Merge branch 'vendor/MDOCML'
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  * $FreeBSD: src/sys/dev/drm2/i915/i915_gem_execbuffer.c,v 1.3 2012/05/28 13:58:08 kib Exp $
28  */
29
30 #include <sys/limits.h>
31 #include <sys/sfbuf.h>
32
33 #include <drm/drmP.h>
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_drv.h"
37
38 struct change_domains {
39         uint32_t invalidate_domains;
40         uint32_t flush_domains;
41         uint32_t flush_rings;
42         uint32_t flips;
43 };
44
45 /*
46  * Set the next domain for the specified object. This
47  * may not actually perform the necessary flushing/invaliding though,
48  * as that may want to be batched with other set_domain operations
49  *
50  * This is (we hope) the only really tricky part of gem. The goal
51  * is fairly simple -- track which caches hold bits of the object
52  * and make sure they remain coherent. A few concrete examples may
53  * help to explain how it works. For shorthand, we use the notation
54  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
55  * a pair of read and write domain masks.
56  *
57  * Case 1: the batch buffer
58  *
59  *      1. Allocated
60  *      2. Written by CPU
61  *      3. Mapped to GTT
62  *      4. Read by GPU
63  *      5. Unmapped from GTT
64  *      6. Freed
65  *
66  *      Let's take these a step at a time
67  *
68  *      1. Allocated
69  *              Pages allocated from the kernel may still have
70  *              cache contents, so we set them to (CPU, CPU) always.
71  *      2. Written by CPU (using pwrite)
72  *              The pwrite function calls set_domain (CPU, CPU) and
73  *              this function does nothing (as nothing changes)
74  *      3. Mapped by GTT
75  *              This function asserts that the object is not
76  *              currently in any GPU-based read or write domains
77  *      4. Read by GPU
78  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
79  *              As write_domain is zero, this function adds in the
80  *              current read domains (CPU+COMMAND, 0).
81  *              flush_domains is set to CPU.
82  *              invalidate_domains is set to COMMAND
83  *              clflush is run to get data out of the CPU caches
84  *              then i915_dev_set_domain calls i915_gem_flush to
85  *              emit an MI_FLUSH and drm_agp_chipset_flush
86  *      5. Unmapped from GTT
87  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
88  *              flush_domains and invalidate_domains end up both zero
89  *              so no flushing/invalidating happens
90  *      6. Freed
91  *              yay, done
92  *
93  * Case 2: The shared render buffer
94  *
95  *      1. Allocated
96  *      2. Mapped to GTT
97  *      3. Read/written by GPU
98  *      4. set_domain to (CPU,CPU)
99  *      5. Read/written by CPU
100  *      6. Read/written by GPU
101  *
102  *      1. Allocated
103  *              Same as last example, (CPU, CPU)
104  *      2. Mapped to GTT
105  *              Nothing changes (assertions find that it is not in the GPU)
106  *      3. Read/written by GPU
107  *              execbuffer calls set_domain (RENDER, RENDER)
108  *              flush_domains gets CPU
109  *              invalidate_domains gets GPU
110  *              clflush (obj)
111  *              MI_FLUSH and drm_agp_chipset_flush
112  *      4. set_domain (CPU, CPU)
113  *              flush_domains gets GPU
114  *              invalidate_domains gets CPU
115  *              wait_rendering (obj) to make sure all drawing is complete.
116  *              This will include an MI_FLUSH to get the data from GPU
117  *              to memory
118  *              clflush (obj) to invalidate the CPU cache
119  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
120  *      5. Read/written by CPU
121  *              cache lines are loaded and dirtied
122  *      6. Read written by GPU
123  *              Same as last GPU access
124  *
125  * Case 3: The constant buffer
126  *
127  *      1. Allocated
128  *      2. Written by CPU
129  *      3. Read by GPU
130  *      4. Updated (written) by CPU again
131  *      5. Read by GPU
132  *
133  *      1. Allocated
134  *              (CPU, CPU)
135  *      2. Written by CPU
136  *              (CPU, CPU)
137  *      3. Read by GPU
138  *              (CPU+RENDER, 0)
139  *              flush_domains = CPU
140  *              invalidate_domains = RENDER
141  *              clflush (obj)
142  *              MI_FLUSH
143  *              drm_agp_chipset_flush
144  *      4. Updated (written) by CPU again
145  *              (CPU, CPU)
146  *              flush_domains = 0 (no previous write domain)
147  *              invalidate_domains = 0 (no new read domains)
148  *      5. Read by GPU
149  *              (CPU+RENDER, 0)
150  *              flush_domains = CPU
151  *              invalidate_domains = RENDER
152  *              clflush (obj)
153  *              MI_FLUSH
154  *              drm_agp_chipset_flush
155  */
156 static void
157 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
158                                   struct intel_ring_buffer *ring,
159                                   struct change_domains *cd)
160 {
161         uint32_t invalidate_domains = 0, flush_domains = 0;
162
163         /*
164          * If the object isn't moving to a new write domain,
165          * let the object stay in multiple read domains
166          */
167         if (obj->base.pending_write_domain == 0)
168                 obj->base.pending_read_domains |= obj->base.read_domains;
169
170         /*
171          * Flush the current write domain if
172          * the new read domains don't match. Invalidate
173          * any read domains which differ from the old
174          * write domain
175          */
176         if (obj->base.write_domain &&
177             (((obj->base.write_domain != obj->base.pending_read_domains ||
178                obj->ring != ring)) ||
179              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
180                 flush_domains |= obj->base.write_domain;
181                 invalidate_domains |=
182                         obj->base.pending_read_domains & ~obj->base.write_domain;
183         }
184         /*
185          * Invalidate any read caches which may have
186          * stale data. That is, any new read domains.
187          */
188         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
189         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
190                 i915_gem_clflush_object(obj);
191
192         if (obj->base.pending_write_domain)
193                 cd->flips |= atomic_load_acq_int(&obj->pending_flip);
194
195         /* The actual obj->write_domain will be updated with
196          * pending_write_domain after we emit the accumulated flush for all
197          * of our domain changes in execbuffers (which clears objects'
198          * write_domains).  So if we have a current write domain that we
199          * aren't changing, set pending_write_domain to that.
