume->io);
300
301         /*
302          * This should release the bp.  Releasing the volume with flush set
303          * implies the interlock is set.
304          */
305         hammer_ref_interlock_true(&volume->io.lock);
306         hammer_rel_volume(volume, 1);
307         KKASSERT(volume->io.bp == NULL);
308
309         /*
310          * There should be no references on the volume, no clusters, and
311          * no super-clusters.
312          */
313         KKASSERT(hammer_norefs(&volume->io.lock));
314
315         volume->ondisk = NULL;
316         if (volume->devvp) {
317                 if (volume->devvp->v_rdev &&
318                     volume->devvp->v_rdev->si_mountpoint == hmp->mp
319                 ) {
320                         volume->devvp->v_rdev->si_mountpoint = NULL;
321                 }
322                 if (ronly) {
323                         /*
324                          * Make sure we don't sync anything to disk if we
325                          * are in read-only mode (1) or critically-errored
326                          * (2).  Note that there may be dirty buffers in
327                          * normal read-only mode from crash recovery.
328                          */
329                         vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
330                         vinvalbuf(volume->devvp, 0, 0, 0);
331                         VOP_CLOSE(volume->devvp, FREAD, NULL);
332                         vn_unlock(volume->devvp);
333                 } else {
334                         /*
335                          * Normal termination, save any dirty buffers
336                          * (XXX there really shouldn't be any).
337                          */
338                         vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
339                         vinvalbuf(volume->devvp, V_SAVE, 0, 0);
340                         VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
341                         vn_unlock(volume->devvp);
342                 }
343         }
344
345         /*
346          * Destroy the structure
347          */
348         RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
349         hammer_free_volume(volume);
350         return(0);
351 }
352
353 static
354 void
355 hammer_free_volume(hammer_volume_t volume)
356 {
357         hammer_mount_t hmp = volume->io.hmp;
358
359         if (volume->vol_name) {
360                 kfree(volume->vol_name, hmp->m_misc);
361                 volume->vol_name = NULL;
362         }
363         if (volume->devvp) {
364                 vrele(volume->devvp);
365                 volume->devvp = NULL;
366         }
367         --hammer_count_volumes;
368         kfree(volume, hmp->m_misc);
369 }
370
371 /*
372  * Get a HAMMER volume.  The volume must already exist.
373  */
374 hammer_volume_t
375 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
376 {
377         struct hammer_volume *volume;
378
379         /*
380          * Locate the volume structure
381          */
382         volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
383         if (volume == NULL) {
384                 *errorp = ENOENT;
385                 return(NULL);
386         }
387
388         /*
389          * Reference the volume, load/check the data on the 0->1 transition.
390          * hammer_load_volume() will dispose of the interlock on return,
391          * and also clean up the ref count on error.
392          */
393         if (hammer_ref_interlock(&volume->io.lock)) {
394                 *errorp = hammer_load_volume(volume);
395                 if (*errorp)
396                         volume = NULL;
397         } else {
398                 KKASSERT(volume->ondisk);
399                 *errorp = 0;
400         }
401         return(volume);
402 }
403
404 int
405 hammer_ref_volume(hammer_volume_t volume)
406 {
407         int error;
408
409         /*
410          * Reference the volume and deal with the check condition used to
411          * load its ondisk info.
412          */
413         if (hammer_ref_interlock(&volume->io.lock)) {
414                 error = hammer_load_volume(volume);
415         } else {
416                 KKASSERT(volume->ondisk);
417                 error = 0;
418         }
419         return (error);
420 }
421
422 /*
423  * May be called without fs_token
424  */
425 hammer_volume_t
426 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
427 {
428         hammer_volume_t volume;
429
430         volume = hmp->rootvol;
431         KKASSERT(volume != NULL);
432
433         /*
434          * Reference the volume and deal with the check condition used to
435          * load its ondisk info.
436          */
437         if (hammer_ref_interlock(&volume->io.lock)) {
438                 lwkt_gettoken(&volume->io.hmp->fs_token);
439                 *errorp = hammer_load_volume(volume);
440                 lwkt_reltoken(&volume->io.hmp->fs_token);
441                 if (*errorp)
442                         volume = NULL;
443         } else {
444                 KKASSERT(volume->ondisk);
445                 *errorp = 0;
446         }
447         return (volume);
448 }
449
450 /*
451  * Load a volume's on-disk information.  The volume must be referenced and
452  * the interlock is held on call.  The interlock will be released on return.
453  * The reference will also be released on return if an error occurs.
454  */
455 static int
456 hammer_load_volume(hammer_volume_t volume)
457 {
458         int error;
459
460         if (volume->ondisk == NULL) {
461                 error = hammer_io_read(volume->devvp, &volume->io,
462                                        HAMMER_BUFSIZE);
463                 if (error == 0) {
464                         volume->ondisk = (void *)volume->io.bp->b_data;
465                         hammer_ref_interlock_done(&volume->io.lock);
466                 } else {
467                         hammer_rel_volume(volume, 1);
468                 }
469         } else {
470                 error = 0;
471         }
472         return(error);
473 }
474
475 /*
476  * Release a previously acquired reference on the volume.
477  *
478  * Volumes are not unloaded from memory during normal operation.
479  *
480  * May be called without fs_token
481  */
482 void
483 hammer_rel_volume(hammer_volume_t volume, int locked)
484 {
485         struct buf *bp;
486
487         if (hammer_rel_interlock(&volume->io.lock, locked)) {
488                 lwkt_gettoken(&volume->io.hmp->fs_token);
489                 volume->ondisk = NULL;
490                 bp = hammer_io_release(&volume->io, locked);
491                 lwkt_reltoken(&volume->io.hmp->fs_token);
492                 hammer_rel_interlock_done(&volume->io.lock, locked);
493                 if (bp)
494                         brelse(bp);
495         }
496 }
497
498 int
499 hammer_mountcheck_volumes(struct hammer_mount *hmp)
500 {
501         hammer_volume_t vol;
502         int i;
503
504         for (i = 0; i < hmp->nvolumes; ++i) {
505                 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
506                 if (vol == NULL)
507                         return(EINVAL);
508         }
509         return(0);
510 }
511
512 /************************************************************************
513  *                              BUFFERS                                 *
514  ************************************************************************
515  *
516  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
517  * to zone-2 buffer offsets, without a translation stage.  However, the
518  * hammer_buffer structure is indexed by its zoneX_offset, not its
519  * zone2_offset.
