bce: Remove debug stuffs from output path
[dragonfly.git] / sys / dev / netif / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2007 Broadcom Corporation
3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $
31  */
32
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, C0
40  *   BCM5716  C0
41  *
42  * The following controllers are not supported by this driver:
43  *   BCM5706C A0, A1
44  *   BCM5706S A0, A1
45  *   BCM5708C A0, B0
46  *   BCM5708S A0, B0
47  *   BCM5709C A0, B0, B1
48  *   BCM5709S A0, A1, B0, B1, B2, C0
49  */
50
51 #include "opt_bce.h"
52 #include "opt_polling.h"
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kernel.h>
58 #include <sys/interrupt.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/queue.h>
62 #ifdef BCE_DEBUG
63 #include <sys/random.h>
64 #endif
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70
71 #include <net/bpf.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/if_arp.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/ifq_var.h>
79 #include <net/vlan/if_vlan_var.h>
80 #include <net/vlan/if_vlan_ether.h>
81
82 #include <dev/netif/mii_layer/mii.h>
83 #include <dev/netif/mii_layer/miivar.h>
84 #include <dev/netif/mii_layer/brgphyreg.h>
85
86 #include <bus/pci/pcireg.h>
87 #include <bus/pci/pcivar.h>
88
89 #include "miibus_if.h"
90
91 #include <dev/netif/bce/if_bcereg.h>
92 #include <dev/netif/bce/if_bcefw.h>
93
94 /****************************************************************************/
95 /* BCE Debug Options                                                        */
96 /****************************************************************************/
97 #ifdef BCE_DEBUG
98
99 static uint32_t bce_debug = BCE_WARN;
100
101 /*
102  *          0 = Never             
103  *          1 = 1 in 2,147,483,648
104  *        256 = 1 in     8,388,608
105  *       2048 = 1 in     1,048,576
106  *      65536 = 1 in        32,768
107  *    1048576 = 1 in         2,048
108  *  268435456 = 1 in             8
109  *  536870912 = 1 in             4
110  * 1073741824 = 1 in             2
111  *
112  * bce_debug_l2fhdr_status_check:
113  *     How often the l2_fhdr frame error check will fail.
114  *
115  * bce_debug_unexpected_attention:
116  *     How often the unexpected attention check will fail.
117  *
118  * bce_debug_mbuf_allocation_failure:
119  *     How often to simulate an mbuf allocation failure.
120  *
121  * bce_debug_dma_map_addr_failure:
122  *     How often to simulate a DMA mapping failure.
123  *
124  * bce_debug_bootcode_running_failure:
125  *     How often to simulate a bootcode failure.
126  */
127 static int      bce_debug_l2fhdr_status_check = 0;
128 static int      bce_debug_unexpected_attention = 0;
129 static int      bce_debug_mbuf_allocation_failure = 0;
130 static int      bce_debug_dma_map_addr_failure = 0;
131 static int      bce_debug_bootcode_running_failure = 0;
132
133 #endif  /* BCE_DEBUG */
134
135
136 /****************************************************************************/
137 /* PCI Device ID Table                                                      */
138 /*                                                                          */
139 /* Used by bce_probe() to identify the devices supported by this driver.    */
140 /****************************************************************************/
141 #define BCE_DEVDESC_MAX         64
142
143 static struct bce_type bce_devs[] = {
144         /* BCM5706C Controllers and OEM boards. */
145         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
146                 "HP NC370T Multifunction Gigabit Server Adapter" },
147         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
148                 "HP NC370i Multifunction Gigabit Server Adapter" },
149         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
150                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
151         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
152                 "HP NC371i Multifunction Gigabit Server Adapter" },
153         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
154                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
155
156         /* BCM5706S controllers and OEM boards. */
157         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
158                 "HP NC370F Multifunction Gigabit Server Adapter" },
159         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
160                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
161
162         /* BCM5708C controllers and OEM boards. */
163         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
164                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
165         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
166                 "HP NC373i Multifunction Gigabit Server Adapter" },
167         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
168                 "HP NC374m PCIe Multifunction Adapter" },
169         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
170                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
171
172         /* BCM5708S controllers and OEM boards. */
173         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
174                 "HP NC373m Multifunction Gigabit Server Adapter" },
175         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
176                 "HP NC373i Multifunction Gigabit Server Adapter" },
177         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
178                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
179         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
180                 "Broadcom NetXtreme II BCM5708S 1000Base-T" },
181
182         /* BCM5709C controllers and OEM boards. */
183         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
184                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
185         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
186                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
187         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
188                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
189
190         /* BCM5709S controllers and OEM boards. */
191         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
192                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
193         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
194                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
195         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
196                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
197
198         /* BCM5716 controllers and OEM boards. */
199         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,   PCI_ANY_ID,  PCI_ANY_ID,
200                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
201
202         { 0, 0, 0, 0, NULL }
203 };
204
205
206 /****************************************************************************/
207 /* Supported Flash NVRAM device data.                                       */
208 /****************************************************************************/
209 static const struct flash_spec flash_table[] =
210 {
211 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
212 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
213
214         /* Slow EEPROM */
215         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
216          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
217          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
218          "EEPROM - slow"},
219         /* Expansion entry 0001 */
220         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
221          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223          "Entry 0001"},
224         /* Saifun SA25F010 (non-buffered flash) */
225         /* strap, cfg1, & write1 need updates */
226         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
227          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
229          "Non-buffered flash (128kB)"},
230         /* Saifun SA25F020 (non-buffered flash) */
231         /* strap, cfg1, & write1 need updates */
232         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
233          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
234          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
235          "Non-buffered flash (256kB)"},
236         /* Expansion entry 0100 */
237         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
238          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240          "Entry 0100"},
241         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
242         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
243          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
244          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
245          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
246         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
247         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
248          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
249          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
250          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
251         /* Saifun SA25F005 (non-buffered flash) */
252         /* strap, cfg1, & write1 need updates */
253         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
254          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
255          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
256          "Non-buffered flash (64kB)"},
257         /* Fast EEPROM */
258         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
259          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
260          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
261          "EEPROM - fast"},
262         /* Expansion entry 1001 */
263         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
264          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
265          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
266          "Entry 1001"},
267         /* Expansion entry 1010 */
268         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
269          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
270          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
271          "Entry 1010"},
272         /* ATMEL AT45DB011B (buffered flash) */
273         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
274          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
275          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
276          "Buffered flash (128kB)"},
277         /* Expansion entry 1100 */
278         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
279          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
280          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
281          "Entry 1100"},
282         /* Expansion entry 1101 */
283         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
284          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
285          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
286          "Entry 1101"},
287         /* Ateml Expansion entry 1110 */
288         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
289          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
290          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
291          "Entry 1110 (Atmel)"},
292         /* ATMEL AT45DB021B (buffered flash) */
293         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
294          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
295          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
296          "Buffered flash (256kB)"},
297 };
298
299 /*
300  * The BCM5709 controllers transparently handle the
301  * differences between Atmel 264 byte pages and all
302  * flash devices which use 256 byte pages, so no
303  * logical-to-physical mapping is required in the
304  * driver.
305  */
306 static struct flash_spec flash_5709 = {
307         .flags          = BCE_NV_BUFFERED,
308         .page_bits      = BCM5709_FLASH_PAGE_BITS,
309         .page_size      = BCM5709_FLASH_PAGE_SIZE,
310         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
311         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
312         .name           = "5709/5716 buffered flash (256kB)",
313 };
314
315
316 /****************************************************************************/
317 /* DragonFly device entry points.                                           */
318 /****************************************************************************/
319 static int      bce_probe(device_t);
320 static int      bce_attach(device_t);
321 static int      bce_detach(device_t);
322 static void     bce_shutdown(device_t);
323
324 /****************************************************************************/
325 /* BCE Debug Data Structure Dump Routines                                   */
326 /****************************************************************************/
327 #ifdef BCE_DEBUG
328 static void     bce_dump_mbuf(struct bce_softc *, struct mbuf *);
329 static void     bce_dump_tx_mbuf_chain(struct bce_softc *, int, int);
330 static void     bce_dump_rx_mbuf_chain(struct bce_softc *, int, int);
331 static void     bce_dump_txbd(struct bce_softc *, int, struct tx_bd *);
332 static void     bce_dump_rxbd(struct bce_softc *, int, struct rx_bd *);
333 static void     bce_dump_l2fhdr(struct bce_softc *, int,
334                                 struct l2_fhdr *) __unused;
335 static void     bce_dump_tx_chain(struct bce_softc *, int, int);
336 static void     bce_dump_rx_chain(struct bce_softc *, int, int);
337 static void     bce_dump_status_block(struct bce_softc *);
338 static void     bce_dump_driver_state(struct bce_softc *);
339 static void     bce_dump_stats_block(struct bce_softc *) __unused;
340 static void     bce_dump_hw_state(struct bce_softc *);
341 static void     bce_dump_txp_state(struct bce_softc *);
342 static void     bce_dump_rxp_state(struct bce_softc *) __unused;
343 static void     bce_dump_tpat_state(struct bce_softc *) __unused;
344 static void     bce_freeze_controller(struct bce_softc *) __unused;
345 static void     bce_unfreeze_controller(struct bce_softc *) __unused;
346 static void     bce_breakpoint(struct bce_softc *);
347 #endif  /* BCE_DEBUG */
348
349
350 /****************************************************************************/
351 /* BCE Register/Memory Access Routines                                      */
352 /****************************************************************************/
353 static uint32_t bce_reg_rd_ind(struct bce_softc *, uint32_t);
354 static void     bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t);
355 static void     bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t);
356 static uint32_t bce_shmem_rd(struct bce_softc *, u32);
357 static void     bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t);
358 static int      bce_miibus_read_reg(device_t, int, int);
359 static int      bce_miibus_write_reg(device_t, int, int, int);
360 static void     bce_miibus_statchg(device_t);
361
362
363 /****************************************************************************/
364 /* BCE NVRAM Access Routines                                                */
365 /****************************************************************************/
366 static int      bce_acquire_nvram_lock(struct bce_softc *);
367 static int      bce_release_nvram_lock(struct bce_softc *);
368 static void     bce_enable_nvram_access(struct bce_softc *);
369 static void     bce_disable_nvram_access(struct bce_softc *);
370 static int      bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *,
371                                      uint32_t);
372 static int      bce_init_nvram(struct bce_softc *);
373 static int      bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int);
374 static int      bce_nvram_test(struct bce_softc *);
375
376 /****************************************************************************/
377 /* BCE DMA Allocate/Free Routines                                           */
378 /****************************************************************************/
379 static int      bce_dma_alloc(struct bce_softc *);
380 static void     bce_dma_free(struct bce_softc *);
381 static void     bce_dma_map_addr(void *, bus_dma_segment_t *, int, int);
382
383 /****************************************************************************/
384 /* BCE Firmware Synchronization and Load                                    */
385 /****************************************************************************/
386 static int      bce_fw_sync(struct bce_softc *, uint32_t);
387 static void     bce_load_rv2p_fw(struct bce_softc *, uint32_t *,
388                                  uint32_t, uint32_t);
389 static void     bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *,
390                                 struct fw_info *);
391 static void     bce_start_cpu(struct bce_softc *, struct cpu_reg *);
392 static void     bce_halt_cpu(struct bce_softc *, struct cpu_reg *);
393 static void     bce_start_rxp_cpu(struct bce_softc *);
394 static void     bce_init_rxp_cpu(struct bce_softc *);
395 static void     bce_init_txp_cpu(struct bce_softc *);
396 static void     bce_init_tpat_cpu(struct bce_softc *);
397 static void     bce_init_cp_cpu(struct bce_softc *);
398 static void     bce_init_com_cpu(struct bce_softc *);
399 static void     bce_init_cpus(struct bce_softc *);
400
401 static void     bce_stop(struct bce_softc *);
402 static int      bce_reset(struct bce_softc *, uint32_t);
403 static int      bce_chipinit(struct bce_softc *);
404 static int      bce_blockinit(struct bce_softc *);
405 static int      bce_newbuf_std(struct bce_softc *, uint16_t *, uint16_t *,
406                                uint32_t *, int);
407 static void     bce_setup_rxdesc_std(struct bce_softc *, uint16_t, uint32_t *);
408 static void     bce_probe_pci_caps(struct bce_softc *);
409 static void     bce_print_adapter_info(struct bce_softc *);
410 static void     bce_get_media(struct bce_softc *);
411
412 static void     bce_init_tx_context(struct bce_softc *);
413 static int      bce_init_tx_chain(struct bce_softc *);
414 static void     bce_init_rx_context(struct bce_softc *);
415 static int      bce_init_rx_chain(struct bce_softc *);
416 static void     bce_free_rx_chain(struct bce_softc *);
417 static void     bce_free_tx_chain(struct bce_softc *);
418
419 static int      bce_encap(struct bce_softc *, struct mbuf **);
420 static void     bce_start(struct ifnet *);
421 static int      bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
422 static void     bce_watchdog(struct ifnet *);
423 static int      bce_ifmedia_upd(struct ifnet *);
424 static void     bce_ifmedia_sts(struct ifnet *, struct ifmediareq *);
425 static void     bce_init(void *);
426 static void     bce_mgmt_init(struct bce_softc *);
427
428 static int      bce_init_ctx(struct bce_softc *);
429 static void     bce_get_mac_addr(struct bce_softc *);
430 static void     bce_set_mac_addr(struct bce_softc *);
431 static void     bce_phy_intr(struct bce_softc *);
432 static void     bce_rx_intr(struct bce_softc *, int, uint16_t);
433 static void     bce_tx_intr(struct bce_softc *, uint16_t);
434 static void     bce_disable_intr(struct bce_softc *);
435 static void     bce_enable_intr(struct bce_softc *);
436 static void     bce_reenable_intr(struct bce_softc *);
437
438 #ifdef DEVICE_POLLING
439 static void     bce_poll(struct ifnet *, enum poll_cmd, int);
440 #endif
441 static void     bce_intr(struct bce_softc *);
442 static void     bce_intr_legacy(void *);
443 static void     bce_intr_msi(void *);
444 static void     bce_intr_msi_oneshot(void *);
445 static void     bce_set_rx_mode(struct bce_softc *);
446 static void     bce_stats_update(struct bce_softc *);
447 static void     bce_tick(void *);
448 static void     bce_tick_serialized(struct bce_softc *);
449 static void     bce_pulse(void *);
450 static void     bce_pulse_check_msi(struct bce_softc *);
451 static void     bce_add_sysctls(struct bce_softc *);
452
453 static void     bce_coal_change(struct bce_softc *);
454 static int      bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS);
455 static int      bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS);
456 static int      bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS);
457 static int      bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS);
458 static int      bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS);
459 static int      bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS);
460 static int      bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS);
461 static int      bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS);
462 static int      bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS,
463                                        uint32_t *, uint32_t);
464
465 /*
466  * NOTE:
467  * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023.  Linux's bnx2
468  * takes 1023 as the TX ticks limit.  However, using 1023 will
469  * cause 5708(B2) to generate extra interrupts (~2000/s) even when
470  * there is _no_ network activity on the NIC.
471  */
472 static uint32_t bce_tx_bds_int = 255;           /* bcm: 20 */
473 static uint32_t bce_tx_bds = 255;               /* bcm: 20 */
474 static uint32_t bce_tx_ticks_int = 1022;        /* bcm: 80 */
475 static uint32_t bce_tx_ticks = 1022;            /* bcm: 80 */
476 static uint32_t bce_rx_bds_int = 128;           /* bcm: 6 */
477 static uint32_t bce_rx_bds = 128;               /* bcm: 6 */
478 static uint32_t bce_rx_ticks_int = 150;         /* bcm: 18 */
479 static uint32_t bce_rx_ticks = 150;             /* bcm: 18 */
480
481 static int      bce_msi_enable = 1;
482
483 static int      bce_rx_pages = RX_PAGES_DEFAULT;
484 static int      bce_tx_pages = TX_PAGES_DEFAULT;
485
486 TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int);
487 TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds);
488 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
489 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
490 TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int);
491 TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds);
492 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
493 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
494 TUNABLE_INT("hw.bce.msi.enable", &bce_msi_enable);
495 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
496 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
497
498 /****************************************************************************/
499 /* DragonFly device dispatch table.                                         */
500 /****************************************************************************/
501 static device_method_t bce_methods[] = {
502         /* Device interface */
503         DEVMETHOD(device_probe,         bce_probe),
504         DEVMETHOD(device_attach,        bce_attach),
505         DEVMETHOD(device_detach,        bce_detach),
506         DEVMETHOD(device_shutdown,      bce_shutdown),
507
508         /* bus interface */
509         DEVMETHOD(bus_print_child,      bus_generic_print_child),
510         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
511
512         /* MII interface */
513         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
514         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
515         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
516
517         { 0, 0 }
518 };
519
520 static driver_t bce_driver = {
521         "bce",
522         bce_methods,
523         sizeof(struct bce_softc)
524 };
525
526 static devclass_t bce_devclass;
527
528
529 DECLARE_DUMMY_MODULE(if_bce);
530 MODULE_DEPEND(bce, miibus, 1, 1, 1);
531 DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL);
532 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
533
534
535 /****************************************************************************/
536 /* Device probe function.                                                   */
537 /*                                                                          */
538 /* Compares the device to the driver's list of supported devices and        */
539 /* reports back to the OS whether this is the right driver for the device.  */
540 /*                                                                          */
541 /* Returns:                                                                 */
542 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
543 /****************************************************************************/
544 static int
545 bce_probe(device_t dev)
546 {
547         struct bce_type *t;
548         uint16_t vid, did, svid, sdid;
549
550         /* Get the data for the device to be probed. */
551         vid  = pci_get_vendor(dev);
552         did  = pci_get_device(dev);
553         svid = pci_get_subvendor(dev);
554         sdid = pci_get_subdevice(dev);
555
556         /* Look through the list of known devices for a match. */
557         for (t = bce_devs; t->bce_name != NULL; ++t) {
558                 if (vid == t->bce_vid && did == t->bce_did && 
559                     (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) &&
560                     (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) {
561                         uint32_t revid = pci_read_config(dev, PCIR_REVID, 4);
562                         char *descbuf;
563
564                         descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK);
565
566                         /* Print out the device identity. */
567                         ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
568                                   t->bce_name,
569                                   ((revid & 0xf0) >> 4) + 'A', revid & 0xf);
570
571                         device_set_desc_copy(dev, descbuf);
572                         kfree(descbuf, M_TEMP);
573                         return 0;
574                 }
575         }
576         return ENXIO;
577 }
578
579
580 /****************************************************************************/
581 /* PCI Capabilities Probe Function.                                         */
582 /*                                                                          */
583 /* Walks the PCI capabiites list for the device to find what features are   */
584 /* supported.                                                               */
585 /*                                                                          */
586 /* Returns:                                                                 */
587 /*   None.                                                                  */
588 /****************************************************************************/
589 static void
590 bce_print_adapter_info(struct bce_softc *sc)
591 {
592         device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid);
593
594         kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
595                 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
596
597         /* Bus info. */
598         if (sc->bce_flags & BCE_PCIE_FLAG) {
599                 kprintf("Bus (PCIe x%d, ", sc->link_width);
600                 switch (sc->link_speed) {
601                 case 1:
602                         kprintf("2.5Gbps); ");
603                         break;
604                 case 2:
605                         kprintf("5Gbps); ");
606                         break;
607                 default:
608                         kprintf("Unknown link speed); ");
609                         break;
610                 }
611         } else {
612                 kprintf("Bus (PCI%s, %s, %dMHz); ",
613                     ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
614                     ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
615                     sc->bus_speed_mhz);
616         }
617
618         /* Firmware version and device features. */
619         kprintf("B/C (%s)", sc->bce_bc_ver);
620
621         if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) ||
622             (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
623                 kprintf("; Flags(");
624                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
625                         kprintf("MFW[%s]", sc->bce_mfw_ver);
626                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
627                         kprintf(" 2.5G");
628                 kprintf(")");
629         }
630         kprintf("\n");
631 }
632
633
634 /****************************************************************************/
635 /* PCI Capabilities Probe Function.                                         */
636 /*                                                                          */
637 /* Walks the PCI capabiites list for the device to find what features are   */
638 /* supported.                                                               */
639 /*                                                                          */
640 /* Returns:                                                                 */
641 /*   None.                                                                  */
642 /****************************************************************************/
643 static void
644 bce_probe_pci_caps(struct bce_softc *sc)
645 {
646         device_t dev = sc->bce_dev;
647         uint8_t ptr;
648
649         if (pci_is_pcix(dev))
650                 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
651
652         ptr = pci_get_pciecap_ptr(dev);
653         if (ptr) {
654                 uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2);
655
656                 sc->link_speed = link_status & 0xf;
657                 sc->link_width = (link_status >> 4) & 0x3f;
658                 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
659                 sc->bce_flags |= BCE_PCIE_FLAG;
660         }
661 }
662
663
664 /****************************************************************************/
665 /* Device attach function.                                                  */
666 /*                                                                          */
667 /* Allocates device resources, performs secondary chip identification,      */
668 /* resets and initializes the hardware, and initializes driver instance     */
669 /* variables.                                                               */
670 /*                                                                          */
671 /* Returns:                                                                 */
672 /*   0 on success, positive value on failure.                               */
673 /****************************************************************************/
674 static int
675 bce_attach(device_t dev)
676 {
677         struct bce_softc *sc = device_get_softc(dev);
678         struct ifnet *ifp = &sc->arpcom.ac_if;
679         uint32_t val;
680         u_int irq_flags;
681         void (*irq_handle)(void *);
682         int rid, rc = 0;
683         int i, j;
684         struct mii_probe_args mii_args;
685         uintptr_t mii_priv = 0;
686
687         sc->bce_dev = dev;
688         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
689
690         pci_enable_busmaster(dev);
691
692         bce_probe_pci_caps(sc);
693
694         /* Allocate PCI memory resources. */
695         rid = PCIR_BAR(0);
696         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
697                                                  RF_ACTIVE | PCI_RF_DENSE);
698         if (sc->bce_res_mem == NULL) {
699                 device_printf(dev, "PCI memory allocation failed\n");
700                 return ENXIO;
701         }
702         sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
703         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
704
705         /* Allocate PCI IRQ resources. */
706         sc->bce_irq_type = pci_alloc_1intr(dev, bce_msi_enable,
707             &sc->bce_irq_rid, &irq_flags);
708
709         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
710             &sc->bce_irq_rid, irq_flags);
711         if (sc->bce_res_irq == NULL) {
712                 device_printf(dev, "PCI map interrupt failed\n");
713                 rc = ENXIO;
714                 goto fail;
715         }
716
717         /*
718          * Configure byte swap and enable indirect register access.
719          * Rely on CPU to do target byte swapping on big endian systems.
720          * Access to registers outside of PCI configurtion space are not
721          * valid until this is done.
722          */
723         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
724                          BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
725                          BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
726
727         /* Save ASIC revsion info. */
728         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
729
730         /* Weed out any non-production controller revisions. */
731         switch (BCE_CHIP_ID(sc)) {
732         case BCE_CHIP_ID_5706_A0:
733         case BCE_CHIP_ID_5706_A1:
734         case BCE_CHIP_ID_5708_A0:
735         case BCE_CHIP_ID_5708_B0:
736         case BCE_CHIP_ID_5709_A0:
737         case BCE_CHIP_ID_5709_B0:
738         case BCE_CHIP_ID_5709_B1:
739 #ifdef foo
740         /* 5709C B2 seems to work fine */
741         case BCE_CHIP_ID_5709_B2:
742 #endif
743                 device_printf(dev, "Unsupported chip id 0x%08x!\n",
744                               BCE_CHIP_ID(sc));
745                 rc = ENODEV;
746                 goto fail;
747         }
748
749         mii_priv |= BRGPHY_FLAG_WIRESPEED;
750         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
751                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax ||
752                     BCE_CHIP_REV(sc) == BCE_CHIP_REV_Bx)
753                         mii_priv |= BRGPHY_FLAG_NO_EARLYDAC;
754         } else {
755                 mii_priv |= BRGPHY_FLAG_BER_BUG;
756         }
757
758         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
759                 irq_handle = bce_intr_legacy;
760         } else if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) {
761                 irq_handle = bce_intr_msi;
762                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
763                         irq_handle = bce_intr_msi_oneshot;
764                         sc->bce_flags |= BCE_ONESHOT_MSI_FLAG;
765                 }
766         } else {
767                 panic("%s: unsupported intr type %d",
768                     device_get_nameunit(dev), sc->bce_irq_type);
769         }
770
771         /*
772          * Find the base address for shared memory access.
773          * Newer versions of bootcode use a signature and offset
774          * while older versions use a fixed address.
775          */
776         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
777         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) ==
778             BCE_SHM_HDR_SIGNATURE_SIG) {
779                 /* Multi-port devices use different offsets in shared memory. */
780                 sc->bce_shmem_base = REG_RD_IND(sc,
781                     BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2));
782         } else {
783                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
784         }
785         DBPRINT(sc, BCE_INFO, "bce_shmem_base = 0x%08X\n", sc->bce_shmem_base);
786
787         /* Fetch the bootcode revision. */
788         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
789         for (i = 0, j = 0; i < 3; i++) {
790                 uint8_t num;
791                 int k, skip0;
792
793                 num = (uint8_t)(val >> (24 - (i * 8)));
794                 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
795                         if (num >= k || !skip0 || k == 1) {
796                                 sc->bce_bc_ver[j++] = (num / k) + '0';
797                                 skip0 = 0;
798                         }
799                 }
800                 if (i != 2)
801                         sc->bce_bc_ver[j++] = '.';
802         }
803
804         /* Check if any management firwmare is running. */
805         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
806         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
807                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
808
809                 /* Allow time for firmware to enter the running state. */
810                 for (i = 0; i < 30; i++) {
811                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
812                         if (val & BCE_CONDITION_MFW_RUN_MASK)
813                                 break;
814                         DELAY(10000);
815                 }
816         }
817
818         /* Check the current bootcode state. */
819         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) &
820             BCE_CONDITION_MFW_RUN_MASK;
821         if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
822             val != BCE_CONDITION_MFW_RUN_NONE) {
823                 uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
824
825                 for (i = 0, j = 0; j < 3; j++) {
826                         val = bce_reg_rd_ind(sc, addr + j * 4);
827                         val = bswap32(val);
828                         memcpy(&sc->bce_mfw_ver[i], &val, 4);
829                         i += 4;
830                 }
831         }
832
833         /* Get PCI bus information (speed and type). */
834         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
835         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
836                 uint32_t clkreg;
837
838                 sc->bce_flags |= BCE_PCIX_FLAG;
839
840                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) &
841                          BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
842                 switch (clkreg) {
843                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
844                         sc->bus_speed_mhz = 133;
845                         break;
846
847                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
848                         sc->bus_speed_mhz = 100;
849                         break;
850
851                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
852                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
853                         sc->bus_speed_mhz = 66;
854                         break;
855
856                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
857                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
858                         sc->bus_speed_mhz = 50;
859                         break;
860
861                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
862                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
863                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
864                         sc->bus_speed_mhz = 33;
865                         break;
866                 }
867         } else {
868                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
869                         sc->bus_speed_mhz = 66;
870                 else
871                         sc->bus_speed_mhz = 33;
872         }
873
874         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
875                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
876
877         /* Reset the controller. */
878         rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
879         if (rc != 0)
880                 goto fail;
881
882         /* Initialize the controller. */
883         rc = bce_chipinit(sc);
884         if (rc != 0) {
885                 device_printf(dev, "Controller initialization failed!\n");
886                 goto fail;
887         }
888
889         /* Perform NVRAM test. */
890         rc = bce_nvram_test(sc);
891         if (rc != 0) {
892                 device_printf(dev, "NVRAM test failed!\n");
893                 goto fail;
894         }
895
896         /* Fetch the permanent Ethernet MAC address. */
897         bce_get_mac_addr(sc);
898
899         /*
900          * Trip points control how many BDs
901          * should be ready before generating an
902          * interrupt while ticks control how long
903          * a BD can sit in the chain before
904          * generating an interrupt.  Set the default 
905          * values for the RX and TX rings.
906          */
907
908 #ifdef BCE_DRBUG
909         /* Force more frequent interrupts. */
910         sc->bce_tx_quick_cons_trip_int = 1;
911         sc->bce_tx_quick_cons_trip     = 1;
912         sc->bce_tx_ticks_int           = 0;
913         sc->bce_tx_ticks               = 0;
914
915         sc->bce_rx_quick_cons_trip_int = 1;
916         sc->bce_rx_quick_cons_trip     = 1;
917         sc->bce_rx_ticks_int           = 0;
918         sc->bce_rx_ticks               = 0;
919 #else
920         sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int;
921         sc->bce_tx_quick_cons_trip     = bce_tx_bds;
922         sc->bce_tx_ticks_int           = bce_tx_ticks_int;
923         sc->bce_tx_ticks               = bce_tx_ticks;
924
925         sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int;
926         sc->bce_rx_quick_cons_trip     = bce_rx_bds;
927         sc->bce_rx_ticks_int           = bce_rx_ticks_int;
928         sc->bce_rx_ticks               = bce_rx_ticks;
929 #endif
930
931         /* Update statistics once every second. */
932         sc->bce_stats_ticks = 1000000 & 0xffff00;
933
934         /* Find the media type for the adapter. */
935         bce_get_media(sc);
936
937         /* Allocate DMA memory resources. */
938         rc = bce_dma_alloc(sc);
939         if (rc != 0) {
940                 device_printf(dev, "DMA resource allocation failed!\n");
941                 goto fail;
942         }
943
944         /* Initialize the ifnet interface. */
945         ifp->if_softc = sc;
946         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
947         ifp->if_ioctl = bce_ioctl;
948         ifp->if_start = bce_start;
949         ifp->if_init = bce_init;
950         ifp->if_watchdog = bce_watchdog;
951 #ifdef DEVICE_POLLING
952         ifp->if_poll = bce_poll;
953 #endif
954         ifp->if_mtu = ETHERMTU;
955         ifp->if_hwassist = BCE_IF_HWASSIST;
956         ifp->if_capabilities = BCE_IF_CAPABILITIES;
957         ifp->if_capenable = ifp->if_capabilities;
958         ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD(sc));
959         ifq_set_ready(&ifp->if_snd);
960
961         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
962                 ifp->if_baudrate = IF_Gbps(2.5);
963         else
964                 ifp->if_baudrate = IF_Gbps(1);
965
966         /* Assume a standard 1500 byte MTU size for mbuf allocations. */
967         sc->mbuf_alloc_size  = MCLBYTES;
968
969         /*
970          * Look for our PHY.
971          */
972         mii_probe_args_init(&mii_args, bce_ifmedia_upd, bce_ifmedia_sts);
973         mii_args.mii_probemask = 1 << sc->bce_phy_addr;
974         mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
975         mii_args.mii_priv = mii_priv;
976
977         rc = mii_probe(dev, &sc->bce_miibus, &mii_args);
978         if (rc != 0) {
979                 device_printf(dev, "PHY probe failed!\n");
980                 goto fail;
981         }
982
983         /* Attach to the Ethernet interface list. */
984         ether_ifattach(ifp, sc->eaddr, NULL);
985
986         callout_init_mp(&sc->bce_tick_callout);
987         callout_init_mp(&sc->bce_pulse_callout);
988
989         /* Hookup IRQ last. */
990         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_MPSAFE, irq_handle, sc,
991                             &sc->bce_intrhand, ifp->if_serializer);
992         if (rc != 0) {
993                 device_printf(dev, "Failed to setup IRQ!\n");
994                 ether_ifdetach(ifp);
995                 goto fail;
996         }
997
998         ifp->if_cpuid = rman_get_cpuid(sc->bce_res_irq);
999         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1000
1001         /* Print some important debugging info. */
1002         DBRUN(BCE_INFO, bce_dump_driver_state(sc));
1003
1004         /* Add the supported sysctls to the kernel. */
1005         bce_add_sysctls(sc);
1006
1007         /*
1008          * The chip reset earlier notified the bootcode that
1009          * a driver is present.  We now need to start our pulse
1010          * routine so that the bootcode is reminded that we're
1011          * still running.
