Merge branch 'vendor/BINUTILS225'
[dragonfly.git] / contrib / binutils-2.24 / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245  public:
246   Hash_task(const unsigned char* src,
247             size_t size,
248             unsigned char* dst,
249             Task_token* build_id_blocker,
250             Task_token* final_blocker)
251     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252       final_blocker_(final_blocker)
253   { }
254
255   void
256   run(Workqueue*)
257   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259   Task_token*
260   is_runnable();
261
262   // Unblock FINAL_BLOCKER_ when done.
263   void
264   locks(Task_locker* tl)
265   { tl->add(this, this->final_blocker_); }
266
267   std::string
268   get_name() const
269   { return "Hash_task"; }
270
271  private:
272   const unsigned char* const src_;
273   const size_t size_;
274   unsigned char* const dst_;
275   Task_token* const build_id_blocker_;
276   Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282   if (this->build_id_blocker_->is_blocked())
283     return this->build_id_blocker_;
284   return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295     const Layout::Section_list& sections,
296     const Layout::Data_list& special_outputs,
297     const Layout::Data_list& relax_outputs)
298 {
299   for(Layout::Section_list::const_iterator p = sections.begin();
300       p != sections.end();
301       ++p)
302     gold_assert((*p)->address_and_file_offset_have_reset_values());
303
304   for(Layout::Data_list::const_iterator p = special_outputs.begin();
305       p != special_outputs.end();
306       ++p)
307     gold_assert((*p)->address_and_file_offset_have_reset_values());
308
309   gold_assert(relax_outputs.empty());
310 }
311
312 // Save information of SECTIONS for checking later.
313
314 void
315 Layout::Relaxation_debug_check::read_sections(
316     const Layout::Section_list& sections)
317 {
318   for(Layout::Section_list::const_iterator p = sections.begin();
319       p != sections.end();
320       ++p)
321     {
322       Output_section* os = *p;
323       Section_info info;
324       info.output_section = os;
325       info.address = os->is_address_valid() ? os->address() : 0;
326       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
327       info.offset = os->is_offset_valid()? os->offset() : -1 ;
328       this->section_infos_.push_back(info);
329     }
330 }
331
332 // Verify SECTIONS using previously recorded information.
333
334 void
335 Layout::Relaxation_debug_check::verify_sections(
336     const Layout::Section_list& sections)
337 {
338   size_t i = 0;
339   for(Layout::Section_list::const_iterator p = sections.begin();
340       p != sections.end();
341       ++p, ++i)
342     {
343       Output_section* os = *p;
344       uint64_t address = os->is_address_valid() ? os->address() : 0;
345       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
346       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
347
348       if (i >= this->section_infos_.size())
349         {
350           gold_fatal("Section_info of %s missing.\n", os->name());
351         }
352       const Section_info& info = this->section_infos_[i];
353       if (os != info.output_section)
354         gold_fatal("Section order changed.  Expecting %s but see %s\n",
355                    info.output_section->name(), os->name());
356       if (address != info.address
357           || data_size != info.data_size
358           || offset != info.offset)
359         gold_fatal("Section %s changed.\n", os->name());
360     }
361 }
362
363 // Layout_task_runner methods.
364
365 // Lay out the sections.  This is called after all the input objects
366 // have been read.
367
368 void
369 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
370 {
371   // See if any of the input definitions violate the One Definition Rule.
372   // TODO: if this is too slow, do this as a task, rather than inline.
373   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
374
375   Layout* layout = this->layout_;
376   off_t file_size = layout->finalize(this->input_objects_,
377                                      this->symtab_,
378                                      this->target_,
379                                      task);
380
381   // Now we know the final size of the output file and we know where
382   // each piece of information goes.
383
384   if (this->mapfile_ != NULL)
385     {
386       this->mapfile_->print_discarded_sections(this->input_objects_);
387       layout->print_to_mapfile(this->mapfile_);
388     }
389
390   Output_file* of;
391   if (layout->incremental_base() == NULL)
392     {
393       of = new Output_file(parameters->options().output_file_name());
394       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
395         of->set_is_temporary();
396       of->open(file_size);
397     }
398   else
399     {
400       of = layout->incremental_base()->output_file();
401
402       // Apply the incremental relocations for symbols whose values
403       // have changed.  We do this before we resize the file and start
404       // writing anything else to it, so that we can read the old
405       // incremental information from the file before (possibly)
406       // overwriting it.
407       if (parameters->incremental_update())
408         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
409                                                              this->layout_,
410                                                              of);
411
412       of->resize(file_size);
413     }
414
415   // Queue up the final set of tasks.
416   gold::queue_final_tasks(this->options_, this->input_objects_,
417                           this->symtab_, layout, workqueue, of);
418 }
419
420 // Layout methods.
421
422 Layout::Layout(int number_of_input_files, Script_options* script_options)
423   : number_of_input_files_(number_of_input_files),
424     script_options_(script_options),
425     namepool_(),
426     sympool_(),
427     dynpool_(),
428     signatures_(),
429     section_name_map_(),
430     segment_list_(),
431     section_list_(),
432     unattached_section_list_(),
433     special_output_list_(),
434     relax_output_list_(),
435     section_headers_(NULL),
436     tls_segment_(NULL),
437     relro_segment_(NULL),
438     interp_segment_(NULL),
439     increase_relro_(0),
440     symtab_section_(NULL),
441     symtab_xindex_(NULL),
442     dynsym_section_(NULL),
443     dynsym_xindex_(NULL),
444     dynamic_section_(NULL),
445     dynamic_symbol_(NULL),
446     dynamic_data_(NULL),
447     eh_frame_section_(NULL),
448     eh_frame_data_(NULL),
449     added_eh_frame_data_(false),
450     eh_frame_hdr_section_(NULL),
451     gdb_index_data_(NULL),
452     build_id_note_(NULL),
453     array_of_hashes_(NULL),
454     size_of_array_of_hashes_(0),
455     input_view_(NULL),
456     debug_abbrev_(NULL),
457     debug_info_(NULL),
458     group_signatures_(),
459     output_file_size_(-1),
460     have_added_input_section_(false),
461     sections_are_attached_(false),
462     input_requires_executable_stack_(false),
463     input_with_gnu_stack_note_(false),
464     input_without_gnu_stack_note_(false),
465     has_static_tls_(false),
466     any_postprocessing_sections_(false),
467     resized_signatures_(false),
468     have_stabstr_section_(false),
469     section_ordering_specified_(false),
470     unique_segment_for_sections_specified_(false),
471     incremental_inputs_(NULL),
472     record_output_section_data_from_script_(false),
473     script_output_section_data_list_(),
474     segment_states_(NULL),
475     relaxation_debug_check_(NULL),
476     section_order_map_(),
477     section_segment_map_(),
478     input_section_position_(),
479     input_section_glob_(),
480     incremental_base_(NULL),
481     free_list_()
482 {
483   // Make space for more than enough segments for a typical file.
484   // This is just for efficiency--it's OK if we wind up needing more.
485   this->segment_list_.reserve(12);
486
487   // We expect two unattached Output_data objects: the file header and
488   // the segment headers.
489   this->special_output_list_.reserve(2);
490
491   // Initialize structure needed for an incremental build.
492   if (parameters->incremental())
493     this->incremental_inputs_ = new Incremental_inputs;
494
495   // The section name pool is worth optimizing in all cases, because
496   // it is small, but there are often overlaps due to .rel sections.
497   this->namepool_.set_optimize();
498 }
499
500 // For incremental links, record the base file to be modified.
501
502 void
503 Layout::set_incremental_base(Incremental_binary* base)
504 {
505   this->incremental_base_ = base;
506   this->free_list_.init(base->output_file()->filesize(), true);
507 }
508
509 // Hash a key we use to look up an output section mapping.
510
511 size_t
512 Layout::Hash_key::operator()(const Layout::Key& k) const
513 {
514  return k.first + k.second.first + k.second.second;
515 }
516
517 // These are the debug sections that are actually used by gdb.
518 // Currently, we've checked versions of gdb up to and including 7.4.
519 // We only check the part of the name that follows ".debug_" or
520 // ".zdebug_".
521
522 static const char* gdb_sections[] =
523 {
524   "abbrev",
525   "addr",         // Fission extension
526   // "aranges",   // not used by gdb as of 7.4
527   "frame",
528   "info",
529   "types",
530   "line",
531   "loc",
532   "macinfo",
533   "macro",
534   // "pubnames",  // not used by gdb as of 7.4
535   // "pubtypes",  // not used by gdb as of 7.4
536   "ranges",
537   "str",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   "info",
549   // "types",
550   "line",
551   // "loc",
552   // "macinfo",
553   // "macro",
554   // "pubnames",  // not used by gdb as of 7.4
555   // "pubtypes",  // not used by gdb as of 7.4
556   // "ranges",
557   "str",
558 };
559
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562
563 static const char* gdb_fast_lookup_sections[] =
564 {
565   "aranges",
566   "pubnames",
567   "pubtypes",
568 };
569
570 // Returns whether the given debug section is in the list of
571 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
572 // portion of the name following ".debug_" or ".zdebug_".
573
574 static inline bool
575 is_gdb_debug_section(const char* suffix)
576 {
577   // We can do this faster: binary search or a hashtable.  But why bother?
578   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
579     if (strcmp(suffix, gdb_sections[i]) == 0)
580       return true;
581   return false;
582 }
583
584 // Returns whether the given section is needed for lines-only debugging.
585
586 static inline bool
587 is_lines_only_debug_section(const char* suffix)
588 {
589   // We can do this faster: binary search or a hashtable.  But why bother?
590   for (size_t i = 0;
591        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
592        ++i)
593     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
594       return true;
595   return false;
596 }
597
598 // Returns whether the given section is a fast-lookup section that
599 // will not be needed when building a .gdb_index section.
600
601 static inline bool
602 is_gdb_fast_lookup_section(const char* suffix)
603 {
604   // We can do this faster: binary search or a hashtable.  But why bother?
605   for (size_t i = 0;
606        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
607        ++i)
608     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
609       return true;
610   return false;
611 }
612
613 // Sometimes we compress sections.  This is typically done for
614 // sections that are not part of normal program execution (such as
615 // .debug_* sections), and where the readers of these sections know
616 // how to deal with compressed sections.  This routine doesn't say for
617 // certain whether we'll compress -- it depends on commandline options
618 // as well -- just whether this section is a candidate for compression.
619 // (The Output_compressed_section class decides whether to compress
620 // a given section, and picks the name of the compressed section.)
621
622 static bool
623 is_compressible_debug_section(const char* secname)
624 {
625   return (is_prefix_of(".debug", secname));
626 }
627
628 // We may see compressed debug sections in input files.  Return TRUE
629 // if this is the name of a compressed debug section.
630
631 bool
632 is_compressed_debug_section(const char* secname)
633 {
634   return (is_prefix_of(".zdebug", secname));
635 }
636
637 // Whether to include this section in the link.
638
639 template<int size, bool big_endian>
640 bool
641 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
642                         const elfcpp::Shdr<size, big_endian>& shdr)
643 {
644   if (!parameters->options().relocatable()
645       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
646     return false;
647
648   switch (shdr.get_sh_type())
649     {
650     case elfcpp::SHT_NULL:
651     case elfcpp::SHT_SYMTAB:
652     case elfcpp::SHT_DYNSYM:
653     case elfcpp::SHT_HASH:
654     case elfcpp::SHT_DYNAMIC:
655     case elfcpp::SHT_SYMTAB_SHNDX:
656       return false;
657
658     case elfcpp::SHT_STRTAB:
659       // Discard the sections which have special meanings in the ELF
660       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
661       // checking the sh_link fields of the appropriate sections.
662       return (strcmp(name, ".dynstr") != 0
663               && strcmp(name, ".strtab") != 0
664               && strcmp(name, ".shstrtab") != 0);
665
666     case elfcpp::SHT_RELA:
667     case elfcpp::SHT_REL:
668     case elfcpp::SHT_GROUP:
669       // If we are emitting relocations these should be handled
670       // elsewhere.
671       gold_assert(!parameters->options().relocatable());
672       return false;
673
674     case elfcpp::SHT_PROGBITS:
675       if (parameters->options().strip_debug()
676           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
677         {
678           if (is_debug_info_section(name))
679             return false;
680         }
681       if (parameters->options().strip_debug_non_line()
682           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
683         {
684           // Debugging sections can only be recognized by name.
685           if (is_prefix_of(".debug_", name)
686               && !is_lines_only_debug_section(name + 7))
687             return false;
688           if (is_prefix_of(".zdebug_", name)
689               && !is_lines_only_debug_section(name + 8))
690             return false;
691         }
692       if (parameters->options().strip_debug_gdb()
693           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
694         {
695           // Debugging sections can only be recognized by name.
696           if (is_prefix_of(".debug_", name)
697               && !is_gdb_debug_section(name + 7))
698             return false;
699           if (is_prefix_of(".zdebug_", name)
700               && !is_gdb_debug_section(name + 8))
701             return false;
702         }
703       if (parameters->options().gdb_index()
704           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
705         {
706           // When building .gdb_index, we can strip .debug_pubnames,
707           // .debug_pubtypes, and .debug_aranges sections.
708           if (is_prefix_of(".debug_", name)
709               && is_gdb_fast_lookup_section(name + 7))
710             return false;
711           if (is_prefix_of(".zdebug_", name)
712               && is_gdb_fast_lookup_section(name + 8))
713             return false;
714         }
715       if (parameters->options().strip_lto_sections()
716           && !parameters->options().relocatable()
717           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
718         {
719           // Ignore LTO sections containing intermediate code.
720           if (is_prefix_of(".gnu.lto_", name))
721             return false;
722         }
723       // The GNU linker strips .gnu_debuglink sections, so we do too.
724       // This is a feature used to keep debugging information in
725       // separate files.
726       if (strcmp(name, ".gnu_debuglink") == 0)
727         return false;
728       return true;
729
730     default:
731       return true;
732     }
733 }
734
735 // Return an output section named NAME, or NULL if there is none.
736
737 Output_section*
738 Layout::find_output_section(const char* name) const
739 {
740   for (Section_list::const_iterator p = this->section_list_.begin();
741        p != this->section_list_.end();
742        ++p)
743     if (strcmp((*p)->name(), name) == 0)
744       return *p;
745   return NULL;
746 }
747
748 // Return an output segment of type TYPE, with segment flags SET set
749 // and segment flags CLEAR clear.  Return NULL if there is none.
750
751 Output_segment*
752 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
753                             elfcpp::Elf_Word clear) const
754 {
755   for (Segment_list::const_iterator p = this->segment_list_.begin();
756        p != this->segment_list_.end();
757        ++p)
758     if (static_cast<elfcpp::PT>((*p)->type()) == type
759         && ((*p)->flags() & set) == set
760         && ((*p)->flags() & clear) == 0)
761       return *p;
762   return NULL;
763 }
764
765 // When we put a .ctors or .dtors section with more than one word into
766 // a .init_array or .fini_array section, we need to reverse the words
767 // in the .ctors/.dtors section.  This is because .init_array executes
768 // constructors front to back, where .ctors executes them back to
769 // front, and vice-versa for .fini_array/.dtors.  Although we do want
770 // to remap .ctors/.dtors into .init_array/.fini_array because it can
771 // be more efficient, we don't want to change the order in which
772 // constructors/destructors are run.  This set just keeps track of
773 // these sections which need to be reversed.  It is only changed by
774 // Layout::layout.  It should be a private member of Layout, but that
775 // would require layout.h to #include object.h to get the definition
776 // of Section_id.
777 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
778
779 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
780 // .init_array/.fini_array section.
781
782 bool
783 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
784 {
785   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
786           != ctors_sections_in_init_array.end());
787 }
788
789 // Return the output section to use for section NAME with type TYPE
790 // and section flags FLAGS.  NAME must be canonicalized in the string
791 // pool, and NAME_KEY is the key.  ORDER is where this should appear
792 // in the output sections.  IS_RELRO is true for a relro section.
793
794 Output_section*
795 Layout::get_output_section(const char* name, Stringpool::Key name_key,
796                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
797                            Output_section_order order, bool is_relro)
798 {
799   elfcpp::Elf_Word lookup_type = type;
800
801   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
802   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
803   // .init_array, .fini_array, and .preinit_array sections by name
804   // whatever their type in the input file.  We do this because the
805   // types are not always right in the input files.
806   if (lookup_type == elfcpp::SHT_INIT_ARRAY
807       || lookup_type == elfcpp::SHT_FINI_ARRAY
808       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
809     lookup_type = elfcpp::SHT_PROGBITS;
810
811   elfcpp::Elf_Xword lookup_flags = flags;
812
813   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
814   // read-write with read-only sections.  Some other ELF linkers do
815   // not do this.  FIXME: Perhaps there should be an option
816   // controlling this.
817   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
818
819   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
820   const std::pair<Key, Output_section*> v(key, NULL);
821   std::pair<Section_name_map::iterator, bool> ins(
822     this->section_name_map_.insert(v));
823
824   if (!ins.second)
825     return ins.first->second;
826   else
827     {
828       // This is the first time we've seen this name/type/flags
829       // combination.  For compatibility with the GNU linker, we
830       // combine sections with contents and zero flags with sections
831       // with non-zero flags.  This is a workaround for cases where
832       // assembler code forgets to set section flags.  FIXME: Perhaps
833       // there should be an option to control this.
834       Output_section* os = NULL;
835
836       if (lookup_type == elfcpp::SHT_PROGBITS)
837         {
838           if (flags == 0)
839             {
840               Output_section* same_name = this->find_output_section(name);
841               if (same_name != NULL
842                   && (same_name->type() == elfcpp::SHT_PROGBITS
843                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
844                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
845                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
846                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
847                 os = same_name;
848             }
849           else if ((flags & elfcpp::SHF_TLS) == 0)
850             {
851               elfcpp::Elf_Xword zero_flags = 0;
852               const Key zero_key(name_key, std::make_pair(lookup_type,
853                                                           zero_flags));
854               Section_name_map::iterator p =
855                   this->section_name_map_.find(zero_key);
856               if (p != this->section_name_map_.end())
857                 os = p->second;
858             }
859         }
860
861       if (os == NULL)
862         os = this->make_output_section(name, type, flags, order, is_relro);
863
864       ins.first->second = os;
865       return os;
866     }
867 }
868
869 // Returns TRUE iff NAME (an input section from RELOBJ) will
870 // be mapped to an output section that should be KEPT.
871
872 bool
873 Layout::keep_input_section(const Relobj* relobj, const char* name)
874 {
875   if (! this->script_options_->saw_sections_clause())
876     return false;
877
878   Script_sections* ss = this->script_options_->script_sections();
879   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
880   Output_section** output_section_slot;
881   Script_sections::Section_type script_section_type;
882   bool keep;
883
884   name = ss->output_section_name(file_name, name, &output_section_slot,
885                                  &script_section_type, &keep);
886   return name != NULL && keep;
887 }
888
889 // Clear the input section flags that should not be copied to the
890 // output section.
891
892 elfcpp::Elf_Xword
893 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
894 {
895   // Some flags in the input section should not be automatically
896   // copied to the output section.