520  *
521  * The proper zone must be maintained throughout the code-base all the way
522  * through to the big-block allocator, or routines like hammer_del_buffers()
523  * will not be able to locate all potentially conflicting buffers.
524  */
525
526 /*
527  * Helper function returns whether a zone offset can be directly translated
528  * to a raw buffer index or not.  Really only the volume and undo zones
529  * can't be directly translated.  Volumes are special-cased and undo zones
530  * shouldn't be aliased accessed in read-only mode.
531  *
532  * This function is ONLY used to detect aliased zones during a read-only
533  * mount.
534  */
535 static __inline int
536 hammer_direct_zone(hammer_off_t buf_offset)
537 {
538         switch(HAMMER_ZONE_DECODE(buf_offset)) {
539         case HAMMER_ZONE_RAW_BUFFER_INDEX:
540         case HAMMER_ZONE_FREEMAP_INDEX:
541         case HAMMER_ZONE_BTREE_INDEX:
542         case HAMMER_ZONE_META_INDEX:
543         case HAMMER_ZONE_LARGE_DATA_INDEX:
544         case HAMMER_ZONE_SMALL_DATA_INDEX:
545                 return(1);
546         default:
547                 return(0);
548         }
549         /* NOT REACHED */
550 }
551
552 hammer_buffer_t
553 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
554                   int bytes, int isnew, int *errorp)
555 {
556         hammer_buffer_t buffer;
557         hammer_volume_t volume;
558         hammer_off_t    zone2_offset;
559         hammer_io_type_t iotype;
560         int vol_no;
561         int zone;
562
563         buf_offset &= ~HAMMER_BUFMASK64;
564 again:
565         /*
566          * Shortcut if the buffer is already cached
567          */
568         buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
569         if (buffer) {
570                 /*
571                  * Once refed the ondisk field will not be cleared by
572                  * any other action.  Shortcut the operation if the
573                  * ondisk structure is valid.
574                  */
575 found_aliased:
576                 if (hammer_ref_interlock(&buffer->io.lock) == 0) {
577                         hammer_io_advance(&buffer->io);
578                         KKASSERT(buffer->ondisk);
579                         *errorp = 0;
580                         return(buffer);
581                 }
582
583                 /*
584                  * 0->1 transition or defered 0->1 transition (CHECK),
585                  * interlock now held.  Shortcut if ondisk is already
586                  * assigned.
587                  */
588                 atomic_add_int(&hammer_count_refedbufs, 1);
589                 if (buffer->ondisk) {
590                         hammer_io_advance(&buffer->io);
591                         hammer_ref_interlock_done(&buffer->io.lock);
592                         *errorp = 0;
593                         return(buffer);
594                 }
595
596                 /*
597                  * The buffer is no longer loose if it has a ref, and
598                  * cannot become loose once it gains a ref.  Loose
599                  * buffers will never be in a modified state.  This should
600                  * only occur on the 0->1 transition of refs.
601                  *
602                  * lose_list can be modified via a biodone() interrupt
603                  * so the io_token must be held.
604                  */
605                 if (buffer->io.mod_root == &hmp->lose_root) {
606                         lwkt_gettoken(&hmp->io_token);
607                         if (buffer->io.mod_root == &hmp->lose_root) {
608                                 RB_REMOVE(hammer_mod_rb_tree,
609                                           buffer->io.mod_root, &buffer->io);
610                                 buffer->io.mod_root = NULL;
611                                 KKASSERT(buffer->io.modified == 0);
612                         }
613                         lwkt_reltoken(&hmp->io_token);
614                 }
615                 goto found;
616         } else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
617                 /*
618                  * If this is a read-only mount there could be an alias
619                  * in the raw-zone.  If there is we use that buffer instead.
620                  *
621                  * rw mounts will not have aliases.  Also note when going
622                  * from ro -> rw the recovered raw buffers are flushed and
623                  * reclaimed, so again there will not be any aliases once
624                  * the mount is rw.
625                  */
626                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
627                                    hammer_xlate_to_zone2(buf_offset));
628                 if (buffer) {
629                         if (hammer_debug_general & 0x0001) {
630                                 krateprintf(&hmp->kdiag,
631                                             "HAMMER: recovered "
632                                             "aliased %016jx\n",
633                                             (intmax_t)buf_offset);
634                         }
635                         goto found_aliased;
636                 }
637         }
638
639         /*
640          * What is the buffer class?
641          */
642         zone = HAMMER_ZONE_DECODE(buf_offset);
643
644         switch(zone) {
645         case HAMMER_ZONE_LARGE_DATA_INDEX:
646         case HAMMER_ZONE_SMALL_DATA_INDEX:
647                 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
648                 break;
649         case HAMMER_ZONE_UNDO_INDEX:
650                 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
651                 break;
652         case HAMMER_ZONE_META_INDEX:
653         default:
654                 /*
655                  * NOTE: inode data and directory entries are placed in this
656                  * zone.  inode atime/mtime is updated in-place and thus
657                  * buffers containing inodes must be synchronized as
658                  * meta-buffers, same as buffers containing B-Tree info.
659                  */
660                 iotype = HAMMER_STRUCTURE_META_BUFFER;
661                 break;
662         }
663
664         /*
665          * Handle blockmap offset translations
666          */
667         if (zone >= HAMMER_ZONE2_MAPPED_INDEX) {
668                 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
669         } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
670                 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
671         } else {
672                 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
673                 zone2_offset = buf_offset;
674                 *errorp = 0;
675         }
676         if (*errorp)
677                 return(NULL);
678
679         /*
680          * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
681          * specifications.
682          */
683         KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
684                  HAMMER_ZONE_RAW_BUFFER);
685         vol_no = HAMMER_VOL_DECODE(zone2_offset);
686         volume = hammer_get_volume(hmp, vol_no, errorp);
687         if (volume == NULL)
688                 return(NULL);
689
690         KKASSERT(zone2_offset < volume->maxbuf_off);
691
692         /*
693          * Allocate a new buffer structure.  We will check for races later.