1012          */
1013         bce_pulse(sc);
1014
1015         /* Get the firmware running so IPMI still works */
1016         bce_mgmt_init(sc);
1017
1018         if (bootverbose)
1019                 bce_print_adapter_info(sc);
1020
1021         return 0;
1022 fail:
1023         bce_detach(dev);
1024         return(rc);
1025 }
1026
1027
1028 /****************************************************************************/
1029 /* Device detach function.                                                  */
1030 /*                                                                          */
1031 /* Stops the controller, resets the controller, and releases resources.     */
1032 /*                                                                          */
1033 /* Returns:                                                                 */
1034 /*   0 on success, positive value on failure.                               */
1035 /****************************************************************************/
1036 static int
1037 bce_detach(device_t dev)
1038 {
1039         struct bce_softc *sc = device_get_softc(dev);
1040
1041         if (device_is_attached(dev)) {
1042                 struct ifnet *ifp = &sc->arpcom.ac_if;
1043                 uint32_t msg;
1044
1045                 /* Stop and reset the controller. */
1046                 lwkt_serialize_enter(ifp->if_serializer);
1047                 callout_stop(&sc->bce_pulse_callout);
1048                 bce_stop(sc);
1049                 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1050                         msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1051                 else
1052                         msg = BCE_DRV_MSG_CODE_UNLOAD;
1053                 bce_reset(sc, msg);
1054                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
1055                 lwkt_serialize_exit(ifp->if_serializer);
1056
1057                 ether_ifdetach(ifp);
1058         }
1059
1060         /* If we have a child device on the MII bus remove it too. */
1061         if (sc->bce_miibus)
1062                 device_delete_child(dev, sc->bce_miibus);
1063         bus_generic_detach(dev);
1064
1065         if (sc->bce_res_irq != NULL) {
1066                 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
1067                     sc->bce_res_irq);
1068         }
1069
1070         if (sc->bce_irq_type == PCI_INTR_TYPE_MSI)
1071                 pci_release_msi(dev);
1072
1073         if (sc->bce_res_mem != NULL) {
1074                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
1075                                      sc->bce_res_mem);
1076         }
1077
1078         bce_dma_free(sc);
1079
1080         if (sc->bce_sysctl_tree != NULL)
1081                 sysctl_ctx_free(&sc->bce_sysctl_ctx);
1082
1083         return 0;
1084 }
1085
1086
1087 /****************************************************************************/
1088 /* Device shutdown function.                                                */
1089 /*                                                                          */
1090 /* Stops and resets the controller.                                         */
1091 /*                                                                          */
1092 /* Returns:                                                                 */
1093 /*   Nothing                                                                */
1094 /****************************************************************************/
1095 static void
1096 bce_shutdown(device_t dev)
1097 {
1098         struct bce_softc *sc = device_get_softc(dev);
1099         struct ifnet *ifp = &sc->arpcom.ac_if;
1100         uint32_t msg;
1101
1102         lwkt_serialize_enter(ifp->if_serializer);
1103         bce_stop(sc);
1104         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1105                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1106         else
1107                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1108         bce_reset(sc, msg);
1109         lwkt_serialize_exit(ifp->if_serializer);
1110 }
1111
1112
1113 /****************************************************************************/
1114 /* Indirect register read.                                                  */
1115 /*                                                                          */
1116 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1117 /* configuration space.  Using this mechanism avoids issues with posted     */
1118 /* reads but is much slower than memory-mapped I/O.                         */
1119 /*                                                                          */
1120 /* Returns:                                                                 */
1121 /*   The value of the register.                                             */
1122 /****************************************************************************/
1123 static uint32_t
1124 bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset)
1125 {
1126         device_t dev = sc->bce_dev;
1127
1128         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1129 #ifdef BCE_DEBUG
1130         {
1131                 uint32_t val;
1132                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1133                 DBPRINT(sc, BCE_EXCESSIVE,
1134                         "%s(); offset = 0x%08X, val = 0x%08X\n",
1135                         __func__, offset, val);
1136                 return val;
1137         }
1138 #else
1139         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1140 #endif
1141 }
1142
1143
1144 /****************************************************************************/
1145 /* Indirect register write.                                                 */
1146 /*                                                                          */
1147 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1148 /* configuration space.  Using this mechanism avoids issues with posted     */
1149 /* writes but is muchh slower than memory-mapped I/O.                       */
1150 /*                                                                          */
1151 /* Returns:                                                                 */
1152 /*   Nothing.                                                               */
1153 /****************************************************************************/
1154 static void
1155 bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val)
1156 {
1157         device_t dev = sc->bce_dev;
1158
1159         DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1160                 __func__, offset, val);
1161
1162         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1163         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1164 }
1165
1166
1167 /****************************************************************************/
1168 /* Shared memory write.                                                     */
1169 /*                                                                          */
1170 /* Writes NetXtreme II shared memory region.                                */
1171 /*                                                                          */
1172 /* Returns:                                                                 */
1173 /*   Nothing.                                                               */
1174 /****************************************************************************/
1175 static void
1176 bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val)
1177 {
1178         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1179 }
1180
1181
1182 /****************************************************************************/
1183 /* Shared memory read.                                                      */
1184 /*                                                                          */
1185 /* Reads NetXtreme II shared memory region.                                 */
1186 /*                                                                          */
1187 /* Returns:                                                                 */
1188 /*   The 32 bit value read.                                                 */
1189 /****************************************************************************/
1190 static u32
1191 bce_shmem_rd(struct bce_softc *sc, uint32_t offset)
1192 {
1193         return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1194 }
1195
1196
1197 /****************************************************************************/
1198 /* Context memory write.                                                    */
1199 /*                                                                          */
1200 /* The NetXtreme II controller uses context memory to track connection      */
1201 /* information for L2 and higher network protocols.                         */
1202 /*                                                                          */
1203 /* Returns:                                                                 */
1204 /*   Nothing.                                                               */
1205 /****************************************************************************/
1206 static void
1207 bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1208     uint32_t ctx_val)
1209 {
1210         uint32_t idx, offset = ctx_offset + cid_addr;
1211         uint32_t val, retry_cnt = 5;
1212
1213         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1214             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1215                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1216                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1217
1218                 for (idx = 0; idx < retry_cnt; idx++) {
1219                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1220                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1221                                 break;
1222                         DELAY(5);
1223                 }
1224
1225                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) {
1226                         device_printf(sc->bce_dev,
1227                             "Unable to write CTX memory: "
1228                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1229                             cid_addr, ctx_offset);
1230                 }
1231         } else {
1232                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1233                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1234         }
1235 }
1236
1237
1238 /****************************************************************************/
1239 /* PHY register read.                                                       */
1240 /*                                                                          */
1241 /* Implements register reads on the MII bus.                                */
1242 /*                                                                          */
1243 /* Returns:                                                                 */
1244 /*   The value of the register.                                             */
1245 /****************************************************************************/
1246 static int
1247 bce_miibus_read_reg(device_t dev, int phy, int reg)
1248 {
1249         struct bce_softc *sc = device_get_softc(dev);
1250         uint32_t val;
1251         int i;
1252
1253         /* Make sure we are accessing the correct PHY address. */
1254         KASSERT(phy == sc->bce_phy_addr,
1255             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1256
1257         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1258                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1259                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1260
1261                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1262                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1263
1264                 DELAY(40);
1265         }
1266
1267         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1268               BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1269               BCE_EMAC_MDIO_COMM_START_BUSY;
1270         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1271
1272         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1273                 DELAY(10);
1274
1275                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1276                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1277                         DELAY(5);
1278
1279                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1280                         val &= BCE_EMAC_MDIO_COMM_DATA;
1281                         break;
1282                 }
1283         }
1284
1285         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1286                 if_printf(&sc->arpcom.ac_if,
1287                           "Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1288                           phy, reg);
1289                 val = 0x0;
1290         } else {
1291                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1292         }
1293
1294         DBPRINT(sc, BCE_EXCESSIVE,
1295                 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1296                 __func__, phy, (uint16_t)reg & 0xffff, (uint16_t) val & 0xffff);
1297
1298         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1299                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1300                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1301
1302                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1303                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1304
1305                 DELAY(40);
1306         }
1307         return (val & 0xffff);
1308 }
1309
1310
1311 /****************************************************************************/
1312 /* PHY register write.                                                      */
1313 /*                                                                          */
1314 /* Implements register writes on the MII bus.                               */
1315 /*                                                                          */
1316 /* Returns:                                                                 */
1317 /*   The value of the register.                                             */
1318 /****************************************************************************/
1319 static int
1320 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1321 {
1322         struct bce_softc *sc = device_get_softc(dev);
1323         uint32_t val1;
1324         int i;
1325
1326         /* Make sure we are accessing the correct PHY address. */
1327         KASSERT(phy == sc->bce_phy_addr,
1328             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1329
1330         DBPRINT(sc, BCE_EXCESSIVE,
1331                 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1332                 __func__, phy, (uint16_t)(reg & 0xffff),
1333                 (uint16_t)(val & 0xffff));
1334
1335         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1336                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1337                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1338
1339                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1340                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1341
1342                 DELAY(40);
1343         }
1344
1345         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1346                 BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1347                 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1348         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1349
1350         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1351                 DELAY(10);
1352
1353                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1354                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1355                         DELAY(5);
1356                         break;
1357                 }
1358         }
1359
1360         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1361                 if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n");
1362
1363         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1364                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1365                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1366
1367                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1368                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1369
1370                 DELAY(40);
1371         }
1372         return 0;
1373 }
1374
1375
1376 /****************************************************************************/
1377 /* MII bus status change.                                                   */
1378 /*                                                                          */
1379 /* Called by the MII bus driver when the PHY establishes link to set the    */
1380 /* MAC interface registers.                                                 */
1381 /*                                                                          */
1382 /* Returns:                                                                 */
1383 /*   Nothing.                                                               */
1384 /****************************************************************************/
1385 static void
1386 bce_miibus_statchg(device_t dev)
1387 {
1388         struct bce_softc *sc = device_get_softc(dev);
1389         struct mii_data *mii = device_get_softc(sc->bce_miibus);
1390
1391         DBPRINT(sc, BCE_INFO, "mii_media_active = 0x%08X\n",
1392                 mii->mii_media_active);
1393
1394 #ifdef BCE_DEBUG
1395         /* Decode the interface media flags. */
1396         if_printf(&sc->arpcom.ac_if, "Media: ( ");
1397         switch(IFM_TYPE(mii->mii_media_active)) {
1398         case IFM_ETHER:
1399                 kprintf("Ethernet )");
1400                 break;
1401         default:
1402                 kprintf("Unknown )");
1403                 break;
1404         }
1405
1406         kprintf(" Media Options: ( ");
1407         switch(IFM_SUBTYPE(mii->mii_media_active)) {
1408         case IFM_AUTO:
1409                 kprintf("Autoselect )");
1410                 break;
1411         case IFM_MANUAL:
1412                 kprintf("Manual )");
1413                 break;
1414         case IFM_NONE:
1415                 kprintf("None )");
1416                 break;
1417         case IFM_10_T:
1418                 kprintf("10Base-T )");
1419                 break;
1420         case IFM_100_TX:
1421                 kprintf("100Base-TX )");
1422                 break;
1423         case IFM_1000_SX:
1424                 kprintf("1000Base-SX )");
1425                 break;
1426         case IFM_1000_T:
1427                 kprintf("1000Base-T )");
1428                 break;
1429         default:
1430                 kprintf("Other )");
1431                 break;
1432         }
1433
1434         kprintf(" Global Options: (");
1435         if (mii->mii_media_active & IFM_FDX)
1436                 kprintf(" FullDuplex");
1437         if (mii->mii_media_active & IFM_HDX)
1438                 kprintf(" HalfDuplex");
1439         if (mii->mii_media_active & IFM_LOOP)
1440                 kprintf(" Loopback");
1441         if (mii->mii_media_active & IFM_FLAG0)
1442                 kprintf(" Flag0");
1443         if (mii->mii_media_active & IFM_FLAG1)
1444                 kprintf(" Flag1");
1445         if (mii->mii_media_active & IFM_FLAG2)
1446                 kprintf(" Flag2");
1447         kprintf(" )\n");
1448 #endif
1449
1450         BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
1451
1452         /*
1453          * Set MII or GMII interface based on the speed negotiated
1454          * by the PHY.
1455          */
1456         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 
1457             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
1458                 DBPRINT(sc, BCE_INFO, "Setting GMII interface.\n");
1459                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
1460         } else {
1461                 DBPRINT(sc, BCE_INFO, "Setting MII interface.\n");
1462                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
1463         }
1464
1465         /*
1466          * Set half or full duplex based on the duplicity negotiated
1467          * by the PHY.
1468          */
1469         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1470                 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1471                 BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1472         } else {
1473                 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1474                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1475         }
1476 }
1477
1478
1479 /****************************************************************************/
1480 /* Acquire NVRAM lock.                                                      */
1481 /*                                                                          */
1482 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1483 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1484 /* for use by the driver.                                                   */
1485 /*                                                                          */
1486 /* Returns:                                                                 */
1487 /*   0 on success, positive value on failure.                               */
1488 /****************************************************************************/
1489 static int
1490 bce_acquire_nvram_lock(struct bce_softc *sc)
1491 {
1492         uint32_t val;
1493         int j;
1494
1495         DBPRINT(sc, BCE_VERBOSE, "Acquiring NVRAM lock.\n");
1496
1497         /* Request access to the flash interface. */
1498         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1499         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1500                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1501                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1502                         break;
1503
1504                 DELAY(5);
1505         }
1506
1507         if (j >= NVRAM_TIMEOUT_COUNT) {
1508                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1509                 return EBUSY;
1510         }
1511         return 0;
1512 }
1513
1514
1515 /****************************************************************************/
1516 /* Release NVRAM lock.                                                      */
1517 /*                                                                          */
1518 /* When the caller is finished accessing NVRAM the lock must be released.   */
1519 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1520 /* for use by the driver.                                                   */
1521 /*                                                                          */
1522 /* Returns:                                                                 */
1523 /*   0 on success, positive value on failure.                               */
1524 /****************************************************************************/
1525 static int
1526 bce_release_nvram_lock(struct bce_softc *sc)
1527 {
1528         int j;
1529         uint32_t val;
1530
1531         DBPRINT(sc, BCE_VERBOSE, "Releasing NVRAM lock.\n");
1532
1533         /*
1534          * Relinquish nvram interface.
1535          */
1536         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1537
1538         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1539                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1540                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1541                         break;
1542
1543                 DELAY(5);
1544         }
1545
1546         if (j >= NVRAM_TIMEOUT_COUNT) {
1547                 DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n");
1548                 return EBUSY;
1549         }
1550         return 0;
1551 }
1552
1553
1554 /****************************************************************************/
1555 /* Enable NVRAM access.                                                     */
1556 /*                                                                          */
1557 /* Before accessing NVRAM for read or write operations the caller must      */
1558 /* enabled NVRAM access.                                                    */
1559 /*                                                                          */
1560 /* Returns:                                                                 */
1561 /*   Nothing.                                                               */
1562 /****************************************************************************/
1563 static void
1564 bce_enable_nvram_access(struct bce_softc *sc)
1565 {
1566         uint32_t val;
1567
1568         DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM access.\n");
1569
1570         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1571         /* Enable both bits, even on read. */
1572         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1573                val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1574 }
1575
1576
1577 /****************************************************************************/
1578 /* Disable NVRAM access.                                                    */
1579 /*                                                                          */
1580 /* When the caller is finished accessing NVRAM access must be disabled.     */
1581 /*                                                                          */
1582 /* Returns:                                                                 */
1583 /*   Nothing.                                                               */
1584 /****************************************************************************/
1585 static void
1586 bce_disable_nvram_access(struct bce_softc *sc)
1587 {
1588         uint32_t val;
1589
1590         DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM access.\n");
1591
1592         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1593
1594         /* Disable both bits, even after read. */
1595         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1596                val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1597 }
1598
1599
1600 /****************************************************************************/
1601 /* Read a dword (32 bits) from NVRAM.                                       */
1602 /*                                                                          */
1603 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1604 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1605 /*                                                                          */
1606 /* Returns:                                                                 */
1607 /*   0 on success and the 32 bit value read, positive value on failure.     */
1608 /****************************************************************************/
1609 static int
1610 bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val,
1611                      uint32_t cmd_flags)
1612 {
1613         uint32_t cmd;
1614         int i, rc = 0;
1615
1616         /* Build the command word. */
1617         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1618
1619         /* Calculate the offset for buffered flash. */
1620         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1621                 offset = ((offset / sc->bce_flash_info->page_size) <<
1622                           sc->bce_flash_info->page_bits) +
1623                          (offset % sc->bce_flash_info->page_size);
1624         }
1625
1626         /*
1627          * Clear the DONE bit separately, set the address to read,
1628          * and issue the read.
1629          */
1630         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1631         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1632         REG_WR(sc, BCE_NVM_COMMAND, cmd);
1633
1634         /* Wait for completion. */
1635         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1636                 uint32_t val;
1637
1638                 DELAY(5);
1639
1640                 val = REG_RD(sc, BCE_NVM_COMMAND);
1641                 if (val & BCE_NVM_COMMAND_DONE) {
1642                         val = REG_RD(sc, BCE_NVM_READ);
1643
1644                         val = be32toh(val);
1645                         memcpy(ret_val, &val, 4);
1646                         break;
1647                 }
1648         }
1649
1650         /* Check for errors. */
1651         if (i >= NVRAM_TIMEOUT_COUNT) {
1652                 if_printf(&sc->arpcom.ac_if,
1653                           "Timeout error reading NVRAM at offset 0x%08X!\n",
1654                           offset);
1655                 rc = EBUSY;
1656         }
1657         return rc;
1658 }
1659
1660
1661 /****************************************************************************/
1662 /* Initialize NVRAM access.                                                 */
1663 /*                                                                          */
1664 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1665 /* access that device.                                                      */
1666 /*                                                                          */
1667 /* Returns:                                                                 */
1668 /*   0 on success, positive value on failure.                               */
1669 /****************************************************************************/
1670 static int
1671 bce_init_nvram(struct bce_softc *sc)
1672 {
1673         uint32_t val;
1674         int j, entry_count, rc = 0;
1675         const struct flash_spec *flash;
1676
1677         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
1678
1679         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1680             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1681                 sc->bce_flash_info = &flash_5709;
1682                 goto bce_init_nvram_get_flash_size;
1683         }
1684
1685         /* Determine the selected interface. */
1686         val = REG_RD(sc, BCE_NVM_CFG1);
1687
1688         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1689
1690         /*
1691          * Flash reconfiguration is required to support additional
1692          * NVRAM devices not directly supported in hardware.
1693          * Check if the flash interface was reconfigured
1694          * by the bootcode.
1695          */
1696
1697         if (val & 0x40000000) {
1698                 /* Flash interface reconfigured by bootcode. */
1699
1700                 DBPRINT(sc, BCE_INFO_LOAD, 
1701                         "%s(): Flash WAS reconfigured.\n", __func__);
1702
1703                 for (j = 0, flash = flash_table; j < entry_count;
1704                      j++, flash++) {
1705                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
1706                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1707                                 sc->bce_flash_info = flash;
1708                                 break;
1709                         }
1710                 }
1711         } else {
1712                 /* Flash interface not yet reconfigured. */
1713                 uint32_t mask;
1714
1715                 DBPRINT(sc, BCE_INFO_LOAD, 
1716                         "%s(): Flash was NOT reconfigured.\n", __func__);
1717
1718                 if (val & (1 << 23))
1719                         mask = FLASH_BACKUP_STRAP_MASK;
1720                 else
1721                         mask = FLASH_STRAP_MASK;
1722
1723                 /* Look for the matching NVRAM device configuration data. */
1724                 for (j = 0, flash = flash_table; j < entry_count;
1725                      j++, flash++) {
1726                         /* Check if the device matches any of the known devices. */
1727                         if ((val & mask) == (flash->strapping & mask)) {
1728                                 /* Found a device match. */
1729                                 sc->bce_flash_info = flash;
1730
1731                                 /* Request access to the flash interface. */
1732                                 rc = bce_acquire_nvram_lock(sc);
1733                                 if (rc != 0)
1734                                         return rc;
1735
1736                                 /* Reconfigure the flash interface. */
1737                                 bce_enable_nvram_access(sc);
1738                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
1739                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
1740                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
1741                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
1742                                 bce_disable_nvram_access(sc);
1743                                 bce_release_nvram_lock(sc);
1744                                 break;
1745                         }
1746                 }
1747         }
1748
1749         /* Check if a matching device was found. */
1750         if (j == entry_count) {
1751                 sc->bce_flash_info = NULL;
1752                 if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n");
1753                 return ENODEV;
1754         }
1755
1756 bce_init_nvram_get_flash_size:
1757         /* Write the flash config data to the shared memory interface. */
1758         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) &
1759             BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
1760         if (val)
1761                 sc->bce_flash_size = val;
1762         else
1763                 sc->bce_flash_size = sc->bce_flash_info->total_size;
1764
1765         DBPRINT(sc, BCE_INFO_LOAD, "%s() flash->total_size = 0x%08X\n",
1766                 __func__, sc->bce_flash_info->total_size);
1767
1768         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
1769
1770         return rc;
1771 }
1772
1773
1774 /****************************************************************************/
1775 /* Read an arbitrary range of data from NVRAM.                              */
1776 /*                                                                          */
1777 /* Prepares the NVRAM interface for access and reads the requested data     */
1778 /* into the supplied buffer.                                                */
1779 /*                                                                          */
1780 /* Returns:                                                                 */
1781 /*   0 on success and the data read, positive value on failure.             */
1782 /****************************************************************************/
1783 static int
1784 bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf,
1785                int buf_size)
1786 {
1787         uint32_t cmd_flags, offset32, len32, extra;
1788         int rc = 0;
1789
1790         if (buf_size == 0)
1791                 return 0;
1792
1793         /* Request access to the flash interface. */
1794         rc = bce_acquire_nvram_lock(sc);
1795         if (rc != 0)
1796                 return rc;
1797
1798         /* Enable access to flash interface */
1799         bce_enable_nvram_access(sc);
1800
1801         len32 = buf_size;
1802         offset32 = offset;
1803         extra = 0;
1804
1805         cmd_flags = 0;
1806
1807         /* XXX should we release nvram lock if read_dword() fails? */
1808         if (offset32 & 3) {
1809                 uint8_t buf[4];
1810                 uint32_t pre_len;
1811
1812                 offset32 &= ~3;
1813                 pre_len = 4 - (offset & 3);
1814
1815                 if (pre_len >= len32) {
1816                         pre_len = len32;
1817                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
1818                 } else {
1819                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1820                 }
1821
1822                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1823                 if (rc)
1824                         return rc;
1825
1826                 memcpy(ret_buf, buf + (offset & 3), pre_len);
1827
1828                 offset32 += 4;
1829                 ret_buf += pre_len;
1830                 len32 -= pre_len;
1831         }
1832
1833         if (len32 & 3) {
1834                 extra = 4 - (len32 & 3);
1835                 len32 = (len32 + 4) & ~3;
1836         }
1837
1838         if (len32 == 4) {
1839                 uint8_t buf[4];
1840
1841                 if (cmd_flags)
1842                         cmd_flags = BCE_NVM_COMMAND_LAST;
1843                 else
1844                         cmd_flags = BCE_NVM_COMMAND_FIRST |
1845                                     BCE_NVM_COMMAND_LAST;
1846
1847                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1848
1849                 memcpy(ret_buf, buf, 4 - extra);
1850         } else if (len32 > 0) {
1851                 uint8_t buf[4];
1852
1853                 /* Read the first word. */
1854                 if (cmd_flags)
1855                         cmd_flags = 0;
1856                 else
1857                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1858
1859                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1860
1861                 /* Advance to the next dword. */
1862                 offset32 += 4;
1863                 ret_buf += 4;
1864                 len32 -= 4;
1865
1866                 while (len32 > 4 && rc == 0) {
1867                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
1868
1869                         /* Advance to the next dword. */
1870                         offset32 += 4;
1871                         ret_buf += 4;
1872                         len32 -= 4;
1873                 }
1874
1875                 if (rc)
1876                         goto bce_nvram_read_locked_exit;
1877
1878                 cmd_flags = BCE_NVM_COMMAND_LAST;
1879                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1880
1881                 memcpy(ret_buf, buf, 4 - extra);
1882         }
1883
1884 bce_nvram_read_locked_exit:
1885         /* Disable access to flash interface and release the lock. */
1886         bce_disable_nvram_access(sc);
1887         bce_release_nvram_lock(sc);
1888
1889         return rc;
1890 }
1891
1892
1893 /****************************************************************************/
1894 /* Verifies that NVRAM is accessible and contains valid data.               */
1895 /*                                                                          */
1896 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1897 /* correct.                                                                 */
1898 /*                                                                          */
1899 /* Returns:                                                                 */
1900 /*   0 on success, positive value on failure.                               */
1901 /****************************************************************************/
1902 static int
1903 bce_nvram_test(struct bce_softc *sc)
1904 {
1905         uint32_t buf[BCE_NVRAM_SIZE / 4];
1906         uint32_t magic, csum;
1907         uint8_t *data = (uint8_t *)buf;
1908         int rc = 0;
1909
1910         /*
1911          * Check that the device NVRAM is valid by reading
1912          * the magic value at offset 0.
1913          */
1914         rc = bce_nvram_read(sc, 0, data, 4);
1915         if (rc != 0)
1916                 return rc;
1917
1918         magic = be32toh(buf[0]);
1919         if (magic != BCE_NVRAM_MAGIC) {
1920                 if_printf(&sc->arpcom.ac_if,
1921                           "Invalid NVRAM magic value! Expected: 0x%08X, "
1922                           "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic);
1923                 return ENODEV;
1924         }
1925
1926         /*
1927          * Verify that the device NVRAM includes valid
1928          * configuration data.
1929          */
1930         rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE);
1931         if (rc != 0)
1932                 return rc;
1933
1934         csum = ether_crc32_le(data, 0x100);
1935         if (csum != BCE_CRC32_RESIDUAL) {
1936                 if_printf(&sc->arpcom.ac_if,
1937                           "Invalid Manufacturing Information NVRAM CRC! "
1938                           "Expected: 0x%08X, Found: 0x%08X\n",
1939                           BCE_CRC32_RESIDUAL, csum);
1940                 return ENODEV;
1941         }
1942
1943         csum = ether_crc32_le(data + 0x100, 0x100);
1944         if (csum != BCE_CRC32_RESIDUAL) {
1945                 if_printf(&sc->arpcom.ac_if,
1946                           "Invalid Feature Configuration Information "
1947                           "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1948                           BCE_CRC32_RESIDUAL, csum);
1949                 rc = ENODEV;
1950         }
1951         return rc;
1952 }
1953
1954
1955 /****************************************************************************/
1956 /* Identifies the current media type of the controller and sets the PHY     */
1957 /* address.                                                                 */
1958 /*                                                                          */
1959 /* Returns:                                                                 */
1960 /*   Nothing.                                                               */
1961 /****************************************************************************/
1962 static void
1963 bce_get_media(struct bce_softc *sc)
1964 {
1965         uint32_t val;
1966
1967         sc->bce_phy_addr = 1;
1968
1969         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1970             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1971                 uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
1972                 uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1973                 uint32_t strap;
1974
1975                 /*
1976                  * The BCM5709S is software configurable
1977                  * for Copper or SerDes operation.
1978                  */
1979                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1980                         return;
1981                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1982                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1983                         return;
1984                 }
1985
1986                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) {
1987                         strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1988                 } else {
1989                         strap =
1990                         (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
1991                 }
1992
1993                 if (pci_get_function(sc->bce_dev) == 0) {
1994                         switch (strap) {
1995                         case 0x4:
1996                         case 0x5:
1997                         case 0x6:
1998                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1999                                 break;
2000                         }
2001                 } else {
2002                         switch (strap) {
2003                         case 0x1:
2004                         case 0x2:
2005                         case 0x4:
2006                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2007                                 break;
2008                         }
2009                 }
2010         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
2011                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2012         }
2013
2014         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2015                 sc->bce_flags |= BCE_NO_WOL_FLAG;
2016                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2017                         sc->bce_phy_addr = 2;
2018                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2019                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
2020                                 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
2021                 }
2022         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2023             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) {
2024                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2025         }
2026 }
2027
2028
2029 /****************************************************************************/
2030 /* Free any DMA memory owned by the driver.                                 */
2031 /*                                                                          */
2032 /* Scans through each data structre that requires DMA memory and frees      */
2033 /* the memory if allocated.                                                 */
2034 /*                                                                          */
2035 /* Returns:                                                                 */
2036 /*   Nothing.                                                               */
2037 /****************************************************************************/
2038 static void
2039 bce_dma_free(struct bce_softc *sc)
2040 {
2041         int i;
2042
2043         /* Destroy the status block. */
2044         if (sc->status_tag != NULL) {
2045                 if (sc->status_block != NULL) {
2046                         bus_dmamap_unload(sc->status_tag, sc->status_map);
2047                         bus_dmamem_free(sc->status_tag, sc->status_block,
2048                                         sc->status_map);
2049                 }
2050                 bus_dma_tag_destroy(sc->status_tag);
2051         }
2052
2053         /* Destroy the statistics block. */
2054         if (sc->stats_tag != NULL) {
2055                 if (sc->stats_block != NULL) {
2056                         bus_dmamap_unload(sc->stats_tag, sc->stats_map);
2057                         bus_dmamem_free(sc->stats_tag, sc->stats_block,
2058                                         sc->stats_map);
2059                 }
2060                 bus_dma_tag_destroy(sc->stats_tag);
2061         }
2062
2063         /* Destroy the CTX DMA stuffs. */
2064         if (sc->ctx_tag != NULL) {
2065                 for (i = 0; i < sc->ctx_pages; i++) {
2066                         if (sc->ctx_block[i] != NULL) {
2067                                 bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]);
2068                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2069                                                 sc->ctx_map[i]);
2070                         }
2071                 }
2072                 bus_dma_tag_destroy(sc->ctx_tag);
2073         }
2074
2075         /* Destroy the TX buffer descriptor DMA stuffs. */
2076         if (sc->tx_bd_chain_tag != NULL) {
2077                 for (i = 0; i < sc->tx_pages; i++) {
2078                         if (sc->tx_bd_chain[i] != NULL) {
2079                                 bus_dmamap_unload(sc->tx_bd_chain_tag,
2080                                                   sc->tx_bd_chain_map[i]);
2081                                 bus_dmamem_free(sc->tx_bd_chain_tag,
2082                                                 sc->tx_bd_chain[i],
2083                                                 sc->tx_bd_chain_map[i]);
2084                         }
2085                 }
2086                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2087         }
2088
2089         /* Destroy the RX buffer descriptor DMA stuffs. */
2090         if (sc->rx_bd_chain_tag != NULL) {
2091                 for (i = 0; i < sc->rx_pages; i++) {
2092                         if (sc->rx_bd_chain[i] != NULL) {
2093                                 bus_dmamap_unload(sc->rx_bd_chain_tag,
2094                                                   sc->rx_bd_chain_map[i]);
2095                                 bus_dmamem_free(sc->rx_bd_chain_tag,
2096                                                 sc->rx_bd_chain[i],
2097                                                 sc->rx_bd_chain_map[i]);
2098                         }
2099                 }
2100                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2101         }
2102
2103         /* Destroy the TX mbuf DMA stuffs. */
2104         if (sc->tx_mbuf_tag != NULL) {
2105                 for (i = 0; i < TOTAL_TX_BD(sc); i++) {
2106                         /* Must have been unloaded in bce_stop() */
2107                         KKASSERT(sc->tx_mbuf_ptr[i] == NULL);
2108                         bus_dmamap_destroy(sc->tx_mbuf_tag,
2109                                            sc->tx_mbuf_map[i]);
2110                 }
2111                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
2112         }
2113
2114         /* Destroy the RX mbuf DMA stuffs. */
2115         if (sc->rx_mbuf_tag != NULL) {
2116                 for (i = 0; i < TOTAL_RX_BD(sc); i++) {
2117                         /* Must have been unloaded in bce_stop() */
2118                         KKASSERT(sc->rx_mbuf_ptr[i] == NULL);
2119                         bus_dmamap_destroy(sc->rx_mbuf_tag,
2120                                            sc->rx_mbuf_map[i]);
2121                 }
2122                 bus_dmamap_destroy(sc->rx_mbuf_tag, sc->rx_mbuf_tmpmap);
2123                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2124         }
2125
2126         /* Destroy the parent tag */
2127         if (sc->parent_tag != NULL)
2128                 bus_dma_tag_destroy(sc->parent_tag);
2129
2130         if (sc->tx_bd_chain_map != NULL)
2131                 kfree(sc->tx_bd_chain_map, M_DEVBUF);
2132         if (sc->tx_bd_chain != NULL)
2133                 kfree(sc->tx_bd_chain, M_DEVBUF);
2134         if (sc->tx_bd_chain_paddr != NULL)
2135                 kfree(sc->tx_bd_chain_paddr, M_DEVBUF);
2136
2137         if (sc->rx_bd_chain_map != NULL)
2138                 kfree(sc->rx_bd_chain_map, M_DEVBUF);
2139         if (sc->rx_bd_chain != NULL)
2140                 kfree(sc->rx_bd_chain, M_DEVBUF);
2141         if (sc->rx_bd_chain_paddr != NULL)
2142                 kfree(sc->rx_bd_chain_paddr, M_DEVBUF);
2143
2144         if (sc->tx_mbuf_map != NULL)
2145                 kfree(sc->tx_mbuf_map, M_DEVBUF);
2146         if (sc->tx_mbuf_ptr != NULL)
2147                 kfree(sc->tx_mbuf_ptr, M_DEVBUF);
2148
2149         if (sc->rx_mbuf_map != NULL)
2150                 kfree(sc->rx_mbuf_map, M_DEVBUF);
2151         if (sc->rx_mbuf_ptr != NULL)
2152                 kfree(sc->rx_mbuf_ptr, M_DEVBUF);
2153         if (sc->rx_mbuf_paddr != NULL)
2154                 kfree(sc->rx_mbuf_paddr, M_DEVBUF);
2155 }
2156
2157
2158 /****************************************************************************/
2159 /* Get DMA memory from the OS.                                              */
2160 /*                                                                          */
2161 /* Validates that the OS has provided DMA buffers in response to a          */
2162 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2163 /* When the callback is used the OS will return 0 for the mapping function  */
2164 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2165 /* failures back to the caller.                                             */
2166 /*                                                                          */
2167 /* Returns:                                                                 */
2168 /*   Nothing.                                                               */
2169 /****************************************************************************/
2170 static void
2171 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2172 {
2173         bus_addr_t *busaddr = arg;
2174
2175         /*
2176          * Simulate a mapping failure.