897   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
898                             | elfcpp::SHF_GROUP
899                             | elfcpp::SHF_MERGE
900                             | elfcpp::SHF_STRINGS);
901
902   // We only clear the SHF_LINK_ORDER flag in for
903   // a non-relocatable link.
904   if (!parameters->options().relocatable())
905     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
906
907   return input_section_flags;
908 }
909
910 // Pick the output section to use for section NAME, in input file
911 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
912 // linker created section.  IS_INPUT_SECTION is true if we are
913 // choosing an output section for an input section found in a input
914 // file.  ORDER is where this section should appear in the output
915 // sections.  IS_RELRO is true for a relro section.  This will return
916 // NULL if the input section should be discarded.
917
918 Output_section*
919 Layout::choose_output_section(const Relobj* relobj, const char* name,
920                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
921                               bool is_input_section, Output_section_order order,
922                               bool is_relro)
923 {
924   // We should not see any input sections after we have attached
925   // sections to segments.
926   gold_assert(!is_input_section || !this->sections_are_attached_);
927
928   flags = this->get_output_section_flags(flags);
929
930   if (this->script_options_->saw_sections_clause())
931     {
932       // We are using a SECTIONS clause, so the output section is
933       // chosen based only on the name.
934
935       Script_sections* ss = this->script_options_->script_sections();
936       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
937       Output_section** output_section_slot;
938       Script_sections::Section_type script_section_type;
939       const char* orig_name = name;
940       bool keep;
941       name = ss->output_section_name(file_name, name, &output_section_slot,
942                                      &script_section_type, &keep);
943
944       if (name == NULL)
945         {
946           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
947                                      "because it is not allowed by the "
948                                      "SECTIONS clause of the linker script"),
949                      orig_name);
950           // The SECTIONS clause says to discard this input section.
951           return NULL;
952         }
953
954       // We can only handle script section types ST_NONE and ST_NOLOAD.
955       switch (script_section_type)
956         {
957         case Script_sections::ST_NONE:
958           break;
959         case Script_sections::ST_NOLOAD:
960           flags &= elfcpp::SHF_ALLOC;
961           break;
962         default:
963           gold_unreachable();
964         }
965
966       // If this is an orphan section--one not mentioned in the linker
967       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
968       // default processing below.
969
970       if (output_section_slot != NULL)
971         {
972           if (*output_section_slot != NULL)
973             {
974               (*output_section_slot)->update_flags_for_input_section(flags);
975               return *output_section_slot;
976             }
977
978           // We don't put sections found in the linker script into
979           // SECTION_NAME_MAP_.  That keeps us from getting confused
980           // if an orphan section is mapped to a section with the same
981           // name as one in the linker script.
982
983           name = this->namepool_.add(name, false, NULL);
984
985           Output_section* os = this->make_output_section(name, type, flags,
986                                                          order, is_relro);
987
988           os->set_found_in_sections_clause();
989
990           // Special handling for NOLOAD sections.
991           if (script_section_type == Script_sections::ST_NOLOAD)
992             {
993               os->set_is_noload();
994
995               // The constructor of Output_section sets addresses of non-ALLOC
996               // sections to 0 by default.  We don't want that for NOLOAD
997               // sections even if they have no SHF_ALLOC flag.
998               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
999                   && os->is_address_valid())
1000                 {
1001                   gold_assert(os->address() == 0
1002                               && !os->is_offset_valid()
1003                               && !os->is_data_size_valid());
1004                   os->reset_address_and_file_offset();
1005                 }
1006             }
1007
1008           *output_section_slot = os;
1009           return os;
1010         }
1011     }
1012
1013   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1014
1015   size_t len = strlen(name);
1016   char* uncompressed_name = NULL;
1017
1018   // Compressed debug sections should be mapped to the corresponding
1019   // uncompressed section.
1020   if (is_compressed_debug_section(name))
1021     {
1022       uncompressed_name = new char[len];
1023       uncompressed_name[0] = '.';
1024       gold_assert(name[0] == '.' && name[1] == 'z');
1025       strncpy(&uncompressed_name[1], &name[2], len - 2);
1026       uncompressed_name[len - 1] = '\0';
1027       len -= 1;
1028       name = uncompressed_name;
1029     }
1030
1031   // Turn NAME from the name of the input section into the name of the
1032   // output section.
1033   if (is_input_section
1034       && !this->script_options_->saw_sections_clause()
1035       && !parameters->options().relocatable())
1036     {
1037       const char *orig_name = name;
1038       name = parameters->target().output_section_name(relobj, name, &len);
1039       if (name == NULL)
1040         name = Layout::output_section_name(relobj, orig_name, &len);
1041     }
1042
1043   Stringpool::Key name_key;
1044   name = this->namepool_.add_with_length(name, len, true, &name_key);
1045
1046   if (uncompressed_name != NULL)
1047     delete[] uncompressed_name;
1048
1049   // Find or make the output section.  The output section is selected
1050   // based on the section name, type, and flags.
1051   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1052 }
1053
1054 // For incremental links, record the initial fixed layout of a section
1055 // from the base file, and return a pointer to the Output_section.
1056
1057 template<int size, bool big_endian>
1058 Output_section*
1059 Layout::init_fixed_output_section(const char* name,
1060                                   elfcpp::Shdr<size, big_endian>& shdr)
1061 {
1062   unsigned int sh_type = shdr.get_sh_type();
1063
1064   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1065   // PRE_INIT_ARRAY, and NOTE sections.
1066   // All others will be created from scratch and reallocated.
1067   if (!can_incremental_update(sh_type))
1068     return NULL;
1069
1070   // If we're generating a .gdb_index section, we need to regenerate
1071   // it from scratch.
1072   if (parameters->options().gdb_index()
1073       && sh_type == elfcpp::SHT_PROGBITS
1074       && strcmp(name, ".gdb_index") == 0)
1075     return NULL;
1076
1077   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1078   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1079   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1080   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1081   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1082       shdr.get_sh_addralign();
1083
1084   // Make the output section.
1085   Stringpool::Key name_key;
1086   name = this->namepool_.add(name, true, &name_key);
1087   Output_section* os = this->get_output_section(name, name_key, sh_type,
1088                                                 sh_flags, ORDER_INVALID, false);
1089   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1090   if (sh_type != elfcpp::SHT_NOBITS)
1091     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1092   return os;
1093 }
1094
1095 // Return the index by which an input section should be ordered.  This
1096 // is used to sort some .text sections, for compatibility with GNU ld.
1097
1098 int
1099 Layout::special_ordering_of_input_section(const char* name)
1100 {
1101   // The GNU linker has some special handling for some sections that
1102   // wind up in the .text section.  Sections that start with these
1103   // prefixes must appear first, and must appear in the order listed
1104   // here.
1105   static const char* const text_section_sort[] =
1106   {
1107     ".text.unlikely",
1108     ".text.exit",
1109     ".text.startup",
1110     ".text.hot"
1111   };
1112
1113   for (size_t i = 0;
1114        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1115        i++)
1116     if (is_prefix_of(text_section_sort[i], name))
1117       return i;
1118
1119   return -1;
1120 }
1121
1122 // Return the output section to use for input section SHNDX, with name
1123 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1124 // index of a relocation section which applies to this section, or 0
1125 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1126 // relocation section if there is one.  Set *OFF to the offset of this
1127 // input section without the output section.  Return NULL if the
1128 // section should be discarded.  Set *OFF to -1 if the section
1129 // contents should not be written directly to the output file, but
1130 // will instead receive special handling.
1131
1132 template<int size, bool big_endian>
1133 Output_section*
1134 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1135                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1136                unsigned int reloc_shndx, unsigned int, off_t* off)
1137 {
1138   *off = 0;
1139
1140   if (!this->include_section(object, name, shdr))
1141     return NULL;
1142
1143   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1144
1145   // In a relocatable link a grouped section must not be combined with
1146   // any other sections.
1147   Output_section* os;
1148   if (parameters->options().relocatable()
1149       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1150     {
1151       name = this->namepool_.add(name, true, NULL);
1152       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1153                                      ORDER_INVALID, false);
1154     }
1155   else
1156     {
1157       // Plugins can choose to place one or more subsets of sections in
1158       // unique segments and this is done by mapping these section subsets
1159       // to unique output sections.  Check if this section needs to be
1160       // remapped to a unique output section.
1161       Section_segment_map::iterator it
1162           = this->section_segment_map_.find(Const_section_id(object, shndx));
1163       if (it == this->section_segment_map_.end())
1164         {
1165           os = this->choose_output_section(object, name, sh_type,
1166                                            shdr.get_sh_flags(), true,
1167                                            ORDER_INVALID, false);
1168         }
1169       else
1170         {
1171           // We know the name of the output section, directly call
1172           // get_output_section here by-passing choose_output_section.
1173           elfcpp::Elf_Xword flags
1174             = this->get_output_section_flags(shdr.get_sh_flags());
1175
1176           const char* os_name = it->second->name;
1177           Stringpool::Key name_key;
1178           os_name = this->namepool_.add(os_name, true, &name_key);
1179           os = this->get_output_section(os_name, name_key, sh_type, flags,
1180                                         ORDER_INVALID, false);
1181           if (!os->is_unique_segment())
1182             {
1183               os->set_is_unique_segment();
1184               os->set_extra_segment_flags(it->second->flags);
1185               os->set_segment_alignment(it->second->align);
1186             }
1187         }
1188       if (os == NULL)
1189         return NULL;
1190     }
1191
1192   // By default the GNU linker sorts input sections whose names match
1193   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1194   // sections are sorted by name.  This is used to implement
1195   // constructor priority ordering.  We are compatible.  When we put
1196   // .ctor sections in .init_array and .dtor sections in .fini_array,
1197   // we must also sort plain .ctor and .dtor sections.
1198   if (!this->script_options_->saw_sections_clause()
1199       && !parameters->options().relocatable()
1200       && (is_prefix_of(".ctors.", name)
1201           || is_prefix_of(".dtors.", name)
1202           || is_prefix_of(".init_array.", name)
1203           || is_prefix_of(".fini_array.", name)
1204           || (parameters->options().ctors_in_init_array()
1205               && (strcmp(name, ".ctors") == 0
1206                   || strcmp(name, ".dtors") == 0))))
1207     os->set_must_sort_attached_input_sections();
1208
1209   // By default the GNU linker sorts some special text sections ahead
1210   // of others.  We are compatible.
1211   if (parameters->options().text_reorder()
1212       && !this->script_options_->saw_sections_clause()
1213       && !this->is_section_ordering_specified()
1214       && !parameters->options().relocatable()
1215       && Layout::special_ordering_of_input_section(name) >= 0)
1216     os->set_must_sort_attached_input_sections();
1217
1218   // If this is a .ctors or .ctors.* section being mapped to a
1219   // .init_array section, or a .dtors or .dtors.* section being mapped
1220   // to a .fini_array section, we will need to reverse the words if
1221   // there is more than one.  Record this section for later.  See
1222   // ctors_sections_in_init_array above.
1223   if (!this->script_options_->saw_sections_clause()
1224       && !parameters->options().relocatable()
1225       && shdr.get_sh_size() > size / 8
1226       && (((strcmp(name, ".ctors") == 0
1227             || is_prefix_of(".ctors.", name))
1228            && strcmp(os->name(), ".init_array") == 0)
1229           || ((strcmp(name, ".dtors") == 0
1230                || is_prefix_of(".dtors.", name))
1231               && strcmp(os->name(), ".fini_array") == 0)))
1232     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1233
1234   // FIXME: Handle SHF_LINK_ORDER somewhere.
1235
1236   elfcpp::Elf_Xword orig_flags = os->flags();
1237
1238   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1239                                this->script_options_->saw_sections_clause());
1240
1241   // If the flags changed, we may have to change the order.
1242   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1243     {
1244       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1245       elfcpp::Elf_Xword new_flags =
1246         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1247       if (orig_flags != new_flags)
1248         os->set_order(this->default_section_order(os, false));
1249     }
1250
1251   this->have_added_input_section_ = true;
1252
1253   return os;
1254 }
1255
1256 // Maps section SECN to SEGMENT s.
1257 void
1258 Layout::insert_section_segment_map(Const_section_id secn,
1259                                    Unique_segment_info *s)
1260 {
1261   gold_assert(this->unique_segment_for_sections_specified_);
1262   this->section_segment_map_[secn] = s;
1263 }
1264
1265 // Handle a relocation section when doing a relocatable link.
1266
1267 template<int size, bool big_endian>
1268 Output_section*
1269 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1270                      unsigned int,
1271                      const elfcpp::Shdr<size, big_endian>& shdr,
1272                      Output_section* data_section,
1273                      Relocatable_relocs* rr)
1274 {
1275   gold_assert(parameters->options().relocatable()
1276               || parameters->options().emit_relocs());
1277
1278   int sh_type = shdr.get_sh_type();
1279
1280   std::string name;
1281   if (sh_type == elfcpp::SHT_REL)
1282     name = ".rel";
1283   else if (sh_type == elfcpp::SHT_RELA)
1284     name = ".rela";
1285   else
1286     gold_unreachable();
1287   name += data_section->name();
1288
1289   // In a relocatable link relocs for a grouped section must not be
1290   // combined with other reloc sections.
1291   Output_section* os;
1292   if (!parameters->options().relocatable()
1293       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1294     os = this->choose_output_section(object, name.c_str(), sh_type,
1295                                      shdr.get_sh_flags(), false,
1296                                      ORDER_INVALID, false);
1297   else
1298     {
1299       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1300       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1301                                      ORDER_INVALID, false);
1302     }
1303
1304   os->set_should_link_to_symtab();
1305   os->set_info_section(data_section);
1306
1307   Output_section_data* posd;
1308   if (sh_type == elfcpp::SHT_REL)
1309     {
1310       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1311       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1312                                            size,
1313                                            big_endian>(rr);
1314     }
1315   else if (sh_type == elfcpp::SHT_RELA)
1316     {
1317       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1318       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1319                                            size,
1320                                            big_endian>(rr);
1321     }
1322   else
1323     gold_unreachable();
1324
1325   os->add_output_section_data(posd);
1326   rr->set_output_data(posd);
1327
1328   return os;
1329 }
1330
1331 // Handle a group section when doing a relocatable link.
1332
1333 template<int size, bool big_endian>
1334 void
1335 Layout::layout_group(Symbol_table* symtab,
1336                      Sized_relobj_file<size, big_endian>* object,
1337                      unsigned int,
1338                      const char* group_section_name,
1339                      const char* signature,
1340                      const elfcpp::Shdr<size, big_endian>& shdr,
1341                      elfcpp::Elf_Word flags,
1342                      std::vector<unsigned int>* shndxes)
1343 {
1344   gold_assert(parameters->options().relocatable());
1345   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1346   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1347   Output_section* os = this->make_output_section(group_section_name,
1348                                                  elfcpp::SHT_GROUP,
1349                                                  shdr.get_sh_flags(),
1350                                                  ORDER_INVALID, false);
1351
1352   // We need to find a symbol with the signature in the symbol table.
1353   // If we don't find one now, we need to look again later.
1354   Symbol* sym = symtab->lookup(signature, NULL);
1355   if (sym != NULL)
1356     os->set_info_symndx(sym);
1357   else
1358     {
1359       // Reserve some space to minimize reallocations.
1360       if (this->group_signatures_.empty())
1361         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1362
1363       // We will wind up using a symbol whose name is the signature.
1364       // So just put the signature in the symbol name pool to save it.
1365       signature = symtab->canonicalize_name(signature);
1366       this->group_signatures_.push_back(Group_signature(os, signature));
1367     }
1368
1369   os->set_should_link_to_symtab();
1370   os->set_entsize(4);
1371
1372   section_size_type entry_count =
1373     convert_to_section_size_type(shdr.get_sh_size() / 4);
1374   Output_section_data* posd =
1375     new Output_data_group<size, big_endian>(object, entry_count, flags,
1376                                             shndxes);
1377   os->add_output_section_data(posd);
1378 }
1379
1380 // Special GNU handling of sections name .eh_frame.  They will
1381 // normally hold exception frame data as defined by the C++ ABI
1382 // (http://codesourcery.com/cxx-abi/).
1383
1384 template<int size, bool big_endian>
1385 Output_section*
1386 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1387                         const unsigned char* symbols,
1388                         off_t symbols_size,
1389                         const unsigned char* symbol_names,
1390                         off_t symbol_names_size,
1391                         unsigned int shndx,
1392                         const elfcpp::Shdr<size, big_endian>& shdr,
1393                         unsigned int reloc_shndx, unsigned int reloc_type,
1394                         off_t* off)
1395 {
1396   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1397               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1398   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1399
1400   Output_section* os = this->make_eh_frame_section(object);
1401   if (os == NULL)
1402     return NULL;
1403
1404   gold_assert(this->eh_frame_section_ == os);
1405
1406   elfcpp::Elf_Xword orig_flags = os->flags();
1407
1408   if (!parameters->incremental()
1409       && this->eh_frame_data_->add_ehframe_input_section(object,
1410                                                          symbols,
1411                                                          symbols_size,
1412                                                          symbol_names,
1413                                                          symbol_names_size,
1414                                                          shndx,
1415                                                          reloc_shndx,
1416                                                          reloc_type))
1417     {
1418       os->update_flags_for_input_section(shdr.get_sh_flags());
1419
1420       // A writable .eh_frame section is a RELRO section.
1421       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1422           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1423         {
1424           os->set_is_relro();
1425           os->set_order(ORDER_RELRO);
1426         }
1427
1428       // We found a .eh_frame section we are going to optimize, so now
1429       // we can add the set of optimized sections to the output
1430       // section.  We need to postpone adding this until we've found a
1431       // section we can optimize so that the .eh_frame section in
1432       // crtbegin.o winds up at the start of the output section.
1433       if (!this->added_eh_frame_data_)
1434         {
1435           os->add_output_section_data(this->eh_frame_data_);
1436           this->added_eh_frame_data_ = true;
1437         }
1438       *off = -1;
1439     }
1440   else
1441     {
1442       // We couldn't handle this .eh_frame section for some reason.
1443       // Add it as a normal section.
1444       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1445       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1446                                    reloc_shndx, saw_sections_clause);
1447       this->have_added_input_section_ = true;
1448
1449       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1450           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1451         os->set_order(this->default_section_order(os, false));
1452     }
1453
1454   return os;
1455 }
1456
1457 // Create and return the magic .eh_frame section.  Create
1458 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1459 // input .eh_frame section; it may be NULL.
1460
1461 Output_section*
1462 Layout::make_eh_frame_section(const Relobj* object)
1463 {
1464   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1465   // SHT_PROGBITS.
1466   Output_section* os = this->choose_output_section(object, ".eh_frame",
1467                                                    elfcpp::SHT_PROGBITS,
1468                                                    elfcpp::SHF_ALLOC, false,
1469                                                    ORDER_EHFRAME, false);
1470   if (os == NULL)
1471     return NULL;
1472
1473   if (this->eh_frame_section_ == NULL)
1474     {
1475       this->eh_frame_section_ = os;
1476       this->eh_frame_data_ = new Eh_frame();
1477
1478       // For incremental linking, we do not optimize .eh_frame sections
1479       // or create a .eh_frame_hdr section.