694          */
695         ++hammer_count_buffers;
696         buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
697                          M_WAITOK|M_ZERO|M_USE_RESERVE);
698         buffer->zone2_offset = zone2_offset;
699         buffer->zoneX_offset = buf_offset;
700
701         hammer_io_init(&buffer->io, volume, iotype);
702         buffer->io.offset = volume->ondisk->vol_buf_beg +
703                             (zone2_offset & HAMMER_OFF_SHORT_MASK);
704         buffer->io.bytes = bytes;
705         TAILQ_INIT(&buffer->clist);
706         hammer_ref_interlock_true(&buffer->io.lock);
707
708         /*
709          * Insert the buffer into the RB tree and handle late collisions.
710          */
711         if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
712                 hammer_rel_volume(volume, 0);
713                 buffer->io.volume = NULL;                       /* safety */
714                 if (hammer_rel_interlock(&buffer->io.lock, 1))  /* safety */
715                         hammer_rel_interlock_done(&buffer->io.lock, 1);
716                 --hammer_count_buffers;
717                 kfree(buffer, hmp->m_misc);
718                 goto again;
719         }
720         atomic_add_int(&hammer_count_refedbufs, 1);
721 found:
722
723         /*
724          * The buffer is referenced and interlocked.  Load the buffer
725          * if necessary.  hammer_load_buffer() deals with the interlock
726          * and, if an error is returned, also deals with the ref.
727          */
728         if (buffer->ondisk == NULL) {
729                 *errorp = hammer_load_buffer(buffer, isnew);
730                 if (*errorp)
731                         buffer = NULL;
732         } else {
733                 hammer_io_advance(&buffer->io);
734                 hammer_ref_interlock_done(&buffer->io.lock);
735                 *errorp = 0;
736         }
737         return(buffer);
738 }
739
740 /*
741  * This is used by the direct-read code to deal with large-data buffers
742  * created by the reblocker and mirror-write code.  The direct-read code
743  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
744  * running hammer buffers must be fully synced to disk before we can issue
745  * the direct-read.
746  *
747  * This code path is not considered critical as only the rebocker and
748  * mirror-write code will create large-data buffers via the HAMMER buffer
749  * subsystem.  They do that because they operate at the B-Tree level and
750  * do not access the vnode/inode structures.
751  */
752 void
753 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
754 {
755         hammer_buffer_t buffer;
756         int error;
757
758         KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
759                  HAMMER_ZONE_LARGE_DATA);
760
761         while (bytes > 0) {
762                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
763                                    base_offset);
764                 if (buffer && (buffer->io.modified || buffer->io.running)) {
765                         error = hammer_ref_buffer(buffer);
766                         if (error == 0) {
767                                 hammer_io_wait(&buffer->io);
768                                 if (buffer->io.modified) {
769                                         hammer_io_write_interlock(&buffer->io);
770                                         hammer_io_flush(&buffer->io, 0);
771                                         hammer_io_done_interlock(&buffer->io);
772                                         hammer_io_wait(&buffer->io);
773                                 }
774                                 hammer_rel_buffer(buffer, 0);
775                         }
776                 }
777                 base_offset += HAMMER_BUFSIZE;
778                 bytes -= HAMMER_BUFSIZE;
779         }
780 }
781
782 /*
783  * Destroy all buffers covering the specified zoneX offset range.  This
784  * is called when the related blockmap layer2 entry is freed or when
785  * a direct write bypasses our buffer/buffer-cache subsystem.
786  *
787  * The buffers may be referenced by the caller itself.  Setting reclaim
788  * will cause the buffer to be destroyed when it's ref count reaches zero.
789  *
790  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
791  * to additional references held by other threads, or some other (typically
792  * fatal) error.
793  */
794 int
795 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
796                    hammer_off_t zone2_offset, int bytes,
797                    int report_conflicts)
798 {
799         hammer_buffer_t buffer;
800         hammer_volume_t volume;
801         int vol_no;
802         int error;
803         int ret_error;
804
805         vol_no = HAMMER_VOL_DECODE(zone2_offset);
806         volume = hammer_get_volume(hmp, vol_no, &ret_error);
807         KKASSERT(ret_error == 0);
808
809         while (bytes > 0) {
810                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
811                                    base_offset);
812                 if (buffer) {
813                         error = hammer_ref_buffer(buffer);
814                         if (hammer_debug_general & 0x20000) {
815                                 kprintf("hammer: delbufr %016jx "
816                                         "rerr=%d 1ref=%d\n",
817                                         (intmax_t)buffer->zoneX_offset,
818                                         error,
819                                         hammer_oneref(&buffer->io.lock));
820                         }
821                         if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
822                                 error = EAGAIN;
823                                 hammer_rel_buffer(buffer, 0);
824                         }
825                         if (error == 0) {
826                                 KKASSERT(buffer->zone2_offset == zone2_offset);
827                                 hammer_io_clear_modify(&buffer->io, 1);
828                                 buffer->io.reclaim = 1;
829                                 buffer->io.waitdep = 1;
830                                 KKASSERT(buffer->io.volume == volume);
831                                 hammer_rel_buffer(buffer, 0);
832                         }
833                 } else {
834                         error = hammer_io_inval(volume, zone2_offset);
835                 }
836                 if (error) {
837                         ret_error = error;
838                         if (report_conflicts ||
839                             (hammer_debug_general & 0x8000)) {
840                                 krateprintf(&hmp->kdiag,
841                                         "hammer_del_buffers: unable to "
842                                         "invalidate %016llx buffer=%p "
843                                         "rep=%d lkrefs=%08x\n",
844                                         (long long)base_offset,
845                                         buffer, report_conflicts,
846                                         (buffer ? buffer->io.lock.refs : -1));
847                         }
848                 }
849                 base_offset += HAMMER_BUFSIZE;
850                 zone2_offset += HAMMER_BUFSIZE;
851                 bytes -= HAMMER_BUFSIZE;
852         }
853         hammer_rel_volume(volume, 0);
854         return (ret_error);
855 }
856
857 /*
858  * Given a referenced and interlocked buffer load/validate the data.