200          */
201         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
202                 obj->base.pending_write_domain = obj->base.write_domain;
203
204         cd->invalidate_domains |= invalidate_domains;
205         cd->flush_domains |= flush_domains;
206         if (flush_domains & I915_GEM_GPU_DOMAINS)
207                 cd->flush_rings |= intel_ring_flag(obj->ring);
208         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
209                 cd->flush_rings |= intel_ring_flag(ring);
210 }
211
212 struct eb_objects {
213         u_long hashmask;
214         LIST_HEAD(, drm_i915_gem_object) *buckets;
215 };
216
217 static struct eb_objects *
218 eb_create(int size)
219 {
220         struct eb_objects *eb;
221
222         eb = kmalloc(sizeof(*eb), DRM_I915_GEM, M_WAITOK | M_ZERO);
223         eb->buckets = hashinit(size, DRM_I915_GEM, &eb->hashmask);
224         return (eb);
225 }
226
227 static void
228 eb_reset(struct eb_objects *eb)
229 {
230         int i;
231
232         for (i = 0; i <= eb->hashmask; i++)
233                 LIST_INIT(&eb->buckets[i]);
234 }
235
236 static void
237 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
238 {
239
240         LIST_INSERT_HEAD(&eb->buckets[obj->exec_handle & eb->hashmask],
241             obj, exec_node);
242 }
243
244 static struct drm_i915_gem_object *
245 eb_get_object(struct eb_objects *eb, unsigned long handle)
246 {
247         struct drm_i915_gem_object *obj;
248
249         LIST_FOREACH(obj, &eb->buckets[handle & eb->hashmask], exec_node) {
250                 if (obj->exec_handle == handle)
251                         return (obj);
252         }
253         return (NULL);
254 }
255
256 static void
257 eb_destroy(struct eb_objects *eb)
258 {
259
260         drm_free(eb->buckets, DRM_I915_GEM);
261         drm_free(eb, DRM_I915_GEM);
262 }
263
264 static int
265 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
266                                    struct eb_objects *eb,
267                                    struct drm_i915_gem_relocation_entry *reloc)
268 {
269         struct drm_device *dev = obj->base.dev;
270         struct drm_gem_object *target_obj;
271         uint32_t target_offset;
272         int ret = -EINVAL;
273
274         /* we've already hold a reference to all valid objects */
275         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
276         if (unlikely(target_obj == NULL))
277                 return -ENOENT;
278
279         target_offset = to_intel_bo(target_obj)->gtt_offset;
280
281 #if WATCH_RELOC
282         DRM_INFO("%s: obj %p offset %08x target %d "
283                  "read %08x write %08x gtt %08x "
284                  "presumed %08x delta %08x\n",
285                  __func__,
286                  obj,
287                  (int) reloc->offset,
288                  (int) reloc->target_handle,
289                  (int) reloc->read_domains,
290                  (int) reloc->write_domain,
291                  (int) target_offset,
292                  (int) reloc->presumed_offset,
293                  reloc->delta);
294 #endif
295
296         /* The target buffer should have appeared before us in the
297          * exec_object list, so it should have a GTT space bound by now.
298          */
299         if (unlikely(target_offset == 0)) {
300                 DRM_DEBUG("No GTT space found for object %d\n",
301                           reloc->target_handle);
302                 return ret;
303         }
304
305         /* Validate that the target is in a valid r/w GPU domain */
306         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
307                 DRM_DEBUG("reloc with multiple write domains: "
308                           "obj %p target %d offset %d "
309                           "read %08x write %08x",
310                           obj, reloc->target_handle,
311                           (int) reloc->offset,
312                           reloc->read_domains,
313                           reloc->write_domain);
314                 return ret;
315         }
316         if (unlikely((reloc->write_domain | reloc->read_domains)
317                      & ~I915_GEM_GPU_DOMAINS)) {
318                 DRM_DEBUG("reloc with read/write non-GPU domains: "
319                           "obj %p target %d offset %d "
320                           "read %08x write %08x",
321                           obj, reloc->target_handle,
322                           (int) reloc->offset,
323                           reloc->read_domains,
324                           reloc->write_domain);
325                 return ret;
326         }
327         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
328                      reloc->write_domain != target_obj->pending_write_domain)) {
329                 DRM_DEBUG("Write domain conflict: "
330                           "obj %p target %d offset %d "
331                           "new %08x old %08x\n",
332                           obj, reloc->target_handle,
333                           (int) reloc->offset,
334                           reloc->write_domain,
335                           target_obj->pending_write_domain);
336                 return ret;
337         }
338
339         target_obj->pending_read_domains |= reloc->read_domains;
340         target_obj->pending_write_domain |= reloc->write_domain;
341
342         /* If the relocation already has the right value in it, no
343          * more work needs to be done.
344          */
345         if (target_offset == reloc->presumed_offset)
346                 return 0;
347
348         /* Check that the relocation address is valid... */
349         if (unlikely(reloc->offset > obj->base.size - 4)) {
350                 DRM_DEBUG("Relocation beyond object bounds: "
351                           "obj %p target %d offset %d size %d.\n",
352                           obj, reloc->target_handle,
353                           (int) reloc->offset,
354                           (int) obj->base.size);
355                 return ret;
356         }
357         if (unlikely(reloc->offset & 3)) {
358                 DRM_DEBUG("Relocation not 4-byte aligned: "
359                           "obj %p target %d offset %d.\n",
360                           obj, reloc->target_handle,
361                           (int) reloc->offset);
362                 return ret;
363         }
364
365         reloc->delta += target_offset;
366         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
367                 uint32_t page_offset = reloc->offset & PAGE_MASK;
368                 char *vaddr;
369                 struct sf_buf *sf;
370
371                 sf = sf_buf_alloc(obj->pages[OFF_TO_IDX(reloc->offset)]);
372                 if (sf == NULL)
373                         return (-ENOMEM);
374                 vaddr = (void *)sf_buf_kva(sf);
375                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
376                 sf_buf_free(sf);
377         } else {
378                 uint32_t *reloc_entry;
379                 char *reloc_page;
380
381                 /* We can't wait for rendering with pagefaults disabled */
382                 if (obj->active && (curthread->td_flags & TDF_NOFAULT))
383                         return (-EFAULT);
384                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
385                 if (ret)
386                         return ret;
387
388                 /*
389                  * Map the page containing the relocation we're going
390                  * to perform.