2177          * XXX not correct.
2178          */
2179         DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
2180                 kprintf("bce: %s(%d): Simulating DMA mapping error.\n",
2181                         __FILE__, __LINE__);
2182                 error = ENOMEM);
2183                 
2184         /* Check for an error and signal the caller that an error occurred. */
2185         if (error)
2186                 return;
2187
2188         KASSERT(nseg == 1, ("only one segment is allowed"));
2189         *busaddr = segs->ds_addr;
2190 }
2191
2192
2193 /****************************************************************************/
2194 /* Allocate any DMA memory needed by the driver.                            */
2195 /*                                                                          */
2196 /* Allocates DMA memory needed for the various global structures needed by  */
2197 /* hardware.                                                                */
2198 /*                                                                          */
2199 /* Memory alignment requirements:                                           */
2200 /* -----------------+----------+----------+----------+----------+           */
2201 /*  Data Structure  |   5706   |   5708   |   5709   |   5716   |           */
2202 /* -----------------+----------+----------+----------+----------+           */
2203 /* Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2204 /* Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2205 /* RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |           */
2206 /* PG Buffers       |   none   |   none   |   none   |   none   |           */
2207 /* TX Buffers       |   none   |   none   |   none   |   none   |           */
2208 /* Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |           */
2209 /* Context Pages(1) |   N/A    |   N/A    |   4KiB   |   4KiB   |           */
2210 /* -----------------+----------+----------+----------+----------+           */
2211 /*                                                                          */
2212 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2213 /*                                                                          */
2214 /* Returns:                                                                 */
2215 /*   0 for success, positive value for failure.                             */
2216 /****************************************************************************/
2217 static int
2218 bce_dma_alloc(struct bce_softc *sc)
2219 {
2220         struct ifnet *ifp = &sc->arpcom.ac_if;
2221         int i, j, rc = 0, pages;
2222         bus_addr_t busaddr, max_busaddr;
2223         bus_size_t status_align, stats_align;
2224
2225         pages = device_getenv_int(sc->bce_dev, "rx_pages", bce_rx_pages);
2226         if (pages <= 0 || pages > RX_PAGES_MAX || !powerof2(pages)) {
2227                 device_printf(sc->bce_dev, "invalid # of RX pages\n");
2228                 pages = RX_PAGES_DEFAULT;
2229         }
2230         sc->rx_pages = pages;
2231
2232         pages = device_getenv_int(sc->bce_dev, "tx_pages", bce_tx_pages);
2233         if (pages <= 0 || pages > TX_PAGES_MAX || !powerof2(pages)) {
2234                 device_printf(sc->bce_dev, "invalid # of TX pages\n");
2235                 pages = TX_PAGES_DEFAULT;
2236         }
2237         sc->tx_pages = pages;
2238
2239         sc->tx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * sc->tx_pages,
2240             M_DEVBUF, M_WAITOK | M_ZERO);
2241         sc->tx_bd_chain = kmalloc(sizeof(struct tx_bd *) * sc->tx_pages,
2242             M_DEVBUF, M_WAITOK | M_ZERO);
2243         sc->tx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * sc->tx_pages,
2244             M_DEVBUF, M_WAITOK | M_ZERO);
2245
2246         sc->rx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * sc->rx_pages,
2247             M_DEVBUF, M_WAITOK | M_ZERO);
2248         sc->rx_bd_chain = kmalloc(sizeof(struct rx_bd *) * sc->rx_pages,
2249             M_DEVBUF, M_WAITOK | M_ZERO);
2250         sc->rx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * sc->rx_pages,
2251             M_DEVBUF, M_WAITOK | M_ZERO);
2252
2253         sc->tx_mbuf_map = kmalloc(sizeof(bus_dmamap_t) * TOTAL_TX_BD(sc),
2254             M_DEVBUF, M_WAITOK | M_ZERO);
2255         sc->tx_mbuf_ptr = kmalloc(sizeof(struct mbuf *) * TOTAL_TX_BD(sc),
2256             M_DEVBUF, M_WAITOK | M_ZERO);
2257
2258         sc->rx_mbuf_map = kmalloc(sizeof(bus_dmamap_t) * TOTAL_RX_BD(sc),
2259             M_DEVBUF, M_WAITOK | M_ZERO);
2260         sc->rx_mbuf_ptr = kmalloc(sizeof(struct mbuf *) * TOTAL_RX_BD(sc),
2261             M_DEVBUF, M_WAITOK | M_ZERO);
2262         sc->rx_mbuf_paddr = kmalloc(sizeof(bus_addr_t) * TOTAL_RX_BD(sc),
2263             M_DEVBUF, M_WAITOK | M_ZERO);
2264
2265         /*
2266          * The embedded PCIe to PCI-X bridge (EPB) 
2267          * in the 5708 cannot address memory above 
2268          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 
2269          */
2270         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
2271                 max_busaddr = BCE_BUS_SPACE_MAXADDR;
2272         else
2273                 max_busaddr = BUS_SPACE_MAXADDR;
2274
2275         /*
2276          * BCM5709 and BCM5716 uses host memory as cache for context memory.
2277          */
2278         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2279             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2280                 sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE;
2281                 if (sc->ctx_pages == 0)
2282                         sc->ctx_pages = 1;
2283                 if (sc->ctx_pages > BCE_CTX_PAGES) {
2284                         device_printf(sc->bce_dev, "excessive ctx pages %d\n",
2285                             sc->ctx_pages);
2286                         return ENOMEM;
2287                 }
2288                 status_align = 16;
2289                 stats_align = 16;
2290         } else {
2291                 status_align = 8;
2292                 stats_align = 8;
2293         }
2294
2295         /*
2296          * Allocate the parent bus DMA tag appropriate for PCI.
2297          */
2298         rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY,
2299                                 max_busaddr, BUS_SPACE_MAXADDR,
2300                                 NULL, NULL,
2301                                 BUS_SPACE_MAXSIZE_32BIT, 0,
2302                                 BUS_SPACE_MAXSIZE_32BIT,
2303                                 0, &sc->parent_tag);
2304         if (rc != 0) {
2305                 if_printf(ifp, "Could not allocate parent DMA tag!\n");
2306                 return rc;
2307         }
2308
2309         /*
2310          * Allocate status block.
2311          */
2312         sc->status_block = bus_dmamem_coherent_any(sc->parent_tag,
2313                                 status_align, BCE_STATUS_BLK_SZ,
2314                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2315                                 &sc->status_tag, &sc->status_map,
2316                                 &sc->status_block_paddr);
2317         if (sc->status_block == NULL) {
2318                 if_printf(ifp, "Could not allocate status block!\n");
2319                 return ENOMEM;
2320         }
2321
2322         /*
2323          * Allocate statistics block.
2324          */
2325         sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag,
2326                                 stats_align, BCE_STATS_BLK_SZ,
2327                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2328                                 &sc->stats_tag, &sc->stats_map,
2329                                 &sc->stats_block_paddr);
2330         if (sc->stats_block == NULL) {
2331                 if_printf(ifp, "Could not allocate statistics block!\n");
2332                 return ENOMEM;
2333         }
2334
2335         /*
2336          * Allocate context block, if needed
2337          */
2338         if (sc->ctx_pages != 0) {
2339                 rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2340                                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2341                                         NULL, NULL,
2342                                         BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
2343                                         0, &sc->ctx_tag);
2344                 if (rc != 0) {
2345                         if_printf(ifp, "Could not allocate "
2346                                   "context block DMA tag!\n");
2347                         return rc;
2348                 }
2349
2350                 for (i = 0; i < sc->ctx_pages; i++) {
2351                         rc = bus_dmamem_alloc(sc->ctx_tag,
2352                                               (void **)&sc->ctx_block[i],
2353                                               BUS_DMA_WAITOK | BUS_DMA_ZERO |
2354                                               BUS_DMA_COHERENT,
2355                                               &sc->ctx_map[i]);
2356                         if (rc != 0) {
2357                                 if_printf(ifp, "Could not allocate %dth context "
2358                                           "DMA memory!\n", i);
2359                                 return rc;
2360                         }
2361
2362                         rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
2363                                              sc->ctx_block[i], BCM_PAGE_SIZE,
2364                                              bce_dma_map_addr, &busaddr,
2365                                              BUS_DMA_WAITOK);
2366                         if (rc != 0) {
2367                                 if (rc == EINPROGRESS) {
2368                                         panic("%s coherent memory loading "
2369                                               "is still in progress!", ifp->if_xname);
2370                                 }
2371                                 if_printf(ifp, "Could not map %dth context "
2372                                           "DMA memory!\n", i);
2373                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2374                                                 sc->ctx_map[i]);
2375                                 sc->ctx_block[i] = NULL;
2376                                 return rc;
2377                         }
2378                         sc->ctx_paddr[i] = busaddr;
2379                 }
2380         }
2381
2382         /*
2383          * Create a DMA tag for the TX buffer descriptor chain,
2384          * allocate and clear the  memory, and fetch the
2385          * physical address of the block.
2386          */
2387         rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2388                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2389                                 NULL, NULL,
2390                                 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ,
2391                                 0, &sc->tx_bd_chain_tag);
2392         if (rc != 0) {
2393                 if_printf(ifp, "Could not allocate "
2394                           "TX descriptor chain DMA tag!\n");
2395                 return rc;
2396         }
2397
2398         for (i = 0; i < sc->tx_pages; i++) {
2399                 rc = bus_dmamem_alloc(sc->tx_bd_chain_tag,
2400                                       (void **)&sc->tx_bd_chain[i],
2401                                       BUS_DMA_WAITOK | BUS_DMA_ZERO |
2402                                       BUS_DMA_COHERENT,
2403                                       &sc->tx_bd_chain_map[i]);
2404                 if (rc != 0) {
2405                         if_printf(ifp, "Could not allocate %dth TX descriptor "
2406                                   "chain DMA memory!\n", i);
2407                         return rc;
2408                 }
2409
2410                 rc = bus_dmamap_load(sc->tx_bd_chain_tag,
2411                                      sc->tx_bd_chain_map[i],
2412                                      sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ,
2413                                      bce_dma_map_addr, &busaddr,
2414                                      BUS_DMA_WAITOK);
2415                 if (rc != 0) {
2416                         if (rc == EINPROGRESS) {
2417                                 panic("%s coherent memory loading "
2418                                       "is still in progress!", ifp->if_xname);
2419                         }
2420                         if_printf(ifp, "Could not map %dth TX descriptor "
2421                                   "chain DMA memory!\n", i);
2422                         bus_dmamem_free(sc->tx_bd_chain_tag,
2423                                         sc->tx_bd_chain[i],
2424                                         sc->tx_bd_chain_map[i]);
2425                         sc->tx_bd_chain[i] = NULL;
2426                         return rc;
2427                 }
2428
2429                 sc->tx_bd_chain_paddr[i] = busaddr;
2430                 /* DRC - Fix for 64 bit systems. */
2431                 DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 
2432                         i, (uint32_t)sc->tx_bd_chain_paddr[i]);
2433         }
2434
2435         /* Create a DMA tag for TX mbufs. */
2436         rc = bus_dma_tag_create(sc->parent_tag, 1, 0,
2437                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2438                                 NULL, NULL,
2439                                 /* BCE_MAX_JUMBO_ETHER_MTU_VLAN */MCLBYTES,
2440                                 BCE_MAX_SEGMENTS, MCLBYTES,
2441                                 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
2442                                 BUS_DMA_ONEBPAGE,
2443                                 &sc->tx_mbuf_tag);
2444         if (rc != 0) {
2445                 if_printf(ifp, "Could not allocate TX mbuf DMA tag!\n");
2446                 return rc;
2447         }
2448
2449         /* Create DMA maps for the TX mbufs clusters. */
2450         for (i = 0; i < TOTAL_TX_BD(sc); i++) {
2451                 rc = bus_dmamap_create(sc->tx_mbuf_tag,
2452                                        BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2453                                        &sc->tx_mbuf_map[i]);
2454                 if (rc != 0) {
2455                         for (j = 0; j < i; ++j) {
2456                                 bus_dmamap_destroy(sc->tx_mbuf_tag,
2457                                                    sc->tx_mbuf_map[i]);
2458                         }
2459                         bus_dma_tag_destroy(sc->tx_mbuf_tag);
2460                         sc->tx_mbuf_tag = NULL;
2461
2462                         if_printf(ifp, "Unable to create "
2463                                   "%dth TX mbuf DMA map!\n", i);
2464                         return rc;
2465                 }
2466         }
2467
2468         /*
2469          * Create a DMA tag for the RX buffer descriptor chain,
2470          * allocate and clear the  memory, and fetch the physical
2471          * address of the blocks.
2472          */
2473         rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2474                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2475                                 NULL, NULL,
2476                                 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
2477                                 0, &sc->rx_bd_chain_tag);
2478         if (rc != 0) {
2479                 if_printf(ifp, "Could not allocate "
2480                           "RX descriptor chain DMA tag!\n");
2481                 return rc;
2482         }
2483
2484         for (i = 0; i < sc->rx_pages; i++) {
2485                 rc = bus_dmamem_alloc(sc->rx_bd_chain_tag,
2486                                       (void **)&sc->rx_bd_chain[i],
2487                                       BUS_DMA_WAITOK | BUS_DMA_ZERO |
2488                                       BUS_DMA_COHERENT,
2489                                       &sc->rx_bd_chain_map[i]);
2490                 if (rc != 0) {
2491                         if_printf(ifp, "Could not allocate %dth RX descriptor "
2492                                   "chain DMA memory!\n", i);
2493                         return rc;
2494                 }
2495
2496                 rc = bus_dmamap_load(sc->rx_bd_chain_tag,
2497                                      sc->rx_bd_chain_map[i],
2498                                      sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ,
2499                                      bce_dma_map_addr, &busaddr,
2500                                      BUS_DMA_WAITOK);
2501                 if (rc != 0) {
2502                         if (rc == EINPROGRESS) {
2503                                 panic("%s coherent memory loading "
2504                                       "is still in progress!", ifp->if_xname);
2505                         }
2506                         if_printf(ifp, "Could not map %dth RX descriptor "
2507                                   "chain DMA memory!\n", i);
2508                         bus_dmamem_free(sc->rx_bd_chain_tag,
2509                                         sc->rx_bd_chain[i],
2510                                         sc->rx_bd_chain_map[i]);
2511                         sc->rx_bd_chain[i] = NULL;
2512                         return rc;
2513                 }
2514
2515                 sc->rx_bd_chain_paddr[i] = busaddr;
2516                 /* DRC - Fix for 64 bit systems. */
2517                 DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2518                         i, (uint32_t)sc->rx_bd_chain_paddr[i]);
2519         }
2520
2521         /* Create a DMA tag for RX mbufs. */
2522         rc = bus_dma_tag_create(sc->parent_tag, BCE_DMA_RX_ALIGN, 0,
2523                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2524                                 NULL, NULL,
2525                                 MCLBYTES, 1, MCLBYTES,
2526                                 BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2527                                 BUS_DMA_WAITOK,
2528                                 &sc->rx_mbuf_tag);
2529         if (rc != 0) {
2530                 if_printf(ifp, "Could not allocate RX mbuf DMA tag!\n");
2531                 return rc;
2532         }
2533
2534         /* Create tmp DMA map for RX mbuf clusters. */
2535         rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2536                                &sc->rx_mbuf_tmpmap);
2537         if (rc != 0) {
2538                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2539                 sc->rx_mbuf_tag = NULL;
2540
2541                 if_printf(ifp, "Could not create RX mbuf tmp DMA map!\n");
2542                 return rc;
2543         }
2544
2545         /* Create DMA maps for the RX mbuf clusters. */
2546         for (i = 0; i < TOTAL_RX_BD(sc); i++) {
2547                 rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2548                                        &sc->rx_mbuf_map[i]);
2549                 if (rc != 0) {
2550                         for (j = 0; j < i; ++j) {
2551                                 bus_dmamap_destroy(sc->rx_mbuf_tag,
2552                                                    sc->rx_mbuf_map[j]);
2553                         }
2554                         bus_dma_tag_destroy(sc->rx_mbuf_tag);
2555                         sc->rx_mbuf_tag = NULL;
2556
2557                         if_printf(ifp, "Unable to create "
2558                                   "%dth RX mbuf DMA map!\n", i);
2559                         return rc;
2560                 }
2561         }
2562         return 0;
2563 }
2564
2565
2566 /****************************************************************************/
2567 /* Firmware synchronization.                                                */
2568 /*                                                                          */
2569 /* Before performing certain events such as a chip reset, synchronize with  */
2570 /* the firmware first.                                                      */
2571 /*                                                                          */
2572 /* Returns:                                                                 */
2573 /*   0 for success, positive value for failure.                             */
2574 /****************************************************************************/
2575 static int
2576 bce_fw_sync(struct bce_softc *sc, uint32_t msg_data)
2577 {
2578         int i, rc = 0;
2579         uint32_t val;
2580
2581         /* Don't waste any time if we've timed out before. */
2582         if (sc->bce_fw_timed_out)
2583                 return EBUSY;
2584
2585         /* Increment the message sequence number. */
2586         sc->bce_fw_wr_seq++;
2587         msg_data |= sc->bce_fw_wr_seq;
2588
2589         DBPRINT(sc, BCE_VERBOSE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data);
2590
2591         /* Send the message to the bootcode driver mailbox. */
2592         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2593
2594         /* Wait for the bootcode to acknowledge the message. */
2595         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2596                 /* Check for a response in the bootcode firmware mailbox. */
2597                 val = bce_shmem_rd(sc, BCE_FW_MB);
2598                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
2599                         break;
2600                 DELAY(1000);
2601         }
2602
2603         /* If we've timed out, tell the bootcode that we've stopped waiting. */
2604         if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) &&
2605             (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) {
2606                 if_printf(&sc->arpcom.ac_if,
2607                           "Firmware synchronization timeout! "
2608                           "msg_data = 0x%08X\n", msg_data);
2609
2610                 msg_data &= ~BCE_DRV_MSG_CODE;
2611                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
2612
2613                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2614
2615                 sc->bce_fw_timed_out = 1;
2616                 rc = EBUSY;
2617         }
2618         return rc;
2619 }
2620
2621
2622 /****************************************************************************/
2623 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2624 /*                                                                          */
2625 /* Returns:                                                                 */
2626 /*   Nothing.                                                               */
2627 /****************************************************************************/
2628 static void
2629 bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code,
2630                  uint32_t rv2p_code_len, uint32_t rv2p_proc)
2631 {
2632         int i;
2633         uint32_t val;
2634
2635         for (i = 0; i < rv2p_code_len; i += 8) {
2636                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
2637                 rv2p_code++;
2638                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
2639                 rv2p_code++;
2640
2641                 if (rv2p_proc == RV2P_PROC1) {
2642                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
2643                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
2644                 } else {
2645                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
2646                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
2647                 }
2648         }
2649
2650         /* Reset the processor, un-stall is done later. */
2651         if (rv2p_proc == RV2P_PROC1)
2652                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
2653         else
2654                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
2655 }
2656
2657
2658 /****************************************************************************/
2659 /* Load RISC processor firmware.                                            */
2660 /*                                                                          */
2661 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
2662 /* associated with a particular processor.                                  */
2663 /*                                                                          */
2664 /* Returns:                                                                 */
2665 /*   Nothing.                                                               */
2666 /****************************************************************************/
2667 static void
2668 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
2669                 struct fw_info *fw)
2670 {
2671         uint32_t offset;
2672         int j;
2673
2674         bce_halt_cpu(sc, cpu_reg);
2675
2676         /* Load the Text area. */
2677         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2678         if (fw->text) {
2679                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2680                         REG_WR_IND(sc, offset, fw->text[j]);
2681         }
2682
2683         /* Load the Data area. */
2684         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2685         if (fw->data) {
2686                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2687                         REG_WR_IND(sc, offset, fw->data[j]);
2688         }
2689
2690         /* Load the SBSS area. */
2691         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2692         if (fw->sbss) {
2693                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2694                         REG_WR_IND(sc, offset, fw->sbss[j]);
2695         }
2696
2697         /* Load the BSS area. */
2698         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2699         if (fw->bss) {
2700                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2701                         REG_WR_IND(sc, offset, fw->bss[j]);
2702         }
2703
2704         /* Load the Read-Only area. */
2705         offset = cpu_reg->spad_base +
2706                 (fw->rodata_addr - cpu_reg->mips_view_base);
2707         if (fw->rodata) {
2708                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2709                         REG_WR_IND(sc, offset, fw->rodata[j]);
2710         }
2711
2712         /* Clear the pre-fetch instruction and set the FW start address. */
2713         REG_WR_IND(sc, cpu_reg->inst, 0);
2714         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2715 }
2716
2717
2718 /****************************************************************************/
2719 /* Starts the RISC processor.                                               */
2720 /*                                                                          */
2721 /* Assumes the CPU starting address has already been set.                   */
2722 /*                                                                          */
2723 /* Returns:                                                                 */
2724 /*   Nothing.                                                               */
2725 /****************************************************************************/
2726 static void
2727 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2728 {
2729         uint32_t val;
2730
2731         /* Start the CPU. */
2732         val = REG_RD_IND(sc, cpu_reg->mode);
2733         val &= ~cpu_reg->mode_value_halt;
2734         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2735         REG_WR_IND(sc, cpu_reg->mode, val);
2736 }
2737
2738
2739 /****************************************************************************/
2740 /* Halts the RISC processor.                                                */
2741 /*                                                                          */
2742 /* Returns:                                                                 */
2743 /*   Nothing.                                                               */
2744 /****************************************************************************/
2745 static void
2746 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2747 {
2748         uint32_t val;
2749
2750         /* Halt the CPU. */
2751         val = REG_RD_IND(sc, cpu_reg->mode);
2752         val |= cpu_reg->mode_value_halt;
2753         REG_WR_IND(sc, cpu_reg->mode, val);
2754         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2755 }
2756
2757
2758 /****************************************************************************/
2759 /* Start the RX CPU.                                                        */
2760 /*                                                                          */
2761 /* Returns:                                                                 */
2762 /*   Nothing.                                                               */
2763 /****************************************************************************/
2764 static void
2765 bce_start_rxp_cpu(struct bce_softc *sc)
2766 {
2767         struct cpu_reg cpu_reg;
2768
2769         cpu_reg.mode = BCE_RXP_CPU_MODE;
2770         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2771         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2772         cpu_reg.state = BCE_RXP_CPU_STATE;
2773         cpu_reg.state_value_clear = 0xffffff;
2774         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2775         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2776         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2777         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2778         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2779         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2780         cpu_reg.mips_view_base = 0x8000000;
2781
2782         bce_start_cpu(sc, &cpu_reg);
2783 }
2784
2785
2786 /****************************************************************************/
2787 /* Initialize the RX CPU.                                                   */
2788 /*                                                                          */
2789 /* Returns:                                                                 */
2790 /*   Nothing.                                                               */
2791 /****************************************************************************/
2792 static void
2793 bce_init_rxp_cpu(struct bce_softc *sc)
2794 {
2795         struct cpu_reg cpu_reg;
2796         struct fw_info fw;
2797
2798         cpu_reg.mode = BCE_RXP_CPU_MODE;
2799         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2800         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2801         cpu_reg.state = BCE_RXP_CPU_STATE;
2802         cpu_reg.state_value_clear = 0xffffff;
2803         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2804         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2805         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2806         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2807         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2808         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2809         cpu_reg.mips_view_base = 0x8000000;
2810
2811         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2812             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2813                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
2814                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
2815                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
2816                 fw.start_addr = bce_RXP_b09FwStartAddr;
2817
2818                 fw.text_addr = bce_RXP_b09FwTextAddr;
2819                 fw.text_len = bce_RXP_b09FwTextLen;
2820                 fw.text_index = 0;
2821                 fw.text = bce_RXP_b09FwText;
2822
2823                 fw.data_addr = bce_RXP_b09FwDataAddr;
2824                 fw.data_len = bce_RXP_b09FwDataLen;
2825                 fw.data_index = 0;
2826                 fw.data = bce_RXP_b09FwData;
2827
2828                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
2829                 fw.sbss_len = bce_RXP_b09FwSbssLen;
2830                 fw.sbss_index = 0;
2831                 fw.sbss = bce_RXP_b09FwSbss;
2832
2833                 fw.bss_addr = bce_RXP_b09FwBssAddr;
2834                 fw.bss_len = bce_RXP_b09FwBssLen;
2835                 fw.bss_index = 0;
2836                 fw.bss = bce_RXP_b09FwBss;
2837
2838                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
2839                 fw.rodata_len = bce_RXP_b09FwRodataLen;
2840                 fw.rodata_index = 0;
2841                 fw.rodata = bce_RXP_b09FwRodata;
2842         } else {
2843                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
2844                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
2845                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
2846                 fw.start_addr = bce_RXP_b06FwStartAddr;
2847
2848                 fw.text_addr = bce_RXP_b06FwTextAddr;
2849                 fw.text_len = bce_RXP_b06FwTextLen;
2850                 fw.text_index = 0;
2851                 fw.text = bce_RXP_b06FwText;
2852
2853                 fw.data_addr = bce_RXP_b06FwDataAddr;
2854                 fw.data_len = bce_RXP_b06FwDataLen;
2855                 fw.data_index = 0;
2856                 fw.data = bce_RXP_b06FwData;
2857
2858                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
2859                 fw.sbss_len = bce_RXP_b06FwSbssLen;
2860                 fw.sbss_index = 0;
2861                 fw.sbss = bce_RXP_b06FwSbss;
2862
2863                 fw.bss_addr = bce_RXP_b06FwBssAddr;
2864                 fw.bss_len = bce_RXP_b06FwBssLen;
2865                 fw.bss_index = 0;
2866                 fw.bss = bce_RXP_b06FwBss;
2867
2868                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
2869                 fw.rodata_len = bce_RXP_b06FwRodataLen;
2870                 fw.rodata_index = 0;
2871                 fw.rodata = bce_RXP_b06FwRodata;
2872         }
2873
2874         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
2875         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2876         /* Delay RXP start until initialization is complete. */
2877 }
2878
2879
2880 /****************************************************************************/
2881 /* Initialize the TX CPU.                                                   */
2882 /*                                                                          */
2883 /* Returns:                                                                 */
2884 /*   Nothing.                                                               */
2885 /****************************************************************************/
2886 static void
2887 bce_init_txp_cpu(struct bce_softc *sc)
2888 {
2889         struct cpu_reg cpu_reg;
2890         struct fw_info fw;
2891
2892         cpu_reg.mode = BCE_TXP_CPU_MODE;
2893         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
2894         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
2895         cpu_reg.state = BCE_TXP_CPU_STATE;
2896         cpu_reg.state_value_clear = 0xffffff;
2897         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
2898         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
2899         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
2900         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
2901         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
2902         cpu_reg.spad_base = BCE_TXP_SCRATCH;
2903         cpu_reg.mips_view_base = 0x8000000;
2904
2905         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2906             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2907                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
2908                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
2909                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
2910                 fw.start_addr = bce_TXP_b09FwStartAddr;
2911
2912                 fw.text_addr = bce_TXP_b09FwTextAddr;
2913                 fw.text_len = bce_TXP_b09FwTextLen;
2914                 fw.text_index = 0;
2915                 fw.text = bce_TXP_b09FwText;
2916
2917                 fw.data_addr = bce_TXP_b09FwDataAddr;
2918                 fw.data_len = bce_TXP_b09FwDataLen;
2919                 fw.data_index = 0;
2920                 fw.data = bce_TXP_b09FwData;
2921
2922                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
2923                 fw.sbss_len = bce_TXP_b09FwSbssLen;
2924                 fw.sbss_index = 0;
2925                 fw.sbss = bce_TXP_b09FwSbss;
2926
2927                 fw.bss_addr = bce_TXP_b09FwBssAddr;
2928                 fw.bss_len = bce_TXP_b09FwBssLen;
2929                 fw.bss_index = 0;
2930                 fw.bss = bce_TXP_b09FwBss;
2931
2932                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
2933                 fw.rodata_len = bce_TXP_b09FwRodataLen;
2934                 fw.rodata_index = 0;
2935                 fw.rodata = bce_TXP_b09FwRodata;
2936         } else {
2937                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
2938                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
2939                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
2940                 fw.start_addr = bce_TXP_b06FwStartAddr;
2941
2942                 fw.text_addr = bce_TXP_b06FwTextAddr;
2943                 fw.text_len = bce_TXP_b06FwTextLen;
2944                 fw.text_index = 0;
2945                 fw.text = bce_TXP_b06FwText;
2946
2947                 fw.data_addr = bce_TXP_b06FwDataAddr;
2948                 fw.data_len = bce_TXP_b06FwDataLen;
2949                 fw.data_index = 0;
2950                 fw.data = bce_TXP_b06FwData;
2951
2952                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
2953                 fw.sbss_len = bce_TXP_b06FwSbssLen;
2954                 fw.sbss_index = 0;
2955                 fw.sbss = bce_TXP_b06FwSbss;
2956
2957                 fw.bss_addr = bce_TXP_b06FwBssAddr;
2958                 fw.bss_len = bce_TXP_b06FwBssLen;
2959                 fw.bss_index = 0;
2960                 fw.bss = bce_TXP_b06FwBss;
2961
2962                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
2963                 fw.rodata_len = bce_TXP_b06FwRodataLen;
2964                 fw.rodata_index = 0;
2965                 fw.rodata = bce_TXP_b06FwRodata;
2966         }
2967
2968         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
2969         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2970         bce_start_cpu(sc, &cpu_reg);
2971 }
2972
2973
2974 /****************************************************************************/
2975 /* Initialize the TPAT CPU.                                                 */
2976 /*                                                                          */
2977 /* Returns:                                                                 */
2978 /*   Nothing.                                                               */
2979 /****************************************************************************/
2980 static void
2981 bce_init_tpat_cpu(struct bce_softc *sc)
2982 {
2983         struct cpu_reg cpu_reg;
2984         struct fw_info fw;
2985
2986         cpu_reg.mode = BCE_TPAT_CPU_MODE;
2987         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
2988         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
2989         cpu_reg.state = BCE_TPAT_CPU_STATE;
2990         cpu_reg.state_value_clear = 0xffffff;
2991         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
2992         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
2993         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
2994         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
2995         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
2996         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
2997         cpu_reg.mips_view_base = 0x8000000;
2998
2999         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3000             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3001                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3002                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3003                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3004                 fw.start_addr = bce_TPAT_b09FwStartAddr;
3005
3006                 fw.text_addr = bce_TPAT_b09FwTextAddr;
3007                 fw.text_len = bce_TPAT_b09FwTextLen;
3008                 fw.text_index = 0;
3009                 fw.text = bce_TPAT_b09FwText;
3010
3011                 fw.data_addr = bce_TPAT_b09FwDataAddr;
3012                 fw.data_len = bce_TPAT_b09FwDataLen;
3013                 fw.data_index = 0;
3014                 fw.data = bce_TPAT_b09FwData;
3015
3016                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3017                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
3018                 fw.sbss_index = 0;
3019                 fw.sbss = bce_TPAT_b09FwSbss;
3020
3021                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
3022                 fw.bss_len = bce_TPAT_b09FwBssLen;
3023                 fw.bss_index = 0;
3024                 fw.bss = bce_TPAT_b09FwBss;
3025
3026                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3027                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
3028                 fw.rodata_index = 0;
3029                 fw.rodata = bce_TPAT_b09FwRodata;
3030         } else {
3031                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3032                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3033                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3034                 fw.start_addr = bce_TPAT_b06FwStartAddr;
3035
3036                 fw.text_addr = bce_TPAT_b06FwTextAddr;
3037                 fw.text_len = bce_TPAT_b06FwTextLen;
3038                 fw.text_index = 0;
3039                 fw.text = bce_TPAT_b06FwText;
3040
3041                 fw.data_addr = bce_TPAT_b06FwDataAddr;
3042                 fw.data_len = bce_TPAT_b06FwDataLen;
3043                 fw.data_index = 0;
3044                 fw.data = bce_TPAT_b06FwData;
3045
3046                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
3047                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
3048                 fw.sbss_index = 0;
3049                 fw.sbss = bce_TPAT_b06FwSbss;
3050
3051                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
3052                 fw.bss_len = bce_TPAT_b06FwBssLen;
3053                 fw.bss_index = 0;
3054                 fw.bss = bce_TPAT_b06FwBss;
3055
3056                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
3057                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
3058                 fw.rodata_index = 0;
3059                 fw.rodata = bce_TPAT_b06FwRodata;
3060         }
3061
3062         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
3063         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3064         bce_start_cpu(sc, &cpu_reg);
3065 }
3066
3067
3068 /****************************************************************************/
3069 /* Initialize the CP CPU.                                                   */
3070 /*                                                                          */
3071 /* Returns:                                                                 */
3072 /*   Nothing.                                                               */
3073 /****************************************************************************/
3074 static void
3075 bce_init_cp_cpu(struct bce_softc *sc)
3076 {
3077         struct cpu_reg cpu_reg;
3078         struct fw_info fw;
3079
3080         cpu_reg.mode = BCE_CP_CPU_MODE;
3081         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
3082         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
3083         cpu_reg.state = BCE_CP_CPU_STATE;
3084         cpu_reg.state_value_clear = 0xffffff;
3085         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
3086         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
3087         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
3088         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
3089         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
3090         cpu_reg.spad_base = BCE_CP_SCRATCH;
3091         cpu_reg.mips_view_base = 0x8000000;
3092
3093         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3094             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3095                 fw.ver_major = bce_CP_b09FwReleaseMajor;
3096                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
3097                 fw.ver_fix = bce_CP_b09FwReleaseFix;
3098                 fw.start_addr = bce_CP_b09FwStartAddr;
3099
3100                 fw.text_addr = bce_CP_b09FwTextAddr;
3101                 fw.text_len = bce_CP_b09FwTextLen;
3102                 fw.text_index = 0;
3103                 fw.text = bce_CP_b09FwText;
3104
3105                 fw.data_addr = bce_CP_b09FwDataAddr;
3106                 fw.data_len = bce_CP_b09FwDataLen;
3107                 fw.data_index = 0;
3108                 fw.data = bce_CP_b09FwData;
3109
3110                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
3111                 fw.sbss_len = bce_CP_b09FwSbssLen;
3112                 fw.sbss_index = 0;
3113                 fw.sbss = bce_CP_b09FwSbss;
3114
3115                 fw.bss_addr = bce_CP_b09FwBssAddr;
3116                 fw.bss_len = bce_CP_b09FwBssLen;
3117                 fw.bss_index = 0;
3118                 fw.bss = bce_CP_b09FwBss;
3119
3120                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
3121                 fw.rodata_len = bce_CP_b09FwRodataLen;
3122                 fw.rodata_index = 0;
3123                 fw.rodata = bce_CP_b09FwRodata;
3124         } else {
3125                 fw.ver_major = bce_CP_b06FwReleaseMajor;
3126                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
3127                 fw.ver_fix = bce_CP_b06FwReleaseFix;
3128                 fw.start_addr = bce_CP_b06FwStartAddr;
3129
3130                 fw.text_addr = bce_CP_b06FwTextAddr;
3131                 fw.text_len = bce_CP_b06FwTextLen;
3132                 fw.text_index = 0;
3133                 fw.text = bce_CP_b06FwText;
3134
3135                 fw.data_addr = bce_CP_b06FwDataAddr;
3136                 fw.data_len = bce_CP_b06FwDataLen;
3137                 fw.data_index = 0;
3138                 fw.data = bce_CP_b06FwData;
3139
3140                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
3141                 fw.sbss_len = bce_CP_b06FwSbssLen;
3142                 fw.sbss_index = 0;
3143                 fw.sbss = bce_CP_b06FwSbss;
3144
3145                 fw.bss_addr = bce_CP_b06FwBssAddr;
3146                 fw.bss_len = bce_CP_b06FwBssLen;
3147                 fw.bss_index = 0;
3148                 fw.bss = bce_CP_b06FwBss;
3149
3150                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
3151                 fw.rodata_len = bce_CP_b06FwRodataLen;
3152                 fw.rodata_index = 0;
3153                 fw.rodata = bce_CP_b06FwRodata;
3154         }
3155
3156         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
3157         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3158         bce_start_cpu(sc, &cpu_reg);
3159 }
3160
3161
3162 /****************************************************************************/
3163 /* Initialize the COM CPU.                                                 */
3164 /*                                                                          */
3165 /* Returns:                                                                 */
3166 /*   Nothing.                                                               */
3167 /****************************************************************************/
3168 static void
3169 bce_init_com_cpu(struct bce_softc *sc)
3170 {
3171         struct cpu_reg cpu_reg;
3172         struct fw_info fw;
3173
3174         cpu_reg.mode = BCE_COM_CPU_MODE;
3175         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
3176         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
3177         cpu_reg.state = BCE_COM_CPU_STATE;
3178         cpu_reg.state_value_clear = 0xffffff;
3179         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
3180         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
3181         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
3182         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
3183         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
3184         cpu_reg.spad_base = BCE_COM_SCRATCH;
3185         cpu_reg.mips_view_base = 0x8000000;
3186
3187         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3188             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3189                 fw.ver_major = bce_COM_b09FwReleaseMajor;
3190                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
3191                 fw.ver_fix = bce_COM_b09FwReleaseFix;
3192                 fw.start_addr = bce_COM_b09FwStartAddr;
3193
3194                 fw.text_addr = bce_COM_b09FwTextAddr;
3195                 fw.text_len = bce_COM_b09FwTextLen;
3196                 fw.text_index = 0;
3197                 fw.text = bce_COM_b09FwText;
3198
3199                 fw.data_addr = bce_COM_b09FwDataAddr;
3200                 fw.data_len = bce_COM_b09FwDataLen;
3201                 fw.data_index = 0;
3202                 fw.data = bce_COM_b09FwData;
3203
3204                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
3205                 fw.sbss_len = bce_COM_b09FwSbssLen;
3206                 fw.sbss_index = 0;
3207                 fw.sbss = bce_COM_b09FwSbss;
3208
3209                 fw.bss_addr = bce_COM_b09FwBssAddr;
3210                 fw.bss_len = bce_COM_b09FwBssLen;
3211                 fw.bss_index = 0;
3212                 fw.bss = bce_COM_b09FwBss;
3213
3214                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
3215                 fw.rodata_len = bce_COM_b09FwRodataLen;
3216                 fw.rodata_index = 0;
3217                 fw.rodata = bce_COM_b09FwRodata;
3218         } else {
3219                 fw.ver_major = bce_COM_b06FwReleaseMajor;
3220                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
3221                 fw.ver_fix = bce_COM_b06FwReleaseFix;
3222                 fw.start_addr = bce_COM_b06FwStartAddr;
3223
3224                 fw.text_addr = bce_COM_b06FwTextAddr;
3225                 fw.text_len = bce_COM_b06FwTextLen;
3226                 fw.text_index = 0;
3227                 fw.text = bce_COM_b06FwText;
3228
3229                 fw.data_addr = bce_COM_b06FwDataAddr;
3230                 fw.data_len = bce_COM_b06FwDataLen;
3231                 fw.data_index = 0;
3232                 fw.data = bce_COM_b06FwData;
3233
3234                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
3235                 fw.sbss_len = bce_COM_b06FwSbssLen;
3236                 fw.sbss_index = 0;
3237                 fw.sbss = bce_COM_b06FwSbss;
3238
3239                 fw.bss_addr = bce_COM_b06FwBssAddr;
3240                 fw.bss_len = bce_COM_b06FwBssLen;
3241                 fw.bss_index = 0;
3242                 fw.bss = bce_COM_b06FwBss;
3243
3244                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
3245                 fw.rodata_len = bce_COM_b06FwRodataLen;
3246                 fw.rodata_index = 0;
3247                 fw.rodata = bce_COM_b06FwRodata;
3248         }
3249
3250         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
3251         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3252         bce_start_cpu(sc, &cpu_reg);
3253 }
3254
3255
3256 /****************************************************************************/
3257 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
3258 /*                                                                          */
3259 /* Loads the firmware for each CPU and starts the CPU.                      */
3260 /*                                                                          */
3261 /* Returns:                                                                 */
3262 /*   Nothing.                                                               */
3263 /****************************************************************************/
3264 static void
3265 bce_init_cpus(struct bce_softc *sc)
3266 {
3267         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3268             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3269                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) {
3270                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
3271                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
3272                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
3273                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
3274                 } else {
3275                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
3276                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
3277                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
3278                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
3279                 }
3280         } else {
3281                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
3282                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
3283                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
3284                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
3285         }
3286
3287         bce_init_rxp_cpu(sc);
3288         bce_init_txp_cpu(sc);
3289         bce_init_tpat_cpu(sc);
3290         bce_init_com_cpu(sc);
3291         bce_init_cp_cpu(sc);
3292 }
3293
3294
3295 /****************************************************************************/
3296 /* Initialize context memory.                                               */
3297 /*                                                                          */
3298 /* Clears the memory associated with each Context ID (CID).                 */
3299 /*                                                                          */
3300 /* Returns:                                                                 */
3301 /*   Nothing.                                                               */
3302 /****************************************************************************/
3303 static int
3304 bce_init_ctx(struct bce_softc *sc)
3305 {
3306         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3307             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3308                 /* DRC: Replace this constant value with a #define. */
3309                 int i, retry_cnt = 10;
3310                 uint32_t val;
3311
3312                 /*
3313                  * BCM5709 context memory may be cached
3314                  * in host memory so prepare the host memory
3315                  * for access.