859  *
860  * The buffer interlock will be released on return.  If an error is
861  * returned the buffer reference will also be released (and the buffer
862  * pointer will thus be stale).
863  */
864 static int
865 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
866 {
867         hammer_volume_t volume;
868         int error;
869
870         /*
871          * Load the buffer's on-disk info
872          */
873         volume = buffer->io.volume;
874
875         if (hammer_debug_io & 0x0004) {
876                 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
877                         (long long)buffer->zoneX_offset,
878                         (long long)buffer->zone2_offset,
879                         isnew, buffer->ondisk);
880         }
881
882         if (buffer->ondisk == NULL) {
883                 /*
884                  * Issue the read or generate a new buffer.  When reading
885                  * the limit argument controls any read-ahead clustering
886                  * hammer_io_read() is allowed to do.
887                  *
888                  * We cannot read-ahead in the large-data zone and we cannot
889                  * cross a big-block boundary as the next big-block might
890                  * use a different buffer size.
891                  */
892                 if (isnew) {
893                         error = hammer_io_new(volume->devvp, &buffer->io);
894                 } else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
895                            HAMMER_ZONE_LARGE_DATA) {
896                         error = hammer_io_read(volume->devvp, &buffer->io,
897                                                buffer->io.bytes);
898                 } else {
899                         hammer_off_t limit;
900
901                         limit = (buffer->zone2_offset +
902                                  HAMMER_BIGBLOCK_MASK64) &
903                                 ~HAMMER_BIGBLOCK_MASK64;
904                         limit -= buffer->zone2_offset;
905                         error = hammer_io_read(volume->devvp, &buffer->io,
906                                                limit);
907                 }
908                 if (error == 0)
909                         buffer->ondisk = (void *)buffer->io.bp->b_data;
910         } else if (isnew) {
911                 error = hammer_io_new(volume->devvp, &buffer->io);
912         } else {
913                 error = 0;
914         }
915         if (error == 0) {
916                 hammer_io_advance(&buffer->io);
917                 hammer_ref_interlock_done(&buffer->io.lock);
918         } else {
919                 hammer_rel_buffer(buffer, 1);
920         }
921         return (error);
922 }
923
924 /*
925  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
926  * This routine is only called during unmount or when a volume is
927  * removed.
928  *
929  * If data != NULL, it specifies a volume whoose buffers should
930  * be unloaded.
931  */
932 int
933 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
934 {
935         struct hammer_volume *volume = (struct hammer_volume *) data;
936
937         /*
938          * If volume != NULL we are only interested in unloading buffers
939          * associated with a particular volume.
940          */
941         if (volume != NULL && volume != buffer->io.volume)
942                 return 0;
943
944         /*
945          * Clean up the persistent ref ioerror might have on the buffer
946          * and acquire a ref.  Expect a 0->1 transition.
947          */
948         if (buffer->io.ioerror) {
949                 hammer_io_clear_error_noassert(&buffer->io);
950                 atomic_add_int(&hammer_count_refedbufs, -1);
951         }
952         hammer_ref_interlock_true(&buffer->io.lock);
953         atomic_add_int(&hammer_count_refedbufs, 1);
954
955         /*
956          * We must not flush a dirty buffer to disk on umount.  It should
957          * have already been dealt with by the flusher, or we may be in
958          * catastrophic failure.
959          *
960          * We must set waitdep to ensure that a running buffer is waited
961          * on and released prior to us trying to unload the volume.
962          */
963         hammer_io_clear_modify(&buffer->io, 1);
964         hammer_flush_buffer_nodes(buffer);
965         buffer->io.waitdep = 1;
966         hammer_rel_buffer(buffer, 1);
967         return(0);
968 }
969
970 /*
971  * Reference a buffer that is either already referenced or via a specially
972  * handled pointer (aka cursor->buffer).
973  */
974 int
975 hammer_ref_buffer(hammer_buffer_t buffer)
976 {
977         hammer_mount_t hmp;
978         int error;
979         int locked;
980
981         /*
982          * Acquire a ref, plus the buffer will be interlocked on the
983          * 0->1 transition.
984          */
985         locked = hammer_ref_interlock(&buffer->io.lock);
986         hmp = buffer->io.hmp;
987
988         /*
989          * At this point a biodone() will not touch the buffer other then
990          * incidental bits.  However, lose_list can be modified via
991          * a biodone() interrupt.
992          *
993          * No longer loose.  lose_list requires the io_token.
994          */
995         if (buffer->io.mod_root == &hmp->lose_root) {
996                 lwkt_gettoken(&hmp->io_token);
997                 if (buffer->io.mod_root == &hmp->lose_root) {
998                         RB_REMOVE(hammer_mod_rb_tree,
999                                   buffer->io.mod_root, &buffer->io);
1000                         buffer->io.mod_root = NULL;
1001                 }
1002                 lwkt_reltoken(&hmp->io_token);
1003         }
1004
1005         if (locked) {
1006                 atomic_add_int(&hammer_count_refedbufs, 1);
1007                 error = hammer_load_buffer(buffer, 0);
1008                 /* NOTE: on error the buffer pointer is stale */
1009         } else {
1010                 error = 0;
1011         }
1012         return(error);
1013 }
1014
1015 /*
1016  * Release a reference on the buffer.  On the 1->0 transition the
1017  * underlying IO will be released but the data reference is left
1018  * cached.
1019  *
1020  * Only destroy the structure itself if the related buffer cache buffer
1021  * was disassociated from it.  This ties the management of the structure
1022  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1023  * embedded io is referenced or not.
1024  */
1025 void
1026 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1027 {
1028         hammer_volume_t volume;
1029         hammer_mount_t hmp;
1030         struct buf *bp = NULL;
1031         int freeme = 0;
1032
1033         hmp = buffer->io.hmp;
1034
1035         if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1036                 return;
1037
1038         /*
1039          * hammer_count_refedbufs accounting.  Decrement if we are in
1040          * the error path or if CHECK is clear.