391                  */
392                 reloc->offset += obj->gtt_offset;
393                 reloc_page = pmap_mapdev_attr(dev->agp->base + (reloc->offset &
394                     ~PAGE_MASK), PAGE_SIZE, PAT_WRITE_COMBINING);
395                 reloc_entry = (uint32_t *)(reloc_page + (reloc->offset &
396                     PAGE_MASK));
397                 *(volatile uint32_t *)reloc_entry = reloc->delta;
398                 pmap_unmapdev((vm_offset_t)reloc_page, PAGE_SIZE);
399         }
400
401         /* and update the user's relocation entry */
402         reloc->presumed_offset = target_offset;
403
404         return 0;
405 }
406
407 static int
408 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
409     struct eb_objects *eb)
410 {
411         struct drm_i915_gem_relocation_entry *user_relocs;
412         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
413         struct drm_i915_gem_relocation_entry reloc;
414         int i, ret;
415
416         user_relocs = (void *)(uintptr_t)entry->relocs_ptr;
417         for (i = 0; i < entry->relocation_count; i++) {
418                 ret = -copyin_nofault(user_relocs + i, &reloc, sizeof(reloc));
419                 if (ret != 0)
420                         return (ret);
421
422                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
423                 if (ret != 0)
424                         return (ret);
425
426                 ret = -copyout_nofault(&reloc.presumed_offset,
427                     &user_relocs[i].presumed_offset,
428                     sizeof(reloc.presumed_offset));
429                 if (ret != 0)
430                         return (ret);
431         }
432
433         return (0);
434 }
435
436 static int
437 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
438     struct eb_objects *eb, struct drm_i915_gem_relocation_entry *relocs)
439 {
440         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
441         int i, ret;
442
443         for (i = 0; i < entry->relocation_count; i++) {
444                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
445                 if (ret)
446                         return ret;
447         }
448
449         return 0;
450 }
451
452 static int
453 i915_gem_execbuffer_relocate(struct drm_device *dev,
454                              struct eb_objects *eb,
455                              struct list_head *objects)
456 {
457         struct drm_i915_gem_object *obj;
458         thread_t td = curthread;
459         int ret;
460         int pflags;
461
462         /* Try to move as many of the relocation targets off the active list
463          * to avoid unnecessary fallbacks to the slow path, as we cannot wait
464          * for the retirement with pagefaults disabled.
465          */
466         i915_gem_retire_requests(dev);
467
468         ret = 0;
469         pflags = td->td_flags & TDF_NOFAULT;
470         atomic_set_int(&td->td_flags, TDF_NOFAULT);
471
472         /* This is the fast path and we cannot handle a pagefault whilst
473          * holding the device lock lest the user pass in the relocations
474          * contained within a mmaped bo. For in such a case we, the page
475          * fault handler would call i915_gem_fault() and we would try to
476          * acquire the device lock again. Obviously this is bad.
477          */
478
479         list_for_each_entry(obj, objects, exec_list) {
480                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
481                 if (ret != 0)
482                         break;
483         }
484
485         if ((pflags & TDF_NOFAULT) == 0)
486                 atomic_clear_int(&td->td_flags, TDF_NOFAULT);
487
488         return (ret);
489 }
490
491 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
492
493 static int
494 pin_and_fence_object(struct drm_i915_gem_object *obj,
495                      struct intel_ring_buffer *ring)
496 {
497         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
498         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
499         bool need_fence, need_mappable;
500         int ret;
501
502         need_fence =
503                 has_fenced_gpu_access &&
504                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
505                 obj->tiling_mode != I915_TILING_NONE;
506         need_mappable =
507                 entry->relocation_count ? true : need_fence;
508
509         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
510         if (ret)
511                 return ret;
512
513         if (has_fenced_gpu_access) {
514                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
515                         if (obj->tiling_mode) {
516                                 ret = i915_gem_object_get_fence(obj, ring);
517                                 if (ret)
518                                         goto err_unpin;
519
520                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
521                                 i915_gem_object_pin_fence(obj);
522                         } else {
523                                 ret = i915_gem_object_put_fence(obj);
524                                 if (ret)
525                                         goto err_unpin;
526                         }
527                         obj->pending_fenced_gpu_access = true;
528                 }
529         }
530
531         entry->offset = obj->gtt_offset;
532         return 0;
533
534 err_unpin:
535         i915_gem_object_unpin(obj);
536         return ret;
537 }
538
539 static int
540 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
541                             struct drm_file *file,
542                             struct list_head *objects)
543 {
544         drm_i915_private_t *dev_priv;
545         struct drm_i915_gem_object *obj;
546         int ret, retry;
547         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
548         struct list_head ordered_objects;
549
550         dev_priv = ring->dev->dev_private;
551         INIT_LIST_HEAD(&ordered_objects);
552         while (!list_empty(objects)) {
553                 struct drm_i915_gem_exec_object2 *entry;
554                 bool need_fence, need_mappable;
555
556                 obj = list_first_entry(objects,
557                                        struct drm_i915_gem_object,
558                                        exec_list);
559                 entry = obj->exec_entry;
560
561                 need_fence =
562                         has_fenced_gpu_access &&
563                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
564                         obj->tiling_mode != I915_TILING_NONE;
565                 need_mappable =
566                         entry->relocation_count ? true : need_fence;
567
568                 if (need_mappable)
569                         list_move(&obj->exec_list, &ordered_objects);
570                 else
571                         list_move_tail(&obj->exec_list, &ordered_objects);
572
573                 obj->base.pending_read_domains = 0;
574                 obj->base.pending_write_domain = 0;
575         }
576         list_splice(&ordered_objects, objects);
577
578         /* Attempt to pin all of the buffers into the GTT.
579          * This is done in 3 phases:
580          *
581          * 1a. Unbind all objects that do not match the GTT constraints for
582          *     the execbuffer (fenceable, mappable, alignment etc).
583          * 1b. Increment pin count for already bound objects and obtain
584          *     a fence register if required.
585          * 2.  Bind new objects.
586          * 3.  Decrement pin count.
587          *
588          * This avoid unnecessary unbinding of later objects in order to makr
589          * room for the earlier objects *unless* we need to defragment.