3316                  */
3317                 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT |
3318                     (1 << 12);
3319                 val |= (BCM_PAGE_BITS - 8) << 16;
3320                 REG_WR(sc, BCE_CTX_COMMAND, val);
3321
3322                 /* Wait for mem init command to complete. */
3323                 for (i = 0; i < retry_cnt; i++) {
3324                         val = REG_RD(sc, BCE_CTX_COMMAND);
3325                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
3326                                 break;
3327                         DELAY(2);
3328                 }
3329                 if (i == retry_cnt) {
3330                         device_printf(sc->bce_dev,
3331                             "Context memory initialization failed!\n");
3332                         return ETIMEDOUT;
3333                 }
3334
3335                 for (i = 0; i < sc->ctx_pages; i++) {
3336                         int j;
3337
3338                         /*
3339                          * Set the physical address of the context
3340                          * memory cache.
3341                          */
3342                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
3343                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
3344                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
3345                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
3346                             BCE_ADDR_HI(sc->ctx_paddr[i]));
3347                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL,
3348                             i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3349
3350                         /*
3351                          * Verify that the context memory write was successful.
3352                          */
3353                         for (j = 0; j < retry_cnt; j++) {
3354                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
3355                                 if ((val &
3356                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3357                                         break;
3358                                 DELAY(5);
3359                         }
3360                         if (j == retry_cnt) {
3361                                 device_printf(sc->bce_dev,
3362                                     "Failed to initialize context page!\n");
3363                                 return ETIMEDOUT;
3364                         }
3365                 }
3366         } else {
3367                 uint32_t vcid_addr, offset;
3368
3369                 /*
3370                  * For the 5706/5708, context memory is local to
3371                  * the controller, so initialize the controller
3372                  * context memory.
3373                  */
3374
3375                 vcid_addr = GET_CID_ADDR(96);
3376                 while (vcid_addr) {
3377                         vcid_addr -= PHY_CTX_SIZE;
3378
3379                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
3380                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3381
3382                         for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
3383                                 CTX_WR(sc, 0x00, offset, 0);
3384
3385                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
3386                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3387                 }
3388         }
3389         return 0;
3390 }
3391
3392
3393 /****************************************************************************/
3394 /* Fetch the permanent MAC address of the controller.                       */
3395 /*                                                                          */
3396 /* Returns:                                                                 */
3397 /*   Nothing.                                                               */
3398 /****************************************************************************/
3399 static void
3400 bce_get_mac_addr(struct bce_softc *sc)
3401 {
3402         uint32_t mac_lo = 0, mac_hi = 0;
3403
3404         /*
3405          * The NetXtreme II bootcode populates various NIC
3406          * power-on and runtime configuration items in a
3407          * shared memory area.  The factory configured MAC
3408          * address is available from both NVRAM and the
3409          * shared memory area so we'll read the value from
3410          * shared memory for speed.
3411          */
3412
3413         mac_hi = bce_shmem_rd(sc,  BCE_PORT_HW_CFG_MAC_UPPER);
3414         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
3415
3416         if (mac_lo == 0 && mac_hi == 0) {
3417                 if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n");
3418         } else {
3419                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3420                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3421                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3422                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3423                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3424                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3425         }
3426
3427         DBPRINT(sc, BCE_INFO, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
3428 }
3429
3430
3431 /****************************************************************************/
3432 /* Program the MAC address.                                                 */
3433 /*                                                                          */
3434 /* Returns:                                                                 */
3435 /*   Nothing.                                                               */
3436 /****************************************************************************/
3437 static void
3438 bce_set_mac_addr(struct bce_softc *sc)
3439 {
3440         const uint8_t *mac_addr = sc->eaddr;
3441         uint32_t val;
3442
3443         DBPRINT(sc, BCE_INFO, "Setting Ethernet address = %6D\n",
3444                 sc->eaddr, ":");
3445
3446         val = (mac_addr[0] << 8) | mac_addr[1];
3447         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
3448
3449         val = (mac_addr[2] << 24) |
3450               (mac_addr[3] << 16) |
3451               (mac_addr[4] << 8) |
3452               mac_addr[5];
3453         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
3454 }
3455
3456
3457 /****************************************************************************/
3458 /* Stop the controller.                                                     */
3459 /*                                                                          */
3460 /* Returns:                                                                 */
3461 /*   Nothing.                                                               */
3462 /****************************************************************************/
3463 static void
3464 bce_stop(struct bce_softc *sc)
3465 {
3466         struct ifnet *ifp = &sc->arpcom.ac_if;
3467
3468         ASSERT_SERIALIZED(ifp->if_serializer);
3469
3470         callout_stop(&sc->bce_tick_callout);
3471
3472         /* Disable the transmit/receive blocks. */
3473         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
3474         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3475         DELAY(20);
3476
3477         bce_disable_intr(sc);
3478
3479         /* Free the RX lists. */
3480         bce_free_rx_chain(sc);
3481
3482         /* Free TX buffers. */
3483         bce_free_tx_chain(sc);
3484
3485         sc->bce_link = 0;
3486         sc->bce_coalchg_mask = 0;
3487
3488         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3489         ifp->if_timer = 0;
3490 }
3491
3492
3493 static int
3494 bce_reset(struct bce_softc *sc, uint32_t reset_code)
3495 {
3496         uint32_t val;
3497         int i, rc = 0;
3498
3499         /* Wait for pending PCI transactions to complete. */
3500         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
3501                BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3502                BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3503                BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3504                BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3505         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3506         DELAY(5);
3507
3508         /* Disable DMA */
3509         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3510             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3511                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3512                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3513                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3514         }
3515
3516         /* Assume bootcode is running. */
3517         sc->bce_fw_timed_out = 0;
3518         sc->bce_drv_cardiac_arrest = 0;
3519
3520         /* Give the firmware a chance to prepare for the reset. */
3521         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
3522         if (rc) {
3523                 if_printf(&sc->arpcom.ac_if,
3524                           "Firmware is not ready for reset\n");
3525                 return rc;
3526         }
3527
3528         /* Set a firmware reminder that this is a soft reset. */
3529         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE,
3530             BCE_DRV_RESET_SIGNATURE_MAGIC);
3531
3532         /* Dummy read to force the chip to complete all current transactions. */
3533         val = REG_RD(sc, BCE_MISC_ID);
3534
3535         /* Chip reset. */
3536         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3537             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3538                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
3539                 REG_RD(sc, BCE_MISC_COMMAND);
3540                 DELAY(5);
3541
3542                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3543                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3544
3545                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
3546         } else {
3547                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3548                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3549                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3550                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
3551
3552                 /* Allow up to 30us for reset to complete. */
3553                 for (i = 0; i < 10; i++) {
3554                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
3555                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3556                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3557                                 break;
3558                         DELAY(10);
3559                 }
3560
3561                 /* Check that reset completed successfully. */
3562                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3563                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3564                         if_printf(&sc->arpcom.ac_if, "Reset failed!\n");
3565                         return EBUSY;
3566                 }
3567         }
3568
3569         /* Make sure byte swapping is properly configured. */
3570         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
3571         if (val != 0x01020304) {
3572                 if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n");
3573                 return ENODEV;
3574         }
3575
3576         /* Just completed a reset, assume that firmware is running again. */
3577         sc->bce_fw_timed_out = 0;
3578         sc->bce_drv_cardiac_arrest = 0;
3579
3580         /* Wait for the firmware to finish its initialization. */
3581         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
3582         if (rc) {
3583                 if_printf(&sc->arpcom.ac_if,
3584                           "Firmware did not complete initialization!\n");
3585         }
3586         return rc;
3587 }
3588
3589
3590 static int
3591 bce_chipinit(struct bce_softc *sc)
3592 {
3593         uint32_t val;
3594         int rc = 0;
3595
3596         /* Make sure the interrupt is not active. */
3597         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
3598         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
3599
3600         /*
3601          * Initialize DMA byte/word swapping, configure the number of DMA
3602          * channels and PCI clock compensation delay.
3603          */
3604         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
3605               BCE_DMA_CONFIG_DATA_WORD_SWAP |
3606 #if BYTE_ORDER == BIG_ENDIAN
3607               BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
3608 #endif
3609               BCE_DMA_CONFIG_CNTL_WORD_SWAP |
3610               DMA_READ_CHANS << 12 |
3611               DMA_WRITE_CHANS << 16;
3612
3613         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3614
3615         if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133)
3616                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
3617
3618         /*
3619          * This setting resolves a problem observed on certain Intel PCI
3620          * chipsets that cannot handle multiple outstanding DMA operations.
3621          * See errata E9_5706A1_65.
3622          */
3623         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 &&
3624             BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 &&
3625             !(sc->bce_flags & BCE_PCIX_FLAG))
3626                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
3627
3628         REG_WR(sc, BCE_DMA_CONFIG, val);
3629
3630         /* Enable the RX_V2P and Context state machines before access. */
3631         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3632                BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3633                BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3634                BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3635
3636         /* Initialize context mapping and zero out the quick contexts. */
3637         rc = bce_init_ctx(sc);
3638         if (rc != 0)
3639                 return rc;
3640
3641         /* Initialize the on-boards CPUs */
3642         bce_init_cpus(sc);
3643
3644         /* Enable management frames (NC-SI) to flow to the MCP. */
3645         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3646                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) |
3647                     BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3648                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3649         }
3650
3651         /* Prepare NVRAM for access. */
3652         rc = bce_init_nvram(sc);
3653         if (rc != 0)
3654                 return rc;
3655
3656         /* Set the kernel bypass block size */
3657         val = REG_RD(sc, BCE_MQ_CONFIG);
3658         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3659         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3660
3661         /* Enable bins used on the 5709/5716. */
3662         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3663             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3664                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
3665                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
3666                         val |= BCE_MQ_CONFIG_HALT_DIS;
3667         }
3668
3669         REG_WR(sc, BCE_MQ_CONFIG, val);
3670
3671         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3672         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
3673         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
3674
3675         /* Set the page size and clear the RV2P processor stall bits. */
3676         val = (BCM_PAGE_BITS - 8) << 24;
3677         REG_WR(sc, BCE_RV2P_CONFIG, val);
3678
3679         /* Configure page size. */
3680         val = REG_RD(sc, BCE_TBDR_CONFIG);
3681         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
3682         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3683         REG_WR(sc, BCE_TBDR_CONFIG, val);
3684
3685         /* Set the perfect match control register to default. */
3686         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
3687
3688         return 0;
3689 }
3690
3691
3692 /****************************************************************************/
3693 /* Initialize the controller in preparation to send/receive traffic.        */
3694 /*                                                                          */
3695 /* Returns:                                                                 */
3696 /*   0 for success, positive value for failure.                             */
3697 /****************************************************************************/
3698 static int
3699 bce_blockinit(struct bce_softc *sc)
3700 {
3701         uint32_t reg, val;
3702         int rc = 0;
3703
3704         /* Load the hardware default MAC address. */
3705         bce_set_mac_addr(sc);
3706
3707         /* Set the Ethernet backoff seed value */
3708         val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3709               sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3710         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
3711
3712         sc->last_status_idx = 0;
3713         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
3714
3715         sc->pulse_check_status_idx = 0xffff;
3716
3717         /* Set up link change interrupt generation. */
3718         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
3719
3720         /* Program the physical address of the status block. */
3721         REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr));
3722         REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr));
3723
3724         /* Program the physical address of the statistics block. */
3725         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
3726                BCE_ADDR_LO(sc->stats_block_paddr));
3727         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
3728                BCE_ADDR_HI(sc->stats_block_paddr));
3729
3730         /* Program various host coalescing parameters. */
3731         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
3732                (sc->bce_tx_quick_cons_trip_int << 16) |
3733                sc->bce_tx_quick_cons_trip);
3734         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
3735                (sc->bce_rx_quick_cons_trip_int << 16) |
3736                sc->bce_rx_quick_cons_trip);
3737         REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
3738                (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
3739         REG_WR(sc, BCE_HC_TX_TICKS,
3740                (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3741         REG_WR(sc, BCE_HC_RX_TICKS,
3742                (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3743         REG_WR(sc, BCE_HC_COM_TICKS,
3744                (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
3745         REG_WR(sc, BCE_HC_CMD_TICKS,
3746                (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
3747         REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00));
3748         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);   /* 3ms */
3749
3750         val = BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS;
3751         if (sc->bce_flags & BCE_ONESHOT_MSI_FLAG) {
3752                 if (bootverbose)
3753                         if_printf(&sc->arpcom.ac_if, "oneshot MSI\n");
3754                 val |= BCE_HC_CONFIG_ONE_SHOT | BCE_HC_CONFIG_USE_INT_PARAM;
3755         }
3756         REG_WR(sc, BCE_HC_CONFIG, val);
3757
3758         /* Clear the internal statistics counters. */
3759         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
3760
3761         /* Verify that bootcode is running. */
3762         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
3763
3764         DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
3765                 if_printf(&sc->arpcom.ac_if,
3766                           "%s(%d): Simulating bootcode failure.\n",
3767                           __FILE__, __LINE__);
3768                 reg = 0);
3769
3770         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3771             BCE_DEV_INFO_SIGNATURE_MAGIC) {
3772                 if_printf(&sc->arpcom.ac_if,
3773                           "Bootcode not running! Found: 0x%08X, "
3774                           "Expected: 08%08X\n",
3775                           reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK,
3776                           BCE_DEV_INFO_SIGNATURE_MAGIC);
3777                 return ENODEV;
3778         }
3779
3780         /* Enable DMA */
3781         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3782             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3783                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3784                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3785                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3786         }
3787
3788         /* Allow bootcode to apply any additional fixes before enabling MAC. */
3789         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
3790
3791         /* Enable link state change interrupt generation. */
3792         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3793
3794         /* Enable the RXP. */
3795         bce_start_rxp_cpu(sc);
3796
3797         /* Disable management frames (NC-SI) from flowing to the MCP. */
3798         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3799                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
3800                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3801                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3802         }
3803
3804         /* Enable all remaining blocks in the MAC. */
3805         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3806             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3807                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3808                     BCE_MISC_ENABLE_DEFAULT_XI);
3809         } else {
3810                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
3811         }
3812         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
3813         DELAY(20);
3814
3815         /* Save the current host coalescing block settings. */
3816         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
3817
3818         return 0;
3819 }
3820
3821
3822 /****************************************************************************/
3823 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3824 /*                                                                          */
3825 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3826 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3827 /* necessary.                                                               */
3828 /*                                                                          */
3829 /* Returns:                                                                 */
3830 /*   0 for success, positive value for failure.                             */
3831 /****************************************************************************/
3832 static int
3833 bce_newbuf_std(struct bce_softc *sc, uint16_t *prod, uint16_t *chain_prod,
3834                uint32_t *prod_bseq, int init)
3835 {
3836         bus_dmamap_t map;
3837         bus_dma_segment_t seg;
3838         struct mbuf *m_new;
3839         int error, nseg;
3840 #ifdef BCE_DEBUG
3841         uint16_t debug_chain_prod = *chain_prod;
3842 #endif
3843
3844         /* Make sure the inputs are valid. */
3845         DBRUNIF((*chain_prod > MAX_RX_BD(sc)),
3846                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3847                           "RX producer out of range: 0x%04X > 0x%04X\n",
3848                           __FILE__, __LINE__,
3849                           *chain_prod, (uint16_t)MAX_RX_BD(sc)));
3850
3851         DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
3852                 "prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3853
3854         DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
3855                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3856                           "Simulating mbuf allocation failure.\n",
3857                           __FILE__, __LINE__);
3858                 sc->mbuf_alloc_failed++;
3859                 return ENOBUFS);
3860
3861         /* This is a new mbuf allocation. */
3862         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3863         if (m_new == NULL)
3864                 return ENOBUFS;
3865         DBRUNIF(1, sc->rx_mbuf_alloc++);
3866
3867         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
3868
3869         /* Map the mbuf cluster into device memory. */
3870         error = bus_dmamap_load_mbuf_segment(sc->rx_mbuf_tag,
3871                         sc->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg,
3872                         BUS_DMA_NOWAIT);
3873         if (error) {
3874                 m_freem(m_new);
3875                 if (init) {
3876                         if_printf(&sc->arpcom.ac_if,
3877                                   "Error mapping mbuf into RX chain!\n");
3878                 }
3879                 DBRUNIF(1, sc->rx_mbuf_alloc--);
3880                 return error;
3881         }
3882
3883         if (sc->rx_mbuf_ptr[*chain_prod] != NULL) {
3884                 bus_dmamap_unload(sc->rx_mbuf_tag,
3885                                   sc->rx_mbuf_map[*chain_prod]);
3886         }
3887
3888         map = sc->rx_mbuf_map[*chain_prod];
3889         sc->rx_mbuf_map[*chain_prod] = sc->rx_mbuf_tmpmap;
3890         sc->rx_mbuf_tmpmap = map;
3891
3892         /* Watch for overflow. */
3893         DBRUNIF((sc->free_rx_bd > USABLE_RX_BD(sc)),
3894                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3895                           "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3896                           __FILE__, __LINE__, sc->free_rx_bd,
3897                           (uint16_t)USABLE_RX_BD(sc)));
3898
3899         /* Update some debug statistic counters */
3900         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3901                 sc->rx_low_watermark = sc->free_rx_bd);
3902         DBRUNIF((sc->free_rx_bd == 0), sc->rx_empty_count++);
3903
3904         /* Save the mbuf and update our counter. */
3905         sc->rx_mbuf_ptr[*chain_prod] = m_new;
3906         sc->rx_mbuf_paddr[*chain_prod] = seg.ds_addr;
3907         sc->free_rx_bd--;
3908
3909         bce_setup_rxdesc_std(sc, *chain_prod, prod_bseq);
3910
3911         DBRUN(BCE_VERBOSE_RECV,
3912               bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 1));
3913
3914         DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
3915                 "prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3916
3917         return 0;
3918 }
3919
3920
3921 static void
3922 bce_setup_rxdesc_std(struct bce_softc *sc, uint16_t chain_prod, uint32_t *prod_bseq)
3923 {
3924         struct rx_bd *rxbd;
3925         bus_addr_t paddr;
3926         int len;
3927
3928         paddr = sc->rx_mbuf_paddr[chain_prod];
3929         len = sc->rx_mbuf_ptr[chain_prod]->m_len;
3930
3931         /* Setup the rx_bd for the first segment. */
3932         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
3933
3934         rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr));
3935         rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr));
3936         rxbd->rx_bd_len = htole32(len);
3937         rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3938         *prod_bseq += len;
3939
3940         rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3941 }
3942
3943
3944 /****************************************************************************/
3945 /* Initialize the TX context memory.                                        */
3946 /*                                                                          */
3947 /* Returns:                                                                 */
3948 /*   Nothing                                                                */
3949 /****************************************************************************/
3950 static void
3951 bce_init_tx_context(struct bce_softc *sc)
3952 {
3953         uint32_t val;
3954
3955         /* Initialize the context ID for an L2 TX chain. */
3956         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3957             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3958                 /* Set the CID type to support an L2 connection. */
3959                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3960                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
3961                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3962                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val);
3963
3964                 /* Point the hardware to the first page in the chain. */
3965                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3966                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3967                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
3968                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3969                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3970                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
3971         } else {
3972                 /* Set the CID type to support an L2 connection. */
3973                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3974                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
3975                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3976                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
3977
3978                 /* Point the hardware to the first page in the chain. */
3979                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3980                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3981                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
3982                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3983                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3984                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
3985         }
3986 }
3987
3988
3989 /****************************************************************************/
3990 /* Allocate memory and initialize the TX data structures.                   */
3991 /*                                                                          */
3992 /* Returns:                                                                 */
3993 /*   0 for success, positive value for failure.                             */
3994 /****************************************************************************/
3995 static int
3996 bce_init_tx_chain(struct bce_softc *sc)
3997 {
3998         struct tx_bd *txbd;
3999         int i, rc = 0;
4000
4001         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4002
4003         /* Set the initial TX producer/consumer indices. */
4004         sc->tx_prod = 0;
4005         sc->tx_cons = 0;
4006         sc->tx_prod_bseq   = 0;
4007         sc->used_tx_bd = 0;
4008         sc->max_tx_bd = USABLE_TX_BD(sc);
4009         DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD(sc));
4010         DBRUNIF(1, sc->tx_full_count = 0);
4011
4012         /*
4013          * The NetXtreme II supports a linked-list structre called
4014          * a Buffer Descriptor Chain (or BD chain).  A BD chain
4015          * consists of a series of 1 or more chain pages, each of which
4016          * consists of a fixed number of BD entries.
4017          * The last BD entry on each page is a pointer to the next page
4018          * in the chain, and the last pointer in the BD chain
4019          * points back to the beginning of the chain.
4020          */
4021
4022         /* Set the TX next pointer chain entries. */
4023         for (i = 0; i < sc->tx_pages; i++) {
4024                 int j;
4025
4026                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4027
4028                 /* Check if we've reached the last page. */
4029                 if (i == (sc->tx_pages - 1))
4030                         j = 0;
4031                 else
4032                         j = i + 1;
4033
4034                 txbd->tx_bd_haddr_hi =
4035                         htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
4036                 txbd->tx_bd_haddr_lo =
4037                         htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
4038         }
4039         bce_init_tx_context(sc);
4040
4041         return(rc);
4042 }
4043
4044
4045 /****************************************************************************/
4046 /* Free memory and clear the TX data structures.                            */
4047 /*                                                                          */
4048 /* Returns:                                                                 */
4049 /*   Nothing.                                                               */
4050 /****************************************************************************/
4051 static void
4052 bce_free_tx_chain(struct bce_softc *sc)
4053 {
4054         int i;
4055
4056         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4057
4058         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4059         for (i = 0; i < TOTAL_TX_BD(sc); i++) {
4060                 if (sc->tx_mbuf_ptr[i] != NULL) {
4061                         bus_dmamap_unload(sc->tx_mbuf_tag, sc->tx_mbuf_map[i]);
4062                         m_freem(sc->tx_mbuf_ptr[i]);
4063                         sc->tx_mbuf_ptr[i] = NULL;
4064                         DBRUNIF(1, sc->tx_mbuf_alloc--);
4065                 }
4066         }
4067
4068         /* Clear each TX chain page. */
4069         for (i = 0; i < sc->tx_pages; i++)
4070                 bzero(sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
4071         sc->used_tx_bd = 0;
4072
4073         /* Check if we lost any mbufs in the process. */
4074         DBRUNIF((sc->tx_mbuf_alloc),
4075                 if_printf(&sc->arpcom.ac_if,
4076                           "%s(%d): Memory leak! "
4077                           "Lost %d mbufs from tx chain!\n",
4078                           __FILE__, __LINE__, sc->tx_mbuf_alloc));
4079
4080         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4081 }
4082
4083
4084 /****************************************************************************/
4085 /* Initialize the RX context memory.                                        */
4086 /*                                                                          */
4087 /* Returns:                                                                 */
4088 /*   Nothing                                                                */
4089 /****************************************************************************/
4090 static void
4091 bce_init_rx_context(struct bce_softc *sc)
4092 {
4093         uint32_t val;
4094
4095         /* Initialize the context ID for an L2 RX chain. */
4096         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4097             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4098
4099         /*
4100          * Set the level for generating pause frames
4101          * when the number of available rx_bd's gets
4102          * too low (the low watermark) and the level
4103          * when pause frames can be stopped (the high
4104          * watermark).