1480       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1481         {
1482           Output_section* hdr_os =
1483             this->choose_output_section(NULL, ".eh_frame_hdr",
1484                                         elfcpp::SHT_PROGBITS,
1485                                         elfcpp::SHF_ALLOC, false,
1486                                         ORDER_EHFRAME, false);
1487
1488           if (hdr_os != NULL)
1489             {
1490               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1491                                                         this->eh_frame_data_);
1492               hdr_os->add_output_section_data(hdr_posd);
1493
1494               hdr_os->set_after_input_sections();
1495
1496               if (!this->script_options_->saw_phdrs_clause())
1497                 {
1498                   Output_segment* hdr_oseg;
1499                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1500                                                        elfcpp::PF_R);
1501                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1502                                                           elfcpp::PF_R);
1503                 }
1504
1505               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1506             }
1507         }
1508     }
1509
1510   return os;
1511 }
1512
1513 // Add an exception frame for a PLT.  This is called from target code.
1514
1515 void
1516 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1517                              size_t cie_length, const unsigned char* fde_data,
1518                              size_t fde_length)
1519 {
1520   if (parameters->incremental())
1521     {
1522       // FIXME: Maybe this could work some day....
1523       return;
1524     }
1525   Output_section* os = this->make_eh_frame_section(NULL);
1526   if (os == NULL)
1527     return;
1528   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1529                                             fde_data, fde_length);
1530   if (!this->added_eh_frame_data_)
1531     {
1532       os->add_output_section_data(this->eh_frame_data_);
1533       this->added_eh_frame_data_ = true;
1534     }
1535 }
1536
1537 // Scan a .debug_info or .debug_types section, and add summary
1538 // information to the .gdb_index section.
1539
1540 template<int size, bool big_endian>
1541 void
1542 Layout::add_to_gdb_index(bool is_type_unit,
1543                          Sized_relobj<size, big_endian>* object,
1544                          const unsigned char* symbols,
1545                          off_t symbols_size,
1546                          unsigned int shndx,
1547                          unsigned int reloc_shndx,
1548                          unsigned int reloc_type)
1549 {
1550   if (this->gdb_index_data_ == NULL)
1551     {
1552       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1553                                                        elfcpp::SHT_PROGBITS, 0,
1554                                                        false, ORDER_INVALID,
1555                                                        false);
1556       if (os == NULL)
1557         return;
1558
1559       this->gdb_index_data_ = new Gdb_index(os);
1560       os->add_output_section_data(this->gdb_index_data_);
1561       os->set_after_input_sections();
1562     }
1563
1564   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1565                                          symbols_size, shndx, reloc_shndx,
1566                                          reloc_type);
1567 }
1568
1569 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1570 // the output section.
1571
1572 Output_section*
1573 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1574                                 elfcpp::Elf_Xword flags,
1575                                 Output_section_data* posd,
1576                                 Output_section_order order, bool is_relro)
1577 {
1578   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1579                                                    false, order, is_relro);
1580   if (os != NULL)
1581     os->add_output_section_data(posd);
1582   return os;
1583 }
1584
1585 // Map section flags to segment flags.
1586
1587 elfcpp::Elf_Word
1588 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1589 {
1590   elfcpp::Elf_Word ret = elfcpp::PF_R;
1591   if ((flags & elfcpp::SHF_WRITE) != 0)
1592     ret |= elfcpp::PF_W;
1593   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1594     ret |= elfcpp::PF_X;
1595   return ret;
1596 }
1597
1598 // Make a new Output_section, and attach it to segments as
1599 // appropriate.  ORDER is the order in which this section should
1600 // appear in the output segment.  IS_RELRO is true if this is a relro
1601 // (read-only after relocations) section.
1602
1603 Output_section*
1604 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1605                             elfcpp::Elf_Xword flags,
1606                             Output_section_order order, bool is_relro)
1607 {
1608   Output_section* os;
1609   if ((flags & elfcpp::SHF_ALLOC) == 0
1610       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1611       && is_compressible_debug_section(name))
1612     os = new Output_compressed_section(&parameters->options(), name, type,
1613                                        flags);
1614   else if ((flags & elfcpp::SHF_ALLOC) == 0
1615            && parameters->options().strip_debug_non_line()
1616            && strcmp(".debug_abbrev", name) == 0)
1617     {
1618       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1619           name, type, flags);
1620       if (this->debug_info_)
1621         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1622     }
1623   else if ((flags & elfcpp::SHF_ALLOC) == 0
1624            && parameters->options().strip_debug_non_line()
1625            && strcmp(".debug_info", name) == 0)
1626     {
1627       os = this->debug_info_ = new Output_reduced_debug_info_section(
1628           name, type, flags);
1629       if (this->debug_abbrev_)
1630         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1631     }
1632   else
1633     {
1634       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1635       // not have correct section types.  Force them here.
1636       if (type == elfcpp::SHT_PROGBITS)
1637         {
1638           if (is_prefix_of(".init_array", name))
1639             type = elfcpp::SHT_INIT_ARRAY;
1640           else if (is_prefix_of(".preinit_array", name))
1641             type = elfcpp::SHT_PREINIT_ARRAY;
1642           else if (is_prefix_of(".fini_array", name))
1643             type = elfcpp::SHT_FINI_ARRAY;
1644         }
1645
1646       // FIXME: const_cast is ugly.
1647       Target* target = const_cast<Target*>(&parameters->target());
1648       os = target->make_output_section(name, type, flags);
1649     }
1650
1651   // With -z relro, we have to recognize the special sections by name.
1652   // There is no other way.
1653   bool is_relro_local = false;
1654   if (!this->script_options_->saw_sections_clause()
1655       && parameters->options().relro()
1656       && (flags & elfcpp::SHF_ALLOC) != 0
1657       && (flags & elfcpp::SHF_WRITE) != 0)
1658     {
1659       if (type == elfcpp::SHT_PROGBITS)
1660         {
1661           if ((flags & elfcpp::SHF_TLS) != 0)
1662             is_relro = true;
1663           else if (strcmp(name, ".data.rel.ro") == 0)
1664             is_relro = true;
1665           else if (strcmp(name, ".data.rel.ro.local") == 0)
1666             {
1667               is_relro = true;
1668               is_relro_local = true;
1669             }
1670           else if (strcmp(name, ".ctors") == 0
1671                    || strcmp(name, ".dtors") == 0
1672                    || strcmp(name, ".jcr") == 0)
1673             is_relro = true;
1674         }
1675       else if (type == elfcpp::SHT_INIT_ARRAY
1676                || type == elfcpp::SHT_FINI_ARRAY
1677                || type == elfcpp::SHT_PREINIT_ARRAY)
1678         is_relro = true;
1679     }
1680
1681   if (is_relro)
1682     os->set_is_relro();
1683
1684   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1685     order = this->default_section_order(os, is_relro_local);
1686
1687   os->set_order(order);
1688
1689   parameters->target().new_output_section(os);
1690
1691   this->section_list_.push_back(os);
1692
1693   // The GNU linker by default sorts some sections by priority, so we
1694   // do the same.  We need to know that this might happen before we
1695   // attach any input sections.
1696   if (!this->script_options_->saw_sections_clause()
1697       && !parameters->options().relocatable()
1698       && (strcmp(name, ".init_array") == 0
1699           || strcmp(name, ".fini_array") == 0
1700           || (!parameters->options().ctors_in_init_array()
1701               && (strcmp(name, ".ctors") == 0
1702                   || strcmp(name, ".dtors") == 0))))
1703     os->set_may_sort_attached_input_sections();
1704
1705   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1706   // sections before other .text sections.  We are compatible.  We
1707   // need to know that this might happen before we attach any input
1708   // sections.
1709   if (parameters->options().text_reorder()
1710       && !this->script_options_->saw_sections_clause()
1711       && !this->is_section_ordering_specified()
1712       && !parameters->options().relocatable()
1713       && strcmp(name, ".text") == 0)
1714     os->set_may_sort_attached_input_sections();
1715
1716   // GNU linker sorts section by name with --sort-section=name.
1717   if (strcmp(parameters->options().sort_section(), "name") == 0)
1718       os->set_must_sort_attached_input_sections();
1719
1720   // Check for .stab*str sections, as .stab* sections need to link to
1721   // them.
1722   if (type == elfcpp::SHT_STRTAB
1723       && !this->have_stabstr_section_
1724       && strncmp(name, ".stab", 5) == 0
1725       && strcmp(name + strlen(name) - 3, "str") == 0)
1726     this->have_stabstr_section_ = true;
1727
1728   // During a full incremental link, we add patch space to most
1729   // PROGBITS and NOBITS sections.  Flag those that may be
1730   // arbitrarily padded.
1731   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1732       && order != ORDER_INTERP
1733       && order != ORDER_INIT
1734       && order != ORDER_PLT
1735       && order != ORDER_FINI
1736       && order != ORDER_RELRO_LAST
1737       && order != ORDER_NON_RELRO_FIRST
1738       && strcmp(name, ".eh_frame") != 0
1739       && strcmp(name, ".ctors") != 0
1740       && strcmp(name, ".dtors") != 0
1741       && strcmp(name, ".jcr") != 0)
1742     {
1743       os->set_is_patch_space_allowed();
1744
1745       // Certain sections require "holes" to be filled with
1746       // specific fill patterns.  These fill patterns may have
1747       // a minimum size, so we must prevent allocations from the
1748       // free list that leave a hole smaller than the minimum.
1749       if (strcmp(name, ".debug_info") == 0)
1750         os->set_free_space_fill(new Output_fill_debug_info(false));
1751       else if (strcmp(name, ".debug_types") == 0)
1752         os->set_free_space_fill(new Output_fill_debug_info(true));
1753       else if (strcmp(name, ".debug_line") == 0)
1754         os->set_free_space_fill(new Output_fill_debug_line());
1755     }
1756
1757   // If we have already attached the sections to segments, then we
1758   // need to attach this one now.  This happens for sections created
1759   // directly by the linker.
1760   if (this->sections_are_attached_)
1761     this->attach_section_to_segment(&parameters->target(), os);
1762
1763   return os;
1764 }
1765
1766 // Return the default order in which a section should be placed in an
1767 // output segment.  This function captures a lot of the ideas in
1768 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1769 // linker created section is normally set when the section is created;
1770 // this function is used for input sections.
1771
1772 Output_section_order
1773 Layout::default_section_order(Output_section* os, bool is_relro_local)
1774 {
1775   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1776   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1777   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1778   bool is_bss = false;
1779
1780   switch (os->type())
1781     {
1782     default:
1783     case elfcpp::SHT_PROGBITS:
1784       break;
1785     case elfcpp::SHT_NOBITS:
1786       is_bss = true;
1787       break;
1788     case elfcpp::SHT_RELA:
1789     case elfcpp::SHT_REL:
1790       if (!is_write)
1791         return ORDER_DYNAMIC_RELOCS;
1792       break;
1793     case elfcpp::SHT_HASH:
1794     case elfcpp::SHT_DYNAMIC:
1795     case elfcpp::SHT_SHLIB:
1796     case elfcpp::SHT_DYNSYM:
1797     case elfcpp::SHT_GNU_HASH:
1798     case elfcpp::SHT_GNU_verdef:
1799     case elfcpp::SHT_GNU_verneed:
1800     case elfcpp::SHT_GNU_versym:
1801       if (!is_write)
1802         return ORDER_DYNAMIC_LINKER;
1803       break;
1804     case elfcpp::SHT_NOTE:
1805       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1806     }
1807
1808   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1809     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1810
1811   if (!is_bss && !is_write)
1812     {
1813       if (is_execinstr)
1814         {
1815           if (strcmp(os->name(), ".init") == 0)
1816             return ORDER_INIT;
1817           else if (strcmp(os->name(), ".fini") == 0)
1818             return ORDER_FINI;
1819         }
1820       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1821     }
1822
1823   if (os->is_relro())
1824     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1825
1826   if (os->is_small_section())
1827     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1828   if (os->is_large_section())
1829     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1830
1831   return is_bss ? ORDER_BSS : ORDER_DATA;
1832 }
1833
1834 // Attach output sections to segments.  This is called after we have
1835 // seen all the input sections.
1836
1837 void
1838 Layout::attach_sections_to_segments(const Target* target)
1839 {
1840   for (Section_list::iterator p = this->section_list_.begin();
1841        p != this->section_list_.end();
1842        ++p)
1843     this->attach_section_to_segment(target, *p);
1844
1845   this->sections_are_attached_ = true;
1846 }
1847
1848 // Attach an output section to a segment.
1849
1850 void
1851 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1852 {
1853   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1854     this->unattached_section_list_.push_back(os);
1855   else
1856     this->attach_allocated_section_to_segment(target, os);
1857 }
1858
1859 // Attach an allocated output section to a segment.
1860
1861 void
1862 Layout::attach_allocated_section_to_segment(const Target* target,
1863                                             Output_section* os)
1864 {
1865   elfcpp::Elf_Xword flags = os->flags();
1866   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1867
1868   if (parameters->options().relocatable())
1869     return;
1870
1871   // If we have a SECTIONS clause, we can't handle the attachment to
1872   // segments until after we've seen all the sections.
1873   if (this->script_options_->saw_sections_clause())
1874     return;
1875
1876   gold_assert(!this->script_options_->saw_phdrs_clause());
1877
1878   // This output section goes into a PT_LOAD segment.
1879
1880   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1881
1882   // If this output section's segment has extra flags that need to be set,
1883   // coming from a linker plugin, do that.
1884   seg_flags |= os->extra_segment_flags();
1885
1886   // Check for --section-start.
1887   uint64_t addr;
1888   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1889
1890   // In general the only thing we really care about for PT_LOAD
1891   // segments is whether or not they are writable or executable,
1892   // so that is how we search for them.
1893   // Large data sections also go into their own PT_LOAD segment.
1894   // People who need segments sorted on some other basis will
1895   // have to use a linker script.
1896
1897   Segment_list::const_iterator p;
1898   if (!os->is_unique_segment())
1899     {
1900       for (p = this->segment_list_.begin();
1901            p != this->segment_list_.end();
1902            ++p)
1903         {
1904           if ((*p)->type() != elfcpp::PT_LOAD)
1905             continue;
1906           if ((*p)->is_unique_segment())
1907             continue;
1908           if (!parameters->options().omagic()
1909               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1910             continue;
1911           if ((target->isolate_execinstr() || parameters->options().rosegment())
1912               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1913             continue;
1914           // If -Tbss was specified, we need to separate the data and BSS
1915           // segments.
1916           if (parameters->options().user_set_Tbss())
1917             {
1918               if ((os->type() == elfcpp::SHT_NOBITS)
1919                   == (*p)->has_any_data_sections())
1920                 continue;
1921             }
1922           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1923             continue;
1924
1925           if (is_address_set)
1926             {
1927               if ((*p)->are_addresses_set())
1928                 continue;
1929
1930               (*p)->add_initial_output_data(os);
1931               (*p)->update_flags_for_output_section(seg_flags);
1932               (*p)->set_addresses(addr, addr);
1933               break;
1934             }
1935
1936           (*p)->add_output_section_to_load(this, os, seg_flags);
1937           break;
1938         }
1939     }
1940
1941   if (p == this->segment_list_.end()
1942       || os->is_unique_segment())
1943     {
1944       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1945                                                        seg_flags);
1946       if (os->is_large_data_section())
1947         oseg->set_is_large_data_segment();
1948       oseg->add_output_section_to_load(this, os, seg_flags);
1949       if (is_address_set)
1950         oseg->set_addresses(addr, addr);
1951       // Check if segment should be marked unique.  For segments marked
1952       // unique by linker plugins, set the new alignment if specified.
1953       if (os->is_unique_segment())
1954         {
1955           oseg->set_is_unique_segment();
1956           if (os->segment_alignment() != 0)
1957             oseg->set_minimum_p_align(os->segment_alignment());
1958         }
1959     }
1960
1961   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1962   // segment.
1963   if (os->type() == elfcpp::SHT_NOTE)
1964     {
1965       // See if we already have an equivalent PT_NOTE segment.
1966       for (p = this->segment_list_.begin();
1967            p != segment_list_.end();
1968            ++p)
1969         {
1970           if ((*p)->type() == elfcpp::PT_NOTE
1971               && (((*p)->flags() & elfcpp::PF_W)
1972                   == (seg_flags & elfcpp::PF_W)))
1973             {
1974               (*p)->add_output_section_to_nonload(os, seg_flags);
1975               break;
1976             }
1977         }
1978
1979       if (p == this->segment_list_.end())
1980         {
1981           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1982                                                            seg_flags);
1983           oseg->add_output_section_to_nonload(os, seg_flags);
1984         }
1985     }
1986
1987   // If we see a loadable SHF_TLS section, we create a PT_TLS
1988   // segment.  There can only be one such segment.
1989   if ((flags & elfcpp::SHF_TLS) != 0)
1990     {
1991       if (this->tls_segment_ == NULL)
1992         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1993       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1994     }
1995
1996   // If -z relro is in effect, and we see a relro section, we create a
1997   // PT_GNU_RELRO segment.  There can only be one such segment.
1998   if (os->is_relro() && parameters->options().relro())
1999     {
2000       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2001       if (this->relro_segment_ == NULL)
2002         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2003       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2004     }
2005
2006   // If we see a section named .interp, put it into a PT_INTERP
2007   // segment.  This seems broken to me, but this is what GNU ld does,
2008   // and glibc expects it.
2009   if (strcmp(os->name(), ".interp") == 0
2010       && !this->script_options_->saw_phdrs_clause())
2011     {
2012       if (this->interp_segment_ == NULL)
2013         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2014       else
2015         gold_warning(_("multiple '.interp' sections in input files "
2016                        "may cause confusing PT_INTERP segment"));
2017       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2018     }
2019 }
2020
2021 // Make an output section for a script.
2022
2023 Output_section*
2024 Layout::make_output_section_for_script(
2025     const char* name,
2026     Script_sections::Section_type section_type)
2027 {
2028   name = this->namepool_.add(name, false, NULL);
2029   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2030   if (section_type == Script_sections::ST_NOLOAD)
2031     sh_flags = 0;
2032   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2033                                                  sh_flags, ORDER_INVALID,
2034                                                  false);
2035   os->set_found_in_sections_clause();
2036   if (section_type == Script_sections::ST_NOLOAD)
2037     os->set_is_noload();
2038   return os;
2039 }
2040
2041 // Return the number of segments we expect to see.
2042
2043 size_t
2044 Layout::expected_segment_count() const
2045 {
2046   size_t ret = this->segment_list_.size();
2047
2048   // If we didn't see a SECTIONS clause in a linker script, we should
2049   // already have the complete list of segments.  Otherwise we ask the
2050   // SECTIONS clause how many segments it expects, and add in the ones
2051   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2052
2053   if (!this->script_options_->saw_sections_clause())
2054     return ret;
2055   else
2056     {
2057       const Script_sections* ss = this->script_options_->script_sections();
2058       return ret + ss->expected_segment_count(this);
2059     }
2060 }
2061
2062 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2063 // is whether we saw a .note.GNU-stack section in the object file.