590          */
591         retry = 0;
592         do {
593                 ret = 0;
594
595                 /* Unbind any ill-fitting objects or pin. */
596                 list_for_each_entry(obj, objects, exec_list) {
597                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
598                         bool need_fence, need_mappable;
599
600                         if (!obj->gtt_space)
601                                 continue;
602
603                         need_fence =
604                                 has_fenced_gpu_access &&
605                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
606                                 obj->tiling_mode != I915_TILING_NONE;
607                         need_mappable =
608                                 entry->relocation_count ? true : need_fence;
609
610                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
611                             (need_mappable && !obj->map_and_fenceable))
612                                 ret = i915_gem_object_unbind(obj);
613                         else
614                                 ret = pin_and_fence_object(obj, ring);
615                         if (ret)
616                                 goto err;
617                 }
618
619                 /* Bind fresh objects */
620                 list_for_each_entry(obj, objects, exec_list) {
621                         if (obj->gtt_space)
622                                 continue;
623
624                         ret = pin_and_fence_object(obj, ring);
625                         if (ret) {
626                                 int ret_ignore;
627
628                                 /* This can potentially raise a harmless
629                                  * -EINVAL if we failed to bind in the above
630                                  * call. It cannot raise -EINTR since we know
631                                  * that the bo is freshly bound and so will
632                                  * not need to be flushed or waited upon.
633                                  */
634                                 ret_ignore = i915_gem_object_unbind(obj);
635                                 (void)ret_ignore;
636                                 if (obj->gtt_space != NULL)
637                                         kprintf("%s: gtt_space\n", __func__);
638                                 break;
639                         }
640                 }
641
642                 /* Decrement pin count for bound objects */
643                 list_for_each_entry(obj, objects, exec_list) {
644                         struct drm_i915_gem_exec_object2 *entry;
645
646                         if (!obj->gtt_space)
647                                 continue;
648
649                         entry = obj->exec_entry;
650                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
651                                 i915_gem_object_unpin_fence(obj);
652                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
653                         }
654
655                         i915_gem_object_unpin(obj);
656
657                         /* ... and ensure ppgtt mapping exist if needed. */
658                         if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
659                                 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
660                                                        obj, obj->cache_level);
661
662                                 obj->has_aliasing_ppgtt_mapping = 1;
663                         }
664                 }
665
666                 if (ret != -ENOSPC || retry > 1)
667                         return ret;
668
669                 /* First attempt, just clear anything that is purgeable.
670                  * Second attempt, clear the entire GTT.
671                  */
672                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
673                 if (ret)
674                         return ret;
675
676                 retry++;
677         } while (1);
678
679 err:
680         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
681                 struct drm_i915_gem_exec_object2 *entry;
682
683                 if (!obj->gtt_space)
684                         continue;
685
686                 entry = obj->exec_entry;
687                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
688                         i915_gem_object_unpin_fence(obj);
689                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
690                 }
691
692                 i915_gem_object_unpin(obj);
693         }
694
695         return ret;
696 }
697
698 static int
699 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
700     struct drm_file *file, struct intel_ring_buffer *ring,
701     struct list_head *objects, struct eb_objects *eb,
702     struct drm_i915_gem_exec_object2 *exec, int count)
703 {
704         struct drm_i915_gem_relocation_entry *reloc;
705         struct drm_i915_gem_object *obj;
706         int *reloc_offset;
707         int i, total, ret;
708
709         /* We may process another execbuffer during the unlock... */
710         while (!list_empty(objects)) {
711                 obj = list_first_entry(objects,
712                                        struct drm_i915_gem_object,
713                                        exec_list);
714                 list_del_init(&obj->exec_list);
715                 drm_gem_object_unreference(&obj->base);
716         }
717
718         DRM_UNLOCK(dev);
719
720         total = 0;
721         for (i = 0; i < count; i++)
722                 total += exec[i].relocation_count;
723
724         reloc_offset = kmalloc(count * sizeof(*reloc_offset), DRM_I915_GEM,
725             M_WAITOK | M_ZERO);
726         reloc = kmalloc(total * sizeof(*reloc), DRM_I915_GEM, M_WAITOK | M_ZERO);
727
728         total = 0;
729         for (i = 0; i < count; i++) {
730                 struct drm_i915_gem_relocation_entry *user_relocs;
731
732                 user_relocs = (void *)(uintptr_t)exec[i].relocs_ptr;
733                 ret = -copyin(user_relocs, reloc + total,
734                     exec[i].relocation_count * sizeof(*reloc));
735                 if (ret != 0) {
736                         DRM_LOCK(dev);
737                         goto err;
738                 }
739
740                 reloc_offset[i] = total;
741                 total += exec[i].relocation_count;
742         }
743
744         ret = i915_mutex_lock_interruptible(dev);
745         if (ret) {
746                 DRM_LOCK(dev);
747                 goto err;
748         }
749
750         /* reacquire the objects */
751         eb_reset(eb);
752         for (i = 0; i < count; i++) {
753                 struct drm_i915_gem_object *obj;
754
755                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
756                                                         exec[i].handle));
757                 if (&obj->base == NULL) {
758                         DRM_DEBUG("Invalid object handle %d at index %d\n",
759                                    exec[i].handle, i);
760                         ret = -ENOENT;
761                         goto err;
762                 }
763
764                 list_add_tail(&obj->exec_list, objects);
765                 obj->exec_handle = exec[i].handle;
766                 obj->exec_entry = &exec[i];
767                 eb_add_object(eb, obj);
768         }
769
770         ret = i915_gem_execbuffer_reserve(ring, file, objects);
771         if (ret)
772                 goto err;
773
774         list_for_each_entry(obj, objects, exec_list) {
775                 int offset = obj->exec_entry - exec;
776                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
777                     reloc + reloc_offset[offset]);
778                 if (ret)
779                         goto err;
780         }
781
782         /* Leave the user relocations as are, this is the painfully slow path,
783          * and we want to avoid the complication of dropping the lock whilst
784          * having buffers reserved in the aperture and so causing spurious
785          * ENOSPC for random operations.