1041          *
1042          * If we are not in the error path and CHECK is set the caller
1043          * probably just did a hammer_ref() and didn't account for it,
1044          * so we don't account for the loss here.
1045          */
1046         if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1047                 atomic_add_int(&hammer_count_refedbufs, -1);
1048
1049         /*
1050          * If the caller locked us or the normal released transitions
1051          * from 1->0 (and acquired the lock) attempt to release the
1052          * io.  If the called locked us we tell hammer_io_release()
1053          * to flush (which would be the unload or failure path).
1054          */
1055         bp = hammer_io_release(&buffer->io, locked);
1056
1057         /*
1058          * If the buffer has no bp association and no refs we can destroy
1059          * it.
1060          *
1061          * NOTE: It is impossible for any associated B-Tree nodes to have
1062          * refs if the buffer has no additional refs.
1063          */
1064         if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1065                 RB_REMOVE(hammer_buf_rb_tree,
1066                           &buffer->io.hmp->rb_bufs_root,
1067                           buffer);
1068                 volume = buffer->io.volume;
1069                 buffer->io.volume = NULL; /* sanity */
1070                 hammer_rel_volume(volume, 0);
1071                 hammer_io_clear_modlist(&buffer->io);
1072                 hammer_flush_buffer_nodes(buffer);
1073                 KKASSERT(TAILQ_EMPTY(&buffer->clist));
1074                 freeme = 1;
1075         }
1076
1077         /*
1078          * Cleanup
1079          */
1080         hammer_rel_interlock_done(&buffer->io.lock, locked);
1081         if (bp)
1082                 brelse(bp);
1083         if (freeme) {
1084                 --hammer_count_buffers;
1085                 kfree(buffer, hmp->m_misc);
1086         }
1087 }
1088
1089 /*
1090  * Access the filesystem buffer containing the specified hammer offset.
1091  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1092  * relative buffer offset.  It must also have bit 55 set to be valid.
1093  * (see hammer_off_t in hammer_disk.h).
1094  *
1095  * Any prior buffer in *bufferp will be released and replaced by the
1096  * requested buffer.
1097  *
1098  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1099  * passed cached *bufferp to match against either zoneX or zone2.
1100  */
1101 static __inline
1102 void *
1103 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1104              int *errorp, struct hammer_buffer **bufferp)
1105 {
1106         hammer_buffer_t buffer;
1107         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1108
1109         buf_offset &= ~HAMMER_BUFMASK64;
1110         KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1111
1112         buffer = *bufferp;
1113         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1114                                buffer->zoneX_offset != buf_offset)) {
1115                 if (buffer)
1116                         hammer_rel_buffer(buffer, 0);
1117                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1118                 *bufferp = buffer;
1119         } else {
1120                 *errorp = 0;
1121         }
1122
1123         /*
1124          * Return a pointer to the buffer data.
1125          */
1126         if (buffer == NULL)
1127                 return(NULL);
1128         else
1129                 return((char *)buffer->ondisk + xoff);
1130 }
1131
1132 void *
1133 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1134              int *errorp, struct hammer_buffer **bufferp)
1135 {
1136         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1137 }
1138
1139 void *
1140 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1141                  int *errorp, struct hammer_buffer **bufferp)
1142 {
1143         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1144         return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1145 }
1146
1147 /*
1148  * Access the filesystem buffer containing the specified hammer offset.
1149  * No disk read operation occurs.  The result buffer may contain garbage.
1150  *
1151  * Any prior buffer in *bufferp will be released and replaced by the
1152  * requested buffer.
1153  *
1154  * This function marks the buffer dirty but does not increment its
1155  * modify_refs count.
1156  */
1157 static __inline
1158 void *
1159 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1160              int *errorp, struct hammer_buffer **bufferp)
1161 {
1162         hammer_buffer_t buffer;
1163         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1164
1165         buf_offset &= ~HAMMER_BUFMASK64;
1166
1167         buffer = *bufferp;
1168         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1169                                buffer->zoneX_offset != buf_offset)) {
1170                 if (buffer)
1171                         hammer_rel_buffer(buffer, 0);
1172                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1173                 *bufferp = buffer;
1174         } else {
1175                 *errorp = 0;
1176         }
1177
1178         /*
1179          * Return a pointer to the buffer data.
1180          */
1181         if (buffer == NULL)
1182                 return(NULL);
1183         else
1184                 return((char *)buffer->ondisk + xoff);
1185 }
1186
1187 void *
1188 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1189              int *errorp, struct hammer_buffer **bufferp)
1190 {
1191         return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1192 }
1193
1194 void *
1195 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1196                 int *errorp, struct hammer_buffer **bufferp)
1197 {
1198         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1199         return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1200 }
1201
1202 /************************************************************************
1203  *                              NODES                                   *
1204  ************************************************************************
1205  *
1206  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1207  * method used by the HAMMER filesystem.
1208  *
1209  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1210  * associated with its buffer, and will only referenced the buffer while
1211  * the node itself is referenced.
1212  *
1213  * A hammer_node can also be passively associated with other HAMMER
1214  * structures, such as inodes, while retaining 0 references.  These
1215  * associations can be cleared backwards using a pointer-to-pointer in
1216  * the hammer_node.
1217  *
1218  * This allows the HAMMER implementation to cache hammer_nodes long-term
1219  * and short-cut a great deal of the infrastructure's complexity.  In
1220  * most cases a cached node can be reacquired without having to dip into
1221  * either the buffer or cluster management code.
1222  *
1223  * The caller must pass a referenced cluster on call and will retain
1224  * ownership of the reference on return.  The node will acquire its own
1225  * additional references, if necessary.
1226  */
1227 hammer_node_t
1228 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1229                 int isnew, int *errorp)
1230 {
1231         hammer_mount_t hmp = trans->hmp;
1232         hammer_node_t node;
1233         int doload;
1234
1235         KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1236
1237         /*
1238          * Locate the structure, allocating one if necessary.