2064 // GNU_STACK_FLAGS is the section flags.  The flags give the
2065 // protection required for stack memory.  We record this in an
2066 // executable as a PT_GNU_STACK segment.  If an object file does not
2067 // have a .note.GNU-stack segment, we must assume that it is an old
2068 // object.  On some targets that will force an executable stack.
2069
2070 void
2071 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2072                          const Object* obj)
2073 {
2074   if (!seen_gnu_stack)
2075     {
2076       this->input_without_gnu_stack_note_ = true;
2077       if (parameters->options().warn_execstack()
2078           && parameters->target().is_default_stack_executable())
2079         gold_warning(_("%s: missing .note.GNU-stack section"
2080                        " implies executable stack"),
2081                      obj->name().c_str());
2082     }
2083   else
2084     {
2085       this->input_with_gnu_stack_note_ = true;
2086       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2087         {
2088           this->input_requires_executable_stack_ = true;
2089           if (parameters->options().warn_execstack()
2090               || parameters->options().is_stack_executable())
2091             gold_warning(_("%s: requires executable stack"),
2092                          obj->name().c_str());
2093         }
2094     }
2095 }
2096
2097 // Create automatic note sections.
2098
2099 void
2100 Layout::create_notes()
2101 {
2102   this->create_gold_note();
2103   this->create_executable_stack_info();
2104   this->create_build_id();
2105 }
2106
2107 // Create the dynamic sections which are needed before we read the
2108 // relocs.
2109
2110 void
2111 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2112 {
2113   if (parameters->doing_static_link())
2114     return;
2115
2116   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2117                                                        elfcpp::SHT_DYNAMIC,
2118                                                        (elfcpp::SHF_ALLOC
2119                                                         | elfcpp::SHF_WRITE),
2120                                                        false, ORDER_RELRO,
2121                                                        true);
2122
2123   // A linker script may discard .dynamic, so check for NULL.
2124   if (this->dynamic_section_ != NULL)
2125     {
2126       this->dynamic_symbol_ =
2127         symtab->define_in_output_data("_DYNAMIC", NULL,
2128                                       Symbol_table::PREDEFINED,
2129                                       this->dynamic_section_, 0, 0,
2130                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2131                                       elfcpp::STV_HIDDEN, 0, false, false);
2132
2133       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2134
2135       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2136     }
2137 }
2138
2139 // For each output section whose name can be represented as C symbol,
2140 // define __start and __stop symbols for the section.  This is a GNU
2141 // extension.
2142
2143 void
2144 Layout::define_section_symbols(Symbol_table* symtab)
2145 {
2146   for (Section_list::const_iterator p = this->section_list_.begin();
2147        p != this->section_list_.end();
2148        ++p)
2149     {
2150       const char* const name = (*p)->name();
2151       if (is_cident(name))
2152         {
2153           const std::string name_string(name);
2154           const std::string start_name(cident_section_start_prefix
2155                                        + name_string);
2156           const std::string stop_name(cident_section_stop_prefix
2157                                       + name_string);
2158
2159           symtab->define_in_output_data(start_name.c_str(),
2160                                         NULL, // version
2161                                         Symbol_table::PREDEFINED,
2162                                         *p,
2163                                         0, // value
2164                                         0, // symsize
2165                                         elfcpp::STT_NOTYPE,
2166                                         elfcpp::STB_GLOBAL,
2167                                         elfcpp::STV_DEFAULT,
2168                                         0, // nonvis
2169                                         false, // offset_is_from_end
2170                                         true); // only_if_ref
2171
2172           symtab->define_in_output_data(stop_name.c_str(),
2173                                         NULL, // version
2174                                         Symbol_table::PREDEFINED,
2175                                         *p,
2176                                         0, // value
2177                                         0, // symsize
2178                                         elfcpp::STT_NOTYPE,
2179                                         elfcpp::STB_GLOBAL,
2180                                         elfcpp::STV_DEFAULT,
2181                                         0, // nonvis
2182                                         true, // offset_is_from_end
2183                                         true); // only_if_ref
2184         }
2185     }
2186 }
2187
2188 // Define symbols for group signatures.
2189
2190 void
2191 Layout::define_group_signatures(Symbol_table* symtab)
2192 {
2193   for (Group_signatures::iterator p = this->group_signatures_.begin();
2194        p != this->group_signatures_.end();
2195        ++p)
2196     {
2197       Symbol* sym = symtab->lookup(p->signature, NULL);
2198       if (sym != NULL)
2199         p->section->set_info_symndx(sym);
2200       else
2201         {
2202           // Force the name of the group section to the group
2203           // signature, and use the group's section symbol as the
2204           // signature symbol.
2205           if (strcmp(p->section->name(), p->signature) != 0)
2206             {
2207               const char* name = this->namepool_.add(p->signature,
2208                                                      true, NULL);
2209               p->section->set_name(name);
2210             }
2211           p->section->set_needs_symtab_index();
2212           p->section->set_info_section_symndx(p->section);
2213         }
2214     }
2215
2216   this->group_signatures_.clear();
2217 }
2218
2219 // Find the first read-only PT_LOAD segment, creating one if
2220 // necessary.
2221
2222 Output_segment*
2223 Layout::find_first_load_seg(const Target* target)
2224 {
2225   Output_segment* best = NULL;
2226   for (Segment_list::const_iterator p = this->segment_list_.begin();
2227        p != this->segment_list_.end();
2228        ++p)
2229     {
2230       if ((*p)->type() == elfcpp::PT_LOAD
2231           && ((*p)->flags() & elfcpp::PF_R) != 0
2232           && (parameters->options().omagic()
2233               || ((*p)->flags() & elfcpp::PF_W) == 0)
2234           && (!target->isolate_execinstr()
2235               || ((*p)->flags() & elfcpp::PF_X) == 0))
2236         {
2237           if (best == NULL || this->segment_precedes(*p, best))
2238             best = *p;
2239         }
2240     }
2241   if (best != NULL)
2242     return best;
2243
2244   gold_assert(!this->script_options_->saw_phdrs_clause());
2245
2246   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2247                                                        elfcpp::PF_R);
2248   return load_seg;
2249 }
2250
2251 // Save states of all current output segments.  Store saved states
2252 // in SEGMENT_STATES.
2253
2254 void
2255 Layout::save_segments(Segment_states* segment_states)
2256 {
2257   for (Segment_list::const_iterator p = this->segment_list_.begin();
2258        p != this->segment_list_.end();
2259        ++p)
2260     {
2261       Output_segment* segment = *p;
2262       // Shallow copy.
2263       Output_segment* copy = new Output_segment(*segment);
2264       (*segment_states)[segment] = copy;
2265     }
2266 }
2267
2268 // Restore states of output segments and delete any segment not found in
2269 // SEGMENT_STATES.
2270
2271 void
2272 Layout::restore_segments(const Segment_states* segment_states)
2273 {
2274   // Go through the segment list and remove any segment added in the
2275   // relaxation loop.
2276   this->tls_segment_ = NULL;
2277   this->relro_segment_ = NULL;
2278   Segment_list::iterator list_iter = this->segment_list_.begin();
2279   while (list_iter != this->segment_list_.end())
2280     {
2281       Output_segment* segment = *list_iter;
2282       Segment_states::const_iterator states_iter =
2283           segment_states->find(segment);
2284       if (states_iter != segment_states->end())
2285         {
2286           const Output_segment* copy = states_iter->second;
2287           // Shallow copy to restore states.
2288           *segment = *copy;
2289
2290           // Also fix up TLS and RELRO segment pointers as appropriate.
2291           if (segment->type() == elfcpp::PT_TLS)
2292             this->tls_segment_ = segment;
2293           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2294             this->relro_segment_ = segment;
2295
2296           ++list_iter;
2297         }
2298       else
2299         {
2300           list_iter = this->segment_list_.erase(list_iter);
2301           // This is a segment created during section layout.  It should be
2302           // safe to remove it since we should have removed all pointers to it.
2303           delete segment;
2304         }
2305     }
2306 }
2307
2308 // Clean up after relaxation so that sections can be laid out again.
2309
2310 void
2311 Layout::clean_up_after_relaxation()
2312 {
2313   // Restore the segments to point state just prior to the relaxation loop.
2314   Script_sections* script_section = this->script_options_->script_sections();
2315   script_section->release_segments();
2316   this->restore_segments(this->segment_states_);
2317
2318   // Reset section addresses and file offsets
2319   for (Section_list::iterator p = this->section_list_.begin();
2320        p != this->section_list_.end();
2321        ++p)
2322     {
2323       (*p)->restore_states();
2324
2325       // If an input section changes size because of relaxation,
2326       // we need to adjust the section offsets of all input sections.
2327       // after such a section.
2328       if ((*p)->section_offsets_need_adjustment())
2329         (*p)->adjust_section_offsets();
2330
2331       (*p)->reset_address_and_file_offset();
2332     }
2333
2334   // Reset special output object address and file offsets.
2335   for (Data_list::iterator p = this->special_output_list_.begin();
2336        p != this->special_output_list_.end();
2337        ++p)
2338     (*p)->reset_address_and_file_offset();
2339
2340   // A linker script may have created some output section data objects.
2341   // They are useless now.
2342   for (Output_section_data_list::const_iterator p =
2343          this->script_output_section_data_list_.begin();
2344        p != this->script_output_section_data_list_.end();
2345        ++p)
2346     delete *p;
2347   this->script_output_section_data_list_.clear();
2348
2349   // Special-case fill output objects are recreated each time through
2350   // the relaxation loop.
2351   this->reset_relax_output();
2352 }
2353
2354 void
2355 Layout::reset_relax_output()
2356 {
2357   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2358        p != this->relax_output_list_.end();
2359        ++p)
2360     delete *p;
2361   this->relax_output_list_.clear();
2362 }
2363
2364 // Prepare for relaxation.
2365
2366 void
2367 Layout::prepare_for_relaxation()
2368 {
2369   // Create an relaxation debug check if in debugging mode.
2370   if (is_debugging_enabled(DEBUG_RELAXATION))
2371     this->relaxation_debug_check_ = new Relaxation_debug_check();
2372
2373   // Save segment states.
2374   this->segment_states_ = new Segment_states();
2375   this->save_segments(this->segment_states_);
2376
2377   for(Section_list::const_iterator p = this->section_list_.begin();
2378       p != this->section_list_.end();
2379       ++p)
2380     (*p)->save_states();
2381
2382   if (is_debugging_enabled(DEBUG_RELAXATION))
2383     this->relaxation_debug_check_->check_output_data_for_reset_values(
2384         this->section_list_, this->special_output_list_,
2385         this->relax_output_list_);
2386
2387   // Also enable recording of output section data from scripts.
2388   this->record_output_section_data_from_script_ = true;
2389 }
2390
2391 // If the user set the address of the text segment, that may not be
2392 // compatible with putting the segment headers and file headers into
2393 // that segment.  For isolate_execinstr() targets, it's the rodata
2394 // segment rather than text where we might put the headers.
2395 static inline bool
2396 load_seg_unusable_for_headers(const Target* target)
2397 {
2398   const General_options& options = parameters->options();
2399   if (target->isolate_execinstr())
2400     return (options.user_set_Trodata_segment()
2401             && options.Trodata_segment() % target->abi_pagesize() != 0);
2402   else
2403     return (options.user_set_Ttext()
2404             && options.Ttext() % target->abi_pagesize() != 0);
2405 }
2406
2407 // Relaxation loop body:  If target has no relaxation, this runs only once
2408 // Otherwise, the target relaxation hook is called at the end of
2409 // each iteration.  If the hook returns true, it means re-layout of
2410 // section is required.
2411 //
2412 // The number of segments created by a linking script without a PHDRS
2413 // clause may be affected by section sizes and alignments.  There is
2414 // a remote chance that relaxation causes different number of PT_LOAD
2415 // segments are created and sections are attached to different segments.
2416 // Therefore, we always throw away all segments created during section
2417 // layout.  In order to be able to restart the section layout, we keep
2418 // a copy of the segment list right before the relaxation loop and use
2419 // that to restore the segments.
2420 //
2421 // PASS is the current relaxation pass number.
2422 // SYMTAB is a symbol table.
2423 // PLOAD_SEG is the address of a pointer for the load segment.
2424 // PHDR_SEG is a pointer to the PHDR segment.
2425 // SEGMENT_HEADERS points to the output segment header.
2426 // FILE_HEADER points to the output file header.
2427 // PSHNDX is the address to store the output section index.
2428
2429 off_t inline
2430 Layout::relaxation_loop_body(
2431     int pass,
2432     Target* target,
2433     Symbol_table* symtab,
2434     Output_segment** pload_seg,
2435     Output_segment* phdr_seg,
2436     Output_segment_headers* segment_headers,
2437     Output_file_header* file_header,
2438     unsigned int* pshndx)
2439 {
2440   // If this is not the first iteration, we need to clean up after
2441   // relaxation so that we can lay out the sections again.
2442   if (pass != 0)
2443     this->clean_up_after_relaxation();
2444
2445   // If there is a SECTIONS clause, put all the input sections into
2446   // the required order.
2447   Output_segment* load_seg;
2448   if (this->script_options_->saw_sections_clause())
2449     load_seg = this->set_section_addresses_from_script(symtab);
2450   else if (parameters->options().relocatable())
2451     load_seg = NULL;
2452   else
2453     load_seg = this->find_first_load_seg(target);
2454
2455   if (parameters->options().oformat_enum()
2456       != General_options::OBJECT_FORMAT_ELF)
2457     load_seg = NULL;
2458
2459   if (load_seg_unusable_for_headers(target))
2460     {
2461       load_seg = NULL;
2462       phdr_seg = NULL;
2463     }
2464
2465   gold_assert(phdr_seg == NULL
2466               || load_seg != NULL
2467               || this->script_options_->saw_sections_clause());
2468
2469   // If the address of the load segment we found has been set by
2470   // --section-start rather than by a script, then adjust the VMA and
2471   // LMA downward if possible to include the file and section headers.
2472   uint64_t header_gap = 0;
2473   if (load_seg != NULL
2474       && load_seg->are_addresses_set()
2475       && !this->script_options_->saw_sections_clause()
2476       && !parameters->options().relocatable())
2477     {
2478       file_header->finalize_data_size();
2479       segment_headers->finalize_data_size();
2480       size_t sizeof_headers = (file_header->data_size()
2481                                + segment_headers->data_size());
2482       const uint64_t abi_pagesize = target->abi_pagesize();
2483       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2484       hdr_paddr &= ~(abi_pagesize - 1);
2485       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2486       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2487         load_seg = NULL;
2488       else
2489         {
2490           load_seg->set_addresses(load_seg->vaddr() - subtract,
2491                                   load_seg->paddr() - subtract);
2492           header_gap = subtract - sizeof_headers;
2493         }
2494     }
2495
2496   // Lay out the segment headers.
2497   if (!parameters->options().relocatable())
2498     {
2499       gold_assert(segment_headers != NULL);
2500       if (header_gap != 0 && load_seg != NULL)
2501         {
2502           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2503           load_seg->add_initial_output_data(z);
2504         }
2505       if (load_seg != NULL)
2506         load_seg->add_initial_output_data(segment_headers);
2507       if (phdr_seg != NULL)
2508         phdr_seg->add_initial_output_data(segment_headers);
2509     }
2510
2511   // Lay out the file header.
2512   if (load_seg != NULL)
2513     load_seg->add_initial_output_data(file_header);
2514
2515   if (this->script_options_->saw_phdrs_clause()
2516       && !parameters->options().relocatable())
2517     {
2518       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2519       // clause in a linker script.
2520       Script_sections* ss = this->script_options_->script_sections();
2521       ss->put_headers_in_phdrs(file_header, segment_headers);
2522     }
2523
2524   // We set the output section indexes in set_segment_offsets and
2525   // set_section_indexes.
2526   *pshndx = 1;
2527
2528   // Set the file offsets of all the segments, and all the sections
2529   // they contain.
2530   off_t off;
2531   if (!parameters->options().relocatable())
2532     off = this->set_segment_offsets(target, load_seg, pshndx);
2533   else
2534     off = this->set_relocatable_section_offsets(file_header, pshndx);
2535
2536    // Verify that the dummy relaxation does not change anything.
2537   if (is_debugging_enabled(DEBUG_RELAXATION))
2538     {
2539       if (pass == 0)
2540         this->relaxation_debug_check_->read_sections(this->section_list_);
2541       else
2542         this->relaxation_debug_check_->verify_sections(this->section_list_);
2543     }
2544
2545   *pload_seg = load_seg;
2546   return off;
2547 }
2548
2549 // Search the list of patterns and find the postion of the given section
2550 // name in the output section.  If the section name matches a glob
2551 // pattern and a non-glob name, then the non-glob position takes
2552 // precedence.  Return 0 if no match is found.
2553
2554 unsigned int
2555 Layout::find_section_order_index(const std::string& section_name)
2556 {
2557   Unordered_map<std::string, unsigned int>::iterator map_it;
2558   map_it = this->input_section_position_.find(section_name);
2559   if (map_it != this->input_section_position_.end())
2560     return map_it->second;
2561
2562   // Absolute match failed.  Linear search the glob patterns.
2563   std::vector<std::string>::iterator it;
2564   for (it = this->input_section_glob_.begin();
2565        it != this->input_section_glob_.end();
2566        ++it)
2567     {
2568        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2569          {
2570            map_it = this->input_section_position_.find(*it);
2571            gold_assert(map_it != this->input_section_position_.end());
2572            return map_it->second;
2573          }
2574     }
2575   return 0;
2576 }
2577
2578 // Read the sequence of input sections from the file specified with
2579 // option --section-ordering-file.
2580
2581 void
2582 Layout::read_layout_from_file()
2583 {
2584   const char* filename = parameters->options().section_ordering_file();
2585   std::ifstream in;
2586   std::string line;
2587
2588   in.open(filename);
2589   if (!in)
2590     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2591                filename, strerror(errno));
2592
2593   std::getline(in, line);   // this chops off the trailing \n, if any
2594   unsigned int position = 1;
2595   this->set_section_ordering_specified();
2596
2597   while (in)
2598     {
2599       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2600         line.resize(line.length() - 1);
2601       // Ignore comments, beginning with '#'
2602       if (line[0] == '#')
2603         {
2604           std::getline(in, line);
2605           continue;
2606         }
2607       this->input_section_position_[line] = position;
2608       // Store all glob patterns in a vector.
2609       if (is_wildcard_string(line.c_str()))
2610         this->input_section_glob_.push_back(line);
2611       position++;
2612       std::getline(in, line);
2613     }
2614 }
2615
2616 // Finalize the layout.  When this is called, we have created all the
2617 // output sections and all the output segments which are based on
2618 // input sections.  We have several things to do, and we have to do
2619 // them in the right order, so that we get the right results correctly
2620 // and efficiently.
2621
2622 // 1) Finalize the list of output segments and create the segment
2623 // table header.