786          */
787
788 err:
789         drm_free(reloc, DRM_I915_GEM);
790         drm_free(reloc_offset, DRM_I915_GEM);
791         return ret;
792 }
793
794 static int
795 i915_gem_execbuffer_flush(struct drm_device *dev,
796                           uint32_t invalidate_domains,
797                           uint32_t flush_domains,
798                           uint32_t flush_rings)
799 {
800         drm_i915_private_t *dev_priv = dev->dev_private;
801         int i, ret;
802
803         if (flush_domains & I915_GEM_DOMAIN_CPU)
804                 intel_gtt_chipset_flush();
805
806         if (flush_domains & I915_GEM_DOMAIN_GTT)
807                 cpu_sfence();
808
809         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
810                 for (i = 0; i < I915_NUM_RINGS; i++)
811                         if (flush_rings & (1 << i)) {
812                                 ret = i915_gem_flush_ring(&dev_priv->rings[i],
813                                     invalidate_domains, flush_domains);
814                                 if (ret)
815                                         return ret;
816                         }
817         }
818
819         return 0;
820 }
821
822 static bool
823 intel_enable_semaphores(struct drm_device *dev)
824 {
825         if (INTEL_INFO(dev)->gen < 6)
826                 return 0;
827
828         if (i915_semaphores >= 0)
829                 return i915_semaphores;
830
831         /* Enable semaphores on SNB when IO remapping is off */
832         if (INTEL_INFO(dev)->gen == 6)
833                 return !intel_iommu_enabled;
834
835         return 1;
836 }
837
838 static int
839 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
840                                struct intel_ring_buffer *to)
841 {
842         struct intel_ring_buffer *from = obj->ring;
843         u32 seqno;
844         int ret, idx;
845
846         if (from == NULL || to == from)
847                 return 0;
848
849         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
850         if (!intel_enable_semaphores(obj->base.dev))
851                 return i915_gem_object_wait_rendering(obj);
852
853         idx = intel_ring_sync_index(from, to);
854
855         seqno = obj->last_rendering_seqno;
856         if (seqno <= from->sync_seqno[idx])
857                 return 0;
858
859         if (seqno == from->outstanding_lazy_request) {
860                 struct drm_i915_gem_request *request;
861
862                 request = kmalloc(sizeof(*request), DRM_I915_GEM,
863                     M_WAITOK | M_ZERO);
864                 ret = i915_add_request(from, NULL, request);
865                 if (ret) {
866                         drm_free(request, DRM_I915_GEM);
867                         return ret;
868                 }
869
870                 seqno = request->seqno;
871         }
872
873         from->sync_seqno[idx] = seqno;
874
875         return to->sync_to(to, from, seqno - 1);
876 }
877
878 static int
879 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
880 {
881         u32 plane, flip_mask;
882         int ret;
883
884         /* Check for any pending flips. As we only maintain a flip queue depth
885          * of 1, we can simply insert a WAIT for the next display flip prior
886          * to executing the batch and avoid stalling the CPU.
887          */
888
889         for (plane = 0; flips >> plane; plane++) {
890                 if (((flips >> plane) & 1) == 0)
891                         continue;
892
893                 if (plane)
894                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
895                 else
896                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
897
898                 ret = intel_ring_begin(ring, 2);
899                 if (ret)
900                         return ret;
901
902                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
903                 intel_ring_emit(ring, MI_NOOP);
904                 intel_ring_advance(ring);
905         }
906
907         return 0;
908 }
909
910 static int
911 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
912                                 struct list_head *objects)
913 {
914         struct drm_i915_gem_object *obj;
915         struct change_domains cd;
916         int ret;
917
918         memset(&cd, 0, sizeof(cd));
919         list_for_each_entry(obj, objects, exec_list)
920                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
921
922         if (cd.invalidate_domains | cd.flush_domains) {
923 #if WATCH_EXEC
924                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
925                           __func__,
926                          cd.invalidate_domains,
927                          cd.flush_domains);
928 #endif
929                 ret = i915_gem_execbuffer_flush(ring->dev,
930                                                 cd.invalidate_domains,
931                                                 cd.flush_domains,
932                                                 cd.flush_rings);
933                 if (ret)
934                         return ret;
935         }
936
937         if (cd.flips) {
938                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
939                 if (ret)
940                         return ret;
941         }
942
943         list_for_each_entry(obj, objects, exec_list) {
944                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
945                 if (ret)
946                         return ret;
947         }
948
949         return 0;
950 }
951
952 static bool
953 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
954 {
955         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
956 }
957
958 static int
959 validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count,
960     vm_page_t ***map)
961 {
962         vm_page_t *ma;
963         int i, length, page_count;
964
965         /* XXXKIB various limits checking is missing there */
966         *map = kmalloc(count * sizeof(*ma), DRM_I915_GEM, M_WAITOK | M_ZERO);
967         for (i = 0; i < count; i++) {
968                 /* First check for malicious input causing overflow */
969                 if (exec[i].relocation_count >
970                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
971                         return -EINVAL;
972
973                 length = exec[i].relocation_count *
974                     sizeof(struct drm_i915_gem_relocation_entry);
975                 if (length == 0) {
976                         (*map)[i] = NULL;
977                         continue;
978                 }
979                 /*
980                  * Since both start and end of the relocation region
981                  * may be not aligned on the page boundary, be
982                  * conservative and request a page slot for each
983                  * partial page.  Thus +2.
984                  */
985                 page_count = howmany(length, PAGE_SIZE) + 2;
986                 ma = (*map)[i] = kmalloc(page_count * sizeof(vm_page_t),
987                     DRM_I915_GEM, M_WAITOK | M_ZERO);
988                 if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
989                     exec[i].relocs_ptr, length, VM_PROT_READ | VM_PROT_WRITE,
990                     ma, page_count) == -1) {
991                         drm_free(ma, DRM_I915_GEM);
992                         (*map)[i] = NULL;
993                         return (-EFAULT);
994                 }
995         }
996
997         return 0;
998 }
999
1000 static void
1001 i915_gem_execbuffer_move_to_active(struct list_head *objects,
1002                                    struct intel_ring_buffer *ring,
1003                                    u32 seqno)
1004 {
1005         struct drm_i915_gem_object *obj;
1006         uint32_t old_read, old_write;
1007
1008         list_for_each_entry(obj, objects, exec_list) {
1009                 old_read = obj->base.read_domains;
1010                 old_write = obj->base.write_domain;
1011
1012                 obj->base.read_domains = obj->base.pending_read_domains;
1013                 obj->base.write_domain = obj->base.pending_write_domain;
1014                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
1015
1016                 i915_gem_object_move_to_active(obj, ring, seqno);
1017                 if (obj->base.write_domain) {
1018                         obj->dirty = 1;
1019                         obj->pending_gpu_write = true;
1020                         list_move_tail(&obj->gpu_write_list,
1021                                        &ring->gpu_write_list);
1022                         intel_mark_busy(ring->dev, obj);
1023                 }
1024         }
1025 }
1026
1027 int i915_gem_sync_exec_requests;
1028
1029 static void
1030 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1031                                     struct drm_file *file,
1032                                     struct intel_ring_buffer *ring)
1033 {
1034         struct drm_i915_gem_request *request;
1035         u32 invalidate;
1036
1037         /*
1038          * Ensure that the commands in the batch buffer are
1039          * finished before the interrupt fires.