4105          */
4106         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4107             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4108                 uint32_t lo_water, hi_water;
4109
4110                 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4111                 hi_water = USABLE_RX_BD(sc) / 4;
4112
4113                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
4114                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
4115
4116                 if (hi_water > 0xf)
4117                         hi_water = 0xf;
4118                 else if (hi_water == 0)
4119                         lo_water = 0;
4120                 val |= lo_water |
4121                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
4122         }
4123
4124         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
4125
4126         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4127         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4128             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4129                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
4130                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
4131         }
4132
4133         /* Point the hardware to the first page in the chain. */
4134         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
4135         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
4136         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
4137         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
4138 }
4139
4140
4141 /****************************************************************************/
4142 /* Allocate memory and initialize the RX data structures.                   */
4143 /*                                                                          */
4144 /* Returns:                                                                 */
4145 /*   0 for success, positive value for failure.                             */
4146 /****************************************************************************/
4147 static int
4148 bce_init_rx_chain(struct bce_softc *sc)
4149 {
4150         struct rx_bd *rxbd;
4151         int i, rc = 0;
4152         uint16_t prod, chain_prod;
4153         uint32_t prod_bseq;
4154
4155         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4156
4157         /* Initialize the RX producer and consumer indices. */
4158         sc->rx_prod = 0;
4159         sc->rx_cons = 0;
4160         sc->rx_prod_bseq = 0;
4161         sc->free_rx_bd = USABLE_RX_BD(sc);
4162         sc->max_rx_bd = USABLE_RX_BD(sc);
4163         DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD(sc));
4164         DBRUNIF(1, sc->rx_empty_count = 0);
4165
4166         /* Initialize the RX next pointer chain entries. */
4167         for (i = 0; i < sc->rx_pages; i++) {
4168                 int j;
4169
4170                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4171
4172                 /* Check if we've reached the last page. */
4173                 if (i == (sc->rx_pages - 1))
4174                         j = 0;
4175                 else
4176                         j = i + 1;
4177
4178                 /* Setup the chain page pointers. */
4179                 rxbd->rx_bd_haddr_hi =
4180                         htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
4181                 rxbd->rx_bd_haddr_lo =
4182                         htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
4183         }
4184
4185         /* Allocate mbuf clusters for the rx_bd chain. */
4186         prod = prod_bseq = 0;
4187         while (prod < TOTAL_RX_BD(sc)) {
4188                 chain_prod = RX_CHAIN_IDX(sc, prod);
4189                 if (bce_newbuf_std(sc, &prod, &chain_prod, &prod_bseq, 1)) {
4190                         if_printf(&sc->arpcom.ac_if,
4191                                   "Error filling RX chain: rx_bd[0x%04X]!\n",
4192                                   chain_prod);
4193                         rc = ENOBUFS;
4194                         break;
4195                 }
4196                 prod = NEXT_RX_BD(prod);
4197         }
4198
4199         /* Save the RX chain producer index. */
4200         sc->rx_prod = prod;
4201         sc->rx_prod_bseq = prod_bseq;
4202
4203         /* Tell the chip about the waiting rx_bd's. */
4204         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4205             sc->rx_prod);
4206         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4207             sc->rx_prod_bseq);
4208
4209         bce_init_rx_context(sc);
4210
4211         return(rc);
4212 }
4213
4214
4215 /****************************************************************************/
4216 /* Free memory and clear the RX data structures.                            */
4217 /*                                                                          */
4218 /* Returns:                                                                 */
4219 /*   Nothing.                                                               */
4220 /****************************************************************************/
4221 static void
4222 bce_free_rx_chain(struct bce_softc *sc)
4223 {
4224         int i;
4225
4226         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4227
4228         /* Free any mbufs still in the RX mbuf chain. */
4229         for (i = 0; i < TOTAL_RX_BD(sc); i++) {
4230                 if (sc->rx_mbuf_ptr[i] != NULL) {
4231                         bus_dmamap_unload(sc->rx_mbuf_tag, sc->rx_mbuf_map[i]);
4232                         m_freem(sc->rx_mbuf_ptr[i]);
4233                         sc->rx_mbuf_ptr[i] = NULL;
4234                         DBRUNIF(1, sc->rx_mbuf_alloc--);
4235                 }
4236         }
4237
4238         /* Clear each RX chain page. */
4239         for (i = 0; i < sc->rx_pages; i++)
4240                 bzero(sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
4241
4242         /* Check if we lost any mbufs in the process. */
4243         DBRUNIF((sc->rx_mbuf_alloc),
4244                 if_printf(&sc->arpcom.ac_if,
4245                           "%s(%d): Memory leak! "
4246                           "Lost %d mbufs from rx chain!\n",
4247                           __FILE__, __LINE__, sc->rx_mbuf_alloc));
4248
4249         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4250 }
4251
4252
4253 /****************************************************************************/
4254 /* Set media options.                                                       */
4255 /*                                                                          */
4256 /* Returns:                                                                 */
4257 /*   0 for success, positive value for failure.                             */
4258 /****************************************************************************/
4259 static int
4260 bce_ifmedia_upd(struct ifnet *ifp)
4261 {
4262         struct bce_softc *sc = ifp->if_softc;
4263         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4264         int error = 0;
4265
4266         /*
4267          * 'mii' will be NULL, when this function is called on following
4268          * code path: bce_attach() -> bce_mgmt_init()
4269          */
4270         if (mii != NULL) {
4271                 /* Make sure the MII bus has been enumerated. */
4272                 sc->bce_link = 0;
4273                 if (mii->mii_instance) {
4274                         struct mii_softc *miisc;
4275
4276                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4277                                 mii_phy_reset(miisc);
4278                 }
4279                 error = mii_mediachg(mii);
4280         }
4281         return error;
4282 }
4283
4284
4285 /****************************************************************************/
4286 /* Reports current media status.                                            */
4287 /*                                                                          */
4288 /* Returns:                                                                 */
4289 /*   Nothing.                                                               */
4290 /****************************************************************************/
4291 static void
4292 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4293 {
4294         struct bce_softc *sc = ifp->if_softc;
4295         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4296
4297         mii_pollstat(mii);
4298         ifmr->ifm_active = mii->mii_media_active;
4299         ifmr->ifm_status = mii->mii_media_status;
4300 }
4301
4302
4303 /****************************************************************************/
4304 /* Handles PHY generated interrupt events.                                  */
4305 /*                                                                          */
4306 /* Returns:                                                                 */
4307 /*   Nothing.                                                               */
4308 /****************************************************************************/
4309 static void
4310 bce_phy_intr(struct bce_softc *sc)
4311 {
4312         uint32_t new_link_state, old_link_state;
4313         struct ifnet *ifp = &sc->arpcom.ac_if;
4314
4315         ASSERT_SERIALIZED(ifp->if_serializer);
4316
4317         new_link_state = sc->status_block->status_attn_bits &
4318                          STATUS_ATTN_BITS_LINK_STATE;
4319         old_link_state = sc->status_block->status_attn_bits_ack &
4320                          STATUS_ATTN_BITS_LINK_STATE;
4321
4322         /* Handle any changes if the link state has changed. */
4323         if (new_link_state != old_link_state) { /* XXX redundant? */
4324                 DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
4325
4326                 /* Update the status_attn_bits_ack field in the status block. */
4327                 if (new_link_state) {
4328                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
4329                                STATUS_ATTN_BITS_LINK_STATE);
4330                         if (bootverbose)
4331                                 if_printf(ifp, "Link is now UP.\n");
4332                 } else {
4333                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
4334                                STATUS_ATTN_BITS_LINK_STATE);
4335                         if (bootverbose)
4336                                 if_printf(ifp, "Link is now DOWN.\n");
4337                 }
4338
4339                 /*
4340                  * Assume link is down and allow tick routine to
4341                  * update the state based on the actual media state.
4342                  */
4343                 sc->bce_link = 0;
4344                 callout_stop(&sc->bce_tick_callout);
4345                 bce_tick_serialized(sc);
4346         }
4347
4348         /* Acknowledge the link change interrupt. */
4349         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
4350 }
4351
4352
4353 /****************************************************************************/
4354 /* Reads the receive consumer value from the status block (skipping over    */
4355 /* chain page pointer if necessary).                                        */
4356 /*                                                                          */
4357 /* Returns:                                                                 */
4358 /*   hw_cons                                                                */
4359 /****************************************************************************/
4360 static __inline uint16_t
4361 bce_get_hw_rx_cons(struct bce_softc *sc)
4362 {
4363         uint16_t hw_cons = sc->status_block->status_rx_quick_consumer_index0;
4364
4365         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4366                 hw_cons++;
4367         return hw_cons;
4368 }
4369
4370
4371 /****************************************************************************/
4372 /* Handles received frame interrupt events.                                 */
4373 /*                                                                          */
4374 /* Returns:                                                                 */
4375 /*   Nothing.                                                               */
4376 /****************************************************************************/
4377 static void
4378 bce_rx_intr(struct bce_softc *sc, int count, uint16_t hw_cons)
4379 {
4380         struct ifnet *ifp = &sc->arpcom.ac_if;
4381         uint16_t sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
4382         uint32_t sw_prod_bseq;
4383
4384         ASSERT_SERIALIZED(ifp->if_serializer);
4385
4386         /* Get working copies of the driver's view of the RX indices. */
4387         sw_cons = sc->rx_cons;
4388         sw_prod = sc->rx_prod;
4389         sw_prod_bseq = sc->rx_prod_bseq;
4390
4391         /* Scan through the receive chain as long as there is work to do. */
4392         while (sw_cons != hw_cons) {
4393                 struct mbuf *m = NULL;
4394                 struct l2_fhdr *l2fhdr = NULL;
4395                 struct rx_bd *rxbd;
4396                 unsigned int len;
4397                 uint32_t status = 0;
4398
4399 #ifdef DEVICE_POLLING
4400                 if (count >= 0 && count-- == 0)
4401                         break;
4402 #endif
4403
4404                 /*
4405                  * Convert the producer/consumer indices
4406                  * to an actual rx_bd index.
4407                  */
4408                 sw_chain_cons = RX_CHAIN_IDX(sc, sw_cons);
4409                 sw_chain_prod = RX_CHAIN_IDX(sc, sw_prod);
4410
4411                 /* Get the used rx_bd. */
4412                 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)]
4413                                        [RX_IDX(sw_chain_cons)];
4414                 sc->free_rx_bd++;
4415
4416                 /* The mbuf is stored with the last rx_bd entry of a packet. */
4417                 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4418                         if (sw_chain_cons != sw_chain_prod) {
4419                                 if_printf(ifp, "RX cons(%d) != prod(%d), "
4420                                           "drop!\n", sw_chain_cons,
4421                                           sw_chain_prod);
4422                                 ifp->if_ierrors++;
4423
4424                                 bce_setup_rxdesc_std(sc, sw_chain_cons,
4425                                                      &sw_prod_bseq);
4426                                 m = NULL;
4427                                 goto bce_rx_int_next_rx;
4428                         }
4429
4430                         /* Unmap the mbuf from DMA space. */
4431                         bus_dmamap_sync(sc->rx_mbuf_tag,
4432                                         sc->rx_mbuf_map[sw_chain_cons],
4433                                         BUS_DMASYNC_POSTREAD);
4434
4435                         /* Save the mbuf from the driver's chain. */
4436                         m = sc->rx_mbuf_ptr[sw_chain_cons];
4437
4438                         /*
4439                          * Frames received on the NetXteme II are prepended 
4440                          * with an l2_fhdr structure which provides status
4441                          * information about the received frame (including
4442                          * VLAN tags and checksum info).  The frames are also
4443                          * automatically adjusted to align the IP header
4444                          * (i.e. two null bytes are inserted before the 
4445                          * Ethernet header).  As a result the data DMA'd by
4446                          * the controller into the mbuf is as follows:
4447                          *
4448                          * +---------+-----+---------------------+-----+
4449                          * | l2_fhdr | pad | packet data         | FCS |
4450                          * +---------+-----+---------------------+-----+
4451                          * 
4452                          * The l2_fhdr needs to be checked and skipped and the
4453                          * FCS needs to be stripped before sending the packet
4454                          * up the stack.
4455                          */
4456                         l2fhdr = mtod(m, struct l2_fhdr *);
4457
4458                         len = l2fhdr->l2_fhdr_pkt_len;
4459                         status = l2fhdr->l2_fhdr_status;
4460
4461                         len -= ETHER_CRC_LEN;
4462
4463                         /* Check the received frame for errors. */
4464                         if (status & (L2_FHDR_ERRORS_BAD_CRC |
4465                                       L2_FHDR_ERRORS_PHY_DECODE |
4466                                       L2_FHDR_ERRORS_ALIGNMENT |
4467                                       L2_FHDR_ERRORS_TOO_SHORT |
4468                                       L2_FHDR_ERRORS_GIANT_FRAME)) {
4469                                 ifp->if_ierrors++;
4470
4471                                 /* Reuse the mbuf for a new frame. */
4472                                 bce_setup_rxdesc_std(sc, sw_chain_prod,
4473                                                      &sw_prod_bseq);
4474                                 m = NULL;
4475                                 goto bce_rx_int_next_rx;
4476                         }
4477
4478                         /* 
4479                          * Get a new mbuf for the rx_bd.   If no new
4480                          * mbufs are available then reuse the current mbuf,
4481                          * log an ierror on the interface, and generate
4482                          * an error in the system log.
4483                          */
4484                         if (bce_newbuf_std(sc, &sw_prod, &sw_chain_prod,
4485                                            &sw_prod_bseq, 0)) {
4486                                 ifp->if_ierrors++;
4487
4488                                 /* Try and reuse the exisitng mbuf. */
4489                                 bce_setup_rxdesc_std(sc, sw_chain_prod,
4490                                                      &sw_prod_bseq);
4491                                 m = NULL;
4492                                 goto bce_rx_int_next_rx;
4493                         }
4494
4495                         /*
4496                          * Skip over the l2_fhdr when passing
4497                          * the data up the stack.
4498                          */
4499                         m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4500
4501                         m->m_pkthdr.len = m->m_len = len;
4502                         m->m_pkthdr.rcvif = ifp;
4503
4504                         /* Validate the checksum if offload enabled. */
4505                         if (ifp->if_capenable & IFCAP_RXCSUM) {
4506                                 /* Check for an IP datagram. */
4507                                 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4508                                         m->m_pkthdr.csum_flags |=
4509                                                 CSUM_IP_CHECKED;
4510
4511                                         /* Check if the IP checksum is valid. */
4512                                         if ((l2fhdr->l2_fhdr_ip_xsum ^
4513                                              0xffff) == 0) {
4514                                                 m->m_pkthdr.csum_flags |=
4515                                                         CSUM_IP_VALID;
4516                                         }
4517                                 }
4518
4519                                 /* Check for a valid TCP/UDP frame. */
4520                                 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4521                                               L2_FHDR_STATUS_UDP_DATAGRAM)) {
4522
4523                                         /* Check for a good TCP/UDP checksum. */
4524                                         if ((status &
4525                                              (L2_FHDR_ERRORS_TCP_XSUM |
4526                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4527                                                 m->m_pkthdr.csum_data =
4528                                                 l2fhdr->l2_fhdr_tcp_udp_xsum;
4529                                                 m->m_pkthdr.csum_flags |=
4530                                                         CSUM_DATA_VALID |
4531                                                         CSUM_PSEUDO_HDR;
4532                                         }
4533                                 }
4534                         }
4535
4536                         ifp->if_ipackets++;
4537 bce_rx_int_next_rx:
4538                         sw_prod = NEXT_RX_BD(sw_prod);
4539                 }
4540
4541                 sw_cons = NEXT_RX_BD(sw_cons);
4542
4543                 /* If we have a packet, pass it up the stack */
4544                 if (m) {
4545                         if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
4546                                 m->m_flags |= M_VLANTAG;
4547                                 m->m_pkthdr.ether_vlantag =
4548                                         l2fhdr->l2_fhdr_vlan_tag;
4549                         }
4550                         ifp->if_input(ifp, m);
4551                 }
4552         }
4553
4554         sc->rx_cons = sw_cons;
4555         sc->rx_prod = sw_prod;
4556         sc->rx_prod_bseq = sw_prod_bseq;
4557
4558         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4559             sc->rx_prod);
4560         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4561             sc->rx_prod_bseq);
4562 }
4563
4564
4565 /****************************************************************************/
4566 /* Reads the transmit consumer value from the status block (skipping over   */
4567 /* chain page pointer if necessary).                                        */
4568 /*                                                                          */
4569 /* Returns:                                                                 */
4570 /*   hw_cons                                                                */
4571 /****************************************************************************/
4572 static __inline uint16_t
4573 bce_get_hw_tx_cons(struct bce_softc *sc)
4574 {
4575         uint16_t hw_cons = sc->status_block->status_tx_quick_consumer_index0;
4576
4577         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4578                 hw_cons++;
4579         return hw_cons;
4580 }
4581
4582
4583 /****************************************************************************/
4584 /* Handles transmit completion interrupt events.                            */
4585 /*                                                                          */
4586 /* Returns:                                                                 */
4587 /*   Nothing.                                                               */
4588 /****************************************************************************/
4589 static void
4590 bce_tx_intr(struct bce_softc *sc, uint16_t hw_tx_cons)
4591 {
4592         struct ifnet *ifp = &sc->arpcom.ac_if;
4593         uint16_t sw_tx_cons, sw_tx_chain_cons;
4594
4595         ASSERT_SERIALIZED(ifp->if_serializer);
4596
4597         /* Get the hardware's view of the TX consumer index. */
4598         sw_tx_cons = sc->tx_cons;
4599
4600         /* Cycle through any completed TX chain page entries. */
4601         while (sw_tx_cons != hw_tx_cons) {
4602                 sw_tx_chain_cons = TX_CHAIN_IDX(sc, sw_tx_cons);
4603
4604                 /*
4605                  * Free the associated mbuf. Remember
4606                  * that only the last tx_bd of a packet
4607                  * has an mbuf pointer and DMA map.
4608                  */
4609                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
4610                         /* Unmap the mbuf. */
4611                         bus_dmamap_unload(sc->tx_mbuf_tag,
4612                                           sc->tx_mbuf_map[sw_tx_chain_cons]);
4613
4614                         /* Free the mbuf. */
4615                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
4616                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
4617
4618                         ifp->if_opackets++;
4619                 }
4620
4621                 sc->used_tx_bd--;
4622                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4623         }
4624
4625         if (sc->used_tx_bd == 0) {
4626                 /* Clear the TX timeout timer. */
4627                 ifp->if_timer = 0;
4628         }
4629
4630         /* Clear the tx hardware queue full flag. */
4631         if (sc->max_tx_bd - sc->used_tx_bd >= BCE_TX_SPARE_SPACE)
4632                 ifp->if_flags &= ~IFF_OACTIVE;
4633         sc->tx_cons = sw_tx_cons;
4634 }
4635
4636
4637 /****************************************************************************/
4638 /* Disables interrupt generation.                                           */
4639 /*                                                                          */
4640 /* Returns:                                                                 */
4641 /*   Nothing.                                                               */
4642 /****************************************************************************/
4643 static void
4644 bce_disable_intr(struct bce_softc *sc)
4645 {
4646         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
4647         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
4648         lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
4649 }
4650
4651
4652 /****************************************************************************/
4653 /* Enables interrupt generation.                                            */
4654 /*                                                                          */
4655 /* Returns:                                                                 */
4656 /*   Nothing.                                                               */
4657 /****************************************************************************/
4658 static void
4659 bce_enable_intr(struct bce_softc *sc)
4660 {
4661         lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
4662
4663         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4664                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4665                BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4666         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4667                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4668
4669         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
4670 }
4671
4672
4673 /****************************************************************************/
4674 /* Reenables interrupt generation during interrupt handling.                */
4675 /*                                                                          */
4676 /* Returns:                                                                 */
4677 /*   Nothing.                                                               */
4678 /****************************************************************************/
4679 static void
4680 bce_reenable_intr(struct bce_softc *sc)
4681 {
4682         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
4683                 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4684                        BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4685                        BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4686         }
4687         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4688                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4689 }
4690
4691 /****************************************************************************/
4692 /* Handles controller initialization.                                       */
4693 /*                                                                          */
4694 /* Returns:                                                                 */
4695 /*   Nothing.                                                               */
4696 /****************************************************************************/
4697 static void
4698 bce_init(void *xsc)
4699 {
4700         struct bce_softc *sc = xsc;
4701         struct ifnet *ifp = &sc->arpcom.ac_if;
4702         uint32_t ether_mtu;
4703         int error;
4704
4705         ASSERT_SERIALIZED(ifp->if_serializer);
4706
4707         /* Check if the driver is still running and bail out if it is. */
4708         if (ifp->if_flags & IFF_RUNNING)
4709                 return;
4710
4711         bce_stop(sc);
4712
4713         error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
4714         if (error) {
4715                 if_printf(ifp, "Controller reset failed!\n");
4716                 goto back;
4717         }
4718
4719         error = bce_chipinit(sc);
4720         if (error) {
4721                 if_printf(ifp, "Controller initialization failed!\n");
4722                 goto back;
4723         }
4724
4725         error = bce_blockinit(sc);
4726         if (error) {
4727                 if_printf(ifp, "Block initialization failed!\n");
4728                 goto back;
4729         }
4730
4731         /* Load our MAC address. */
4732         bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN);
4733         bce_set_mac_addr(sc);
4734
4735         /* Calculate and program the Ethernet MTU size. */
4736         ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN;
4737
4738         DBPRINT(sc, BCE_INFO, "%s(): setting mtu = %d\n", __func__, ether_mtu);
4739
4740         /* 
4741          * Program the mtu, enabling jumbo frame 
4742          * support if necessary.  Also set the mbuf
4743          * allocation count for RX frames.
4744          */
4745         if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) {
4746 #ifdef notyet
4747                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
4748                        min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
4749                        BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4750                 sc->mbuf_alloc_size = MJUM9BYTES;
4751 #else
4752                 panic("jumbo buffer is not supported yet");
4753 #endif
4754         } else {
4755                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
4756                 sc->mbuf_alloc_size = MCLBYTES;
4757         }
4758
4759         /* Calculate the RX Ethernet frame size for rx_bd's. */
4760         sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4761
4762         DBPRINT(sc, BCE_INFO,
4763                 "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4764                 "max_frame_size = %d\n",
4765                 __func__, (int)MCLBYTES, sc->mbuf_alloc_size,
4766                 sc->max_frame_size);
4767
4768         /* Program appropriate promiscuous/multicast filtering. */
4769         bce_set_rx_mode(sc);
4770
4771         /* Init RX buffer descriptor chain. */
4772         bce_init_rx_chain(sc);  /* XXX return value */
4773
4774         /* Init TX buffer descriptor chain. */
4775         bce_init_tx_chain(sc);  /* XXX return value */
4776
4777 #ifdef DEVICE_POLLING
4778         /* Disable interrupts if we are polling. */
4779         if (ifp->if_flags & IFF_POLLING) {
4780                 bce_disable_intr(sc);
4781
4782                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4783                        (1 << 16) | sc->bce_rx_quick_cons_trip);
4784                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4785                        (1 << 16) | sc->bce_tx_quick_cons_trip);
4786         } else
4787 #endif
4788         /* Enable host interrupts. */
4789         bce_enable_intr(sc);
4790
4791         bce_ifmedia_upd(ifp);
4792
4793         ifp->if_flags |= IFF_RUNNING;
4794         ifp->if_flags &= ~IFF_OACTIVE;
4795
4796         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
4797 back:
4798         if (error)
4799                 bce_stop(sc);
4800 }
4801
4802
4803 /****************************************************************************/
4804 /* Initialize the controller just enough so that any management firmware    */
4805 /* running on the device will continue to operate corectly.                 */
4806 /*                                                                          */
4807 /* Returns:                                                                 */
4808 /*   Nothing.                                                               */
4809 /****************************************************************************/
4810 static void
4811 bce_mgmt_init(struct bce_softc *sc)
4812 {
4813         struct ifnet *ifp = &sc->arpcom.ac_if;
4814
4815         /* Bail out if management firmware is not running. */
4816         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
4817                 return;
4818
4819         /* Enable all critical blocks in the MAC. */
4820         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4821             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4822                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4823                     BCE_MISC_ENABLE_DEFAULT_XI);
4824         } else {
4825                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4826         }
4827         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4828         DELAY(20);
4829
4830         bce_ifmedia_upd(ifp);
4831 }
4832
4833
4834 /****************************************************************************/
4835 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4836 /* memory visible to the controller.                                        */
4837 /*                                                                          */
4838 /* Returns:                                                                 */
4839 /*   0 for success, positive value for failure.                             */
4840 /****************************************************************************/
4841 static int
4842 bce_encap(struct bce_softc *sc, struct mbuf **m_head)
4843 {
4844         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4845         bus_dmamap_t map, tmp_map;
4846         struct mbuf *m0 = *m_head;
4847         struct tx_bd *txbd = NULL;
4848         uint16_t vlan_tag = 0, flags = 0;
4849         uint16_t chain_prod, chain_prod_start, prod;
4850         uint32_t prod_bseq;
4851         int i, error, maxsegs, nsegs;
4852
4853         /* Transfer any checksum offload flags to the bd. */
4854         if (m0->m_pkthdr.csum_flags) {
4855                 if (m0->m_pkthdr.csum_flags & CSUM_IP)
4856                         flags |= TX_BD_FLAGS_IP_CKSUM;
4857                 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
4858                         flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4859         }
4860
4861         /* Transfer any VLAN tags to the bd. */
4862         if (m0->m_flags & M_VLANTAG) {
4863                 flags |= TX_BD_FLAGS_VLAN_TAG;
4864                 vlan_tag = m0->m_pkthdr.ether_vlantag;
4865         }
4866
4867         prod = sc->tx_prod;
4868         chain_prod_start = chain_prod = TX_CHAIN_IDX(sc, prod);
4869
4870         /* Map the mbuf into DMAable memory. */
4871         map = sc->tx_mbuf_map[chain_prod_start];
4872
4873         maxsegs = sc->max_tx_bd - sc->used_tx_bd;
4874         KASSERT(maxsegs >= BCE_TX_SPARE_SPACE,
4875                 ("not enough segments %d", maxsegs));
4876         if (maxsegs > BCE_MAX_SEGMENTS)
4877                 maxsegs = BCE_MAX_SEGMENTS;
4878
4879         /* Map the mbuf into our DMA address space. */
4880         error = bus_dmamap_load_mbuf_defrag(sc->tx_mbuf_tag, map, m_head,
4881                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
4882         if (error)
4883                 goto back;
4884         bus_dmamap_sync(sc->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE);
4885
4886         /* Reset m0 */
4887         m0 = *m_head;
4888
4889         /* prod points to an empty tx_bd at this point. */
4890         prod_bseq  = sc->tx_prod_bseq;
4891
4892         /*
4893          * Cycle through each mbuf segment that makes up
4894          * the outgoing frame, gathering the mapping info
4895          * for that segment and creating a tx_bd to for
4896          * the mbuf.
4897          */
4898         for (i = 0; i < nsegs; i++) {
4899                 chain_prod = TX_CHAIN_IDX(sc, prod);
4900                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4901
4902                 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
4903                 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
4904                 txbd->tx_bd_mss_nbytes = htole16(segs[i].ds_len);
4905                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4906                 txbd->tx_bd_flags = htole16(flags);
4907                 prod_bseq += segs[i].ds_len;
4908                 if (i == 0)
4909                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4910                 prod = NEXT_TX_BD(prod);
4911         }
4912
4913         /* Set the END flag on the last TX buffer descriptor. */
4914         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4915
4916         /*
4917          * Ensure that the mbuf pointer for this transmission
4918          * is placed at the array index of the last
4919          * descriptor in this chain.  This is done
4920          * because a single map is used for all 
4921          * segments of the mbuf and we don't want to
4922          * unload the map before all of the segments
4923          * have been freed.
4924          */
4925         sc->tx_mbuf_ptr[chain_prod] = m0;
4926
4927         tmp_map = sc->tx_mbuf_map[chain_prod];
4928         sc->tx_mbuf_map[chain_prod] = map;
4929         sc->tx_mbuf_map[chain_prod_start] = tmp_map;
4930
4931         sc->used_tx_bd += nsegs;
4932
4933         /* prod points to the next free tx_bd at this point. */
4934         sc->tx_prod = prod;
4935         sc->tx_prod_bseq = prod_bseq;
4936 back:
4937         if (error) {
4938                 m_freem(*m_head);
4939                 *m_head = NULL;
4940         }
4941         return error;
4942 }
4943
4944
4945 /****************************************************************************/
4946 /* Main transmit routine when called from another routine with a lock.      */
4947 /*                                                                          */
4948 /* Returns:                                                                 */
4949 /*   Nothing.                                                               */
4950 /****************************************************************************/
4951 static void
4952 bce_start(struct ifnet *ifp)
4953 {
4954         struct bce_softc *sc = ifp->if_softc;
4955         int count = 0;
4956
4957         ASSERT_SERIALIZED(ifp->if_serializer);
4958
4959         /* If there's no link or the transmit queue is empty then just exit. */
4960         if (!sc->bce_link) {
4961                 ifq_purge(&ifp->if_snd);
4962                 return;
4963         }
4964
4965         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
4966                 return;
4967
4968         for (;;) {
4969                 struct mbuf *m_head;
4970
4971                 /*
4972                  * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is
4973                  * unlikely to fail.
4974                  */
4975                 if (sc->max_tx_bd - sc->used_tx_bd < BCE_TX_SPARE_SPACE) {
4976                         ifp->if_flags |= IFF_OACTIVE;
4977                         break;
4978                 }
4979
4980                 /* Check for any frames to send. */
4981                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
4982                 if (m_head == NULL)
4983                         break;
4984
4985                 /*
4986                  * Pack the data into the transmit ring. If we
4987                  * don't have room, place the mbuf back at the
4988                  * head of the queue and set the OACTIVE flag
4989                  * to wait for the NIC to drain the chain.
4990                  */
4991                 if (bce_encap(sc, &m_head)) {
4992                         ifp->if_oerrors++;
4993                         if (sc->used_tx_bd == 0) {
4994                                 continue;
4995                         } else {
4996                                 ifp->if_flags |= IFF_OACTIVE;
4997                                 break;
4998                         }
4999                 }
5000
5001                 count++;
5002
5003                 /* Send a copy of the frame to any BPF listeners. */
5004                 ETHER_BPF_MTAP(ifp, m_head);
5005         }
5006
5007         if (count == 0) {
5008                 /* no packets were dequeued */
5009                 return;
5010         }
5011
5012         REG_WR(sc, BCE_MQ_COMMAND,
5013             REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR);
5014
5015         /* Start the transmit. */
5016         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BIDX,
5017             sc->tx_prod);
5018         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BSEQ,
5019             sc->tx_prod_bseq);
5020
5021         /* Set the tx timeout. */
5022         ifp->if_timer = BCE_TX_TIMEOUT;
5023 }
5024
5025
5026 /****************************************************************************/
5027 /* Handles any IOCTL calls from the operating system.                       */
5028 /*                                                                          */
5029 /* Returns:                                                                 */
5030 /*   0 for success, positive value for failure.                             */
5031 /****************************************************************************/
5032 static int
5033 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
5034 {
5035         struct bce_softc *sc = ifp->if_softc;
5036         struct ifreq *ifr = (struct ifreq *)data;
5037         struct mii_data *mii;
5038         int mask, error = 0;
5039
5040         ASSERT_SERIALIZED(ifp->if_serializer);
5041
5042         switch(command) {
5043         case SIOCSIFMTU:
5044                 /* Check that the MTU setting is supported. */
5045                 if (ifr->ifr_mtu < BCE_MIN_MTU ||
5046 #ifdef notyet
5047                     ifr->ifr_mtu > BCE_MAX_JUMBO_MTU
5048 #else
5049                     ifr->ifr_mtu > ETHERMTU
5050 #endif
5051                    ) {
5052                         error = EINVAL;
5053                         break;
5054                 }
5055
5056                 DBPRINT(sc, BCE_INFO, "Setting new MTU of %d\n", ifr->ifr_mtu);
5057
5058                 ifp->if_mtu = ifr->ifr_mtu;
5059                 ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5060                 bce_init(sc);
5061                 break;
5062
5063         case SIOCSIFFLAGS:
5064                 if (ifp->if_flags & IFF_UP) {
5065                         if (ifp->if_flags & IFF_RUNNING) {
5066                                 mask = ifp->if_flags ^ sc->bce_if_flags;
5067
5068                                 if (mask & (IFF_PROMISC | IFF_ALLMULTI))
5069                                         bce_set_rx_mode(sc);
5070                         } else {
5071                                 bce_init(sc);
5072                         }
5073                 } else if (ifp->if_flags & IFF_RUNNING) {
5074                         bce_stop(sc);
5075
5076                         /* If MFW is running, restart the controller a bit. */
5077                         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5078                                 bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
5079                                 bce_chipinit(sc);
5080                                 bce_mgmt_init(sc);
5081                         }
5082                 }
5083                 sc->bce_if_flags = ifp->if_flags;
5084                 break;
5085
5086         case SIOCADDMULTI:
5087         case SIOCDELMULTI:
5088                 if (ifp->if_flags & IFF_RUNNING)
5089                         bce_set_rx_mode(sc);
5090                 break;
5091
5092         case SIOCSIFMEDIA:
5093         case SIOCGIFMEDIA:
5094                 DBPRINT(sc, BCE_VERBOSE, "bce_phy_flags = 0x%08X\n",
5095                         sc->bce_phy_flags);
5096                 DBPRINT(sc, BCE_VERBOSE, "Copper media set/get\n");
5097
5098                 mii = device_get_softc(sc->bce_miibus);
5099                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5100                 break;
5101
5102         case SIOCSIFCAP:
5103                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5104                 DBPRINT(sc, BCE_INFO, "Received SIOCSIFCAP = 0x%08X\n",
5105                         (uint32_t) mask);
5106
5107                 if (mask & IFCAP_HWCSUM) {
5108                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
5109                         if (IFCAP_HWCSUM & ifp->if_capenable)
5110                                 ifp->if_hwassist = BCE_IF_HWASSIST;
5111                         else
5112                                 ifp->if_hwassist = 0;
5113                 }
5114                 break;
5115
5116         default:
5117                 error = ether_ioctl(ifp, command, data);
5118                 break;
5119         }
5120         return error;
5121 }
5122
5123
5124 /****************************************************************************/
5125 /* Transmit timeout handler.                                                */
5126 /*                                                                          */
5127 /* Returns:                                                                 */
5128 /*   Nothing.                                                               */
5129 /****************************************************************************/
5130 static void
5131 bce_watchdog(struct ifnet *ifp)
5132 {
5133         struct bce_softc *sc = ifp->if_softc;
5134
5135         ASSERT_SERIALIZED(ifp->if_serializer);
5136
5137         DBRUN(BCE_VERBOSE_SEND,
5138               bce_dump_driver_state(sc);
5139               bce_dump_status_block(sc));
5140
5141         /*
5142          * If we are in this routine because of pause frames, then
5143          * don't reset the hardware.