1239          */
1240 again:
1241         node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1242         if (node == NULL) {
1243                 ++hammer_count_nodes;
1244                 node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1245                 node->node_offset = node_offset;
1246                 node->hmp = hmp;
1247                 TAILQ_INIT(&node->cursor_list);
1248                 TAILQ_INIT(&node->cache_list);
1249                 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1250                         --hammer_count_nodes;
1251                         kfree(node, hmp->m_misc);
1252                         goto again;
1253                 }
1254                 doload = hammer_ref_interlock_true(&node->lock);
1255         } else {
1256                 doload = hammer_ref_interlock(&node->lock);
1257         }
1258         if (doload) {
1259                 *errorp = hammer_load_node(trans, node, isnew);
1260                 trans->flags |= HAMMER_TRANSF_DIDIO;
1261                 if (*errorp)
1262                         node = NULL;
1263         } else {
1264                 KKASSERT(node->ondisk);
1265                 *errorp = 0;
1266                 hammer_io_advance(&node->buffer->io);
1267         }
1268         return(node);
1269 }
1270
1271 /*
1272  * Reference an already-referenced node.  0->1 transitions should assert
1273  * so we do not have to deal with hammer_ref() setting CHECK.
1274  */
1275 void
1276 hammer_ref_node(hammer_node_t node)
1277 {
1278         KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1279         hammer_ref(&node->lock);
1280 }
1281
1282 /*
1283  * Load a node's on-disk data reference.  Called with the node referenced
1284  * and interlocked.
1285  *
1286  * On return the node interlock will be unlocked.  If a non-zero error code
1287  * is returned the node will also be dereferenced (and the caller's pointer
1288  * will be stale).
1289  */
1290 static int
1291 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1292 {
1293         hammer_buffer_t buffer;
1294         hammer_off_t buf_offset;
1295         int error;
1296
1297         error = 0;
1298         if (node->ondisk == NULL) {
1299                 /*
1300                  * This is a little confusing but the jist is that
1301                  * node->buffer determines whether the node is on
1302                  * the buffer's clist and node->ondisk determines
1303                  * whether the buffer is referenced.
1304                  *
1305                  * We could be racing a buffer release, in which case
1306                  * node->buffer may become NULL while we are blocked
1307                  * referencing the buffer.
1308                  */
1309                 if ((buffer = node->buffer) != NULL) {
1310                         error = hammer_ref_buffer(buffer);
1311                         if (error == 0 && node->buffer == NULL) {
1312                                 TAILQ_INSERT_TAIL(&buffer->clist,
1313                                                   node, entry);
1314                                 node->buffer = buffer;
1315                         }
1316                 } else {
1317                         buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1318                         buffer = hammer_get_buffer(node->hmp, buf_offset,
1319                                                    HAMMER_BUFSIZE, 0, &error);
1320                         if (buffer) {
1321                                 KKASSERT(error == 0);
1322                                 TAILQ_INSERT_TAIL(&buffer->clist,
1323                                                   node, entry);
1324                                 node->buffer = buffer;
1325                         }
1326                 }
1327                 if (error)
1328                         goto failed;
1329                 node->ondisk = (void *)((char *)buffer->ondisk +
1330                                         (node->node_offset & HAMMER_BUFMASK));
1331
1332                 /*
1333                  * Check CRC.  NOTE: Neither flag is set and the CRC is not
1334                  * generated on new B-Tree nodes.
1335                  */
1336                 if (isnew == 0 &&
1337                     (node->flags & HAMMER_NODE_CRCANY) == 0) {
1338                         if (hammer_crc_test_btree(node->ondisk) == 0) {
1339                                 if (hammer_debug_critical)
1340                                         Debugger("CRC FAILED: B-TREE NODE");
1341                                 node->flags |= HAMMER_NODE_CRCBAD;
1342                         } else {
1343                                 node->flags |= HAMMER_NODE_CRCGOOD;
1344                         }
1345                 }
1346         }
1347         if (node->flags & HAMMER_NODE_CRCBAD) {
1348                 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1349                         error = EDOM;
1350                 else
1351                         error = EIO;
1352         }
1353 failed:
1354         if (error) {
1355                 _hammer_rel_node(node, 1);
1356         } else {
1357                 hammer_ref_interlock_done(&node->lock);
1358         }
1359         return (error);
1360 }
1361
1362 /*
1363  * Safely reference a node, interlock against flushes via the IO subsystem.
1364  */
1365 hammer_node_t
1366 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1367                      int *errorp)
1368 {
1369         hammer_node_t node;
1370         int doload;
1371
1372         node = cache->node;
1373         if (node != NULL) {
1374                 doload = hammer_ref_interlock(&node->lock);
1375                 if (doload) {
1376                         *errorp = hammer_load_node(trans, node, 0);
1377                         if (*errorp)
1378                                 node = NULL;
1379                 } else {
1380                         KKASSERT(node->ondisk);
1381                         if (node->flags & HAMMER_NODE_CRCBAD) {
1382                                 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1383                                         *errorp = EDOM;
1384                                 else
1385                                         *errorp = EIO;
1386                                 _hammer_rel_node(node, 0);
1387                                 node = NULL;
1388                         } else {
1389                                 *errorp = 0;
1390                         }
1391                 }
1392         } else {
1393                 *errorp = ENOENT;
1394         }
1395         return(node);
1396 }
1397
1398 /*
1399  * Release a hammer_node.  On the last release the node dereferences
1400  * its underlying buffer and may or may not be destroyed.
1401  *
1402  * If locked is non-zero the passed node has been interlocked by the
1403  * caller and we are in the failure/unload path, otherwise it has not and
1404  * we are doing a normal release.
1405  *
1406  * This function will dispose of the interlock and the reference.
1407  * On return the node pointer is stale.
1408  */
1409 void
1410 _hammer_rel_node(hammer_node_t node, int locked)
1411 {
1412         hammer_buffer_t buffer;
1413
1414         /*
1415          * Deref the node.  If this isn't the 1->0 transition we're basically
1416          * done.  If locked is non-zero this function will just deref the
1417          * locked node and return TRUE, otherwise it will deref the locked
1418          * node and either lock and return TRUE on the 1->0 transition or
1419          * not lock and return FALSE.
1420          */
1421         if (hammer_rel_interlock(&node->lock, locked) == 0)
1422                 return;
1423
1424         /*
1425          * Either locked was non-zero and we are interlocked, or the
1426          * hammer_rel_interlock() call returned non-zero and we are
1427          * interlocked.