2624
2625 // 2) Finalize the dynamic symbol table and associated sections.
2626
2627 // 3) Determine the final file offset of all the output segments.
2628
2629 // 4) Determine the final file offset of all the SHF_ALLOC output
2630 // sections.
2631
2632 // 5) Create the symbol table sections and the section name table
2633 // section.
2634
2635 // 6) Finalize the symbol table: set symbol values to their final
2636 // value and make a final determination of which symbols are going
2637 // into the output symbol table.
2638
2639 // 7) Create the section table header.
2640
2641 // 8) Determine the final file offset of all the output sections which
2642 // are not SHF_ALLOC, including the section table header.
2643
2644 // 9) Finalize the ELF file header.
2645
2646 // This function returns the size of the output file.
2647
2648 off_t
2649 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2650                  Target* target, const Task* task)
2651 {
2652   target->finalize_sections(this, input_objects, symtab);
2653
2654   this->count_local_symbols(task, input_objects);
2655
2656   this->link_stabs_sections();
2657
2658   Output_segment* phdr_seg = NULL;
2659   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2660     {
2661       // There was a dynamic object in the link.  We need to create
2662       // some information for the dynamic linker.
2663
2664       // Create the PT_PHDR segment which will hold the program
2665       // headers.
2666       if (!this->script_options_->saw_phdrs_clause())
2667         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2668
2669       // Create the dynamic symbol table, including the hash table.
2670       Output_section* dynstr;
2671       std::vector<Symbol*> dynamic_symbols;
2672       unsigned int local_dynamic_count;
2673       Versions versions(*this->script_options()->version_script_info(),
2674                         &this->dynpool_);
2675       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2676                                   &local_dynamic_count, &dynamic_symbols,
2677                                   &versions);
2678
2679       // Create the .interp section to hold the name of the
2680       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2681       // if we saw a .interp section in an input file.
2682       if ((!parameters->options().shared()
2683            || parameters->options().dynamic_linker() != NULL)
2684           && this->interp_segment_ == NULL)
2685         this->create_interp(target);
2686
2687       // Finish the .dynamic section to hold the dynamic data, and put
2688       // it in a PT_DYNAMIC segment.
2689       this->finish_dynamic_section(input_objects, symtab);
2690
2691       // We should have added everything we need to the dynamic string
2692       // table.
2693       this->dynpool_.set_string_offsets();
2694
2695       // Create the version sections.  We can't do this until the
2696       // dynamic string table is complete.
2697       this->create_version_sections(&versions, symtab, local_dynamic_count,
2698                                     dynamic_symbols, dynstr);
2699
2700       // Set the size of the _DYNAMIC symbol.  We can't do this until
2701       // after we call create_version_sections.
2702       this->set_dynamic_symbol_size(symtab);
2703     }
2704
2705   // Create segment headers.
2706   Output_segment_headers* segment_headers =
2707     (parameters->options().relocatable()
2708      ? NULL
2709      : new Output_segment_headers(this->segment_list_));
2710
2711   // Lay out the file header.
2712   Output_file_header* file_header = new Output_file_header(target, symtab,
2713                                                            segment_headers);
2714
2715   this->special_output_list_.push_back(file_header);
2716   if (segment_headers != NULL)
2717     this->special_output_list_.push_back(segment_headers);
2718
2719   // Find approriate places for orphan output sections if we are using
2720   // a linker script.
2721   if (this->script_options_->saw_sections_clause())
2722     this->place_orphan_sections_in_script();
2723
2724   Output_segment* load_seg;
2725   off_t off;
2726   unsigned int shndx;
2727   int pass = 0;
2728
2729   // Take a snapshot of the section layout as needed.
2730   if (target->may_relax())
2731     this->prepare_for_relaxation();
2732
2733   // Run the relaxation loop to lay out sections.
2734   do
2735     {
2736       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2737                                        phdr_seg, segment_headers, file_header,
2738                                        &shndx);
2739       pass++;
2740     }
2741   while (target->may_relax()
2742          && target->relax(pass, input_objects, symtab, this, task));
2743
2744   // If there is a load segment that contains the file and program headers,
2745   // provide a symbol __ehdr_start pointing there.
2746   // A program can use this to examine itself robustly.
2747   if (load_seg != NULL)
2748     symtab->define_in_output_segment("__ehdr_start", NULL,
2749                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2750                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2751                                      elfcpp::STV_HIDDEN, 0,
2752                                      Symbol::SEGMENT_START, true);
2753
2754   // Set the file offsets of all the non-data sections we've seen so
2755   // far which don't have to wait for the input sections.  We need
2756   // this in order to finalize local symbols in non-allocated
2757   // sections.
2758   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2759
2760   // Set the section indexes of all unallocated sections seen so far,
2761   // in case any of them are somehow referenced by a symbol.
2762   shndx = this->set_section_indexes(shndx);
2763
2764   // Create the symbol table sections.
2765   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2766   if (!parameters->doing_static_link())
2767     this->assign_local_dynsym_offsets(input_objects);
2768
2769   // Process any symbol assignments from a linker script.  This must
2770   // be called after the symbol table has been finalized.
2771   this->script_options_->finalize_symbols(symtab, this);
2772
2773   // Create the incremental inputs sections.
2774   if (this->incremental_inputs_)
2775     {
2776       this->incremental_inputs_->finalize();
2777       this->create_incremental_info_sections(symtab);
2778     }
2779
2780   // Create the .shstrtab section.
2781   Output_section* shstrtab_section = this->create_shstrtab();
2782
2783   // Set the file offsets of the rest of the non-data sections which
2784   // don't have to wait for the input sections.
2785   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2786
2787   // Now that all sections have been created, set the section indexes
2788   // for any sections which haven't been done yet.
2789   shndx = this->set_section_indexes(shndx);
2790
2791   // Create the section table header.
2792   this->create_shdrs(shstrtab_section, &off);
2793
2794   // If there are no sections which require postprocessing, we can
2795   // handle the section names now, and avoid a resize later.
2796   if (!this->any_postprocessing_sections_)
2797     {
2798       off = this->set_section_offsets(off,
2799                                       POSTPROCESSING_SECTIONS_PASS);
2800       off =
2801           this->set_section_offsets(off,
2802                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2803     }
2804
2805   file_header->set_section_info(this->section_headers_, shstrtab_section);
2806
2807   // Now we know exactly where everything goes in the output file
2808   // (except for non-allocated sections which require postprocessing).
2809   Output_data::layout_complete();
2810
2811   this->output_file_size_ = off;
2812
2813   return off;
2814 }
2815
2816 // Create a note header following the format defined in the ELF ABI.
2817 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2818 // of the section to create, DESCSZ is the size of the descriptor.
2819 // ALLOCATE is true if the section should be allocated in memory.
2820 // This returns the new note section.  It sets *TRAILING_PADDING to
2821 // the number of trailing zero bytes required.
2822
2823 Output_section*
2824 Layout::create_note(const char* name, int note_type,
2825                     const char* section_name, size_t descsz,
2826                     bool allocate, size_t* trailing_padding)
2827 {
2828   // Authorities all agree that the values in a .note field should
2829   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2830   // they differ on what the alignment is for 64-bit binaries.
2831   // The GABI says unambiguously they take 8-byte alignment:
2832   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2833   // Other documentation says alignment should always be 4 bytes:
2834   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2835   // GNU ld and GNU readelf both support the latter (at least as of
2836   // version 2.16.91), and glibc always generates the latter for
2837   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2838   // here.
2839 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2840   const int size = parameters->target().get_size();
2841 #else
2842   const int size = 32;
2843 #endif
2844
2845   // The contents of the .note section.
2846   size_t namesz = strlen(name) + 1;
2847   size_t aligned_namesz = align_address(namesz, size / 8);
2848   size_t aligned_descsz = align_address(descsz, size / 8);
2849
2850   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2851
2852   unsigned char* buffer = new unsigned char[notehdrsz];
2853   memset(buffer, 0, notehdrsz);
2854
2855   bool is_big_endian = parameters->target().is_big_endian();
2856
2857   if (size == 32)
2858     {
2859       if (!is_big_endian)
2860         {
2861           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2862           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2863           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2864         }
2865       else
2866         {
2867           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2868           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2869           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2870         }
2871     }
2872   else if (size == 64)
2873     {
2874       if (!is_big_endian)
2875         {
2876           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2877           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2878           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2879         }
2880       else
2881         {
2882           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2883           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2884           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2885         }
2886     }
2887   else
2888     gold_unreachable();
2889
2890   memcpy(buffer + 3 * (size / 8), name, namesz);
2891
2892   elfcpp::Elf_Xword flags = 0;
2893   Output_section_order order = ORDER_INVALID;
2894   if (allocate)
2895     {
2896       flags = elfcpp::SHF_ALLOC;
2897       order = ORDER_RO_NOTE;
2898     }
2899   Output_section* os = this->choose_output_section(NULL, section_name,
2900                                                    elfcpp::SHT_NOTE,
2901                                                    flags, false, order, false);
2902   if (os == NULL)
2903     return NULL;
2904
2905   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2906                                                            size / 8,
2907                                                            "** note header");
2908   os->add_output_section_data(posd);
2909
2910   *trailing_padding = aligned_descsz - descsz;
2911
2912   return os;
2913 }
2914
2915 // For an executable or shared library, create a note to record the
2916 // version of gold used to create the binary.
2917
2918 void
2919 Layout::create_gold_note()
2920 {
2921   if (parameters->options().relocatable()
2922       || parameters->incremental_update())
2923     return;
2924
2925   std::string desc = std::string("gold ") + gold::get_version_string();
2926
2927   size_t trailing_padding;
2928   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2929                                          ".note.gnu.gold-version", desc.size(),
2930                                          false, &trailing_padding);
2931   if (os == NULL)
2932     return;
2933
2934   Output_section_data* posd = new Output_data_const(desc, 4);
2935   os->add_output_section_data(posd);
2936
2937   if (trailing_padding > 0)
2938     {
2939       posd = new Output_data_zero_fill(trailing_padding, 0);
2940       os->add_output_section_data(posd);
2941     }
2942 }
2943
2944 // Record whether the stack should be executable.  This can be set
2945 // from the command line using the -z execstack or -z noexecstack
2946 // options.  Otherwise, if any input file has a .note.GNU-stack
2947 // section with the SHF_EXECINSTR flag set, the stack should be
2948 // executable.  Otherwise, if at least one input file a
2949 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2950 // section, we use the target default for whether the stack should be
2951 // executable.  Otherwise, we don't generate a stack note.  When
2952 // generating a object file, we create a .note.GNU-stack section with
2953 // the appropriate marking.  When generating an executable or shared
2954 // library, we create a PT_GNU_STACK segment.
2955
2956 void
2957 Layout::create_executable_stack_info()
2958 {
2959   bool is_stack_executable;
2960   if (parameters->options().is_execstack_set())
2961     is_stack_executable = parameters->options().is_stack_executable();
2962   else if (!this->input_with_gnu_stack_note_)
2963     return;
2964   else
2965     {
2966       if (this->input_requires_executable_stack_)
2967         is_stack_executable = true;
2968       else if (this->input_without_gnu_stack_note_)
2969         is_stack_executable =
2970           parameters->target().is_default_stack_executable();
2971       else
2972         is_stack_executable = false;
2973     }
2974
2975   if (parameters->options().relocatable())
2976     {
2977       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2978       elfcpp::Elf_Xword flags = 0;
2979       if (is_stack_executable)
2980         flags |= elfcpp::SHF_EXECINSTR;
2981       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2982                                 ORDER_INVALID, false);
2983     }
2984   else
2985     {
2986       if (this->script_options_->saw_phdrs_clause())
2987         return;
2988       int flags = elfcpp::PF_R | elfcpp::PF_W;
2989       if (is_stack_executable)
2990         flags |= elfcpp::PF_X;
2991       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2992     }
2993 }
2994
2995 // If --build-id was used, set up the build ID note.
2996
2997 void
2998 Layout::create_build_id()
2999 {
3000   if (!parameters->options().user_set_build_id())
3001     return;
3002
3003   const char* style = parameters->options().build_id();
3004   if (strcmp(style, "none") == 0)
3005     return;
3006
3007   // Set DESCSZ to the size of the note descriptor.  When possible,
3008   // set DESC to the note descriptor contents.
3009   size_t descsz;
3010   std::string desc;
3011   if (strcmp(style, "md5") == 0)
3012     descsz = 128 / 8;
3013   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3014     descsz = 160 / 8;
3015   else if (strcmp(style, "uuid") == 0)
3016     {
3017       const size_t uuidsz = 128 / 8;
3018
3019       char buffer[uuidsz];
3020       memset(buffer, 0, uuidsz);
3021
3022       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3023       if (descriptor < 0)
3024         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3025                    strerror(errno));
3026       else
3027         {
3028           ssize_t got = ::read(descriptor, buffer, uuidsz);
3029           release_descriptor(descriptor, true);
3030           if (got < 0)
3031             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3032           else if (static_cast<size_t>(got) != uuidsz)
3033             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3034                        uuidsz, got);
3035         }
3036
3037       desc.assign(buffer, uuidsz);
3038       descsz = uuidsz;
3039     }
3040   else if (strncmp(style, "0x", 2) == 0)
3041     {
3042       hex_init();
3043       const char* p = style + 2;
3044       while (*p != '\0')
3045         {
3046           if (hex_p(p[0]) && hex_p(p[1]))
3047             {
3048               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3049               desc += c;
3050               p += 2;
3051             }
3052           else if (*p == '-' || *p == ':')
3053             ++p;
3054           else
3055             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3056                        style);
3057         }
3058       descsz = desc.size();
3059     }
3060   else
3061     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3062
3063   // Create the note.
3064   size_t trailing_padding;
3065   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3066                                          ".note.gnu.build-id", descsz, true,
3067                                          &trailing_padding);
3068   if (os == NULL)
3069     return;
3070
3071   if (!desc.empty())
3072     {
3073       // We know the value already, so we fill it in now.
3074       gold_assert(desc.size() == descsz);
3075
3076       Output_section_data* posd = new Output_data_const(desc, 4);
3077       os->add_output_section_data(posd);
3078
3079       if (trailing_padding != 0)
3080         {
3081           posd = new Output_data_zero_fill(trailing_padding, 0);
3082           os->add_output_section_data(posd);
3083         }
3084     }
3085   else
3086     {
3087       // We need to compute a checksum after we have completed the
3088       // link.
3089       gold_assert(trailing_padding == 0);
3090       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3091       os->add_output_section_data(this->build_id_note_);
3092     }
3093 }
3094
3095 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3096 // field of the former should point to the latter.  I'm not sure who
3097 // started this, but the GNU linker does it, and some tools depend
3098 // upon it.
3099
3100 void
3101 Layout::link_stabs_sections()
3102 {
3103   if (!this->have_stabstr_section_)
3104     return;
3105
3106   for (Section_list::iterator p = this->section_list_.begin();
3107        p != this->section_list_.end();
3108        ++p)
3109     {
3110       if ((*p)->type() != elfcpp::SHT_STRTAB)
3111         continue;
3112
3113       const char* name = (*p)->name();
3114       if (strncmp(name, ".stab", 5) != 0)
3115         continue;
3116
3117       size_t len = strlen(name);
3118       if (strcmp(name + len - 3, "str") != 0)
3119         continue;
3120
3121       std::string stab_name(name, len - 3);
3122       Output_section* stab_sec;
3123       stab_sec = this->find_output_section(stab_name.c_str());
3124       if (stab_sec != NULL)
3125         stab_sec->set_link_section(*p);
3126     }
3127 }
3128
3129 // Create .gnu_incremental_inputs and related sections needed
3130 // for the next run of incremental linking to check what has changed.
3131
3132 void
3133 Layout::create_incremental_info_sections(Symbol_table* symtab)
3134 {
3135   Incremental_inputs* incr = this->incremental_inputs_;
3136
3137   gold_assert(incr != NULL);
3138
3139   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3140   incr->create_data_sections(symtab);
3141
3142   // Add the .gnu_incremental_inputs section.
3143   const char* incremental_inputs_name =
3144     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3145   Output_section* incremental_inputs_os =
3146     this->make_output_section(incremental_inputs_name,
3147                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3148                               ORDER_INVALID, false);
3149   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3150
3151   // Add the .gnu_incremental_symtab section.
3152   const char* incremental_symtab_name =
3153     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3154   Output_section* incremental_symtab_os =
3155     this->make_output_section(incremental_symtab_name,
3156                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3157                               ORDER_INVALID, false);
3158   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3159   incremental_symtab_os->set_entsize(4);
3160
3161   // Add the .gnu_incremental_relocs section.
3162   const char* incremental_relocs_name =
3163     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3164   Output_section* incremental_relocs_os =
3165     this->make_output_section(incremental_relocs_name,
3166                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3167                               ORDER_INVALID, false);
3168   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3169   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3170
3171   // Add the .gnu_incremental_got_plt section.
3172   const char* incremental_got_plt_name =
3173     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3174   Output_section* incremental_got_plt_os =
3175     this->make_output_section(incremental_got_plt_name,
3176                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3177                               ORDER_INVALID, false);
3178   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3179
3180   // Add the .gnu_incremental_strtab section.
3181   const char* incremental_strtab_name =
3182     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3183   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3184                                                         elfcpp::SHT_STRTAB, 0,
3185                                                         ORDER_INVALID, false);
3186   Output_data_strtab* strtab_data =
3187       new Output_data_strtab(incr->get_stringpool());
3188   incremental_strtab_os->add_output_section_data(strtab_data);
3189
3190   incremental_inputs_os->set_after_input_sections();
3191   incremental_symtab_os->set_after_input_sections();
3192   incremental_relocs_os->set_after_input_sections();
3193   incremental_got_plt_os->set_after_input_sections();
3194
3195   incremental_inputs_os->set_link_section(incremental_strtab_os);
3196   incremental_symtab_os->set_link_section(incremental_inputs_os);
3197   incremental_relocs_os->set_link_section(incremental_inputs_os);
3198   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3199 }
3200
3201 // Return whether SEG1 should be before SEG2 in the output file.  This
3202 // is based entirely on the segment type and flags.  When this is
3203 // called the segment addresses have normally not yet been set.
3204
3205 bool
3206 Layout::segment_precedes(const Output_segment* seg1,
3207                          const Output_segment* seg2)
3208 {
3209   elfcpp::Elf_Word type1 = seg1->type();
3210   elfcpp::Elf_Word type2 = seg2->type();
3211
3212   // The single PT_PHDR segment is required to precede any loadable
3213   // segment.  We simply make it always first.
3214   if (type1 == elfcpp::PT_PHDR)
3215     {
3216       gold_assert(type2 != elfcpp::PT_PHDR);
3217       return true;
3218     }
3219   if (type2 == elfcpp::PT_PHDR)
3220     return false;
3221
3222   // The single PT_INTERP segment is required to precede any loadable
3223   // segment.  We simply make it always second.
3224   if (type1 == elfcpp::PT_INTERP)
3225     {
3226       gold_assert(type2 != elfcpp::PT_INTERP);
3227       return true;
3228     }
3229   if (type2 == elfcpp::PT_INTERP)
3230     return false;
3231
3232   // We then put PT_LOAD segments before any other segments.