1040          *
1041          * The sampler always gets flushed on i965 (sigh).
1042          */
1043         invalidate = I915_GEM_DOMAIN_COMMAND;
1044         if (INTEL_INFO(dev)->gen >= 4)
1045                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1046         if (ring->flush(ring, invalidate, 0)) {
1047                 i915_gem_next_request_seqno(ring);
1048                 return;
1049         }
1050
1051         /* Add a breadcrumb for the completion of the batch buffer */
1052         request = kmalloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO);
1053         if (request == NULL || i915_add_request(ring, file, request)) {
1054                 i915_gem_next_request_seqno(ring);
1055                 drm_free(request, DRM_I915_GEM);
1056         } else if (i915_gem_sync_exec_requests)
1057                 i915_wait_request(ring, request->seqno, true);
1058 }
1059
1060 static void
1061 i915_gem_fix_mi_batchbuffer_end(struct drm_i915_gem_object *batch_obj,
1062     uint32_t batch_start_offset, uint32_t batch_len)
1063 {
1064         char *mkva;
1065         uint64_t po_r, po_w;
1066         uint32_t cmd;
1067         
1068         po_r = batch_obj->base.dev->agp->base + batch_obj->gtt_offset +
1069             batch_start_offset + batch_len;
1070         if (batch_len > 0)
1071                 po_r -= 4;
1072         mkva = pmap_mapdev_attr(trunc_page(po_r), 2 * PAGE_SIZE,
1073             PAT_WRITE_COMBINING);
1074         po_r &= PAGE_MASK;
1075         cmd = *(uint32_t *)(mkva + po_r);
1076
1077         if (cmd != MI_BATCH_BUFFER_END) {
1078                 /*
1079                  * batch_len != 0 due to the check at the start of
1080                  * i915_gem_do_execbuffer
1081                  */
1082                 if (batch_obj->base.size > batch_start_offset + batch_len) {
1083                         po_w = po_r + 4;
1084 /* DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END !\n"); */
1085                 } else {
1086                         po_w = po_r;
1087 DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END, overwriting last bo cmd !\n");
1088                 }
1089                 *(uint32_t *)(mkva + po_w) = MI_BATCH_BUFFER_END;
1090         }
1091
1092         pmap_unmapdev((vm_offset_t)mkva, 2 * PAGE_SIZE);
1093 }
1094
1095 int i915_fix_mi_batchbuffer_end = 0;
1096
1097  static int
1098 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1099                             struct intel_ring_buffer *ring)
1100 {
1101         drm_i915_private_t *dev_priv = dev->dev_private;
1102         int ret, i;
1103
1104         if (!IS_GEN7(dev) || ring != &dev_priv->rings[RCS])
1105                 return 0;
1106
1107         ret = intel_ring_begin(ring, 4 * 3);
1108         if (ret)
1109                 return ret;
1110
1111         for (i = 0; i < 4; i++) {
1112                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1113                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1114                 intel_ring_emit(ring, 0);
1115         }
1116
1117         intel_ring_advance(ring);
1118
1119         return 0;
1120 }
1121
1122 static int
1123 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1124                        struct drm_file *file,
1125                        struct drm_i915_gem_execbuffer2 *args,
1126                        struct drm_i915_gem_exec_object2 *exec)
1127 {
1128         drm_i915_private_t *dev_priv = dev->dev_private;
1129         struct list_head objects;
1130         struct eb_objects *eb;
1131         struct drm_i915_gem_object *batch_obj;
1132         struct drm_clip_rect *cliprects = NULL;
1133         struct intel_ring_buffer *ring;
1134         vm_page_t **relocs_ma;
1135         u32 exec_start, exec_len;
1136         u32 seqno;
1137         u32 mask;
1138         int ret, mode, i;
1139
1140         if (!i915_gem_check_execbuffer(args)) {
1141                 DRM_DEBUG("execbuf with invalid offset/length\n");
1142                 return -EINVAL;
1143         }
1144
1145         if (args->batch_len == 0)
1146                 return (0);
1147
1148         ret = validate_exec_list(exec, args->buffer_count, &relocs_ma);
1149         if (ret != 0)
1150                 goto pre_struct_lock_err;
1151
1152         switch (args->flags & I915_EXEC_RING_MASK) {
1153         case I915_EXEC_DEFAULT:
1154         case I915_EXEC_RENDER:
1155                 ring = &dev_priv->rings[RCS];
1156                 break;
1157         case I915_EXEC_BSD:
1158                 if (!HAS_BSD(dev)) {
1159                         DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1160                         return -EINVAL;
1161                 }
1162                 ring = &dev_priv->rings[VCS];
1163                 break;
1164         case I915_EXEC_BLT:
1165                 if (!HAS_BLT(dev)) {
1166                         DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1167                         return -EINVAL;
1168                 }
1169                 ring = &dev_priv->rings[BCS];
1170                 break;
1171         default:
1172                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1173                           (int)(args->flags & I915_EXEC_RING_MASK));
1174                 ret = -EINVAL;
1175                 goto pre_struct_lock_err;
1176         }
1177
1178         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1179         mask = I915_EXEC_CONSTANTS_MASK;
1180         switch (mode) {
1181         case I915_EXEC_CONSTANTS_REL_GENERAL:
1182         case I915_EXEC_CONSTANTS_ABSOLUTE:
1183         case I915_EXEC_CONSTANTS_REL_SURFACE:
1184                 if (ring == &dev_priv->rings[RCS] &&
1185                     mode != dev_priv->relative_constants_mode) {
1186                         if (INTEL_INFO(dev)->gen < 4) {
1187                                 ret = -EINVAL;
1188                                 goto pre_struct_lock_err;
1189                         }
1190
1191                         if (INTEL_INFO(dev)->gen > 5 &&
1192                             mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1193                                 ret = -EINVAL;
1194                                 goto pre_struct_lock_err;
1195                         }
1196
1197                         /* The HW changed the meaning on this bit on gen6 */
1198                         if (INTEL_INFO(dev)->gen >= 6)
1199                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1200                 }
1201                 break;
1202         default:
1203                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1204                 ret = -EINVAL;
1205                 goto pre_struct_lock_err;
1206         }
1207
1208         if (args->buffer_count < 1) {
1209                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1210                 ret = -EINVAL;
1211                 goto pre_struct_lock_err;
1212         }
1213
1214         if (args->num_cliprects != 0) {
1215                 if (ring != &dev_priv->rings[RCS]) {
1216         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1217                         ret = -EINVAL;
1218                         goto pre_struct_lock_err;
1219                 }
1220
1221                 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1222                         DRM_DEBUG("execbuf with %u cliprects\n",
1223                                   args->num_cliprects);
1224                         ret = -EINVAL;
1225                         goto pre_struct_lock_err;