1428          *
1429          * The ref-count must still be decremented if locked != 0 so
1430          * the cleanup required still varies a bit.
1431          *
1432          * hammer_flush_node() when called with 1 or 2 will dispose of
1433          * the lock and possible ref-count.
1434          */
1435         if (node->ondisk == NULL) {
1436                 hammer_flush_node(node, locked + 1);
1437                 /* node is stale now */
1438                 return;
1439         }
1440
1441         /*
1442          * Do not disassociate the node from the buffer if it represents
1443          * a modified B-Tree node that still needs its crc to be generated.
1444          */
1445         if (node->flags & HAMMER_NODE_NEEDSCRC) {
1446                 hammer_rel_interlock_done(&node->lock, locked);
1447                 return;
1448         }
1449
1450         /*
1451          * Do final cleanups and then either destroy the node and leave it
1452          * passively cached.  The buffer reference is removed regardless.
1453          */
1454         buffer = node->buffer;
1455         node->ondisk = NULL;
1456
1457         if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1458                 /*
1459                  * Normal release.
1460                  */
1461                 hammer_rel_interlock_done(&node->lock, locked);
1462         } else {
1463                 /*
1464                  * Destroy the node.
1465                  */
1466                 hammer_flush_node(node, locked + 1);
1467                 /* node is stale */
1468
1469         }
1470         hammer_rel_buffer(buffer, 0);
1471 }
1472
1473 void
1474 hammer_rel_node(hammer_node_t node)
1475 {
1476         _hammer_rel_node(node, 0);
1477 }
1478
1479 /*
1480  * Free space on-media associated with a B-Tree node.
1481  */
1482 void
1483 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1484 {
1485         KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1486         node->flags |= HAMMER_NODE_DELETED;
1487         hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1488 }
1489
1490 /*
1491  * Passively cache a referenced hammer_node.  The caller may release
1492  * the node on return.
1493  */
1494 void
1495 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1496 {
1497         /*
1498          * If the node doesn't exist, or is being deleted, don't cache it!
1499          *
1500          * The node can only ever be NULL in the I/O failure path.
1501          */
1502         if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1503                 return;
1504         if (cache->node == node)
1505                 return;
1506         while (cache->node)
1507                 hammer_uncache_node(cache);
1508         if (node->flags & HAMMER_NODE_DELETED)
1509                 return;
1510         cache->node = node;
1511         TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1512 }
1513
1514 void
1515 hammer_uncache_node(hammer_node_cache_t cache)
1516 {
1517         hammer_node_t node;
1518
1519         if ((node = cache->node) != NULL) {
1520                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1521                 cache->node = NULL;
1522                 if (TAILQ_EMPTY(&node->cache_list))
1523                         hammer_flush_node(node, 0);
1524         }
1525 }
1526
1527 /*
1528  * Remove a node's cache references and destroy the node if it has no
1529  * other references or backing store.
1530  *
1531  * locked == 0  Normal unlocked operation
1532  * locked == 1  Call hammer_rel_interlock_done(..., 0);
1533  * locked == 2  Call hammer_rel_interlock_done(..., 1);
1534  *
1535  * XXX for now this isn't even close to being MPSAFE so the refs check
1536  *     is sufficient.
1537  */
1538 void
1539 hammer_flush_node(hammer_node_t node, int locked)
1540 {
1541         hammer_node_cache_t cache;
1542         hammer_buffer_t buffer;
1543         hammer_mount_t hmp = node->hmp;
1544         int dofree;
1545
1546         while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1547                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1548                 cache->node = NULL;
1549         }
1550
1551         /*
1552          * NOTE: refs is predisposed if another thread is blocking and
1553          *       will be larger than 0 in that case.  We aren't MPSAFE
1554          *       here.
1555          */
1556         if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1557                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1558                 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1559                 if ((buffer = node->buffer) != NULL) {
1560                         node->buffer = NULL;
1561                         TAILQ_REMOVE(&buffer->clist, node, entry);
1562                         /* buffer is unreferenced because ondisk is NULL */
1563                 }
1564                 dofree = 1;
1565         } else {
1566                 dofree = 0;
1567         }
1568
1569         /*
1570          * Deal with the interlock if locked == 1 or locked == 2.
1571          */
1572         if (locked)
1573                 hammer_rel_interlock_done(&node->lock, locked - 1);
1574
1575         /*
1576          * Destroy if requested
1577          */
1578         if (dofree) {
1579                 --hammer_count_nodes;
1580                 kfree(node, hmp->m_misc);
1581         }
1582 }
1583
1584 /*
1585  * Flush passively cached B-Tree nodes associated with this buffer.
1586  * This is only called when the buffer is about to be destroyed, so
1587  * none of the nodes should have any references.  The buffer is locked.
1588  *
1589  * We may be interlocked with the buffer.
1590  */
1591 void
1592 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1593 {
1594         hammer_node_t node;
1595
1596         while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1597                 KKASSERT(node->ondisk == NULL);
1598                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1599
1600                 if (hammer_try_interlock_norefs(&node->lock)) {
1601                         hammer_ref(&node->lock);
1602                         node->flags |= HAMMER_NODE_FLUSH;
1603                         _hammer_rel_node(node, 1);
1604                 } else {
1605                         KKASSERT(node->buffer != NULL);
1606                         buffer = node->buffer;
1607                         node->buffer = NULL;
1608                         TAILQ_REMOVE(&buffer->clist, node, entry);
1609                         /* buffer is unreferenced because ondisk is NULL */
1610                 }
1611         }
1612 }
1613
1614
1615 /************************************************************************
1616  *                              ALLOCATORS                              *
1617  ************************************************************************/
1618
1619 /*
1620  * Allocate a B-Tree node.