3233   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3234     return true;
3235   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3236     return false;
3237
3238   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3239   // segment, because that is where the dynamic linker expects to find
3240   // it (this is just for efficiency; other positions would also work
3241   // correctly).
3242   if (type1 == elfcpp::PT_TLS
3243       && type2 != elfcpp::PT_TLS
3244       && type2 != elfcpp::PT_GNU_RELRO)
3245     return false;
3246   if (type2 == elfcpp::PT_TLS
3247       && type1 != elfcpp::PT_TLS
3248       && type1 != elfcpp::PT_GNU_RELRO)
3249     return true;
3250
3251   // We put the PT_GNU_RELRO segment last, because that is where the
3252   // dynamic linker expects to find it (as with PT_TLS, this is just
3253   // for efficiency).
3254   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3255     return false;
3256   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3257     return true;
3258
3259   const elfcpp::Elf_Word flags1 = seg1->flags();
3260   const elfcpp::Elf_Word flags2 = seg2->flags();
3261
3262   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3263   // by the numeric segment type and flags values.  There should not
3264   // be more than one segment with the same type and flags, except
3265   // when a linker script specifies such.
3266   if (type1 != elfcpp::PT_LOAD)
3267     {
3268       if (type1 != type2)
3269         return type1 < type2;
3270       gold_assert(flags1 != flags2
3271                   || this->script_options_->saw_phdrs_clause());
3272       return flags1 < flags2;
3273     }
3274
3275   // If the addresses are set already, sort by load address.
3276   if (seg1->are_addresses_set())
3277     {
3278       if (!seg2->are_addresses_set())
3279         return true;
3280
3281       unsigned int section_count1 = seg1->output_section_count();
3282       unsigned int section_count2 = seg2->output_section_count();
3283       if (section_count1 == 0 && section_count2 > 0)
3284         return true;
3285       if (section_count1 > 0 && section_count2 == 0)
3286         return false;
3287
3288       uint64_t paddr1 = (seg1->are_addresses_set()
3289                          ? seg1->paddr()
3290                          : seg1->first_section_load_address());
3291       uint64_t paddr2 = (seg2->are_addresses_set()
3292                          ? seg2->paddr()
3293                          : seg2->first_section_load_address());
3294
3295       if (paddr1 != paddr2)
3296         return paddr1 < paddr2;
3297     }
3298   else if (seg2->are_addresses_set())
3299     return false;
3300
3301   // A segment which holds large data comes after a segment which does
3302   // not hold large data.
3303   if (seg1->is_large_data_segment())
3304     {
3305       if (!seg2->is_large_data_segment())
3306         return false;
3307     }
3308   else if (seg2->is_large_data_segment())
3309     return true;
3310
3311   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3312   // segments come before writable segments.  Then writable segments
3313   // with data come before writable segments without data.  Then
3314   // executable segments come before non-executable segments.  Then
3315   // the unlikely case of a non-readable segment comes before the
3316   // normal case of a readable segment.  If there are multiple
3317   // segments with the same type and flags, we require that the
3318   // address be set, and we sort by virtual address and then physical
3319   // address.
3320   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3321     return (flags1 & elfcpp::PF_W) == 0;
3322   if ((flags1 & elfcpp::PF_W) != 0
3323       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3324     return seg1->has_any_data_sections();
3325   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3326     return (flags1 & elfcpp::PF_X) != 0;
3327   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3328     return (flags1 & elfcpp::PF_R) == 0;
3329
3330   // We shouldn't get here--we shouldn't create segments which we
3331   // can't distinguish.  Unless of course we are using a weird linker
3332   // script or overlapping --section-start options.  We could also get
3333   // here if plugins want unique segments for subsets of sections.
3334   gold_assert(this->script_options_->saw_phdrs_clause()
3335               || parameters->options().any_section_start()
3336               || this->is_unique_segment_for_sections_specified());
3337   return false;
3338 }
3339
3340 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3341
3342 static off_t
3343 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3344 {
3345   uint64_t unsigned_off = off;
3346   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3347                           | (addr & (abi_pagesize - 1)));
3348   if (aligned_off < unsigned_off)
3349     aligned_off += abi_pagesize;
3350   return aligned_off;
3351 }
3352
3353 // On targets where the text segment contains only executable code,
3354 // a non-executable segment is never the text segment.
3355
3356 static inline bool
3357 is_text_segment(const Target* target, const Output_segment* seg)
3358 {
3359   elfcpp::Elf_Xword flags = seg->flags();
3360   if ((flags & elfcpp::PF_W) != 0)
3361     return false;
3362   if ((flags & elfcpp::PF_X) == 0)
3363     return !target->isolate_execinstr();
3364   return true;
3365 }
3366
3367 // Set the file offsets of all the segments, and all the sections they
3368 // contain.  They have all been created.  LOAD_SEG must be be laid out
3369 // first.  Return the offset of the data to follow.
3370
3371 off_t
3372 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3373                             unsigned int* pshndx)
3374 {
3375   // Sort them into the final order.  We use a stable sort so that we
3376   // don't randomize the order of indistinguishable segments created
3377   // by linker scripts.
3378   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3379                    Layout::Compare_segments(this));
3380
3381   // Find the PT_LOAD segments, and set their addresses and offsets
3382   // and their section's addresses and offsets.
3383   uint64_t start_addr;
3384   if (parameters->options().user_set_Ttext())
3385     start_addr = parameters->options().Ttext();
3386   else if (parameters->options().output_is_position_independent())
3387     start_addr = 0;
3388   else
3389     start_addr = target->default_text_segment_address();
3390
3391   uint64_t addr = start_addr;
3392   off_t off = 0;
3393
3394   // If LOAD_SEG is NULL, then the file header and segment headers
3395   // will not be loadable.  But they still need to be at offset 0 in
3396   // the file.  Set their offsets now.
3397   if (load_seg == NULL)
3398     {
3399       for (Data_list::iterator p = this->special_output_list_.begin();
3400            p != this->special_output_list_.end();
3401            ++p)
3402         {
3403           off = align_address(off, (*p)->addralign());
3404           (*p)->set_address_and_file_offset(0, off);
3405           off += (*p)->data_size();
3406         }
3407     }
3408
3409   unsigned int increase_relro = this->increase_relro_;
3410   if (this->script_options_->saw_sections_clause())
3411     increase_relro = 0;
3412
3413   const bool check_sections = parameters->options().check_sections();
3414   Output_segment* last_load_segment = NULL;
3415
3416   unsigned int shndx_begin = *pshndx;
3417   unsigned int shndx_load_seg = *pshndx;
3418
3419   for (Segment_list::iterator p = this->segment_list_.begin();
3420        p != this->segment_list_.end();
3421        ++p)
3422     {
3423       if ((*p)->type() == elfcpp::PT_LOAD)
3424         {
3425           if (target->isolate_execinstr())
3426             {
3427               // When we hit the segment that should contain the
3428               // file headers, reset the file offset so we place
3429               // it and subsequent segments appropriately.
3430               // We'll fix up the preceding segments below.
3431               if (load_seg == *p)
3432                 {
3433                   if (off == 0)
3434                     load_seg = NULL;
3435                   else
3436                     {
3437                       off = 0;
3438                       shndx_load_seg = *pshndx;
3439                     }
3440                 }
3441             }
3442           else
3443             {
3444               // Verify that the file headers fall into the first segment.
3445               if (load_seg != NULL && load_seg != *p)
3446                 gold_unreachable();
3447               load_seg = NULL;
3448             }
3449
3450           bool are_addresses_set = (*p)->are_addresses_set();
3451           if (are_addresses_set)
3452             {
3453               // When it comes to setting file offsets, we care about
3454               // the physical address.
3455               addr = (*p)->paddr();
3456             }
3457           else if (parameters->options().user_set_Ttext()
3458                    && (parameters->options().omagic()
3459                        || is_text_segment(target, *p)))
3460             {
3461               are_addresses_set = true;
3462             }
3463           else if (parameters->options().user_set_Trodata_segment()
3464                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3465             {
3466               addr = parameters->options().Trodata_segment();
3467               are_addresses_set = true;
3468             }
3469           else if (parameters->options().user_set_Tdata()
3470                    && ((*p)->flags() & elfcpp::PF_W) != 0
3471                    && (!parameters->options().user_set_Tbss()
3472                        || (*p)->has_any_data_sections()))
3473             {
3474               addr = parameters->options().Tdata();
3475               are_addresses_set = true;
3476             }
3477           else if (parameters->options().user_set_Tbss()
3478                    && ((*p)->flags() & elfcpp::PF_W) != 0
3479                    && !(*p)->has_any_data_sections())
3480             {
3481               addr = parameters->options().Tbss();
3482               are_addresses_set = true;
3483             }
3484
3485           uint64_t orig_addr = addr;
3486           uint64_t orig_off = off;
3487
3488           uint64_t aligned_addr = 0;
3489           uint64_t abi_pagesize = target->abi_pagesize();
3490           uint64_t common_pagesize = target->common_pagesize();
3491
3492           if (!parameters->options().nmagic()
3493               && !parameters->options().omagic())
3494             (*p)->set_minimum_p_align(abi_pagesize);
3495
3496           if (!are_addresses_set)
3497             {
3498               // Skip the address forward one page, maintaining the same
3499               // position within the page.  This lets us store both segments
3500               // overlapping on a single page in the file, but the loader will
3501               // put them on different pages in memory. We will revisit this
3502               // decision once we know the size of the segment.
3503
3504               addr = align_address(addr, (*p)->maximum_alignment());
3505               aligned_addr = addr;
3506
3507               if (load_seg == *p)
3508                 {
3509                   // This is the segment that will contain the file
3510                   // headers, so its offset will have to be exactly zero.
3511                   gold_assert(orig_off == 0);
3512
3513                   // If the target wants a fixed minimum distance from the
3514                   // text segment to the read-only segment, move up now.
3515                   uint64_t min_addr =
3516                     start_addr + (parameters->options().user_set_rosegment_gap()
3517                                   ? parameters->options().rosegment_gap()
3518                                   : target->rosegment_gap());
3519                   if (addr < min_addr)
3520                     addr = min_addr;
3521
3522                   // But this is not the first segment!  To make its
3523                   // address congruent with its offset, that address better
3524                   // be aligned to the ABI-mandated page size.
3525                   addr = align_address(addr, abi_pagesize);
3526                   aligned_addr = addr;
3527                 }
3528               else
3529                 {
3530                   if ((addr & (abi_pagesize - 1)) != 0)
3531                     addr = addr + abi_pagesize;
3532
3533                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3534                 }
3535             }
3536
3537           if (!parameters->options().nmagic()
3538               && !parameters->options().omagic())
3539             {
3540               // Here we are also taking care of the case when
3541               // the maximum segment alignment is larger than the page size.
3542               off = align_file_offset(off, addr,
3543                                       std::max(abi_pagesize,
3544                                                (*p)->maximum_alignment()));
3545             }
3546           else
3547             {
3548               // This is -N or -n with a section script which prevents
3549               // us from using a load segment.  We need to ensure that
3550               // the file offset is aligned to the alignment of the
3551               // segment.  This is because the linker script
3552               // implicitly assumed a zero offset.  If we don't align
3553               // here, then the alignment of the sections in the
3554               // linker script may not match the alignment of the
3555               // sections in the set_section_addresses call below,
3556               // causing an error about dot moving backward.
3557               off = align_address(off, (*p)->maximum_alignment());
3558             }
3559
3560           unsigned int shndx_hold = *pshndx;
3561           bool has_relro = false;
3562           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3563                                                           false, addr,
3564                                                           &increase_relro,
3565                                                           &has_relro,
3566                                                           &off, pshndx);
3567
3568           // Now that we know the size of this segment, we may be able
3569           // to save a page in memory, at the cost of wasting some
3570           // file space, by instead aligning to the start of a new
3571           // page.  Here we use the real machine page size rather than
3572           // the ABI mandated page size.  If the segment has been
3573           // aligned so that the relro data ends at a page boundary,
3574           // we do not try to realign it.
3575
3576           if (!are_addresses_set
3577               && !has_relro
3578               && aligned_addr != addr
3579               && !parameters->incremental())
3580             {
3581               uint64_t first_off = (common_pagesize
3582                                     - (aligned_addr
3583                                        & (common_pagesize - 1)));
3584               uint64_t last_off = new_addr & (common_pagesize - 1);
3585               if (first_off > 0
3586                   && last_off > 0
3587                   && ((aligned_addr & ~ (common_pagesize - 1))
3588                       != (new_addr & ~ (common_pagesize - 1)))
3589                   && first_off + last_off <= common_pagesize)
3590                 {
3591                   *pshndx = shndx_hold;
3592                   addr = align_address(aligned_addr, common_pagesize);
3593                   addr = align_address(addr, (*p)->maximum_alignment());
3594                   if ((addr & (abi_pagesize - 1)) != 0)
3595                     addr = addr + abi_pagesize;
3596                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3597                   off = align_file_offset(off, addr, abi_pagesize);
3598
3599                   increase_relro = this->increase_relro_;
3600                   if (this->script_options_->saw_sections_clause())
3601                     increase_relro = 0;
3602                   has_relro = false;
3603
3604                   new_addr = (*p)->set_section_addresses(target, this,
3605                                                          true, addr,
3606                                                          &increase_relro,
3607                                                          &has_relro,
3608                                                          &off, pshndx);
3609                 }
3610             }
3611
3612           addr = new_addr;
3613
3614           // Implement --check-sections.  We know that the segments
3615           // are sorted by LMA.
3616           if (check_sections && last_load_segment != NULL)
3617             {
3618               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3619               if (last_load_segment->paddr() + last_load_segment->memsz()
3620                   > (*p)->paddr())
3621                 {
3622                   unsigned long long lb1 = last_load_segment->paddr();
3623                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3624                   unsigned long long lb2 = (*p)->paddr();
3625                   unsigned long long le2 = lb2 + (*p)->memsz();
3626                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3627                                "[0x%llx -> 0x%llx]"),
3628                              lb1, le1, lb2, le2);
3629                 }
3630             }
3631           last_load_segment = *p;
3632         }
3633     }
3634
3635   if (load_seg != NULL && target->isolate_execinstr())
3636     {
3637       // Process the early segments again, setting their file offsets
3638       // so they land after the segments starting at LOAD_SEG.
3639       off = align_file_offset(off, 0, target->abi_pagesize());
3640
3641       this->reset_relax_output();
3642
3643       for (Segment_list::iterator p = this->segment_list_.begin();
3644            *p != load_seg;
3645            ++p)
3646         {
3647           if ((*p)->type() == elfcpp::PT_LOAD)
3648             {
3649               // We repeat the whole job of assigning addresses and
3650               // offsets, but we really only want to change the offsets and
3651               // must ensure that the addresses all come out the same as
3652               // they did the first time through.
3653               bool has_relro = false;
3654               const uint64_t old_addr = (*p)->vaddr();
3655               const uint64_t old_end = old_addr + (*p)->memsz();
3656               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3657                                                               true, old_addr,
3658                                                               &increase_relro,
3659                                                               &has_relro,
3660                                                               &off,
3661                                                               &shndx_begin);
3662               gold_assert(new_addr == old_end);
3663             }
3664         }
3665
3666       gold_assert(shndx_begin == shndx_load_seg);
3667     }
3668
3669   // Handle the non-PT_LOAD segments, setting their offsets from their
3670   // section's offsets.
3671   for (Segment_list::iterator p = this->segment_list_.begin();
3672        p != this->segment_list_.end();
3673        ++p)
3674     {
3675       if ((*p)->type() != elfcpp::PT_LOAD)
3676         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3677                          ? increase_relro
3678                          : 0);
3679     }
3680
3681   // Set the TLS offsets for each section in the PT_TLS segment.
3682   if (this->tls_segment_ != NULL)
3683     this->tls_segment_->set_tls_offsets();
3684
3685   return off;
3686 }
3687
3688 // Set the offsets of all the allocated sections when doing a
3689 // relocatable link.  This does the same jobs as set_segment_offsets,
3690 // only for a relocatable link.
3691
3692 off_t
3693 Layout::set_relocatable_section_offsets(Output_data* file_header,
3694                                         unsigned int* pshndx)
3695 {
3696   off_t off = 0;
3697
3698   file_header->set_address_and_file_offset(0, 0);
3699   off += file_header->data_size();
3700
3701   for (Section_list::iterator p = this->section_list_.begin();
3702        p != this->section_list_.end();
3703        ++p)
3704     {
3705       // We skip unallocated sections here, except that group sections
3706       // have to come first.
3707       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3708           && (*p)->type() != elfcpp::SHT_GROUP)
3709         continue;
3710
3711       off = align_address(off, (*p)->addralign());
3712
3713       // The linker script might have set the address.
3714       if (!(*p)->is_address_valid())
3715         (*p)->set_address(0);
3716       (*p)->set_file_offset(off);
3717       (*p)->finalize_data_size();
3718       if ((*p)->type() != elfcpp::SHT_NOBITS)
3719         off += (*p)->data_size();
3720
3721       (*p)->set_out_shndx(*pshndx);
3722       ++*pshndx;
3723     }
3724
3725   return off;
3726 }
3727
3728 // Set the file offset of all the sections not associated with a
3729 // segment.
3730
3731 off_t
3732 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3733 {
3734   off_t startoff = off;
3735   off_t maxoff = off;
3736
3737   for (Section_list::iterator p = this->unattached_section_list_.begin();
3738        p != this->unattached_section_list_.end();
3739        ++p)
3740     {
3741       // The symtab section is handled in create_symtab_sections.
3742       if (*p == this->symtab_section_)
3743         continue;
3744
3745       // If we've already set the data size, don't set it again.
3746       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3747         continue;
3748
3749       if (pass == BEFORE_INPUT_SECTIONS_PASS
3750           && (*p)->requires_postprocessing())
3751         {
3752           (*p)->create_postprocessing_buffer();
3753           this->any_postprocessing_sections_ = true;
3754         }
3755
3756       if (pass == BEFORE_INPUT_SECTIONS_PASS
3757           && (*p)->after_input_sections())
3758         continue;
3759       else if (pass == POSTPROCESSING_SECTIONS_PASS
3760                && (!(*p)->after_input_sections()
3761                    || (*p)->type() == elfcpp::SHT_STRTAB))
3762         continue;
3763       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3764                && (!(*p)->after_input_sections()
3765                    || (*p)->type() != elfcpp::SHT_STRTAB))
3766         continue;
3767
3768       if (!parameters->incremental_update())
3769         {
3770           off = align_address(off, (*p)->addralign());
3771           (*p)->set_file_offset(off);
3772           (*p)->finalize_data_size();
3773         }
3774       else
3775         {
3776           // Incremental update: allocate file space from free list.