5144          */
5145         if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 
5146                 return;
5147
5148         if_printf(ifp, "Watchdog timeout occurred, resetting!\n");
5149
5150         /* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */
5151
5152         ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5153         bce_init(sc);
5154
5155         ifp->if_oerrors++;
5156
5157         if (!ifq_is_empty(&ifp->if_snd))
5158                 if_devstart(ifp);
5159 }
5160
5161
5162 #ifdef DEVICE_POLLING
5163
5164 static void
5165 bce_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
5166 {
5167         struct bce_softc *sc = ifp->if_softc;
5168         struct status_block *sblk = sc->status_block;
5169         uint16_t hw_tx_cons, hw_rx_cons;
5170
5171         ASSERT_SERIALIZED(ifp->if_serializer);
5172
5173         switch (cmd) {
5174         case POLL_REGISTER:
5175                 bce_disable_intr(sc);
5176
5177                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5178                        (1 << 16) | sc->bce_rx_quick_cons_trip);
5179                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5180                        (1 << 16) | sc->bce_tx_quick_cons_trip);
5181                 return;
5182         case POLL_DEREGISTER:
5183                 bce_enable_intr(sc);
5184
5185                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5186                        (sc->bce_tx_quick_cons_trip_int << 16) |
5187                        sc->bce_tx_quick_cons_trip);
5188                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5189                        (sc->bce_rx_quick_cons_trip_int << 16) |
5190                        sc->bce_rx_quick_cons_trip);
5191                 return;
5192         default:
5193                 break;
5194         }
5195
5196         /*
5197          * Save the status block index value for use when enabling
5198          * the interrupt.
5199          */
5200         sc->last_status_idx = sblk->status_idx;
5201
5202         /* Make sure status index is extracted before rx/tx cons */
5203         cpu_lfence();
5204
5205         if (cmd == POLL_AND_CHECK_STATUS) {
5206                 uint32_t status_attn_bits;
5207
5208                 status_attn_bits = sblk->status_attn_bits;
5209
5210                 DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention),
5211                         if_printf(ifp,
5212                         "Simulating unexpected status attention bit set.");
5213                         status_attn_bits |= STATUS_ATTN_BITS_PARITY_ERROR);
5214
5215                 /* Was it a link change interrupt? */
5216                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5217                     (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
5218                         bce_phy_intr(sc);
5219
5220                 /* Clear any transient status updates during link state change. */
5221                 REG_WR(sc, BCE_HC_COMMAND,
5222                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5223                 REG_RD(sc, BCE_HC_COMMAND);
5224
5225                 /*
5226                  * If any other attention is asserted then
5227                  * the chip is toast.
5228                  */
5229                 if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5230                      (sblk->status_attn_bits_ack &
5231                       ~STATUS_ATTN_BITS_LINK_STATE)) {
5232                         DBRUN(1, sc->unexpected_attentions++);
5233
5234                         if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5235                                   sblk->status_attn_bits);
5236
5237                         DBRUN(BCE_FATAL,
5238                         if (bce_debug_unexpected_attention == 0)
5239                                 bce_breakpoint(sc));
5240
5241                         bce_init(sc);
5242                         return;
5243                 }
5244         }
5245
5246         hw_rx_cons = bce_get_hw_rx_cons(sc);
5247         hw_tx_cons = bce_get_hw_tx_cons(sc);
5248
5249         /* Check for any completed RX frames. */
5250         if (hw_rx_cons != sc->rx_cons)
5251                 bce_rx_intr(sc, count, hw_rx_cons);
5252
5253         /* Check for any completed TX frames. */
5254         if (hw_tx_cons != sc->tx_cons)
5255                 bce_tx_intr(sc, hw_tx_cons);
5256
5257         /* Check for new frames to transmit. */
5258         if (!ifq_is_empty(&ifp->if_snd))
5259                 if_devstart(ifp);
5260 }
5261
5262 #endif  /* DEVICE_POLLING */
5263
5264
5265 /*
5266  * Interrupt handler.
5267  */
5268 /****************************************************************************/
5269 /* Main interrupt entry point.  Verifies that the controller generated the  */
5270 /* interrupt and then calls a separate routine for handle the various       */
5271 /* interrupt causes (PHY, TX, RX).                                          */
5272 /*                                                                          */
5273 /* Returns:                                                                 */
5274 /*   0 for success, positive value for failure.                             */
5275 /****************************************************************************/
5276 static void
5277 bce_intr(struct bce_softc *sc)
5278 {
5279         struct ifnet *ifp = &sc->arpcom.ac_if;
5280         struct status_block *sblk;
5281         uint16_t hw_rx_cons, hw_tx_cons;
5282         uint32_t status_attn_bits;
5283
5284         ASSERT_SERIALIZED(ifp->if_serializer);
5285
5286         sblk = sc->status_block;
5287
5288         /*
5289          * Save the status block index value for use during
5290          * the next interrupt.
5291          */
5292         sc->last_status_idx = sblk->status_idx;
5293
5294         /* Make sure status index is extracted before rx/tx cons */
5295         cpu_lfence();
5296
5297         /* Check if the hardware has finished any work. */
5298         hw_rx_cons = bce_get_hw_rx_cons(sc);
5299         hw_tx_cons = bce_get_hw_tx_cons(sc);
5300
5301         status_attn_bits = sblk->status_attn_bits;
5302
5303         /* Was it a link change interrupt? */
5304         if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5305             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5306                 bce_phy_intr(sc);
5307
5308                 /*
5309                  * Clear any transient status updates during link state
5310                  * change.
5311                  */
5312                 REG_WR(sc, BCE_HC_COMMAND,
5313                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5314                 REG_RD(sc, BCE_HC_COMMAND);
5315         }
5316
5317         /*
5318          * If any other attention is asserted then
5319          * the chip is toast.
5320          */
5321         if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5322             (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5323                 if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5324                           sblk->status_attn_bits);
5325                 bce_init(sc);
5326                 return;
5327         }
5328
5329         /* Check for any completed RX frames. */
5330         if (hw_rx_cons != sc->rx_cons)
5331                 bce_rx_intr(sc, -1, hw_rx_cons);
5332
5333         /* Check for any completed TX frames. */
5334         if (hw_tx_cons != sc->tx_cons)
5335                 bce_tx_intr(sc, hw_tx_cons);
5336
5337         /* Re-enable interrupts. */
5338         bce_reenable_intr(sc);
5339
5340         if (sc->bce_coalchg_mask)
5341                 bce_coal_change(sc);
5342
5343         /* Handle any frames that arrived while handling the interrupt. */
5344         if (!ifq_is_empty(&ifp->if_snd))
5345                 if_devstart(ifp);
5346 }
5347
5348 static void
5349 bce_intr_legacy(void *xsc)
5350 {
5351         struct bce_softc *sc = xsc;
5352         struct status_block *sblk;
5353
5354         sblk = sc->status_block;
5355
5356         /*
5357          * If the hardware status block index matches the last value
5358          * read by the driver and we haven't asserted our interrupt
5359          * then there's nothing to do.
5360          */
5361         if (sblk->status_idx == sc->last_status_idx &&
5362             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
5363              BCE_PCICFG_MISC_STATUS_INTA_VALUE))
5364                 return;
5365
5366         /* Ack the interrupt and stop others from occuring. */
5367         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5368                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5369                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5370
5371         /*
5372          * Read back to deassert IRQ immediately to avoid too
5373          * many spurious interrupts.
5374          */
5375         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
5376
5377         bce_intr(sc);
5378 }
5379
5380 static void
5381 bce_intr_msi(void *xsc)
5382 {
5383         struct bce_softc *sc = xsc;
5384
5385         /* Ack the interrupt and stop others from occuring. */
5386         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5387                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5388                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5389
5390         bce_intr(sc);
5391 }
5392
5393 static void
5394 bce_intr_msi_oneshot(void *xsc)
5395 {
5396         bce_intr(xsc);
5397 }
5398
5399
5400 /****************************************************************************/
5401 /* Programs the various packet receive modes (broadcast and multicast).     */
5402 /*                                                                          */
5403 /* Returns:                                                                 */
5404 /*   Nothing.                                                               */
5405 /****************************************************************************/
5406 static void
5407 bce_set_rx_mode(struct bce_softc *sc)
5408 {
5409         struct ifnet *ifp = &sc->arpcom.ac_if;
5410         struct ifmultiaddr *ifma;
5411         uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5412         uint32_t rx_mode, sort_mode;
5413         int h, i;
5414
5415         ASSERT_SERIALIZED(ifp->if_serializer);
5416
5417         /* Initialize receive mode default settings. */
5418         rx_mode = sc->rx_mode &
5419                   ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
5420                     BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
5421         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
5422
5423         /*
5424          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5425          * be enbled.
5426          */
5427         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
5428             !(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
5429                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
5430
5431         /*
5432          * Check for promiscuous, all multicast, or selected
5433          * multicast address filtering.
5434          */
5435         if (ifp->if_flags & IFF_PROMISC) {
5436                 DBPRINT(sc, BCE_INFO, "Enabling promiscuous mode.\n");
5437
5438                 /* Enable promiscuous mode. */
5439                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
5440                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
5441         } else if (ifp->if_flags & IFF_ALLMULTI) {
5442                 DBPRINT(sc, BCE_INFO, "Enabling all multicast mode.\n");
5443
5444                 /* Enable all multicast addresses. */
5445                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5446                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5447                                0xffffffff);
5448                 }
5449                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
5450         } else {
5451                 /* Accept one or more multicast(s). */
5452                 DBPRINT(sc, BCE_INFO, "Enabling selective multicast mode.\n");
5453
5454                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
5455                         if (ifma->ifma_addr->sa_family != AF_LINK)
5456                                 continue;
5457                         h = ether_crc32_le(
5458                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
5459                             ETHER_ADDR_LEN) & 0xFF;
5460                         hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5461                 }
5462
5463                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5464                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5465                                hashes[i]);
5466                 }
5467                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
5468         }
5469
5470         /* Only make changes if the recive mode has actually changed. */
5471         if (rx_mode != sc->rx_mode) {
5472                 DBPRINT(sc, BCE_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5473                         rx_mode);
5474
5475                 sc->rx_mode = rx_mode;
5476                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
5477         }
5478
5479         /* Disable and clear the exisitng sort before enabling a new sort. */
5480         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
5481         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
5482         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
5483 }
5484
5485
5486 /****************************************************************************/
5487 /* Called periodically to updates statistics from the controllers           */
5488 /* statistics block.                                                        */
5489 /*                                                                          */
5490 /* Returns:                                                                 */
5491 /*   Nothing.                                                               */
5492 /****************************************************************************/
5493 static void
5494 bce_stats_update(struct bce_softc *sc)
5495 {
5496         struct ifnet *ifp = &sc->arpcom.ac_if;
5497         struct statistics_block *stats = sc->stats_block;
5498
5499         DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __func__);
5500
5501         ASSERT_SERIALIZED(ifp->if_serializer);
5502
5503         /* 
5504          * Certain controllers don't report carrier sense errors correctly.
5505          * See errata E11_5708CA0_1165.
5506          */
5507         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5508             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) {
5509                 ifp->if_oerrors +=
5510                         (u_long)stats->stat_Dot3StatsCarrierSenseErrors;
5511         }
5512
5513         /*
5514          * Update the sysctl statistics from the hardware statistics.
5515          */
5516         sc->stat_IfHCInOctets =
5517                 ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5518                  (uint64_t)stats->stat_IfHCInOctets_lo;
5519
5520         sc->stat_IfHCInBadOctets =
5521                 ((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) +
5522                  (uint64_t)stats->stat_IfHCInBadOctets_lo;
5523
5524         sc->stat_IfHCOutOctets =
5525                 ((uint64_t)stats->stat_IfHCOutOctets_hi << 32) +
5526                  (uint64_t)stats->stat_IfHCOutOctets_lo;
5527
5528         sc->stat_IfHCOutBadOctets =
5529                 ((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) +
5530                  (uint64_t)stats->stat_IfHCOutBadOctets_lo;
5531
5532         sc->stat_IfHCInUcastPkts =
5533                 ((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) +
5534                  (uint64_t)stats->stat_IfHCInUcastPkts_lo;
5535
5536         sc->stat_IfHCInMulticastPkts =
5537                 ((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) +
5538                  (uint64_t)stats->stat_IfHCInMulticastPkts_lo;
5539
5540         sc->stat_IfHCInBroadcastPkts =
5541                 ((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) +
5542                  (uint64_t)stats->stat_IfHCInBroadcastPkts_lo;
5543
5544         sc->stat_IfHCOutUcastPkts =
5545                 ((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) +
5546                  (uint64_t)stats->stat_IfHCOutUcastPkts_lo;
5547
5548         sc->stat_IfHCOutMulticastPkts =
5549                 ((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) +
5550                  (uint64_t)stats->stat_IfHCOutMulticastPkts_lo;
5551
5552         sc->stat_IfHCOutBroadcastPkts =
5553                 ((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5554                  (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo;
5555
5556         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5557                 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5558
5559         sc->stat_Dot3StatsCarrierSenseErrors =
5560                 stats->stat_Dot3StatsCarrierSenseErrors;
5561
5562         sc->stat_Dot3StatsFCSErrors =
5563                 stats->stat_Dot3StatsFCSErrors;
5564
5565         sc->stat_Dot3StatsAlignmentErrors =
5566                 stats->stat_Dot3StatsAlignmentErrors;
5567
5568         sc->stat_Dot3StatsSingleCollisionFrames =
5569                 stats->stat_Dot3StatsSingleCollisionFrames;
5570
5571         sc->stat_Dot3StatsMultipleCollisionFrames =
5572                 stats->stat_Dot3StatsMultipleCollisionFrames;
5573
5574         sc->stat_Dot3StatsDeferredTransmissions =
5575                 stats->stat_Dot3StatsDeferredTransmissions;
5576
5577         sc->stat_Dot3StatsExcessiveCollisions =
5578                 stats->stat_Dot3StatsExcessiveCollisions;
5579
5580         sc->stat_Dot3StatsLateCollisions =
5581                 stats->stat_Dot3StatsLateCollisions;
5582
5583         sc->stat_EtherStatsCollisions =
5584                 stats->stat_EtherStatsCollisions;
5585
5586         sc->stat_EtherStatsFragments =
5587                 stats->stat_EtherStatsFragments;
5588
5589         sc->stat_EtherStatsJabbers =
5590                 stats->stat_EtherStatsJabbers;
5591
5592         sc->stat_EtherStatsUndersizePkts =
5593                 stats->stat_EtherStatsUndersizePkts;
5594
5595         sc->stat_EtherStatsOverrsizePkts =
5596                 stats->stat_EtherStatsOverrsizePkts;
5597
5598         sc->stat_EtherStatsPktsRx64Octets =
5599                 stats->stat_EtherStatsPktsRx64Octets;
5600
5601         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5602                 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5603
5604         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5605                 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5606
5607         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5608                 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5609
5610         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5611                 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5612
5613         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5614                 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5615
5616         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5617                 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5618
5619         sc->stat_EtherStatsPktsTx64Octets =
5620                 stats->stat_EtherStatsPktsTx64Octets;
5621
5622         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5623                 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5624
5625         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5626                 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5627
5628         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5629                 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5630
5631         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5632                 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5633
5634         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5635                 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5636
5637         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5638                 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5639
5640         sc->stat_XonPauseFramesReceived =
5641                 stats->stat_XonPauseFramesReceived;
5642
5643         sc->stat_XoffPauseFramesReceived =
5644                 stats->stat_XoffPauseFramesReceived;
5645
5646         sc->stat_OutXonSent =
5647                 stats->stat_OutXonSent;
5648
5649         sc->stat_OutXoffSent =
5650                 stats->stat_OutXoffSent;
5651
5652         sc->stat_FlowControlDone =
5653                 stats->stat_FlowControlDone;
5654
5655         sc->stat_MacControlFramesReceived =
5656                 stats->stat_MacControlFramesReceived;
5657
5658         sc->stat_XoffStateEntered =
5659                 stats->stat_XoffStateEntered;
5660
5661         sc->stat_IfInFramesL2FilterDiscards =
5662                 stats->stat_IfInFramesL2FilterDiscards;
5663
5664         sc->stat_IfInRuleCheckerDiscards =
5665                 stats->stat_IfInRuleCheckerDiscards;
5666
5667         sc->stat_IfInFTQDiscards =
5668                 stats->stat_IfInFTQDiscards;
5669
5670         sc->stat_IfInMBUFDiscards =
5671                 stats->stat_IfInMBUFDiscards;
5672
5673         sc->stat_IfInRuleCheckerP4Hit =
5674                 stats->stat_IfInRuleCheckerP4Hit;
5675
5676         sc->stat_CatchupInRuleCheckerDiscards =
5677                 stats->stat_CatchupInRuleCheckerDiscards;
5678
5679         sc->stat_CatchupInFTQDiscards =
5680                 stats->stat_CatchupInFTQDiscards;
5681
5682         sc->stat_CatchupInMBUFDiscards =
5683                 stats->stat_CatchupInMBUFDiscards;
5684
5685         sc->stat_CatchupInRuleCheckerP4Hit =
5686                 stats->stat_CatchupInRuleCheckerP4Hit;
5687
5688         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
5689
5690         /*
5691          * Update the interface statistics from the
5692          * hardware statistics.
5693          */
5694         ifp->if_collisions = (u_long)sc->stat_EtherStatsCollisions;
5695
5696         ifp->if_ierrors = (u_long)sc->stat_EtherStatsUndersizePkts +
5697             (u_long)sc->stat_EtherStatsOverrsizePkts +
5698             (u_long)sc->stat_IfInMBUFDiscards +
5699             (u_long)sc->stat_Dot3StatsAlignmentErrors +
5700             (u_long)sc->stat_Dot3StatsFCSErrors +
5701             (u_long)sc->stat_IfInRuleCheckerDiscards +
5702             (u_long)sc->stat_IfInFTQDiscards +
5703             (u_long)sc->com_no_buffers;
5704
5705         ifp->if_oerrors =
5706             (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5707             (u_long)sc->stat_Dot3StatsExcessiveCollisions +
5708             (u_long)sc->stat_Dot3StatsLateCollisions;
5709
5710         DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __func__);
5711 }
5712
5713
5714 /****************************************************************************/
5715 /* Periodic function to notify the bootcode that the driver is still        */
5716 /* present.                                                                 */
5717 /*                                                                          */
5718 /* Returns:                                                                 */
5719 /*   Nothing.                                                               */
5720 /****************************************************************************/
5721 static void
5722 bce_pulse(void *xsc)
5723 {
5724         struct bce_softc *sc = xsc;
5725         struct ifnet *ifp = &sc->arpcom.ac_if;
5726         uint32_t msg;
5727
5728         lwkt_serialize_enter(ifp->if_serializer);
5729
5730         if (ifp->if_flags & IFF_RUNNING) {
5731                 if (sc->bce_irq_type == PCI_INTR_TYPE_MSI &&
5732                     (sc->bce_flags & BCE_ONESHOT_MSI_FLAG) == 0)
5733                         bce_pulse_check_msi(sc);
5734         }
5735
5736         /* Tell the firmware that the driver is still running. */
5737         msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq;
5738         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
5739
5740         /* Update the bootcode condition. */
5741         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
5742
5743         /* Report whether the bootcode still knows the driver is running. */
5744         if (!sc->bce_drv_cardiac_arrest) {
5745                 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
5746                         sc->bce_drv_cardiac_arrest = 1;
5747                         if_printf(ifp, "Bootcode lost the driver pulse! "
5748                             "(bc_state = 0x%08X)\n", sc->bc_state);
5749                 }
5750         } else {
5751                 /*
5752                  * Not supported by all bootcode versions.
5753                  * (v5.0.11+ and v5.2.1+)  Older bootcode
5754                  * will require the driver to reset the
5755                  * controller to clear this condition.
5756                  */
5757                 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
5758                         sc->bce_drv_cardiac_arrest = 0;
5759                         if_printf(ifp, "Bootcode found the driver pulse! "
5760                             "(bc_state = 0x%08X)\n", sc->bc_state);
5761                 }
5762         }
5763
5764         /* Schedule the next pulse. */
5765         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
5766
5767         lwkt_serialize_exit(ifp->if_serializer);
5768 }
5769
5770 static void
5771 bce_pulse_check_msi(struct bce_softc *sc)
5772 {
5773         int check = 0;
5774
5775         if (bce_get_hw_rx_cons(sc) != sc->rx_cons) {
5776                 check = 1;
5777         } else if (bce_get_hw_tx_cons(sc) != sc->tx_cons) {
5778                 check = 1;
5779         } else {
5780                 struct status_block *sblk = sc->status_block;
5781
5782                 if ((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5783                     (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
5784                         check = 1;
5785         }
5786
5787         if (check) {
5788                 uint32_t msi_ctrl;
5789
5790                 msi_ctrl = REG_RD(sc, BCE_PCICFG_MSI_CONTROL);
5791                 if ((msi_ctrl & BCE_PCICFG_MSI_CONTROL_ENABLE) == 0)
5792                         return;
5793
5794                 if (sc->pulse_check_status_idx == sc->last_status_idx) {
5795                         if_printf(&sc->arpcom.ac_if, "missing MSI\n");
5796
5797                         REG_WR(sc, BCE_PCICFG_MSI_CONTROL,
5798                             msi_ctrl & ~BCE_PCICFG_MSI_CONTROL_ENABLE);
5799                         REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl);
5800
5801                         bce_intr_msi(sc);
5802                 }
5803         }
5804         sc->pulse_check_status_idx = sc->last_status_idx;
5805 }
5806
5807 /****************************************************************************/
5808 /* Periodic function to perform maintenance tasks.                          */
5809 /*                                                                          */
5810 /* Returns:                                                                 */
5811 /*   Nothing.                                                               */
5812 /****************************************************************************/
5813 static void
5814 bce_tick_serialized(struct bce_softc *sc)
5815 {
5816         struct ifnet *ifp = &sc->arpcom.ac_if;
5817         struct mii_data *mii;
5818
5819         ASSERT_SERIALIZED(ifp->if_serializer);
5820
5821         /* Update the statistics from the hardware statistics block. */
5822         bce_stats_update(sc);
5823
5824         /* Schedule the next tick. */
5825         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
5826
5827         /* If link is up already up then we're done. */
5828         if (sc->bce_link)
5829                 return;
5830
5831         mii = device_get_softc(sc->bce_miibus);
5832         mii_tick(mii);
5833
5834         /* Check if the link has come up. */
5835         if ((mii->mii_media_status & IFM_ACTIVE) &&
5836             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5837                 sc->bce_link++;
5838                 /* Now that link is up, handle any outstanding TX traffic. */
5839                 if (!ifq_is_empty(&ifp->if_snd))
5840                         if_devstart(ifp);
5841         }
5842 }
5843
5844
5845 static void
5846 bce_tick(void *xsc)
5847 {
5848         struct bce_softc *sc = xsc;
5849         struct ifnet *ifp = &sc->arpcom.ac_if;
5850
5851         lwkt_serialize_enter(ifp->if_serializer);
5852         bce_tick_serialized(sc);
5853         lwkt_serialize_exit(ifp->if_serializer);
5854 }
5855
5856
5857 #ifdef BCE_DEBUG
5858 /****************************************************************************/
5859 /* Allows the driver state to be dumped through the sysctl interface.       */
5860 /*                                                                          */
5861 /* Returns:                                                                 */
5862 /*   0 for success, positive value for failure.                             */
5863 /****************************************************************************/
5864 static int
5865 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
5866 {
5867         int error;
5868         int result;
5869         struct bce_softc *sc;
5870
5871         result = -1;
5872         error = sysctl_handle_int(oidp, &result, 0, req);
5873
5874         if (error || !req->newptr)
5875                 return (error);
5876
5877         if (result == 1) {
5878                 sc = (struct bce_softc *)arg1;
5879                 bce_dump_driver_state(sc);
5880         }
5881
5882         return error;
5883 }
5884
5885
5886 /****************************************************************************/
5887 /* Allows the hardware state to be dumped through the sysctl interface.     */
5888 /*                                                                          */
5889 /* Returns:                                                                 */
5890 /*   0 for success, positive value for failure.                             */
5891 /****************************************************************************/
5892 static int
5893 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
5894 {
5895         int error;
5896         int result;
5897         struct bce_softc *sc;
5898
5899         result = -1;
5900         error = sysctl_handle_int(oidp, &result, 0, req);
5901
5902         if (error || !req->newptr)
5903                 return (error);
5904
5905         if (result == 1) {
5906                 sc = (struct bce_softc *)arg1;
5907                 bce_dump_hw_state(sc);
5908         }
5909
5910         return error;
5911 }
5912
5913
5914 /****************************************************************************/
5915 /* Provides a sysctl interface to allows dumping the RX chain.              */
5916 /*                                                                          */
5917 /* Returns:                                                                 */
5918 /*   0 for success, positive value for failure.                             */
5919 /****************************************************************************/
5920 static int
5921 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
5922 {
5923         int error;
5924         int result;
5925         struct bce_softc *sc;
5926
5927         result = -1;
5928         error = sysctl_handle_int(oidp, &result, 0, req);
5929
5930         if (error || !req->newptr)
5931                 return (error);
5932
5933         if (result == 1) {
5934                 sc = (struct bce_softc *)arg1;
5935                 bce_dump_rx_chain(sc, 0, USABLE_RX_BD(sc));
5936         }
5937
5938         return error;
5939 }
5940
5941
5942 /****************************************************************************/
5943 /* Provides a sysctl interface to allows dumping the TX chain.              */
5944 /*                                                                          */
5945 /* Returns:                                                                 */
5946 /*   0 for success, positive value for failure.                             */
5947 /****************************************************************************/
5948 static int
5949 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
5950 {
5951         int error;
5952         int result;
5953         struct bce_softc *sc;
5954
5955         result = -1;
5956         error = sysctl_handle_int(oidp, &result, 0, req);
5957
5958         if (error || !req->newptr)
5959                 return (error);
5960
5961         if (result == 1) {
5962                 sc = (struct bce_softc *)arg1;
5963                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD(sc));
5964         }
5965
5966         return error;
5967 }
5968
5969
5970 /****************************************************************************/
5971 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
5972 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
5973 /*                                                                          */
5974 /* Returns:                                                                 */
5975 /*   0 for success, positive value for failure.                             */
5976 /****************************************************************************/
5977 static int
5978 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5979 {
5980         struct bce_softc *sc;
5981         int error;
5982         uint32_t val, result;
5983
5984         result = -1;
5985         error = sysctl_handle_int(oidp, &result, 0, req);
5986         if (error || (req->newptr == NULL))
5987                 return (error);
5988
5989         /* Make sure the register is accessible. */
5990         if (result < 0x8000) {
5991                 sc = (struct bce_softc *)arg1;
5992                 val = REG_RD(sc, result);
5993                 if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
5994                           result, val);
5995         } else if (result < 0x0280000) {
5996                 sc = (struct bce_softc *)arg1;
5997                 val = REG_RD_IND(sc, result);
5998                 if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
5999                           result, val);
6000         }
6001         return (error);
6002 }
6003
6004
6005 /****************************************************************************/
6006 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
6007 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
6008 /*                                                                          */
6009 /* Returns:                                                                 */
6010 /*   0 for success, positive value for failure.                             */
6011 /****************************************************************************/
6012 static int
6013 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
6014 {
6015         struct bce_softc *sc;
6016         device_t dev;
6017         int error, result;
6018         uint16_t val;
6019
6020         result = -1;
6021         error = sysctl_handle_int(oidp, &result, 0, req);
6022         if (error || (req->newptr == NULL))
6023                 return (error);
6024
6025         /* Make sure the register is accessible. */
6026         if (result < 0x20) {
6027                 sc = (struct bce_softc *)arg1;
6028                 dev = sc->bce_dev;
6029                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
6030                 if_printf(&sc->arpcom.ac_if,
6031                           "phy 0x%02X = 0x%04X\n", result, val);
6032         }
6033         return (error);
6034 }
6035
6036
6037 /****************************************************************************/
6038 /* Provides a sysctl interface to forcing the driver to dump state and      */
6039 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
6040 /*                                                                          */
6041 /* Returns:                                                                 */
6042 /*   0 for success, positive value for failure.                             */
6043 /****************************************************************************/
6044 static int
6045 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
6046 {
6047         int error;
6048         int result;
6049         struct bce_softc *sc;
6050
6051         result = -1;
6052         error = sysctl_handle_int(oidp, &result, 0, req);
6053
6054         if (error || !req->newptr)
6055                 return (error);
6056
6057         if (result == 1) {
6058                 sc = (struct bce_softc *)arg1;
6059                 bce_breakpoint(sc);
6060         }
6061
6062         return error;
6063 }
6064 #endif
6065
6066
6067 /****************************************************************************/
6068 /* Adds any sysctl parameters for tuning or debugging purposes.             */
6069 /*                                                                          */
6070 /* Returns:                                                                 */
6071 /*   0 for success, positive value for failure.                             */
6072 /****************************************************************************/
6073 static void
6074 bce_add_sysctls(struct bce_softc *sc)
6075 {
6076         struct sysctl_ctx_list *ctx;
6077         struct sysctl_oid_list *children;
6078
6079         sysctl_ctx_init(&sc->bce_sysctl_ctx);
6080         sc->bce_sysctl_tree = SYSCTL_ADD_NODE(&sc->bce_sysctl_ctx,
6081                                               SYSCTL_STATIC_CHILDREN(_hw),
6082                                               OID_AUTO,
6083                                               device_get_nameunit(sc->bce_dev),
6084                                               CTLFLAG_RD, 0, "");
6085         if (sc->bce_sysctl_tree == NULL) {
6086                 device_printf(sc->bce_dev, "can't add sysctl node\n");
6087                 return;
6088         }
6089
6090         ctx = &sc->bce_sysctl_ctx;
6091         children = SYSCTL_CHILDREN(sc->bce_sysctl_tree);
6092
6093         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int",
6094                         CTLTYPE_INT | CTLFLAG_RW,
6095                         sc, 0, bce_sysctl_tx_bds_int, "I",
6096                         "Send max coalesced BD count during interrupt");
6097         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds",
6098                         CTLTYPE_INT | CTLFLAG_RW,
6099                         sc, 0, bce_sysctl_tx_bds, "I",
6100                         "Send max coalesced BD count");
6101         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int",
6102                         CTLTYPE_INT | CTLFLAG_RW,
6103                         sc, 0, bce_sysctl_tx_ticks_int, "I",
6104                         "Send coalescing ticks during interrupt");
6105         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks",
6106                         CTLTYPE_INT | CTLFLAG_RW,
6107                         sc, 0, bce_sysctl_tx_ticks, "I",
6108                         "Send coalescing ticks");
6109
6110         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int",
6111                         CTLTYPE_INT | CTLFLAG_RW,
6112                         sc, 0, bce_sysctl_rx_bds_int, "I",
6113                         "Receive max coalesced BD count during interrupt");
6114         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds",
6115                         CTLTYPE_INT | CTLFLAG_RW,
6116                         sc, 0, bce_sysctl_rx_bds, "I",
6117                         "Receive max coalesced BD count");
6118         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int",
6119                         CTLTYPE_INT | CTLFLAG_RW,
6120                         sc, 0, bce_sysctl_rx_ticks_int, "I",
6121                         "Receive coalescing ticks during interrupt");
6122         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks",
6123                         CTLTYPE_INT | CTLFLAG_RW,
6124                         sc, 0, bce_sysctl_rx_ticks, "I",
6125                         "Receive coalescing ticks");
6126
6127         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_pages",
6128                 CTLFLAG_RD, &sc->rx_pages, 0, "# of RX pages");