1226                 }
1227                 cliprects = kmalloc( sizeof(*cliprects) * args->num_cliprects,
1228                     DRM_I915_GEM, M_WAITOK | M_ZERO);
1229                 ret = -copyin((void *)(uintptr_t)args->cliprects_ptr, cliprects,
1230                     sizeof(*cliprects) * args->num_cliprects);
1231                 if (ret != 0)
1232                         goto pre_struct_lock_err;
1233         }
1234
1235         ret = i915_mutex_lock_interruptible(dev);
1236         if (ret)
1237                 goto pre_struct_lock_err;
1238
1239         if (dev_priv->mm.suspended) {
1240                 ret = -EBUSY;
1241                 goto struct_lock_err;
1242         }
1243
1244         eb = eb_create(args->buffer_count);
1245         if (eb == NULL) {
1246                 ret = -ENOMEM;
1247                 goto struct_lock_err;
1248         }
1249
1250         /* Look up object handles */
1251         INIT_LIST_HEAD(&objects);
1252         for (i = 0; i < args->buffer_count; i++) {
1253                 struct drm_i915_gem_object *obj;
1254                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1255                                                         exec[i].handle));
1256                 if (&obj->base == NULL) {
1257                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1258                                    exec[i].handle, i);
1259                         /* prevent error path from reading uninitialized data */
1260                         ret = -ENOENT;
1261                         goto err;
1262                 }
1263
1264                 if (!list_empty(&obj->exec_list)) {
1265                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1266                                    obj, exec[i].handle, i);
1267                         ret = -EINVAL;
1268                         goto err;
1269                 }
1270
1271                 list_add_tail(&obj->exec_list, &objects);
1272                 obj->exec_handle = exec[i].handle;
1273                 obj->exec_entry = &exec[i];
1274                 eb_add_object(eb, obj);
1275         }
1276
1277         /* take note of the batch buffer before we might reorder the lists */
1278         batch_obj = list_entry(objects.prev,
1279                                struct drm_i915_gem_object,
1280                                exec_list);
1281
1282         /* Move the objects en-masse into the GTT, evicting if necessary. */
1283         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1284         if (ret)
1285                 goto err;
1286
1287         /* The objects are in their final locations, apply the relocations. */
1288         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1289         if (ret) {
1290                 if (ret == -EFAULT) {
1291                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1292                             &objects, eb, exec, args->buffer_count);
1293                         DRM_LOCK_ASSERT(dev);
1294                 }
1295                 if (ret)
1296                         goto err;
1297         }
1298
1299         /* Set the pending read domains for the batch buffer to COMMAND */
1300         if (batch_obj->base.pending_write_domain) {
1301                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1302                 ret = -EINVAL;
1303                 goto err;
1304         }
1305         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1306
1307         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1308         if (ret)
1309                 goto err;
1310
1311         seqno = i915_gem_next_request_seqno(ring);
1312         for (i = 0; i < I915_NUM_RINGS - 1; i++) {
1313                 if (seqno < ring->sync_seqno[i]) {
1314                         /* The GPU can not handle its semaphore value wrapping,
1315                          * so every billion or so execbuffers, we need to stall
1316                          * the GPU in order to reset the counters.
1317                          */
1318                         ret = i915_gpu_idle(dev, true);
1319                         if (ret)
1320                                 goto err;
1321
1322                         KASSERT(ring->sync_seqno[i] == 0, ("Non-zero sync_seqno"));
1323                 }
1324         }
1325
1326         if (ring == &dev_priv->rings[RCS] &&
1327             mode != dev_priv->relative_constants_mode) {
1328                 ret = intel_ring_begin(ring, 4);
1329                 if (ret)
1330                         goto err;
1331
1332                 intel_ring_emit(ring, MI_NOOP);
1333                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1334                 intel_ring_emit(ring, INSTPM);
1335                 intel_ring_emit(ring, mask << 16 | mode);
1336                 intel_ring_advance(ring);
1337
1338                 dev_priv->relative_constants_mode = mode;
1339         }
1340
1341         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1342                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1343                 if (ret)
1344                         goto err;
1345         }
1346
1347         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1348         exec_len = args->batch_len;
1349
1350         if (i915_fix_mi_batchbuffer_end) {
1351                 i915_gem_fix_mi_batchbuffer_end(batch_obj,
1352                     args->batch_start_offset, args->batch_len);
1353         }
1354
1355         if (cliprects) {
1356                 for (i = 0; i < args->num_cliprects; i++) {
1357                         ret = i915_emit_box_p(dev, &cliprects[i],
1358                             args->DR1, args->DR4);
1359                         if (ret)
1360                                 goto err;
1361
1362                         ret = ring->dispatch_execbuffer(ring, exec_start,
1363                             exec_len);
1364                         if (ret)
1365                                 goto err;
1366                 }
1367         } else {
1368                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1369                 if (ret)
1370                         goto err;
1371         }
1372
1373         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1374         i915_gem_execbuffer_retire_commands(dev, file, ring);
1375
1376 err:
1377         eb_destroy(eb);
1378         while (!list_empty(&objects)) {
1379                 struct drm_i915_gem_object *obj;
1380
1381                 obj = list_first_entry(&objects, struct drm_i915_gem_object,
1382                     exec_list);
1383                 list_del_init(&obj->exec_list);
1384                 drm_gem_object_unreference(&obj->base);
1385         }
1386 struct_lock_err:
1387         DRM_UNLOCK(dev);
1388
1389 pre_struct_lock_err:
1390         for (i = 0; i < args->buffer_count; i++) {
1391                 if (relocs_ma[i] != NULL) {
1392                         vm_page_unhold_pages(relocs_ma[i], howmany(
1393                             exec[i].relocation_count *
1394                             sizeof(struct drm_i915_gem_relocation_entry),
1395                             PAGE_SIZE));
1396                         drm_free(relocs_ma[i], DRM_I915_GEM);
1397                 }
1398         }
1399         drm_free(relocs_ma, DRM_I915_GEM);
1400         drm_free(cliprects, DRM_I915_GEM);
1401         return ret;
1402 }
1403
1404 /*
1405  * Legacy execbuffer just creates an exec2 list from the original exec object
1406  * list array and passes it to the real function.