3777           (*p)->pre_finalize_data_size();
3778           off_t current_size = (*p)->current_data_size();
3779           off = this->allocate(current_size, (*p)->addralign(), startoff);
3780           if (off == -1)
3781             {
3782               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3783                 this->free_list_.dump();
3784               gold_assert((*p)->output_section() != NULL);
3785               gold_fallback(_("out of patch space for section %s; "
3786                               "relink with --incremental-full"),
3787                             (*p)->output_section()->name());
3788             }
3789           (*p)->set_file_offset(off);
3790           (*p)->finalize_data_size();
3791           if ((*p)->data_size() > current_size)
3792             {
3793               gold_assert((*p)->output_section() != NULL);
3794               gold_fallback(_("%s: section changed size; "
3795                               "relink with --incremental-full"),
3796                             (*p)->output_section()->name());
3797             }
3798           gold_debug(DEBUG_INCREMENTAL,
3799                      "set_section_offsets: %08lx %08lx %s",
3800                      static_cast<long>(off),
3801                      static_cast<long>((*p)->data_size()),
3802                      ((*p)->output_section() != NULL
3803                       ? (*p)->output_section()->name() : "(special)"));
3804         }
3805
3806       off += (*p)->data_size();
3807       if (off > maxoff)
3808         maxoff = off;
3809
3810       // At this point the name must be set.
3811       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3812         this->namepool_.add((*p)->name(), false, NULL);
3813     }
3814   return maxoff;
3815 }
3816
3817 // Set the section indexes of all the sections not associated with a
3818 // segment.
3819
3820 unsigned int
3821 Layout::set_section_indexes(unsigned int shndx)
3822 {
3823   for (Section_list::iterator p = this->unattached_section_list_.begin();
3824        p != this->unattached_section_list_.end();
3825        ++p)
3826     {
3827       if (!(*p)->has_out_shndx())
3828         {
3829           (*p)->set_out_shndx(shndx);
3830           ++shndx;
3831         }
3832     }
3833   return shndx;
3834 }
3835
3836 // Set the section addresses according to the linker script.  This is
3837 // only called when we see a SECTIONS clause.  This returns the
3838 // program segment which should hold the file header and segment
3839 // headers, if any.  It will return NULL if they should not be in a
3840 // segment.
3841
3842 Output_segment*
3843 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3844 {
3845   Script_sections* ss = this->script_options_->script_sections();
3846   gold_assert(ss->saw_sections_clause());
3847   return this->script_options_->set_section_addresses(symtab, this);
3848 }
3849
3850 // Place the orphan sections in the linker script.
3851
3852 void
3853 Layout::place_orphan_sections_in_script()
3854 {
3855   Script_sections* ss = this->script_options_->script_sections();
3856   gold_assert(ss->saw_sections_clause());
3857
3858   // Place each orphaned output section in the script.
3859   for (Section_list::iterator p = this->section_list_.begin();
3860        p != this->section_list_.end();
3861        ++p)
3862     {
3863       if (!(*p)->found_in_sections_clause())
3864         ss->place_orphan(*p);
3865     }
3866 }
3867
3868 // Count the local symbols in the regular symbol table and the dynamic
3869 // symbol table, and build the respective string pools.
3870
3871 void
3872 Layout::count_local_symbols(const Task* task,
3873                             const Input_objects* input_objects)
3874 {
3875   // First, figure out an upper bound on the number of symbols we'll
3876   // be inserting into each pool.  This helps us create the pools with
3877   // the right size, to avoid unnecessary hashtable resizing.
3878   unsigned int symbol_count = 0;
3879   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3880        p != input_objects->relobj_end();
3881        ++p)
3882     symbol_count += (*p)->local_symbol_count();
3883
3884   // Go from "upper bound" to "estimate."  We overcount for two
3885   // reasons: we double-count symbols that occur in more than one
3886   // object file, and we count symbols that are dropped from the
3887   // output.  Add it all together and assume we overcount by 100%.
3888   symbol_count /= 2;
3889
3890   // We assume all symbols will go into both the sympool and dynpool.
3891   this->sympool_.reserve(symbol_count);
3892   this->dynpool_.reserve(symbol_count);
3893
3894   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3895        p != input_objects->relobj_end();
3896        ++p)
3897     {
3898       Task_lock_obj<Object> tlo(task, *p);
3899       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3900     }
3901 }
3902
3903 // Create the symbol table sections.  Here we also set the final
3904 // values of the symbols.  At this point all the loadable sections are
3905 // fully laid out.  SHNUM is the number of sections so far.
3906
3907 void
3908 Layout::create_symtab_sections(const Input_objects* input_objects,
3909                                Symbol_table* symtab,
3910                                unsigned int shnum,
3911                                off_t* poff)
3912 {
3913   int symsize;
3914   unsigned int align;
3915   if (parameters->target().get_size() == 32)
3916     {
3917       symsize = elfcpp::Elf_sizes<32>::sym_size;
3918       align = 4;
3919     }
3920   else if (parameters->target().get_size() == 64)
3921     {
3922       symsize = elfcpp::Elf_sizes<64>::sym_size;
3923       align = 8;
3924     }
3925   else
3926     gold_unreachable();
3927
3928   // Compute file offsets relative to the start of the symtab section.
3929   off_t off = 0;
3930
3931   // Save space for the dummy symbol at the start of the section.  We
3932   // never bother to write this out--it will just be left as zero.
3933   off += symsize;
3934   unsigned int local_symbol_index = 1;
3935
3936   // Add STT_SECTION symbols for each Output section which needs one.
3937   for (Section_list::iterator p = this->section_list_.begin();
3938        p != this->section_list_.end();
3939        ++p)
3940     {
3941       if (!(*p)->needs_symtab_index())
3942         (*p)->set_symtab_index(-1U);
3943       else
3944         {
3945           (*p)->set_symtab_index(local_symbol_index);
3946           ++local_symbol_index;
3947           off += symsize;
3948         }
3949     }
3950
3951   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3952        p != input_objects->relobj_end();
3953        ++p)
3954     {
3955       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3956                                                         off, symtab);
3957       off += (index - local_symbol_index) * symsize;
3958       local_symbol_index = index;
3959     }
3960
3961   unsigned int local_symcount = local_symbol_index;
3962   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3963
3964   off_t dynoff;
3965   size_t dyn_global_index;
3966   size_t dyncount;
3967   if (this->dynsym_section_ == NULL)
3968     {
3969       dynoff = 0;
3970       dyn_global_index = 0;
3971       dyncount = 0;
3972     }
3973   else
3974     {
3975       dyn_global_index = this->dynsym_section_->info();
3976       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3977       dynoff = this->dynsym_section_->offset() + locsize;
3978       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3979       gold_assert(static_cast<off_t>(dyncount * symsize)
3980                   == this->dynsym_section_->data_size() - locsize);
3981     }
3982
3983   off_t global_off = off;
3984   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3985                          &this->sympool_, &local_symcount);
3986
3987   if (!parameters->options().strip_all())
3988     {
3989       this->sympool_.set_string_offsets();
3990
3991       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3992       Output_section* osymtab = this->make_output_section(symtab_name,
3993                                                           elfcpp::SHT_SYMTAB,
3994                                                           0, ORDER_INVALID,
3995                                                           false);
3996       this->symtab_section_ = osymtab;
3997
3998       Output_section_data* pos = new Output_data_fixed_space(off, align,
3999                                                              "** symtab");
4000       osymtab->add_output_section_data(pos);
4001
4002       // We generate a .symtab_shndx section if we have more than
4003       // SHN_LORESERVE sections.  Technically it is possible that we
4004       // don't need one, because it is possible that there are no
4005       // symbols in any of sections with indexes larger than
4006       // SHN_LORESERVE.  That is probably unusual, though, and it is
4007       // easier to always create one than to compute section indexes
4008       // twice (once here, once when writing out the symbols).
4009       if (shnum >= elfcpp::SHN_LORESERVE)
4010         {
4011           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4012                                                                false, NULL);
4013           Output_section* osymtab_xindex =
4014             this->make_output_section(symtab_xindex_name,
4015                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4016                                       ORDER_INVALID, false);
4017
4018           size_t symcount = off / symsize;
4019           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4020
4021           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4022
4023           osymtab_xindex->set_link_section(osymtab);
4024           osymtab_xindex->set_addralign(4);
4025           osymtab_xindex->set_entsize(4);
4026
4027           osymtab_xindex->set_after_input_sections();
4028
4029           // This tells the driver code to wait until the symbol table
4030           // has written out before writing out the postprocessing
4031           // sections, including the .symtab_shndx section.
4032           this->any_postprocessing_sections_ = true;
4033         }
4034
4035       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4036       Output_section* ostrtab = this->make_output_section(strtab_name,
4037                                                           elfcpp::SHT_STRTAB,
4038                                                           0, ORDER_INVALID,
4039                                                           false);
4040
4041       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4042       ostrtab->add_output_section_data(pstr);
4043
4044       off_t symtab_off;
4045       if (!parameters->incremental_update())
4046         symtab_off = align_address(*poff, align);
4047       else
4048         {
4049           symtab_off = this->allocate(off, align, *poff);
4050           if (off == -1)
4051             gold_fallback(_("out of patch space for symbol table; "
4052                             "relink with --incremental-full"));
4053           gold_debug(DEBUG_INCREMENTAL,
4054                      "create_symtab_sections: %08lx %08lx .symtab",
4055                      static_cast<long>(symtab_off),
4056                      static_cast<long>(off));
4057         }
4058
4059       symtab->set_file_offset(symtab_off + global_off);
4060       osymtab->set_file_offset(symtab_off);
4061       osymtab->finalize_data_size();
4062       osymtab->set_link_section(ostrtab);
4063       osymtab->set_info(local_symcount);
4064       osymtab->set_entsize(symsize);
4065
4066       if (symtab_off + off > *poff)
4067         *poff = symtab_off + off;
4068     }
4069 }
4070
4071 // Create the .shstrtab section, which holds the names of the
4072 // sections.  At the time this is called, we have created all the
4073 // output sections except .shstrtab itself.
4074
4075 Output_section*
4076 Layout::create_shstrtab()
4077 {
4078   // FIXME: We don't need to create a .shstrtab section if we are
4079   // stripping everything.
4080
4081   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4082
4083   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4084                                                  ORDER_INVALID, false);
4085
4086   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4087     {
4088       // We can't write out this section until we've set all the
4089       // section names, and we don't set the names of compressed
4090       // output sections until relocations are complete.  FIXME: With
4091       // the current names we use, this is unnecessary.
4092       os->set_after_input_sections();
4093     }
4094
4095   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4096   os->add_output_section_data(posd);
4097
4098   return os;
4099 }
4100
4101 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4102 // offset.
4103
4104 void
4105 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4106 {
4107   Output_section_headers* oshdrs;
4108   oshdrs = new Output_section_headers(this,
4109                                       &this->segment_list_,
4110                                       &this->section_list_,
4111                                       &this->unattached_section_list_,
4112                                       &this->namepool_,
4113                                       shstrtab_section);
4114   off_t off;
4115   if (!parameters->incremental_update())
4116     off = align_address(*poff, oshdrs->addralign());
4117   else
4118     {
4119       oshdrs->pre_finalize_data_size();
4120       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4121       if (off == -1)
4122           gold_fallback(_("out of patch space for section header table; "
4123                           "relink with --incremental-full"));
4124       gold_debug(DEBUG_INCREMENTAL,
4125                  "create_shdrs: %08lx %08lx (section header table)",
4126                  static_cast<long>(off),
4127                  static_cast<long>(off + oshdrs->data_size()));
4128     }
4129   oshdrs->set_address_and_file_offset(0, off);
4130   off += oshdrs->data_size();
4131   if (off > *poff)
4132     *poff = off;
4133   this->section_headers_ = oshdrs;
4134 }
4135
4136 // Count the allocated sections.
4137
4138 size_t
4139 Layout::allocated_output_section_count() const
4140 {
4141   size_t section_count = 0;
4142   for (Segment_list::const_iterator p = this->segment_list_.begin();
4143        p != this->segment_list_.end();
4144        ++p)
4145     section_count += (*p)->output_section_count();
4146   return section_count;
4147 }
4148
4149 // Create the dynamic symbol table.
4150
4151 void
4152 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4153                               Symbol_table* symtab,
4154                               Output_section** pdynstr,
4155                               unsigned int* plocal_dynamic_count,
4156                               std::vector<Symbol*>* pdynamic_symbols,
4157                               Versions* pversions)
4158 {
4159   // Count all the symbols in the dynamic symbol table, and set the
4160   // dynamic symbol indexes.
4161
4162   // Skip symbol 0, which is always all zeroes.
4163   unsigned int index = 1;
4164
4165   // Add STT_SECTION symbols for each Output section which needs one.
4166   for (Section_list::iterator p = this->section_list_.begin();
4167        p != this->section_list_.end();
4168        ++p)
4169     {
4170       if (!(*p)->needs_dynsym_index())
4171         (*p)->set_dynsym_index(-1U);
4172       else
4173         {
4174           (*p)->set_dynsym_index(index);
4175           ++index;
4176         }
4177     }
4178
4179   // Count the local symbols that need to go in the dynamic symbol table,
4180   // and set the dynamic symbol indexes.
4181   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4182        p != input_objects->relobj_end();
4183        ++p)
4184     {
4185       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4186       index = new_index;
4187     }
4188
4189   unsigned int local_symcount = index;
4190   *plocal_dynamic_count = local_symcount;
4191
4192   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4193                                      &this->dynpool_, pversions);
4194
4195   int symsize;
4196   unsigned int align;
4197   const int size = parameters->target().get_size();
4198   if (size == 32)
4199     {
4200       symsize = elfcpp::Elf_sizes<32>::sym_size;
4201       align = 4;
4202     }
4203   else if (size == 64)
4204     {
4205       symsize = elfcpp::Elf_sizes<64>::sym_size;
4206       align = 8;
4207     }
4208   else
4209     gold_unreachable();
4210
4211   // Create the dynamic symbol table section.
4212
4213   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4214                                                        elfcpp::SHT_DYNSYM,
4215                                                        elfcpp::SHF_ALLOC,
4216                                                        false,
4217                                                        ORDER_DYNAMIC_LINKER,
4218                                                        false);
4219
4220   // Check for NULL as a linker script may discard .dynsym.
4221   if (dynsym != NULL)
4222     {
4223       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4224                                                                align,
4225                                                                "** dynsym");
4226       dynsym->add_output_section_data(odata);
4227
4228       dynsym->set_info(local_symcount);
4229       dynsym->set_entsize(symsize);
4230       dynsym->set_addralign(align);
4231
4232       this->dynsym_section_ = dynsym;
4233     }
4234
4235   Output_data_dynamic* const odyn = this->dynamic_data_;
4236   if (odyn != NULL)
4237     {
4238       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4239       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4240     }
4241
4242   // If there are more than SHN_LORESERVE allocated sections, we
4243   // create a .dynsym_shndx section.  It is possible that we don't
4244   // need one, because it is possible that there are no dynamic
4245   // symbols in any of the sections with indexes larger than
4246   // SHN_LORESERVE.  This is probably unusual, though, and at this
4247   // time we don't know the actual section indexes so it is
4248   // inconvenient to check.
4249   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4250     {
4251       Output_section* dynsym_xindex =
4252         this->choose_output_section(NULL, ".dynsym_shndx",
4253                                     elfcpp::SHT_SYMTAB_SHNDX,
4254                                     elfcpp::SHF_ALLOC,
4255                                     false, ORDER_DYNAMIC_LINKER, false);
4256
4257       if (dynsym_xindex != NULL)
4258         {
4259           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4260
4261           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4262
4263           dynsym_xindex->set_link_section(dynsym);
4264           dynsym_xindex->set_addralign(4);
4265           dynsym_xindex->set_entsize(4);
4266
4267           dynsym_xindex->set_after_input_sections();
4268
4269           // This tells the driver code to wait until the symbol table
4270           // has written out before writing out the postprocessing
4271           // sections, including the .dynsym_shndx section.
4272           this->any_postprocessing_sections_ = true;
4273         }
4274     }
4275
4276   // Create the dynamic string table section.
4277
4278   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4279                                                        elfcpp::SHT_STRTAB,
4280                                                        elfcpp::SHF_ALLOC,
4281                                                        false,
4282                                                        ORDER_DYNAMIC_LINKER,
4283                                                        false);
4284   *pdynstr = dynstr;
4285   if (dynstr != NULL)
4286     {
4287       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4288       dynstr->add_output_section_data(strdata);
4289
4290       if (dynsym != NULL)
4291         dynsym->set_link_section(dynstr);
4292       if (this->dynamic_section_ != NULL)
4293         this->dynamic_section_->set_link_section(dynstr);
4294
4295       if (odyn != NULL)
4296         {
4297           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4298           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4299         }
4300     }
4301
4302   // Create the hash tables.
4303
4304   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4305       || strcmp(parameters->options().hash_style(), "both") == 0)
4306     {
4307       unsigned char* phash;
4308       unsigned int hashlen;
4309       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4310                                     &phash, &hashlen);
4311
4312       Output_section* hashsec =
4313         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4314                                     elfcpp::SHF_ALLOC, false,
4315                                     ORDER_DYNAMIC_LINKER, false);
4316
4317       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4318                                                                    hashlen,
4319                                                                    align,
4320                                                                    "** hash");
4321       if (hashsec != NULL && hashdata != NULL)
4322         hashsec->add_output_section_data(hashdata);
4323
4324       if (hashsec != NULL)
4325         {
4326           if (dynsym != NULL)
4327             hashsec->set_link_section(dynsym);
4328           hashsec->set_entsize(4);
4329         }
4330
4331       if (odyn != NULL)
4332         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4333     }
4334
4335   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4336       || strcmp(parameters->options().hash_style(), "both") == 0)
4337     {
4338       unsigned char* phash;
4339       unsigned int hashlen;
4340       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4341                                     &phash, &hashlen);
4342
4343       Output_section* hashsec =
4344         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4345                                     elfcpp::SHF_ALLOC, false,
4346                                     ORDER_DYNAMIC_LINKER, false);
4347
4348       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4349                                                                    hashlen,
4350                                                                    align,
4351                                                                    "** hash");
4352       if (hashsec != NULL && hashdata != NULL)
4353         hashsec->add_output_section_data(hashdata);
4354
4355       if (hashsec != NULL)
4356         {
4357           if (dynsym != NULL)
4358             hashsec->set_link_section(dynsym);
4359
4360           // For a 64-bit target, the entries in .gnu.hash do not have
4361           // a uniform size, so we only set the entry size for a
4362           // 32-bit target.
4363           if (parameters->target().get_size() == 32)
4364             hashsec->set_entsize(4);
4365
4366           if (odyn != NULL)
4367             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4368         }
4369     }
4370 }
4371
4372 // Assign offsets to each local portion of the dynamic symbol table.
4373
4374 void
4375 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4376 {
4377   Output_section* dynsym = this->dynsym_section_;
4378   if (dynsym == NULL)
4379     return;
4380
4381   off_t off = dynsym->offset();
4382
4383   // Skip the dummy symbol at the start of the section.
4384   off += dynsym->entsize();
4385
4386   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4387        p != input_objects->relobj_end();
4388        ++p)
4389     {
4390       unsigned int count = (*p)->set_local_dynsym_offset(off);
4391       off += count * dynsym->entsize();
4392     }
4393 }
4394
4395 // Create the version sections.