6129         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_pages",
6130                 CTLFLAG_RD, &sc->tx_pages, 0, "# of TX pages");
6131
6132 #ifdef BCE_DEBUG
6133         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6134                 "rx_low_watermark",
6135                 CTLFLAG_RD, &sc->rx_low_watermark,
6136                 0, "Lowest level of free rx_bd's");
6137
6138         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6139                 "rx_empty_count",
6140                 CTLFLAG_RD, &sc->rx_empty_count,
6141                 0, "Number of times the RX chain was empty");
6142
6143         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6144                 "tx_hi_watermark",
6145                 CTLFLAG_RD, &sc->tx_hi_watermark,
6146                 0, "Highest level of used tx_bd's");
6147
6148         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6149                 "tx_full_count",
6150                 CTLFLAG_RD, &sc->tx_full_count,
6151                 0, "Number of times the TX chain was full");
6152
6153         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6154                 "l2fhdr_status_errors",
6155                 CTLFLAG_RD, &sc->l2fhdr_status_errors,
6156                 0, "l2_fhdr status errors");
6157
6158         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6159                 "unexpected_attentions",
6160                 CTLFLAG_RD, &sc->unexpected_attentions,
6161                 0, "unexpected attentions");
6162
6163         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6164                 "lost_status_block_updates",
6165                 CTLFLAG_RD, &sc->lost_status_block_updates,
6166                 0, "lost status block updates");
6167
6168         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6169                 "mbuf_alloc_failed",
6170                 CTLFLAG_RD, &sc->mbuf_alloc_failed,
6171                 0, "mbuf cluster allocation failures");
6172 #endif
6173
6174         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6175                 "stat_IfHCInOctets",
6176                 CTLFLAG_RD, &sc->stat_IfHCInOctets,
6177                 "Bytes received");
6178
6179         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6180                 "stat_IfHCInBadOctets",
6181                 CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
6182                 "Bad bytes received");
6183
6184         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6185                 "stat_IfHCOutOctets",
6186                 CTLFLAG_RD, &sc->stat_IfHCOutOctets,
6187                 "Bytes sent");
6188
6189         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6190                 "stat_IfHCOutBadOctets",
6191                 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
6192                 "Bad bytes sent");
6193
6194         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6195                 "stat_IfHCInUcastPkts",
6196                 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
6197                 "Unicast packets received");
6198
6199         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6200                 "stat_IfHCInMulticastPkts",
6201                 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
6202                 "Multicast packets received");
6203
6204         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6205                 "stat_IfHCInBroadcastPkts",
6206                 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
6207                 "Broadcast packets received");
6208
6209         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6210                 "stat_IfHCOutUcastPkts",
6211                 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
6212                 "Unicast packets sent");
6213
6214         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6215                 "stat_IfHCOutMulticastPkts",
6216                 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
6217                 "Multicast packets sent");
6218
6219         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6220                 "stat_IfHCOutBroadcastPkts",
6221                 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
6222                 "Broadcast packets sent");
6223
6224         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6225                 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
6226                 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
6227                 0, "Internal MAC transmit errors");
6228
6229         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6230                 "stat_Dot3StatsCarrierSenseErrors",
6231                 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
6232                 0, "Carrier sense errors");
6233
6234         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6235                 "stat_Dot3StatsFCSErrors",
6236                 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
6237                 0, "Frame check sequence errors");
6238
6239         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6240                 "stat_Dot3StatsAlignmentErrors",
6241                 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
6242                 0, "Alignment errors");
6243
6244         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6245                 "stat_Dot3StatsSingleCollisionFrames",
6246                 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
6247                 0, "Single Collision Frames");
6248
6249         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6250                 "stat_Dot3StatsMultipleCollisionFrames",
6251                 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
6252                 0, "Multiple Collision Frames");
6253
6254         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6255                 "stat_Dot3StatsDeferredTransmissions",
6256                 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
6257                 0, "Deferred Transmissions");
6258
6259         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6260                 "stat_Dot3StatsExcessiveCollisions",
6261                 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
6262                 0, "Excessive Collisions");
6263
6264         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6265                 "stat_Dot3StatsLateCollisions",
6266                 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
6267                 0, "Late Collisions");
6268
6269         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6270                 "stat_EtherStatsCollisions",
6271                 CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
6272                 0, "Collisions");
6273
6274         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6275                 "stat_EtherStatsFragments",
6276                 CTLFLAG_RD, &sc->stat_EtherStatsFragments,
6277                 0, "Fragments");
6278
6279         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6280                 "stat_EtherStatsJabbers",
6281                 CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
6282                 0, "Jabbers");
6283
6284         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6285                 "stat_EtherStatsUndersizePkts",
6286                 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
6287                 0, "Undersize packets");
6288
6289         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6290                 "stat_EtherStatsOverrsizePkts",
6291                 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
6292                 0, "stat_EtherStatsOverrsizePkts");
6293
6294         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6295                 "stat_EtherStatsPktsRx64Octets",
6296                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
6297                 0, "Bytes received in 64 byte packets");
6298
6299         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6300                 "stat_EtherStatsPktsRx65Octetsto127Octets",
6301                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
6302                 0, "Bytes received in 65 to 127 byte packets");
6303
6304         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6305                 "stat_EtherStatsPktsRx128Octetsto255Octets",
6306                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
6307                 0, "Bytes received in 128 to 255 byte packets");
6308
6309         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6310                 "stat_EtherStatsPktsRx256Octetsto511Octets",
6311                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
6312                 0, "Bytes received in 256 to 511 byte packets");
6313
6314         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6315                 "stat_EtherStatsPktsRx512Octetsto1023Octets",
6316                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
6317                 0, "Bytes received in 512 to 1023 byte packets");
6318
6319         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6320                 "stat_EtherStatsPktsRx1024Octetsto1522Octets",
6321                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
6322                 0, "Bytes received in 1024 t0 1522 byte packets");
6323
6324         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6325                 "stat_EtherStatsPktsRx1523Octetsto9022Octets",
6326                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
6327                 0, "Bytes received in 1523 to 9022 byte packets");
6328
6329         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6330                 "stat_EtherStatsPktsTx64Octets",
6331                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
6332                 0, "Bytes sent in 64 byte packets");
6333
6334         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6335                 "stat_EtherStatsPktsTx65Octetsto127Octets",
6336                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
6337                 0, "Bytes sent in 65 to 127 byte packets");
6338
6339         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6340                 "stat_EtherStatsPktsTx128Octetsto255Octets",
6341                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
6342                 0, "Bytes sent in 128 to 255 byte packets");
6343
6344         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6345                 "stat_EtherStatsPktsTx256Octetsto511Octets",
6346                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
6347                 0, "Bytes sent in 256 to 511 byte packets");
6348
6349         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6350                 "stat_EtherStatsPktsTx512Octetsto1023Octets",
6351                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
6352                 0, "Bytes sent in 512 to 1023 byte packets");
6353
6354         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6355                 "stat_EtherStatsPktsTx1024Octetsto1522Octets",
6356                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
6357                 0, "Bytes sent in 1024 to 1522 byte packets");
6358
6359         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6360                 "stat_EtherStatsPktsTx1523Octetsto9022Octets",
6361                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
6362                 0, "Bytes sent in 1523 to 9022 byte packets");
6363
6364         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6365                 "stat_XonPauseFramesReceived",
6366                 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
6367                 0, "XON pause frames receved");
6368
6369         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6370                 "stat_XoffPauseFramesReceived",
6371                 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
6372                 0, "XOFF pause frames received");
6373
6374         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6375                 "stat_OutXonSent",
6376                 CTLFLAG_RD, &sc->stat_OutXonSent,
6377                 0, "XON pause frames sent");
6378
6379         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6380                 "stat_OutXoffSent",
6381                 CTLFLAG_RD, &sc->stat_OutXoffSent,
6382                 0, "XOFF pause frames sent");
6383
6384         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6385                 "stat_FlowControlDone",
6386                 CTLFLAG_RD, &sc->stat_FlowControlDone,
6387                 0, "Flow control done");
6388
6389         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6390                 "stat_MacControlFramesReceived",
6391                 CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
6392                 0, "MAC control frames received");
6393
6394         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6395                 "stat_XoffStateEntered",
6396                 CTLFLAG_RD, &sc->stat_XoffStateEntered,
6397                 0, "XOFF state entered");
6398
6399         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6400                 "stat_IfInFramesL2FilterDiscards",
6401                 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
6402                 0, "Received L2 packets discarded");
6403
6404         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6405                 "stat_IfInRuleCheckerDiscards",
6406                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
6407                 0, "Received packets discarded by rule");
6408
6409         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6410                 "stat_IfInFTQDiscards",
6411                 CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
6412                 0, "Received packet FTQ discards");
6413
6414         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6415                 "stat_IfInMBUFDiscards",
6416                 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
6417                 0, "Received packets discarded due to lack of controller buffer memory");
6418
6419         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6420                 "stat_IfInRuleCheckerP4Hit",
6421                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
6422                 0, "Received packets rule checker hits");
6423
6424         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6425                 "stat_CatchupInRuleCheckerDiscards",
6426                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
6427                 0, "Received packets discarded in Catchup path");
6428
6429         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6430                 "stat_CatchupInFTQDiscards",
6431                 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
6432                 0, "Received packets discarded in FTQ in Catchup path");
6433
6434         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6435                 "stat_CatchupInMBUFDiscards",
6436                 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
6437                 0, "Received packets discarded in controller buffer memory in Catchup path");
6438
6439         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6440                 "stat_CatchupInRuleCheckerP4Hit",
6441                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
6442                 0, "Received packets rule checker hits in Catchup path");
6443
6444         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6445                 "com_no_buffers",
6446                 CTLFLAG_RD, &sc->com_no_buffers,
6447                 0, "Valid packets received but no RX buffers available");
6448
6449 #ifdef BCE_DEBUG
6450         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6451                 "driver_state", CTLTYPE_INT | CTLFLAG_RW,
6452                 (void *)sc, 0,
6453                 bce_sysctl_driver_state, "I", "Drive state information");
6454
6455         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6456                 "hw_state", CTLTYPE_INT | CTLFLAG_RW,
6457                 (void *)sc, 0,
6458                 bce_sysctl_hw_state, "I", "Hardware state information");
6459
6460         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6461                 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
6462                 (void *)sc, 0,
6463                 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
6464
6465         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6466                 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
6467                 (void *)sc, 0,
6468                 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
6469
6470         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6471                 "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
6472                 (void *)sc, 0,
6473                 bce_sysctl_breakpoint, "I", "Driver breakpoint");
6474
6475         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6476                 "reg_read", CTLTYPE_INT | CTLFLAG_RW,
6477                 (void *)sc, 0,
6478                 bce_sysctl_reg_read, "I", "Register read");
6479
6480         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6481                 "phy_read", CTLTYPE_INT | CTLFLAG_RW,
6482                 (void *)sc, 0,
6483                 bce_sysctl_phy_read, "I", "PHY register read");
6484
6485 #endif
6486
6487 }
6488
6489
6490 /****************************************************************************/
6491 /* BCE Debug Routines                                                       */
6492 /****************************************************************************/
6493 #ifdef BCE_DEBUG
6494
6495 /****************************************************************************/
6496 /* Freezes the controller to allow for a cohesive state dump.               */
6497 /*                                                                          */
6498 /* Returns:                                                                 */
6499 /*   Nothing.                                                               */
6500 /****************************************************************************/
6501 static void
6502 bce_freeze_controller(struct bce_softc *sc)
6503 {
6504         uint32_t val;
6505
6506         val = REG_RD(sc, BCE_MISC_COMMAND);
6507         val |= BCE_MISC_COMMAND_DISABLE_ALL;
6508         REG_WR(sc, BCE_MISC_COMMAND, val);
6509 }
6510
6511
6512 /****************************************************************************/
6513 /* Unfreezes the controller after a freeze operation.  This may not always  */
6514 /* work and the controller will require a reset!                            */
6515 /*                                                                          */
6516 /* Returns:                                                                 */
6517 /*   Nothing.                                                               */
6518 /****************************************************************************/
6519 static void
6520 bce_unfreeze_controller(struct bce_softc *sc)
6521 {
6522         uint32_t val;
6523
6524         val = REG_RD(sc, BCE_MISC_COMMAND);
6525         val |= BCE_MISC_COMMAND_ENABLE_ALL;
6526         REG_WR(sc, BCE_MISC_COMMAND, val);
6527 }
6528
6529
6530 /****************************************************************************/
6531 /* Prints out information about an mbuf.                                    */
6532 /*                                                                          */
6533 /* Returns:                                                                 */
6534 /*   Nothing.                                                               */
6535 /****************************************************************************/
6536 static void
6537 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
6538 {
6539         struct ifnet *ifp = &sc->arpcom.ac_if;
6540         uint32_t val_hi, val_lo;
6541         struct mbuf *mp = m;
6542
6543         if (m == NULL) {
6544                 /* Index out of range. */
6545                 if_printf(ifp, "mbuf: null pointer\n");
6546                 return;
6547         }
6548
6549         while (mp) {
6550                 val_hi = BCE_ADDR_HI(mp);
6551                 val_lo = BCE_ADDR_LO(mp);
6552                 if_printf(ifp, "mbuf: vaddr = 0x%08X:%08X, m_len = %d, "
6553                           "m_flags = ( ", val_hi, val_lo, mp->m_len);
6554
6555                 if (mp->m_flags & M_EXT)
6556                         kprintf("M_EXT ");
6557                 if (mp->m_flags & M_PKTHDR)
6558                         kprintf("M_PKTHDR ");
6559                 if (mp->m_flags & M_EOR)
6560                         kprintf("M_EOR ");
6561 #ifdef M_RDONLY
6562                 if (mp->m_flags & M_RDONLY)
6563                         kprintf("M_RDONLY ");
6564 #endif
6565
6566                 val_hi = BCE_ADDR_HI(mp->m_data);
6567                 val_lo = BCE_ADDR_LO(mp->m_data);
6568                 kprintf(") m_data = 0x%08X:%08X\n", val_hi, val_lo);
6569
6570                 if (mp->m_flags & M_PKTHDR) {
6571                         if_printf(ifp, "- m_pkthdr: flags = ( ");
6572                         if (mp->m_flags & M_BCAST) 
6573                                 kprintf("M_BCAST ");
6574                         if (mp->m_flags & M_MCAST)
6575                                 kprintf("M_MCAST ");
6576                         if (mp->m_flags & M_FRAG)
6577                                 kprintf("M_FRAG ");
6578                         if (mp->m_flags & M_FIRSTFRAG)
6579                                 kprintf("M_FIRSTFRAG ");
6580                         if (mp->m_flags & M_LASTFRAG)
6581                                 kprintf("M_LASTFRAG ");
6582 #ifdef M_VLANTAG
6583                         if (mp->m_flags & M_VLANTAG)
6584                                 kprintf("M_VLANTAG ");
6585 #endif
6586 #ifdef M_PROMISC
6587                         if (mp->m_flags & M_PROMISC)
6588                                 kprintf("M_PROMISC ");
6589 #endif
6590                         kprintf(") csum_flags = ( ");
6591                         if (mp->m_pkthdr.csum_flags & CSUM_IP)
6592                                 kprintf("CSUM_IP ");
6593                         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
6594                                 kprintf("CSUM_TCP ");
6595                         if (mp->m_pkthdr.csum_flags & CSUM_UDP)
6596                                 kprintf("CSUM_UDP ");
6597                         if (mp->m_pkthdr.csum_flags & CSUM_IP_FRAGS)
6598                                 kprintf("CSUM_IP_FRAGS ");
6599                         if (mp->m_pkthdr.csum_flags & CSUM_FRAGMENT)
6600                                 kprintf("CSUM_FRAGMENT ");
6601 #ifdef CSUM_TSO
6602                         if (mp->m_pkthdr.csum_flags & CSUM_TSO)
6603                                 kprintf("CSUM_TSO ");
6604 #endif
6605                         if (mp->m_pkthdr.csum_flags & CSUM_IP_CHECKED)
6606                                 kprintf("CSUM_IP_CHECKED ");
6607                         if (mp->m_pkthdr.csum_flags & CSUM_IP_VALID)
6608                                 kprintf("CSUM_IP_VALID ");
6609                         if (mp->m_pkthdr.csum_flags & CSUM_DATA_VALID)
6610                                 kprintf("CSUM_DATA_VALID ");
6611                         kprintf(")\n");
6612                 }
6613
6614                 if (mp->m_flags & M_EXT) {
6615                         val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf);
6616                         val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf);
6617                         if_printf(ifp, "- m_ext: vaddr = 0x%08X:%08X, "
6618                                   "ext_size = %d\n",
6619                                   val_hi, val_lo, mp->m_ext.ext_size);
6620                 }
6621                 mp = mp->m_next;
6622         }
6623 }
6624
6625
6626 /****************************************************************************/
6627 /* Prints out the mbufs in the TX mbuf chain.                               */
6628 /*                                                                          */
6629 /* Returns:                                                                 */
6630 /*   Nothing.                                                               */
6631 /****************************************************************************/
6632 static void
6633 bce_dump_tx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
6634 {
6635         struct ifnet *ifp = &sc->arpcom.ac_if;
6636         int i;
6637
6638         if_printf(ifp,
6639         "----------------------------"
6640         "  tx mbuf data  "
6641         "----------------------------\n");
6642
6643         for (i = 0; i < count; i++) {
6644                 if_printf(ifp, "txmbuf[%d]\n", chain_prod);
6645                 bce_dump_mbuf(sc, sc->tx_mbuf_ptr[chain_prod]);
6646                 chain_prod = TX_CHAIN_IDX(sc, NEXT_TX_BD(chain_prod));
6647         }
6648
6649         if_printf(ifp,
6650         "----------------------------"
6651         "----------------"
6652         "----------------------------\n");
6653 }
6654
6655
6656 /****************************************************************************/
6657 /* Prints out the mbufs in the RX mbuf chain.                               */
6658 /*                                                                          */
6659 /* Returns:                                                                 */
6660 /*   Nothing.                                                               */
6661 /****************************************************************************/
6662 static void
6663 bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
6664 {
6665         struct ifnet *ifp = &sc->arpcom.ac_if;
6666         int i;
6667
6668         if_printf(ifp,
6669         "----------------------------"
6670         "  rx mbuf data  "
6671         "----------------------------\n");
6672
6673         for (i = 0; i < count; i++) {
6674                 if_printf(ifp, "rxmbuf[0x%04X]\n", chain_prod);
6675                 bce_dump_mbuf(sc, sc->rx_mbuf_ptr[chain_prod]);
6676                 chain_prod = RX_CHAIN_IDX(sc, NEXT_RX_BD(chain_prod));
6677         }
6678
6679         if_printf(ifp,
6680         "----------------------------"
6681         "----------------"
6682         "----------------------------\n");
6683 }
6684
6685
6686 /****************************************************************************/
6687 /* Prints out a tx_bd structure.                                            */
6688 /*                                                                          */
6689 /* Returns:                                                                 */
6690 /*   Nothing.                                                               */
6691 /****************************************************************************/
6692 static void
6693 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
6694 {
6695         struct ifnet *ifp = &sc->arpcom.ac_if;
6696
6697         if (idx > MAX_TX_BD(sc)) {
6698                 /* Index out of range. */
6699                 if_printf(ifp, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6700         } else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) {
6701                 /* TX Chain page pointer. */
6702                 if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6703                           "chain page pointer\n",
6704                           idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
6705         } else {
6706                 /* Normal tx_bd entry. */
6707                 if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6708                           "nbytes = 0x%08X, "
6709                           "vlan tag= 0x%04X, flags = 0x%04X (",
6710                           idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6711                           txbd->tx_bd_mss_nbytes,
6712                           txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
6713
6714                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT)
6715                         kprintf(" CONN_FAULT");
6716
6717                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM)
6718                         kprintf(" TCP_UDP_CKSUM");
6719
6720                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM)
6721                         kprintf(" IP_CKSUM");
6722
6723                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG)
6724                         kprintf("  VLAN");
6725
6726                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW)
6727                         kprintf(" COAL_NOW");
6728
6729                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC)
6730                         kprintf(" DONT_GEN_CRC");
6731
6732                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START)
6733                         kprintf(" START");
6734
6735                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END)
6736                         kprintf(" END");
6737
6738                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO)
6739                         kprintf(" LSO");
6740
6741                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD)
6742                         kprintf(" OPTION_WORD");
6743
6744                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS)
6745                         kprintf(" FLAGS");
6746
6747                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP)
6748                         kprintf(" SNAP");
6749
6750                 kprintf(" )\n");
6751         }
6752 }
6753
6754
6755 /****************************************************************************/
6756 /* Prints out a rx_bd structure.                                            */
6757 /*                                                                          */
6758 /* Returns:                                                                 */
6759 /*   Nothing.                                                               */
6760 /****************************************************************************/
6761 static void
6762 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
6763 {
6764         struct ifnet *ifp = &sc->arpcom.ac_if;
6765
6766         if (idx > MAX_RX_BD(sc)) {
6767                 /* Index out of range. */
6768                 if_printf(ifp, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6769         } else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) {
6770                 /* TX Chain page pointer. */
6771                 if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6772                           "chain page pointer\n",
6773                           idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
6774         } else {
6775                 /* Normal tx_bd entry. */
6776                 if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6777                           "nbytes = 0x%08X, flags = 0x%08X\n",
6778                           idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6779                           rxbd->rx_bd_len, rxbd->rx_bd_flags);
6780         }
6781 }
6782
6783
6784 /****************************************************************************/
6785 /* Prints out a l2_fhdr structure.                                          */
6786 /*                                                                          */
6787 /* Returns:                                                                 */
6788 /*   Nothing.                                                               */
6789 /****************************************************************************/
6790 static void
6791 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6792 {
6793         if_printf(&sc->arpcom.ac_if, "l2_fhdr[0x%04X]: status = 0x%08X, "
6794                   "pkt_len = 0x%04X, vlan = 0x%04x, "
6795                   "ip_xsum = 0x%04X, tcp_udp_xsum = 0x%04X\n",
6796                   idx, l2fhdr->l2_fhdr_status,
6797                   l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
6798                   l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
6799 }
6800
6801
6802 /****************************************************************************/
6803 /* Prints out the tx chain.                                                 */
6804 /*                                                                          */
6805 /* Returns:                                                                 */
6806 /*   Nothing.                                                               */
6807 /****************************************************************************/
6808 static void
6809 bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count)
6810 {
6811         struct ifnet *ifp = &sc->arpcom.ac_if;
6812         int i;
6813
6814         /* First some info about the tx_bd chain structure. */
6815         if_printf(ifp,
6816         "----------------------------"
6817         "  tx_bd  chain  "
6818         "----------------------------\n");
6819
6820         if_printf(ifp, "page size      = 0x%08X, "
6821                   "tx chain pages        = 0x%08X\n",
6822                   (uint32_t)BCM_PAGE_SIZE, (uint32_t)sc->tx_pages);
6823
6824         if_printf(ifp, "tx_bd per page = 0x%08X, "
6825                   "usable tx_bd per page = 0x%08X\n",
6826                   (uint32_t)TOTAL_TX_BD_PER_PAGE,
6827                   (uint32_t)USABLE_TX_BD_PER_PAGE);
6828
6829         if_printf(ifp, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD(sc));
6830
6831         if_printf(ifp,
6832         "----------------------------"
6833         "  tx_bd data    "
6834         "----------------------------\n");
6835
6836         /* Now print out the tx_bd's themselves. */
6837         for (i = 0; i < count; i++) {
6838                 struct tx_bd *txbd;
6839
6840                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6841                 bce_dump_txbd(sc, tx_prod, txbd);
6842                 tx_prod = TX_CHAIN_IDX(sc, NEXT_TX_BD(tx_prod));
6843         }
6844
6845         if_printf(ifp,
6846         "----------------------------"
6847         "----------------"
6848         "----------------------------\n");
6849 }
6850
6851
6852 /****************************************************************************/
6853 /* Prints out the rx chain.                                                 */
6854 /*                                                                          */
6855 /* Returns:                                                                 */
6856 /*   Nothing.                                                               */
6857 /****************************************************************************/
6858 static void
6859 bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count)
6860 {
6861         struct ifnet *ifp = &sc->arpcom.ac_if;
6862         int i;
6863
6864         /* First some info about the tx_bd chain structure. */
6865         if_printf(ifp,
6866         "----------------------------"
6867         "  rx_bd  chain  "
6868         "----------------------------\n");
6869
6870         if_printf(ifp, "page size      = 0x%08X, "
6871                   "rx chain pages        = 0x%08X\n",
6872                   (uint32_t)BCM_PAGE_SIZE, (uint32_t)sc->rx_pages);
6873
6874         if_printf(ifp, "rx_bd per page = 0x%08X, "
6875                   "usable rx_bd per page = 0x%08X\n",
6876                   (uint32_t)TOTAL_RX_BD_PER_PAGE,
6877                   (uint32_t)USABLE_RX_BD_PER_PAGE);
6878
6879         if_printf(ifp, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD(sc));
6880
6881         if_printf(ifp,
6882         "----------------------------"
6883         "   rx_bd data   "
6884         "----------------------------\n");
6885
6886         /* Now print out the rx_bd's themselves. */
6887         for (i = 0; i < count; i++) {
6888                 struct rx_bd *rxbd;
6889
6890                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6891                 bce_dump_rxbd(sc, rx_prod, rxbd);
6892                 rx_prod = RX_CHAIN_IDX(sc, NEXT_RX_BD(rx_prod));
6893         }
6894
6895         if_printf(ifp,
6896         "----------------------------"
6897         "----------------"
6898         "----------------------------\n");
6899 }
6900
6901
6902 /****************************************************************************/
6903 /* Prints out the status block from host memory.                            */
6904 /*                                                                          */
6905 /* Returns:                                                                 */
6906 /*   Nothing.                                                               */
6907 /****************************************************************************/
6908 static void
6909 bce_dump_status_block(struct bce_softc *sc)
6910 {
6911         struct status_block *sblk = sc->status_block;
6912         struct ifnet *ifp = &sc->arpcom.ac_if;
6913
6914         if_printf(ifp,
6915         "----------------------------"
6916         "  Status Block  "
6917         "----------------------------\n");
6918
6919         if_printf(ifp, "    0x%08X - attn_bits\n", sblk->status_attn_bits);
6920
6921         if_printf(ifp, "    0x%08X - attn_bits_ack\n",
6922                   sblk->status_attn_bits_ack);
6923
6924         if_printf(ifp, "0x%04X(0x%04X) - rx_cons0\n",
6925             sblk->status_rx_quick_consumer_index0,
6926             (uint16_t)RX_CHAIN_IDX(sc, sblk->status_rx_quick_consumer_index0));
6927
6928         if_printf(ifp, "0x%04X(0x%04X) - tx_cons0\n",
6929             sblk->status_tx_quick_consumer_index0,
6930             (uint16_t)TX_CHAIN_IDX(sc, sblk->status_tx_quick_consumer_index0));
6931
6932         if_printf(ifp, "        0x%04X - status_idx\n", sblk->status_idx);
6933
6934         /* Theses indices are not used for normal L2 drivers. */
6935         if (sblk->status_rx_quick_consumer_index1) {
6936                 if_printf(ifp, "0x%04X(0x%04X) - rx_cons1\n",
6937                 sblk->status_rx_quick_consumer_index1,
6938                 (uint16_t)RX_CHAIN_IDX(sc,
6939                     sblk->status_rx_quick_consumer_index1));
6940         }
6941
6942         if (sblk->status_tx_quick_consumer_index1) {
6943                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons1\n",
6944                 sblk->status_tx_quick_consumer_index1,
6945                 (uint16_t)TX_CHAIN_IDX(sc,
6946                     sblk->status_tx_quick_consumer_index1));
6947         }
6948
6949         if (sblk->status_rx_quick_consumer_index2) {
6950                 if_printf(ifp, "0x%04X(0x%04X)- rx_cons2\n",
6951                 sblk->status_rx_quick_consumer_index2,
6952                 (uint16_t)RX_CHAIN_IDX(sc,
6953                     sblk->status_rx_quick_consumer_index2));
6954         }
6955
6956         if (sblk->status_tx_quick_consumer_index2) {
6957                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons2\n",
6958                 sblk->status_tx_quick_consumer_index2,
6959                 (uint16_t)TX_CHAIN_IDX(sc,
6960                     sblk->status_tx_quick_consumer_index2));
6961         }
6962
6963         if (sblk->status_rx_quick_consumer_index3) {
6964                 if_printf(ifp, "0x%04X(0x%04X) - rx_cons3\n",
6965                 sblk->status_rx_quick_consumer_index3,
6966                 (uint16_t)RX_CHAIN_IDX(sc,
6967                     sblk->status_rx_quick_consumer_index3));
6968         }
6969
6970         if (sblk->status_tx_quick_consumer_index3) {
6971                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons3\n",
6972                 sblk->status_tx_quick_consumer_index3,
6973                 (uint16_t)TX_CHAIN_IDX(sc,
6974                     sblk->status_tx_quick_consumer_index3));
6975         }
6976
6977         if (sblk->status_rx_quick_consumer_index4 ||
6978             sblk->status_rx_quick_consumer_index5) {
6979                 if_printf(ifp, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
6980                           sblk->status_rx_quick_consumer_index4,
6981                           sblk->status_rx_quick_consumer_index5);
6982         }
6983
6984         if (sblk->status_rx_quick_consumer_index6 ||
6985             sblk->status_rx_quick_consumer_index7) {
6986                 if_printf(ifp, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
6987                           sblk->status_rx_quick_consumer_index6,