1407  */
1408 int
1409 i915_gem_execbuffer(struct drm_device *dev, void *data,
1410                     struct drm_file *file)
1411 {
1412         struct drm_i915_gem_execbuffer *args = data;
1413         struct drm_i915_gem_execbuffer2 exec2;
1414         struct drm_i915_gem_exec_object *exec_list = NULL;
1415         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1416         int ret, i;
1417
1418         DRM_DEBUG("buffers_ptr %d buffer_count %d len %08x\n",
1419             (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1420
1421         if (args->buffer_count < 1) {
1422                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1423                 return -EINVAL;
1424         }
1425
1426         /* Copy in the exec list from userland */
1427         /* XXXKIB user-controlled malloc size */
1428         exec_list = kmalloc(sizeof(*exec_list) * args->buffer_count,
1429             DRM_I915_GEM, M_WAITOK);
1430         exec2_list = kmalloc(sizeof(*exec2_list) * args->buffer_count,
1431             DRM_I915_GEM, M_WAITOK);
1432         ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec_list,
1433             sizeof(*exec_list) * args->buffer_count);
1434         if (ret != 0) {
1435                 DRM_DEBUG("copy %d exec entries failed %d\n",
1436                           args->buffer_count, ret);
1437                 drm_free(exec_list, DRM_I915_GEM);
1438                 drm_free(exec2_list, DRM_I915_GEM);
1439                 return (ret);
1440         }
1441
1442         for (i = 0; i < args->buffer_count; i++) {
1443                 exec2_list[i].handle = exec_list[i].handle;
1444                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1445                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1446                 exec2_list[i].alignment = exec_list[i].alignment;
1447                 exec2_list[i].offset = exec_list[i].offset;
1448                 if (INTEL_INFO(dev)->gen < 4)
1449                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1450                 else
1451                         exec2_list[i].flags = 0;
1452         }
1453
1454         exec2.buffers_ptr = args->buffers_ptr;
1455         exec2.buffer_count = args->buffer_count;
1456         exec2.batch_start_offset = args->batch_start_offset;
1457         exec2.batch_len = args->batch_len;
1458         exec2.DR1 = args->DR1;
1459         exec2.DR4 = args->DR4;
1460         exec2.num_cliprects = args->num_cliprects;
1461         exec2.cliprects_ptr = args->cliprects_ptr;
1462         exec2.flags = I915_EXEC_RENDER;
1463
1464         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1465         if (!ret) {
1466                 /* Copy the new buffer offsets back to the user's exec list. */
1467                 for (i = 0; i < args->buffer_count; i++)
1468                         exec_list[i].offset = exec2_list[i].offset;
1469                 /* ... and back out to userspace */
1470                 ret = -copyout(exec_list, (void *)(uintptr_t)args->buffers_ptr,
1471                     sizeof(*exec_list) * args->buffer_count);
1472                 if (ret != 0) {
1473                         DRM_DEBUG("failed to copy %d exec entries "
1474                                   "back to user (%d)\n",
1475                                   args->buffer_count, ret);
1476                 }
1477         }
1478
1479         drm_free(exec_list, DRM_I915_GEM);
1480         drm_free(exec2_list, DRM_I915_GEM);
1481         return ret;
1482 }
1483
1484 int
1485 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1486                      struct drm_file *file)
1487 {
1488         struct drm_i915_gem_execbuffer2 *args = data;
1489         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1490         int ret;
1491
1492         DRM_DEBUG("buffers_ptr %jx buffer_count %d len %08x\n",
1493             (uintmax_t)args->buffers_ptr, args->buffer_count, args->batch_len);
1494
1495         if (args->buffer_count < 1 ||
1496             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1497                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1498                 return -EINVAL;
1499         }
1500
1501         /* XXXKIB user-controllable kmalloc size */
1502         exec2_list = kmalloc(sizeof(*exec2_list) * args->buffer_count,
1503             DRM_I915_GEM, M_WAITOK);
1504         ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec2_list,
1505             sizeof(*exec2_list) * args->buffer_count);
1506         if (ret != 0) {
1507                 DRM_DEBUG("copy %d exec entries failed %d\n",
1508                           args->buffer_count, ret);
1509                 drm_free(exec2_list, DRM_I915_GEM);
1510                 return (ret);
1511         }
1512
1513         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1514         if (!ret) {
1515                 /* Copy the new buffer offsets back to the user's exec list. */
1516                 ret = -copyout(exec2_list, (void *)(uintptr_t)args->buffers_ptr,
1517                     sizeof(*exec2_list) * args->buffer_count);
1518                 if (ret) {
1519                         DRM_DEBUG("failed to copy %d exec entries "
1520                                   "back to user (%d)\n",
1521                                   args->buffer_count, ret);
1522                 }
1523         }
1524
1525         drm_free(exec2_list, DRM_I915_GEM);
1526         return ret;
1527 }