1621  */
1622 hammer_node_t
1623 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1624 {
1625         hammer_buffer_t buffer = NULL;
1626         hammer_node_t node = NULL;
1627         hammer_off_t node_offset;
1628
1629         node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1630                                             sizeof(struct hammer_node_ondisk),
1631                                             hint, errorp);
1632         if (*errorp == 0) {
1633                 node = hammer_get_node(trans, node_offset, 1, errorp);
1634                 hammer_modify_node_noundo(trans, node);
1635                 bzero(node->ondisk, sizeof(*node->ondisk));
1636                 hammer_modify_node_done(node);
1637         }
1638         if (buffer)
1639                 hammer_rel_buffer(buffer, 0);
1640         return(node);
1641 }
1642
1643 /*
1644  * Allocate data.  If the address of a data buffer is supplied then
1645  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1646  * will be set to the related buffer.  The caller must release it when
1647  * finally done.  The initial *data_bufferp should be set to NULL by
1648  * the caller.
1649  *
1650  * The caller is responsible for making hammer_modify*() calls on the
1651  * *data_bufferp.
1652  */
1653 void *
1654 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1655                   u_int16_t rec_type, hammer_off_t *data_offsetp,
1656                   struct hammer_buffer **data_bufferp,
1657                   hammer_off_t hint, int *errorp)
1658 {
1659         void *data;
1660         int zone;
1661
1662         /*
1663          * Allocate data
1664          */
1665         if (data_len) {
1666                 switch(rec_type) {
1667                 case HAMMER_RECTYPE_INODE:
1668                 case HAMMER_RECTYPE_DIRENTRY:
1669                 case HAMMER_RECTYPE_EXT:
1670                 case HAMMER_RECTYPE_FIX:
1671                 case HAMMER_RECTYPE_PFS:
1672                 case HAMMER_RECTYPE_SNAPSHOT:
1673                 case HAMMER_RECTYPE_CONFIG:
1674                         zone = HAMMER_ZONE_META_INDEX;
1675                         break;
1676                 case HAMMER_RECTYPE_DATA:
1677                 case HAMMER_RECTYPE_DB:
1678                         /*
1679                          * This is an exceptional case. HAMMER usually
1680                          * uses HAMMER_ZONE_LARGE_DATA when the data length
1681                          * is >=HAMMER_BUFSIZE, but not 1/2 of that. Mirror
1682                          * write code seems to be the only case that allocates
1683                          * HAMMER_RECTYPE_DATA via this function.
1684                          *
1685                          * When data_len is >HAMMER_BUFSIZE/2 it uses
1686                          * HAMMER_ZONE_LARGE_DATA but data_len is also rounded
1687                          * up so it doesn't make much difference from the
1688                          * normal way of using this zone.
1689                          *
1690                          * Also note hammer_vop_strategy_write() could have
1691                          * rounded up storage allocation size of the original
1692                          * mirror source to fs block size when it was written
1693                          * if the file size was >HAMMER_BUFSIZE/2.
1694                          */
1695                         if (data_len <= HAMMER_BUFSIZE / 2) {
1696                                 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1697                         } else {
1698                                 data_len = (data_len + HAMMER_BUFMASK) &
1699                                            ~HAMMER_BUFMASK;
1700                                 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1701                         }
1702                         break;
1703                 default:
1704                         panic("hammer_alloc_data: rec_type %04x unknown",
1705                               rec_type);
1706                         zone = 0;       /* NOT REACHED */
1707                         break;
1708                 }
1709                 *data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1710                                                       hint, errorp);
1711         } else {
1712                 *data_offsetp = 0;
1713         }
1714         if (*errorp == 0 && data_bufferp) {
1715                 if (data_len) {
1716                         data = hammer_bread_ext(trans->hmp, *data_offsetp,
1717                                                 data_len, errorp, data_bufferp);
1718                 } else {
1719                         data = NULL;
1720                 }
1721         } else {
1722                 data = NULL;
1723         }
1724         return(data);
1725 }
1726
1727 /*
1728  * Sync dirty buffers to the media and clean-up any loose ends.
1729  *
1730  * These functions do not start the flusher going, they simply
1731  * queue everything up to the flusher.
1732  */
1733 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1734
1735 int
1736 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1737 {
1738         struct hammer_sync_info info;
1739
1740         info.error = 0;
1741         info.waitfor = waitfor;
1742         if (waitfor == MNT_WAIT) {
1743                 vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1744                           hammer_sync_scan2, &info);
1745         } else {
1746                 vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1747                           hammer_sync_scan2, &info);
1748         }
1749         return(info.error);
1750 }
1751
1752 /*
1753  * Filesystem sync.  If doing a synchronous sync make a second pass on
1754  * the vnodes in case any were already flushing during the first pass,
1755  * and activate the flusher twice (the second time brings the UNDO FIFO's
1756  * start position up to the end position after the first call).
1757  *
1758  * If doing a lazy sync make just one pass on the vnode list, ignoring
1759  * any new vnodes added to the list while the sync is in progress.
1760  */
1761 int
1762 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1763 {
1764         struct hammer_sync_info info;
1765         int flags;
1766
1767         flags = VMSC_GETVP;
1768         if (waitfor & MNT_LAZY)
1769                 flags |= VMSC_ONEPASS;
1770
1771         info.error = 0;
1772         info.waitfor = MNT_NOWAIT;
1773         vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1774
1775         if (info.error == 0 && (waitfor & MNT_WAIT)) {
1776                 info.waitfor = waitfor;
1777                 vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1778         }
1779         if (waitfor == MNT_WAIT) {
1780                 hammer_flusher_sync(hmp);
1781                 hammer_flusher_sync(hmp);
1782         } else {
1783                 hammer_flusher_async(hmp, NULL);
1784                 hammer_flusher_async(hmp, NULL);
1785         }
1786         return(info.error);
1787 }
1788
1789 static int
1790 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1791 {
1792         struct hammer_sync_info *info = data;
1793         struct hammer_inode *ip;
1794         int error;
1795
1796         ip = VTOI(vp);
1797         if (ip == NULL)
1798                 return(0);
1799         if (vp->v_type == VNON || vp->v_type == VBAD) {
1800                 vclrisdirty(vp);
1801                 return(0);
1802         }
1803         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1804             RB_EMPTY(&vp->v_rbdirty_tree)) {
1805                 vclrisdirty(vp);
1806                 return(0);
1807         }
1808         error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1809         if (error)
1810                 info->error = error;
1811         return(0);
1812 }