6988                           sblk->status_rx_quick_consumer_index7);
6989         }
6990
6991         if (sblk->status_rx_quick_consumer_index8 ||
6992             sblk->status_rx_quick_consumer_index9) {
6993                 if_printf(ifp, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
6994                           sblk->status_rx_quick_consumer_index8,
6995                           sblk->status_rx_quick_consumer_index9);
6996         }
6997
6998         if (sblk->status_rx_quick_consumer_index10 ||
6999             sblk->status_rx_quick_consumer_index11) {
7000                 if_printf(ifp, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
7001                           sblk->status_rx_quick_consumer_index10,
7002                           sblk->status_rx_quick_consumer_index11);
7003         }
7004
7005         if (sblk->status_rx_quick_consumer_index12 ||
7006             sblk->status_rx_quick_consumer_index13) {
7007                 if_printf(ifp, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
7008                           sblk->status_rx_quick_consumer_index12,
7009                           sblk->status_rx_quick_consumer_index13);
7010         }
7011
7012         if (sblk->status_rx_quick_consumer_index14 ||
7013             sblk->status_rx_quick_consumer_index15) {
7014                 if_printf(ifp, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
7015                           sblk->status_rx_quick_consumer_index14,
7016                           sblk->status_rx_quick_consumer_index15);
7017         }
7018
7019         if (sblk->status_completion_producer_index ||
7020             sblk->status_cmd_consumer_index) {
7021                 if_printf(ifp, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
7022                           sblk->status_completion_producer_index,
7023                           sblk->status_cmd_consumer_index);
7024         }
7025
7026         if_printf(ifp,
7027         "----------------------------"
7028         "----------------"
7029         "----------------------------\n");
7030 }
7031
7032
7033 /****************************************************************************/
7034 /* Prints out the statistics block.                                         */
7035 /*                                                                          */
7036 /* Returns:                                                                 */
7037 /*   Nothing.                                                               */
7038 /****************************************************************************/
7039 static void
7040 bce_dump_stats_block(struct bce_softc *sc)
7041 {
7042         struct statistics_block *sblk = sc->stats_block;
7043         struct ifnet *ifp = &sc->arpcom.ac_if;
7044
7045         if_printf(ifp,
7046         "---------------"
7047         " Stats Block  (All Stats Not Shown Are 0) "
7048         "---------------\n");
7049
7050         if (sblk->stat_IfHCInOctets_hi || sblk->stat_IfHCInOctets_lo) {
7051                 if_printf(ifp, "0x%08X:%08X : IfHcInOctets\n",
7052                           sblk->stat_IfHCInOctets_hi,
7053                           sblk->stat_IfHCInOctets_lo);
7054         }
7055
7056         if (sblk->stat_IfHCInBadOctets_hi || sblk->stat_IfHCInBadOctets_lo) {
7057                 if_printf(ifp, "0x%08X:%08X : IfHcInBadOctets\n",
7058                           sblk->stat_IfHCInBadOctets_hi,
7059                           sblk->stat_IfHCInBadOctets_lo);
7060         }
7061
7062         if (sblk->stat_IfHCOutOctets_hi || sblk->stat_IfHCOutOctets_lo) {
7063                 if_printf(ifp, "0x%08X:%08X : IfHcOutOctets\n",
7064                           sblk->stat_IfHCOutOctets_hi,
7065                           sblk->stat_IfHCOutOctets_lo);
7066         }
7067
7068         if (sblk->stat_IfHCOutBadOctets_hi || sblk->stat_IfHCOutBadOctets_lo) {
7069                 if_printf(ifp, "0x%08X:%08X : IfHcOutBadOctets\n",
7070                           sblk->stat_IfHCOutBadOctets_hi,
7071                           sblk->stat_IfHCOutBadOctets_lo);
7072         }
7073
7074         if (sblk->stat_IfHCInUcastPkts_hi || sblk->stat_IfHCInUcastPkts_lo) {
7075                 if_printf(ifp, "0x%08X:%08X : IfHcInUcastPkts\n",
7076                           sblk->stat_IfHCInUcastPkts_hi,
7077                           sblk->stat_IfHCInUcastPkts_lo);
7078         }
7079
7080         if (sblk->stat_IfHCInBroadcastPkts_hi ||
7081             sblk->stat_IfHCInBroadcastPkts_lo) {
7082                 if_printf(ifp, "0x%08X:%08X : IfHcInBroadcastPkts\n",
7083                           sblk->stat_IfHCInBroadcastPkts_hi,
7084                           sblk->stat_IfHCInBroadcastPkts_lo);
7085         }
7086
7087         if (sblk->stat_IfHCInMulticastPkts_hi ||
7088             sblk->stat_IfHCInMulticastPkts_lo) {
7089                 if_printf(ifp, "0x%08X:%08X : IfHcInMulticastPkts\n",
7090                           sblk->stat_IfHCInMulticastPkts_hi,
7091                           sblk->stat_IfHCInMulticastPkts_lo);
7092         }
7093
7094         if (sblk->stat_IfHCOutUcastPkts_hi || sblk->stat_IfHCOutUcastPkts_lo) {
7095                 if_printf(ifp, "0x%08X:%08X : IfHcOutUcastPkts\n",
7096                           sblk->stat_IfHCOutUcastPkts_hi,
7097                           sblk->stat_IfHCOutUcastPkts_lo);
7098         }
7099
7100         if (sblk->stat_IfHCOutBroadcastPkts_hi ||
7101             sblk->stat_IfHCOutBroadcastPkts_lo) {
7102                 if_printf(ifp, "0x%08X:%08X : IfHcOutBroadcastPkts\n",
7103                           sblk->stat_IfHCOutBroadcastPkts_hi,
7104                           sblk->stat_IfHCOutBroadcastPkts_lo);
7105         }
7106
7107         if (sblk->stat_IfHCOutMulticastPkts_hi ||
7108             sblk->stat_IfHCOutMulticastPkts_lo) {
7109                 if_printf(ifp, "0x%08X:%08X : IfHcOutMulticastPkts\n",
7110                           sblk->stat_IfHCOutMulticastPkts_hi,
7111                           sblk->stat_IfHCOutMulticastPkts_lo);
7112         }
7113
7114         if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) {
7115                 if_printf(ifp, "         0x%08X : "
7116                 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 
7117                 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
7118         }
7119
7120         if (sblk->stat_Dot3StatsCarrierSenseErrors) {
7121                 if_printf(ifp, "         0x%08X : "
7122                           "Dot3StatsCarrierSenseErrors\n",
7123                           sblk->stat_Dot3StatsCarrierSenseErrors);
7124         }
7125
7126         if (sblk->stat_Dot3StatsFCSErrors) {
7127                 if_printf(ifp, "         0x%08X : Dot3StatsFCSErrors\n",
7128                           sblk->stat_Dot3StatsFCSErrors);
7129         }
7130
7131         if (sblk->stat_Dot3StatsAlignmentErrors) {
7132                 if_printf(ifp, "         0x%08X : Dot3StatsAlignmentErrors\n",
7133                           sblk->stat_Dot3StatsAlignmentErrors);
7134         }
7135
7136         if (sblk->stat_Dot3StatsSingleCollisionFrames) {
7137                 if_printf(ifp, "         0x%08X : "
7138                           "Dot3StatsSingleCollisionFrames\n",
7139                           sblk->stat_Dot3StatsSingleCollisionFrames);
7140         }
7141
7142         if (sblk->stat_Dot3StatsMultipleCollisionFrames) {
7143                 if_printf(ifp, "         0x%08X : "
7144                           "Dot3StatsMultipleCollisionFrames\n",
7145                           sblk->stat_Dot3StatsMultipleCollisionFrames);
7146         }
7147
7148         if (sblk->stat_Dot3StatsDeferredTransmissions) {
7149                 if_printf(ifp, "         0x%08X : "
7150                           "Dot3StatsDeferredTransmissions\n",
7151                           sblk->stat_Dot3StatsDeferredTransmissions);
7152         }
7153
7154         if (sblk->stat_Dot3StatsExcessiveCollisions) {
7155                 if_printf(ifp, "         0x%08X : "
7156                           "Dot3StatsExcessiveCollisions\n",
7157                           sblk->stat_Dot3StatsExcessiveCollisions);
7158         }
7159
7160         if (sblk->stat_Dot3StatsLateCollisions) {
7161                 if_printf(ifp, "         0x%08X : Dot3StatsLateCollisions\n",
7162                           sblk->stat_Dot3StatsLateCollisions);
7163         }
7164
7165         if (sblk->stat_EtherStatsCollisions) {
7166                 if_printf(ifp, "         0x%08X : EtherStatsCollisions\n",
7167                           sblk->stat_EtherStatsCollisions);
7168         }
7169
7170         if (sblk->stat_EtherStatsFragments)  {
7171                 if_printf(ifp, "         0x%08X : EtherStatsFragments\n",
7172                           sblk->stat_EtherStatsFragments);
7173         }
7174
7175         if (sblk->stat_EtherStatsJabbers) {
7176                 if_printf(ifp, "         0x%08X : EtherStatsJabbers\n",
7177                           sblk->stat_EtherStatsJabbers);
7178         }
7179
7180         if (sblk->stat_EtherStatsUndersizePkts) {
7181                 if_printf(ifp, "         0x%08X : EtherStatsUndersizePkts\n",
7182                           sblk->stat_EtherStatsUndersizePkts);
7183         }
7184
7185         if (sblk->stat_EtherStatsOverrsizePkts) {
7186                 if_printf(ifp, "         0x%08X : EtherStatsOverrsizePkts\n",
7187                           sblk->stat_EtherStatsOverrsizePkts);
7188         }
7189
7190         if (sblk->stat_EtherStatsPktsRx64Octets) {
7191                 if_printf(ifp, "         0x%08X : EtherStatsPktsRx64Octets\n",
7192                           sblk->stat_EtherStatsPktsRx64Octets);
7193         }
7194
7195         if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) {
7196                 if_printf(ifp, "         0x%08X : "
7197                           "EtherStatsPktsRx65Octetsto127Octets\n",
7198                           sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
7199         }
7200
7201         if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) {
7202                 if_printf(ifp, "         0x%08X : "
7203                           "EtherStatsPktsRx128Octetsto255Octets\n",
7204                           sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
7205         }
7206
7207         if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) {
7208                 if_printf(ifp, "         0x%08X : "
7209                           "EtherStatsPktsRx256Octetsto511Octets\n",
7210                           sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
7211         }
7212
7213         if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) {
7214                 if_printf(ifp, "         0x%08X : "
7215                           "EtherStatsPktsRx512Octetsto1023Octets\n",
7216                           sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
7217         }
7218
7219         if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) {
7220                 if_printf(ifp, "         0x%08X : "
7221                           "EtherStatsPktsRx1024Octetsto1522Octets\n",
7222                           sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
7223         }
7224
7225         if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) {
7226                 if_printf(ifp, "         0x%08X : "
7227                           "EtherStatsPktsRx1523Octetsto9022Octets\n",
7228                           sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
7229         }
7230
7231         if (sblk->stat_EtherStatsPktsTx64Octets) {
7232                 if_printf(ifp, "         0x%08X : EtherStatsPktsTx64Octets\n",
7233                           sblk->stat_EtherStatsPktsTx64Octets);
7234         }
7235
7236         if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) {
7237                 if_printf(ifp, "         0x%08X : "
7238                           "EtherStatsPktsTx65Octetsto127Octets\n",
7239                           sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
7240         }
7241
7242         if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) {
7243                 if_printf(ifp, "         0x%08X : "
7244                           "EtherStatsPktsTx128Octetsto255Octets\n",
7245                           sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
7246         }
7247
7248         if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) {
7249                 if_printf(ifp, "         0x%08X : "
7250                           "EtherStatsPktsTx256Octetsto511Octets\n",
7251                           sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
7252         }
7253
7254         if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) {
7255                 if_printf(ifp, "         0x%08X : "
7256                           "EtherStatsPktsTx512Octetsto1023Octets\n",
7257                           sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
7258         }
7259
7260         if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) {
7261                 if_printf(ifp, "         0x%08X : "
7262                           "EtherStatsPktsTx1024Octetsto1522Octets\n",
7263                           sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
7264         }
7265
7266         if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) {
7267                 if_printf(ifp, "         0x%08X : "
7268                           "EtherStatsPktsTx1523Octetsto9022Octets\n",
7269                           sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
7270         }
7271
7272         if (sblk->stat_XonPauseFramesReceived) {
7273                 if_printf(ifp, "         0x%08X : XonPauseFramesReceived\n",
7274                           sblk->stat_XonPauseFramesReceived);
7275         }
7276
7277         if (sblk->stat_XoffPauseFramesReceived) {
7278                 if_printf(ifp, "          0x%08X : XoffPauseFramesReceived\n",
7279                           sblk->stat_XoffPauseFramesReceived);
7280         }
7281
7282         if (sblk->stat_OutXonSent) {
7283                 if_printf(ifp, "         0x%08X : OutXoffSent\n",
7284                           sblk->stat_OutXonSent);
7285         }
7286
7287         if (sblk->stat_OutXoffSent) {
7288                 if_printf(ifp, "         0x%08X : OutXoffSent\n",
7289                           sblk->stat_OutXoffSent);
7290         }
7291
7292         if (sblk->stat_FlowControlDone) {
7293                 if_printf(ifp, "         0x%08X : FlowControlDone\n",
7294                           sblk->stat_FlowControlDone);
7295         }
7296
7297         if (sblk->stat_MacControlFramesReceived) {
7298                 if_printf(ifp, "         0x%08X : MacControlFramesReceived\n",
7299                           sblk->stat_MacControlFramesReceived);
7300         }
7301
7302         if (sblk->stat_XoffStateEntered) {
7303                 if_printf(ifp, "         0x%08X : XoffStateEntered\n",
7304                           sblk->stat_XoffStateEntered);
7305         }
7306
7307         if (sblk->stat_IfInFramesL2FilterDiscards) {
7308                 if_printf(ifp, "         0x%08X : IfInFramesL2FilterDiscards\n",                          sblk->stat_IfInFramesL2FilterDiscards);
7309         }
7310
7311         if (sblk->stat_IfInRuleCheckerDiscards) {
7312                 if_printf(ifp, "         0x%08X : IfInRuleCheckerDiscards\n",
7313                           sblk->stat_IfInRuleCheckerDiscards);
7314         }
7315
7316         if (sblk->stat_IfInFTQDiscards) {
7317                 if_printf(ifp, "         0x%08X : IfInFTQDiscards\n",
7318                           sblk->stat_IfInFTQDiscards);
7319         }
7320
7321         if (sblk->stat_IfInMBUFDiscards) {
7322                 if_printf(ifp, "         0x%08X : IfInMBUFDiscards\n",
7323                           sblk->stat_IfInMBUFDiscards);
7324         }
7325
7326         if (sblk->stat_IfInRuleCheckerP4Hit) {
7327                 if_printf(ifp, "         0x%08X : IfInRuleCheckerP4Hit\n",
7328                           sblk->stat_IfInRuleCheckerP4Hit);
7329         }
7330
7331         if (sblk->stat_CatchupInRuleCheckerDiscards) {
7332                 if_printf(ifp, "         0x%08X : "
7333                           "CatchupInRuleCheckerDiscards\n",
7334                           sblk->stat_CatchupInRuleCheckerDiscards);
7335         }
7336
7337         if (sblk->stat_CatchupInFTQDiscards) {
7338                 if_printf(ifp, "         0x%08X : CatchupInFTQDiscards\n",
7339                           sblk->stat_CatchupInFTQDiscards);
7340         }
7341
7342         if (sblk->stat_CatchupInMBUFDiscards) {
7343                 if_printf(ifp, "         0x%08X : CatchupInMBUFDiscards\n",
7344                           sblk->stat_CatchupInMBUFDiscards);
7345         }
7346
7347         if (sblk->stat_CatchupInRuleCheckerP4Hit) {
7348                 if_printf(ifp, "         0x%08X : CatchupInRuleCheckerP4Hit\n",
7349                           sblk->stat_CatchupInRuleCheckerP4Hit);
7350         }
7351
7352         if_printf(ifp,
7353         "----------------------------"
7354         "----------------"
7355         "----------------------------\n");
7356 }
7357
7358
7359 /****************************************************************************/
7360 /* Prints out a summary of the driver state.                                */
7361 /*                                                                          */
7362 /* Returns:                                                                 */
7363 /*   Nothing.                                                               */
7364 /****************************************************************************/
7365 static void
7366 bce_dump_driver_state(struct bce_softc *sc)
7367 {
7368         struct ifnet *ifp = &sc->arpcom.ac_if;
7369         uint32_t val_hi, val_lo;
7370
7371         if_printf(ifp,
7372         "-----------------------------"
7373         " Driver State "
7374         "-----------------------------\n");
7375
7376         val_hi = BCE_ADDR_HI(sc);
7377         val_lo = BCE_ADDR_LO(sc);
7378         if_printf(ifp, "0x%08X:%08X - (sc) driver softc structure "
7379                   "virtual address\n", val_hi, val_lo);
7380
7381         val_hi = BCE_ADDR_HI(sc->status_block);
7382         val_lo = BCE_ADDR_LO(sc->status_block);
7383         if_printf(ifp, "0x%08X:%08X - (sc->status_block) status block "
7384                   "virtual address\n", val_hi, val_lo);
7385
7386         val_hi = BCE_ADDR_HI(sc->stats_block);
7387         val_lo = BCE_ADDR_LO(sc->stats_block);
7388         if_printf(ifp, "0x%08X:%08X - (sc->stats_block) statistics block "
7389                   "virtual address\n", val_hi, val_lo);
7390
7391         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
7392         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
7393         if_printf(ifp, "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
7394                   "virtual adddress\n", val_hi, val_lo);
7395
7396         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
7397         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
7398         if_printf(ifp, "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
7399                   "virtual address\n", val_hi, val_lo);
7400
7401         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
7402         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
7403         if_printf(ifp, "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
7404                   "virtual address\n", val_hi, val_lo);
7405
7406         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
7407         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
7408         if_printf(ifp, "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
7409                   "virtual address\n", val_hi, val_lo);
7410
7411         if_printf(ifp, "         0x%08X - (sc->interrupts_generated) "
7412                   "h/w intrs\n", sc->interrupts_generated);
7413
7414         if_printf(ifp, "         0x%08X - (sc->rx_interrupts) "
7415                   "rx interrupts handled\n", sc->rx_interrupts);
7416
7417         if_printf(ifp, "         0x%08X - (sc->tx_interrupts) "
7418                   "tx interrupts handled\n", sc->tx_interrupts);
7419
7420         if_printf(ifp, "         0x%08X - (sc->last_status_idx) "
7421                   "status block index\n", sc->last_status_idx);
7422
7423         if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_prod) "
7424                   "tx producer index\n",
7425                   sc->tx_prod, (uint16_t)TX_CHAIN_IDX(sc, sc->tx_prod));
7426
7427         if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_cons) "
7428                   "tx consumer index\n",
7429                   sc->tx_cons, (uint16_t)TX_CHAIN_IDX(sc, sc->tx_cons));
7430
7431         if_printf(ifp, "         0x%08X - (sc->tx_prod_bseq) "
7432                   "tx producer bseq index\n", sc->tx_prod_bseq);
7433
7434         if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_prod) "
7435                   "rx producer index\n",
7436                   sc->rx_prod, (uint16_t)RX_CHAIN_IDX(sc, sc->rx_prod));
7437
7438         if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_cons) "
7439                   "rx consumer index\n",
7440                   sc->rx_cons, (uint16_t)RX_CHAIN_IDX(sc, sc->rx_cons));
7441
7442         if_printf(ifp, "         0x%08X - (sc->rx_prod_bseq) "
7443                   "rx producer bseq index\n", sc->rx_prod_bseq);
7444
7445         if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7446                   "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7447
7448         if_printf(ifp, "         0x%08X - (sc->free_rx_bd) "
7449                   "free rx_bd's\n", sc->free_rx_bd);
7450
7451         if_printf(ifp, "0x%08X/%08X - (sc->rx_low_watermark) rx "
7452                   "low watermark\n", sc->rx_low_watermark, sc->max_rx_bd);
7453
7454         if_printf(ifp, "         0x%08X - (sc->txmbuf_alloc) "
7455                   "tx mbufs allocated\n", sc->tx_mbuf_alloc);
7456
7457         if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7458                   "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7459
7460         if_printf(ifp, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
7461                   sc->used_tx_bd);
7462
7463         if_printf(ifp, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
7464                   sc->tx_hi_watermark, sc->max_tx_bd);
7465
7466         if_printf(ifp, "         0x%08X - (sc->mbuf_alloc_failed) "
7467                   "failed mbuf alloc\n", sc->mbuf_alloc_failed);
7468
7469         if_printf(ifp,
7470         "----------------------------"
7471         "----------------"
7472         "----------------------------\n");
7473 }
7474
7475
7476 /****************************************************************************/
7477 /* Prints out the hardware state through a summary of important registers,  */
7478 /* followed by a complete register dump.                                    */
7479 /*                                                                          */
7480 /* Returns:                                                                 */
7481 /*   Nothing.                                                               */
7482 /****************************************************************************/
7483 static void
7484 bce_dump_hw_state(struct bce_softc *sc)
7485 {
7486         struct ifnet *ifp = &sc->arpcom.ac_if;
7487         uint32_t val1;
7488         int i;
7489
7490         if_printf(ifp,
7491         "----------------------------"
7492         " Hardware State "
7493         "----------------------------\n");
7494
7495         if_printf(ifp, "%s - bootcode version\n", sc->bce_bc_ver);
7496
7497         val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
7498         if_printf(ifp, "0x%08X - (0x%06X) misc_enable_status_bits\n",
7499                   val1, BCE_MISC_ENABLE_STATUS_BITS);
7500
7501         val1 = REG_RD(sc, BCE_DMA_STATUS);
7502         if_printf(ifp, "0x%08X - (0x%04X) dma_status\n", val1, BCE_DMA_STATUS);
7503
7504         val1 = REG_RD(sc, BCE_CTX_STATUS);
7505         if_printf(ifp, "0x%08X - (0x%04X) ctx_status\n", val1, BCE_CTX_STATUS);
7506
7507         val1 = REG_RD(sc, BCE_EMAC_STATUS);
7508         if_printf(ifp, "0x%08X - (0x%04X) emac_status\n",
7509                   val1, BCE_EMAC_STATUS);
7510
7511         val1 = REG_RD(sc, BCE_RPM_STATUS);
7512         if_printf(ifp, "0x%08X - (0x%04X) rpm_status\n", val1, BCE_RPM_STATUS);
7513
7514         val1 = REG_RD(sc, BCE_TBDR_STATUS);
7515         if_printf(ifp, "0x%08X - (0x%04X) tbdr_status\n",
7516                   val1, BCE_TBDR_STATUS);
7517
7518         val1 = REG_RD(sc, BCE_TDMA_STATUS);
7519         if_printf(ifp, "0x%08X - (0x%04X) tdma_status\n",
7520                   val1, BCE_TDMA_STATUS);
7521
7522         val1 = REG_RD(sc, BCE_HC_STATUS);
7523         if_printf(ifp, "0x%08X - (0x%06X) hc_status\n", val1, BCE_HC_STATUS);
7524
7525         val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7526         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7527                   val1, BCE_TXP_CPU_STATE);
7528
7529         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7530         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7531                   val1, BCE_TPAT_CPU_STATE);
7532
7533         val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7534         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7535                   val1, BCE_RXP_CPU_STATE);
7536
7537         val1 = REG_RD_IND(sc, BCE_COM_CPU_STATE);
7538         if_printf(ifp, "0x%08X - (0x%06X) com_cpu_state\n",
7539                   val1, BCE_COM_CPU_STATE);
7540
7541         val1 = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
7542         if_printf(ifp, "0x%08X - (0x%06X) mcp_cpu_state\n",
7543                   val1, BCE_MCP_CPU_STATE);
7544
7545         val1 = REG_RD_IND(sc, BCE_CP_CPU_STATE);
7546         if_printf(ifp, "0x%08X - (0x%06X) cp_cpu_state\n",
7547                   val1, BCE_CP_CPU_STATE);
7548
7549         if_printf(ifp,
7550         "----------------------------"
7551         "----------------"
7552         "----------------------------\n");
7553
7554         if_printf(ifp,
7555         "----------------------------"
7556         " Register  Dump "
7557         "----------------------------\n");
7558
7559         for (i = 0x400; i < 0x8000; i += 0x10) {
7560                 if_printf(ifp, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7561                           REG_RD(sc, i),
7562                           REG_RD(sc, i + 0x4),
7563                           REG_RD(sc, i + 0x8),
7564                           REG_RD(sc, i + 0xc));
7565         }
7566
7567         if_printf(ifp,
7568         "----------------------------"
7569         "----------------"
7570         "----------------------------\n");
7571 }
7572
7573
7574 /****************************************************************************/
7575 /* Prints out the TXP state.                                                */
7576 /*                                                                          */
7577 /* Returns:                                                                 */
7578 /*   Nothing.                                                               */
7579 /****************************************************************************/
7580 static void
7581 bce_dump_txp_state(struct bce_softc *sc)
7582 {
7583         struct ifnet *ifp = &sc->arpcom.ac_if;
7584         uint32_t val1;
7585         int i;
7586
7587         if_printf(ifp,
7588         "----------------------------"
7589         "   TXP  State   "
7590         "----------------------------\n");
7591
7592         val1 = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
7593         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_mode\n",
7594                   val1, BCE_TXP_CPU_MODE);
7595
7596         val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7597         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7598                   val1, BCE_TXP_CPU_STATE);
7599
7600         val1 = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
7601         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_event_mask\n",
7602                   val1, BCE_TXP_CPU_EVENT_MASK);
7603
7604         if_printf(ifp,
7605         "----------------------------"
7606         " Register  Dump "
7607         "----------------------------\n");
7608
7609         for (i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
7610                 /* Skip the big blank spaces */
7611                 if (i < 0x454000 && i > 0x5ffff) {
7612                         if_printf(ifp, "0x%04X: "
7613                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7614                                   REG_RD_IND(sc, i),
7615                                   REG_RD_IND(sc, i + 0x4),
7616                                   REG_RD_IND(sc, i + 0x8),
7617                                   REG_RD_IND(sc, i + 0xc));
7618                 }
7619         }
7620
7621         if_printf(ifp,
7622         "----------------------------"
7623         "----------------"
7624         "----------------------------\n");
7625 }
7626
7627
7628 /****************************************************************************/
7629 /* Prints out the RXP state.                                                */
7630 /*                                                                          */
7631 /* Returns:                                                                 */
7632 /*   Nothing.                                                               */
7633 /****************************************************************************/
7634 static void
7635 bce_dump_rxp_state(struct bce_softc *sc)
7636 {
7637         struct ifnet *ifp = &sc->arpcom.ac_if;
7638         uint32_t val1;
7639         int i;
7640
7641         if_printf(ifp,
7642         "----------------------------"
7643         "   RXP  State   "
7644         "----------------------------\n");
7645
7646         val1 = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
7647         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_mode\n",
7648                   val1, BCE_RXP_CPU_MODE);
7649
7650         val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7651         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7652                   val1, BCE_RXP_CPU_STATE);
7653
7654         val1 = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
7655         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_event_mask\n",
7656                   val1, BCE_RXP_CPU_EVENT_MASK);
7657
7658         if_printf(ifp,
7659         "----------------------------"
7660         " Register  Dump "
7661         "----------------------------\n");
7662
7663         for (i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
7664                 /* Skip the big blank sapces */
7665                 if (i < 0xc5400 && i > 0xdffff) {
7666                         if_printf(ifp, "0x%04X: "
7667                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7668                                   REG_RD_IND(sc, i),
7669                                   REG_RD_IND(sc, i + 0x4),
7670                                   REG_RD_IND(sc, i + 0x8),
7671                                   REG_RD_IND(sc, i + 0xc));
7672                 }
7673         }
7674
7675         if_printf(ifp,
7676         "----------------------------"
7677         "----------------"
7678         "----------------------------\n");
7679 }
7680
7681
7682 /****************************************************************************/
7683 /* Prints out the TPAT state.                                               */
7684 /*                                                                          */
7685 /* Returns:                                                                 */
7686 /*   Nothing.                                                               */
7687 /****************************************************************************/
7688 static void
7689 bce_dump_tpat_state(struct bce_softc *sc)
7690 {
7691         struct ifnet *ifp = &sc->arpcom.ac_if;
7692         uint32_t val1;
7693         int i;
7694
7695         if_printf(ifp,
7696         "----------------------------"
7697         "   TPAT State   "
7698         "----------------------------\n");
7699
7700         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
7701         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_mode\n",
7702                   val1, BCE_TPAT_CPU_MODE);
7703
7704         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7705         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7706                   val1, BCE_TPAT_CPU_STATE);
7707
7708         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
7709         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_event_mask\n",
7710                   val1, BCE_TPAT_CPU_EVENT_MASK);
7711
7712         if_printf(ifp,
7713         "----------------------------"
7714         " Register  Dump "
7715         "----------------------------\n");
7716
7717         for (i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
7718                 /* Skip the big blank spaces */
7719                 if (i < 0x854000 && i > 0x9ffff) {
7720                         if_printf(ifp, "0x%04X: "
7721                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7722                                   REG_RD_IND(sc, i),
7723                                   REG_RD_IND(sc, i + 0x4),
7724                                   REG_RD_IND(sc, i + 0x8),
7725                                   REG_RD_IND(sc, i + 0xc));
7726                 }
7727         }
7728
7729         if_printf(ifp,
7730         "----------------------------"
7731         "----------------"
7732         "----------------------------\n");
7733 }
7734
7735
7736 /****************************************************************************/
7737 /* Prints out the driver state and then enters the debugger.                */
7738 /*                                                                          */
7739 /* Returns:                                                                 */
7740 /*   Nothing.                                                               */
7741 /****************************************************************************/
7742 static void
7743 bce_breakpoint(struct bce_softc *sc)
7744 {
7745 #if 0
7746         bce_freeze_controller(sc);
7747 #endif
7748
7749         bce_dump_driver_state(sc);
7750         bce_dump_status_block(sc);
7751         bce_dump_tx_chain(sc, 0, TOTAL_TX_BD(sc));
7752         bce_dump_hw_state(sc);
7753         bce_dump_txp_state(sc);
7754
7755 #if 0
7756         bce_unfreeze_controller(sc);
7757 #endif
7758
7759         /* Call the debugger. */
7760         breakpoint();
7761 }
7762
7763 #endif  /* BCE_DEBUG */
7764
7765 static int
7766 bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS)
7767 {
7768         struct bce_softc *sc = arg1;
7769
7770         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7771                         &sc->bce_tx_quick_cons_trip_int,
7772                         BCE_COALMASK_TX_BDS_INT);
7773 }
7774
7775 static int
7776 bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS)
7777 {
7778         struct bce_softc *sc = arg1;
7779
7780         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7781                         &sc->bce_tx_quick_cons_trip,
7782                         BCE_COALMASK_TX_BDS);
7783 }
7784
7785 static int
7786 bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS)
7787 {
7788         struct bce_softc *sc = arg1;
7789
7790         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7791                         &sc->bce_tx_ticks_int,
7792                         BCE_COALMASK_TX_TICKS_INT);
7793 }
7794
7795 static int
7796 bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS)
7797 {
7798         struct bce_softc *sc = arg1;
7799
7800         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7801                         &sc->bce_tx_ticks,
7802                         BCE_COALMASK_TX_TICKS);
7803 }
7804
7805 static int
7806 bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS)
7807 {
7808         struct bce_softc *sc = arg1;
7809
7810         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7811                         &sc->bce_rx_quick_cons_trip_int,
7812                         BCE_COALMASK_RX_BDS_INT);
7813 }
7814
7815 static int
7816 bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS)
7817 {
7818         struct bce_softc *sc = arg1;
7819
7820         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7821                         &sc->bce_rx_quick_cons_trip,
7822                         BCE_COALMASK_RX_BDS);
7823 }
7824
7825 static int
7826 bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS)
7827 {
7828         struct bce_softc *sc = arg1;
7829
7830         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7831                         &sc->bce_rx_ticks_int,
7832                         BCE_COALMASK_RX_TICKS_INT);
7833 }
7834
7835 static int
7836 bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS)
7837 {
7838         struct bce_softc *sc = arg1;
7839
7840         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7841                         &sc->bce_rx_ticks,
7842                         BCE_COALMASK_RX_TICKS);
7843 }
7844
7845 static int
7846 bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal,
7847                        uint32_t coalchg_mask)
7848 {
7849         struct bce_softc *sc = arg1;
7850         struct ifnet *ifp = &sc->arpcom.ac_if;
7851         int error = 0, v;
7852
7853         lwkt_serialize_enter(ifp->if_serializer);
7854
7855         v = *coal;
7856         error = sysctl_handle_int(oidp, &v, 0, req);
7857         if (!error && req->newptr != NULL) {
7858                 if (v < 0) {
7859                         error = EINVAL;
7860                 } else {
7861                         *coal = v;
7862                         sc->bce_coalchg_mask |= coalchg_mask;
7863                 }
7864         }
7865
7866         lwkt_serialize_exit(ifp->if_serializer);
7867         return error;
7868 }
7869
7870 static void
7871 bce_coal_change(struct bce_softc *sc)
7872 {
7873         struct ifnet *ifp = &sc->arpcom.ac_if;
7874
7875         ASSERT_SERIALIZED(ifp->if_serializer);
7876
7877         if ((ifp->if_flags & IFF_RUNNING) == 0) {
7878                 sc->bce_coalchg_mask = 0;
7879                 return;
7880         }
7881
7882         if (sc->bce_coalchg_mask &
7883             (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) {
7884                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
7885                        (sc->bce_tx_quick_cons_trip_int << 16) |
7886                        sc->bce_tx_quick_cons_trip);
7887                 if (bootverbose) {
7888                         if_printf(ifp, "tx_bds %u, tx_bds_int %u\n",
7889                                   sc->bce_tx_quick_cons_trip,
7890                                   sc->bce_tx_quick_cons_trip_int);
7891                 }
7892         }
7893
7894         if (sc->bce_coalchg_mask &
7895             (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) {
7896                 REG_WR(sc, BCE_HC_TX_TICKS,
7897                        (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
7898                 if (bootverbose) {
7899                         if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n",
7900                                   sc->bce_tx_ticks, sc->bce_tx_ticks_int);
7901                 }
7902         }
7903
7904         if (sc->bce_coalchg_mask &
7905             (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) {
7906                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
7907                        (sc->bce_rx_quick_cons_trip_int << 16) |
7908                        sc->bce_rx_quick_cons_trip);
7909                 if (bootverbose) {
7910                         if_printf(ifp, "rx_bds %u, rx_bds_int %u\n",
7911                                   sc->bce_rx_quick_cons_trip,
7912                                   sc->bce_rx_quick_cons_trip_int);
7913                 }
7914         }
7915
7916         if (sc->bce_coalchg_mask &
7917             (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) {
7918                 REG_WR(sc, BCE_HC_RX_TICKS,
7919                        (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
7920                 if (bootverbose) {
7921                         if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n",
7922                                   sc->bce_rx_ticks, sc->bce_rx_ticks_int);
7923                 }
7924         }
7925
7926         sc->bce_coalchg_mask = 0;
7927 }