4396
4397 void
4398 Layout::create_version_sections(const Versions* versions,
4399                                 const Symbol_table* symtab,
4400                                 unsigned int local_symcount,
4401                                 const std::vector<Symbol*>& dynamic_symbols,
4402                                 const Output_section* dynstr)
4403 {
4404   if (!versions->any_defs() && !versions->any_needs())
4405     return;
4406
4407   switch (parameters->size_and_endianness())
4408     {
4409 #ifdef HAVE_TARGET_32_LITTLE
4410     case Parameters::TARGET_32_LITTLE:
4411       this->sized_create_version_sections<32, false>(versions, symtab,
4412                                                      local_symcount,
4413                                                      dynamic_symbols, dynstr);
4414       break;
4415 #endif
4416 #ifdef HAVE_TARGET_32_BIG
4417     case Parameters::TARGET_32_BIG:
4418       this->sized_create_version_sections<32, true>(versions, symtab,
4419                                                     local_symcount,
4420                                                     dynamic_symbols, dynstr);
4421       break;
4422 #endif
4423 #ifdef HAVE_TARGET_64_LITTLE
4424     case Parameters::TARGET_64_LITTLE:
4425       this->sized_create_version_sections<64, false>(versions, symtab,
4426                                                      local_symcount,
4427                                                      dynamic_symbols, dynstr);
4428       break;
4429 #endif
4430 #ifdef HAVE_TARGET_64_BIG
4431     case Parameters::TARGET_64_BIG:
4432       this->sized_create_version_sections<64, true>(versions, symtab,
4433                                                     local_symcount,
4434                                                     dynamic_symbols, dynstr);
4435       break;
4436 #endif
4437     default:
4438       gold_unreachable();
4439     }
4440 }
4441
4442 // Create the version sections, sized version.
4443
4444 template<int size, bool big_endian>
4445 void
4446 Layout::sized_create_version_sections(
4447     const Versions* versions,
4448     const Symbol_table* symtab,
4449     unsigned int local_symcount,
4450     const std::vector<Symbol*>& dynamic_symbols,
4451     const Output_section* dynstr)
4452 {
4453   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4454                                                      elfcpp::SHT_GNU_versym,
4455                                                      elfcpp::SHF_ALLOC,
4456                                                      false,
4457                                                      ORDER_DYNAMIC_LINKER,
4458                                                      false);
4459
4460   // Check for NULL since a linker script may discard this section.
4461   if (vsec != NULL)
4462     {
4463       unsigned char* vbuf;
4464       unsigned int vsize;
4465       versions->symbol_section_contents<size, big_endian>(symtab,
4466                                                           &this->dynpool_,
4467                                                           local_symcount,
4468                                                           dynamic_symbols,
4469                                                           &vbuf, &vsize);
4470
4471       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4472                                                                 "** versions");
4473
4474       vsec->add_output_section_data(vdata);
4475       vsec->set_entsize(2);
4476       vsec->set_link_section(this->dynsym_section_);
4477     }
4478
4479   Output_data_dynamic* const odyn = this->dynamic_data_;
4480   if (odyn != NULL && vsec != NULL)
4481     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4482
4483   if (versions->any_defs())
4484     {
4485       Output_section* vdsec;
4486       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4487                                           elfcpp::SHT_GNU_verdef,
4488                                           elfcpp::SHF_ALLOC,
4489                                           false, ORDER_DYNAMIC_LINKER, false);
4490
4491       if (vdsec != NULL)
4492         {
4493           unsigned char* vdbuf;
4494           unsigned int vdsize;
4495           unsigned int vdentries;
4496           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4497                                                            &vdbuf, &vdsize,
4498                                                            &vdentries);
4499
4500           Output_section_data* vddata =
4501             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4502
4503           vdsec->add_output_section_data(vddata);
4504           vdsec->set_link_section(dynstr);
4505           vdsec->set_info(vdentries);
4506
4507           if (odyn != NULL)
4508             {
4509               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4510               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4511             }
4512         }
4513     }
4514
4515   if (versions->any_needs())
4516     {
4517       Output_section* vnsec;
4518       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4519                                           elfcpp::SHT_GNU_verneed,
4520                                           elfcpp::SHF_ALLOC,
4521                                           false, ORDER_DYNAMIC_LINKER, false);
4522
4523       if (vnsec != NULL)
4524         {
4525           unsigned char* vnbuf;
4526           unsigned int vnsize;
4527           unsigned int vnentries;
4528           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4529                                                             &vnbuf, &vnsize,
4530                                                             &vnentries);
4531
4532           Output_section_data* vndata =
4533             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4534
4535           vnsec->add_output_section_data(vndata);
4536           vnsec->set_link_section(dynstr);
4537           vnsec->set_info(vnentries);
4538
4539           if (odyn != NULL)
4540             {
4541               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4542               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4543             }
4544         }
4545     }
4546 }
4547
4548 // Create the .interp section and PT_INTERP segment.
4549
4550 void
4551 Layout::create_interp(const Target* target)
4552 {
4553   gold_assert(this->interp_segment_ == NULL);
4554
4555   const char* interp = parameters->options().dynamic_linker();
4556   if (interp == NULL)
4557     {
4558       interp = target->dynamic_linker();
4559       gold_assert(interp != NULL);
4560     }
4561
4562   size_t len = strlen(interp) + 1;
4563
4564   Output_section_data* odata = new Output_data_const(interp, len, 1);
4565
4566   Output_section* osec = this->choose_output_section(NULL, ".interp",
4567                                                      elfcpp::SHT_PROGBITS,
4568                                                      elfcpp::SHF_ALLOC,
4569                                                      false, ORDER_INTERP,
4570                                                      false);
4571   if (osec != NULL)
4572     osec->add_output_section_data(odata);
4573 }
4574
4575 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4576 // called by the target-specific code.  This does nothing if not doing
4577 // a dynamic link.
4578
4579 // USE_REL is true for REL relocs rather than RELA relocs.
4580
4581 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4582
4583 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4584 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4585 // some targets have multiple reloc sections in PLT_REL.
4586
4587 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4588 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4589 // section.
4590
4591 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4592 // executable.
4593
4594 void
4595 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4596                                 const Output_data* plt_rel,
4597                                 const Output_data_reloc_generic* dyn_rel,
4598                                 bool add_debug, bool dynrel_includes_plt)
4599 {
4600   Output_data_dynamic* odyn = this->dynamic_data_;
4601   if (odyn == NULL)
4602     return;
4603
4604   if (plt_got != NULL && plt_got->output_section() != NULL)
4605     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4606
4607   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4608     {
4609       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4610       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4611       odyn->add_constant(elfcpp::DT_PLTREL,
4612                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4613     }
4614
4615   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4616       || (dynrel_includes_plt
4617           && plt_rel != NULL
4618           && plt_rel->output_section() != NULL))
4619     {
4620       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4621       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4622       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4623                                 (have_dyn_rel
4624                                  ? dyn_rel->output_section()
4625                                  : plt_rel->output_section()));
4626       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4627       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4628         odyn->add_section_size(size_tag,
4629                                dyn_rel->output_section(),
4630                                plt_rel->output_section());
4631       else if (have_dyn_rel)
4632         odyn->add_section_size(size_tag, dyn_rel->output_section());
4633       else
4634         odyn->add_section_size(size_tag, plt_rel->output_section());
4635       const int size = parameters->target().get_size();
4636       elfcpp::DT rel_tag;
4637       int rel_size;
4638       if (use_rel)
4639         {
4640           rel_tag = elfcpp::DT_RELENT;
4641           if (size == 32)
4642             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4643           else if (size == 64)
4644             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4645           else
4646             gold_unreachable();
4647         }
4648       else
4649         {
4650           rel_tag = elfcpp::DT_RELAENT;
4651           if (size == 32)
4652             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4653           else if (size == 64)
4654             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4655           else
4656             gold_unreachable();
4657         }
4658       odyn->add_constant(rel_tag, rel_size);
4659
4660       if (parameters->options().combreloc() && have_dyn_rel)
4661         {
4662           size_t c = dyn_rel->relative_reloc_count();
4663           if (c > 0)
4664             odyn->add_constant((use_rel
4665                                 ? elfcpp::DT_RELCOUNT
4666                                 : elfcpp::DT_RELACOUNT),
4667                                c);
4668         }
4669     }
4670
4671   if (add_debug && !parameters->options().shared())
4672     {
4673       // The value of the DT_DEBUG tag is filled in by the dynamic
4674       // linker at run time, and used by the debugger.
4675       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4676     }
4677 }
4678
4679 // Finish the .dynamic section and PT_DYNAMIC segment.
4680
4681 void
4682 Layout::finish_dynamic_section(const Input_objects* input_objects,
4683                                const Symbol_table* symtab)
4684 {
4685   if (!this->script_options_->saw_phdrs_clause()
4686       && this->dynamic_section_ != NULL)
4687     {
4688       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4689                                                        (elfcpp::PF_R
4690                                                         | elfcpp::PF_W));
4691       oseg->add_output_section_to_nonload(this->dynamic_section_,
4692                                           elfcpp::PF_R | elfcpp::PF_W);
4693     }
4694
4695   Output_data_dynamic* const odyn = this->dynamic_data_;
4696   if (odyn == NULL)
4697     return;
4698
4699   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4700        p != input_objects->dynobj_end();
4701        ++p)
4702     {
4703       if (!(*p)->is_needed() && (*p)->as_needed())
4704         {
4705           // This dynamic object was linked with --as-needed, but it
4706           // is not needed.
4707           continue;
4708         }
4709
4710       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4711     }
4712
4713   if (parameters->options().shared())
4714     {
4715       const char* soname = parameters->options().soname();
4716       if (soname != NULL)
4717         odyn->add_string(elfcpp::DT_SONAME, soname);
4718     }
4719
4720   Symbol* sym = symtab->lookup(parameters->options().init());
4721   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4722     odyn->add_symbol(elfcpp::DT_INIT, sym);
4723
4724   sym = symtab->lookup(parameters->options().fini());
4725   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4726     odyn->add_symbol(elfcpp::DT_FINI, sym);
4727
4728   // Look for .init_array, .preinit_array and .fini_array by checking
4729   // section types.
4730   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4731       p != this->section_list_.end();
4732       ++p)
4733     switch((*p)->type())
4734       {
4735       case elfcpp::SHT_FINI_ARRAY:
4736         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4737         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4738         break;
4739       case elfcpp::SHT_INIT_ARRAY:
4740         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4741         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4742         break;
4743       case elfcpp::SHT_PREINIT_ARRAY:
4744         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4745         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4746         break;
4747       default:
4748         break;
4749       }
4750
4751   // Add a DT_RPATH entry if needed.
4752   const General_options::Dir_list& rpath(parameters->options().rpath());
4753   if (!rpath.empty())
4754     {
4755       std::string rpath_val;
4756       for (General_options::Dir_list::const_iterator p = rpath.begin();
4757            p != rpath.end();
4758            ++p)
4759         {
4760           if (rpath_val.empty())
4761             rpath_val = p->name();
4762           else
4763             {
4764               // Eliminate duplicates.
4765               General_options::Dir_list::const_iterator q;
4766               for (q = rpath.begin(); q != p; ++q)
4767                 if (q->name() == p->name())
4768                   break;
4769               if (q == p)
4770                 {
4771                   rpath_val += ':';
4772                   rpath_val += p->name();
4773                 }
4774             }
4775         }
4776
4777       if (!parameters->options().enable_new_dtags())
4778         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4779       else
4780         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4781     }
4782
4783   // Look for text segments that have dynamic relocations.
4784   bool have_textrel = false;
4785   if (!this->script_options_->saw_sections_clause())
4786     {
4787       for (Segment_list::const_iterator p = this->segment_list_.begin();
4788            p != this->segment_list_.end();
4789            ++p)
4790         {
4791           if ((*p)->type() == elfcpp::PT_LOAD
4792               && ((*p)->flags() & elfcpp::PF_W) == 0
4793               && (*p)->has_dynamic_reloc())
4794             {
4795               have_textrel = true;
4796               break;
4797             }
4798         }
4799     }
4800   else
4801     {
4802       // We don't know the section -> segment mapping, so we are
4803       // conservative and just look for readonly sections with
4804       // relocations.  If those sections wind up in writable segments,
4805       // then we have created an unnecessary DT_TEXTREL entry.
4806       for (Section_list::const_iterator p = this->section_list_.begin();
4807            p != this->section_list_.end();
4808            ++p)
4809         {
4810           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4811               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4812               && (*p)->has_dynamic_reloc())
4813             {
4814               have_textrel = true;
4815               break;
4816             }
4817         }
4818     }
4819
4820   if (parameters->options().filter() != NULL)
4821     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4822   if (parameters->options().any_auxiliary())
4823     {
4824       for (options::String_set::const_iterator p =
4825              parameters->options().auxiliary_begin();
4826            p != parameters->options().auxiliary_end();
4827            ++p)
4828         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4829     }
4830
4831   // Add a DT_FLAGS entry if necessary.
4832   unsigned int flags = 0;
4833   if (have_textrel)
4834     {
4835       // Add a DT_TEXTREL for compatibility with older loaders.
4836       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4837       flags |= elfcpp::DF_TEXTREL;
4838
4839       if (parameters->options().text())
4840         gold_error(_("read-only segment has dynamic relocations"));
4841       else if (parameters->options().warn_shared_textrel()
4842                && parameters->options().shared())
4843         gold_warning(_("shared library text segment is not shareable"));
4844     }
4845   if (parameters->options().shared() && this->has_static_tls())
4846     flags |= elfcpp::DF_STATIC_TLS;
4847   if (parameters->options().origin())
4848     flags |= elfcpp::DF_ORIGIN;
4849   if (parameters->options().Bsymbolic())
4850     {
4851       flags |= elfcpp::DF_SYMBOLIC;
4852       // Add DT_SYMBOLIC for compatibility with older loaders.
4853       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4854     }
4855   if (parameters->options().now())
4856     flags |= elfcpp::DF_BIND_NOW;
4857   if (flags != 0)
4858     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4859
4860   flags = 0;
4861   if (parameters->options().initfirst())
4862     flags |= elfcpp::DF_1_INITFIRST;
4863   if (parameters->options().interpose())
4864     flags |= elfcpp::DF_1_INTERPOSE;
4865   if (parameters->options().loadfltr())
4866     flags |= elfcpp::DF_1_LOADFLTR;
4867   if (parameters->options().nodefaultlib())
4868     flags |= elfcpp::DF_1_NODEFLIB;
4869   if (parameters->options().nodelete())
4870     flags |= elfcpp::DF_1_NODELETE;
4871   if (parameters->options().nodlopen())
4872     flags |= elfcpp::DF_1_NOOPEN;
4873   if (parameters->options().nodump())
4874     flags |= elfcpp::DF_1_NODUMP;
4875   if (!parameters->options().shared())
4876     flags &= ~(elfcpp::DF_1_INITFIRST
4877                | elfcpp::DF_1_NODELETE
4878                | elfcpp::DF_1_NOOPEN);
4879   if (parameters->options().origin())
4880     flags |= elfcpp::DF_1_ORIGIN;
4881   if (parameters->options().now())
4882     flags |= elfcpp::DF_1_NOW;
4883   if (parameters->options().Bgroup())
4884     flags |= elfcpp::DF_1_GROUP;
4885   if (flags != 0)
4886     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4887 }
4888
4889 // Set the size of the _DYNAMIC symbol table to be the size of the
4890 // dynamic data.
4891
4892 void
4893 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4894 {
4895   Output_data_dynamic* const odyn = this->dynamic_data_;
4896   if (odyn == NULL)
4897     return;
4898   odyn->finalize_data_size();
4899   if (this->dynamic_symbol_ == NULL)
4900     return;
4901   off_t data_size = odyn->data_size();
4902   const int size = parameters->target().get_size();
4903   if (size == 32)
4904     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4905   else if (size == 64)
4906     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4907   else
4908     gold_unreachable();
4909 }
4910
4911 // The mapping of input section name prefixes to output section names.
4912 // In some cases one prefix is itself a prefix of another prefix; in
4913 // such a case the longer prefix must come first.  These prefixes are
4914 // based on the GNU linker default ELF linker script.
4915
4916 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4917 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4918 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4919 {
4920   MAPPING_INIT(".text.", ".text"),
4921   MAPPING_INIT(".rodata.", ".rodata"),
4922   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4923   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4924   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4925   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4926   MAPPING_INIT(".data.", ".data"),
4927   MAPPING_INIT(".bss.", ".bss"),
4928   MAPPING_INIT(".tdata.", ".tdata"),
4929   MAPPING_INIT(".tbss.", ".tbss"),
4930   MAPPING_INIT(".init_array.", ".init_array"),
4931   MAPPING_INIT(".fini_array.", ".fini_array"),
4932   MAPPING_INIT(".sdata.", ".sdata"),
4933   MAPPING_INIT(".sbss.", ".sbss"),
4934   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4935   // differently depending on whether it is creating a shared library.
4936   MAPPING_INIT(".sdata2.", ".sdata"),
4937   MAPPING_INIT(".sbss2.", ".sbss"),
4938   MAPPING_INIT(".lrodata.", ".lrodata"),
4939   MAPPING_INIT(".ldata.", ".ldata"),
4940   MAPPING_INIT(".lbss.", ".lbss"),
4941   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4942   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4943   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4944   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4945   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4946   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4947   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4948   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4949   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4950   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4951   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4952   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4953   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4954   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4955   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4956   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4957   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4958   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4959   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4960   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4961   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4962 };
4963 #undef MAPPING_INIT
4964 #undef MAPPING_INIT_EXACT
4965
4966 const int Layout::section_name_mapping_count =
4967   (sizeof(Layout::section_name_mapping)
4968    / sizeof(Layout::section_name_mapping[0]));
4969
4970 // Choose the output section name to use given an input section name.
4971 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4972 // length of NAME.
4973
4974 const char*
4975 Layout::output_section_name(const Relobj* relobj, const char* name,
4976                             size_t* plen)
4977 {
4978   // gcc 4.3 generates the following sorts of section names when it
4979   // needs a section name specific to a function:
4980   //   .text.FN
4981   //   .rodata.FN
4982   //   .sdata2.FN
4983   //   .data.FN
4984   //   .data.rel.FN
4985   //   .data.rel.local.FN
4986   //   .data.rel.ro.FN
4987   //   .data.rel.ro.local.FN
4988   //   .sdata.FN
4989   //   .bss.FN
4990   //   .sbss.FN
4991   //   .tdata.FN
4992   //   .tbss.FN
4993
4994   // The GNU linker maps all of those to the part before the .FN,
4995   // except that .data.rel.local.FN is mapped to .data, and
4996   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4997   // beginning with .data.rel.ro.local are grouped together.
4998
4999   // For an anonymous namespace, the string FN can contain a '.'.
5000
5001   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5002   // GNU linker maps to .rodata.
5003
5004   // The .data.rel.ro sections are used with -z relro.  The sections
5005   // are recognized by name.  We use the same names that the GNU
5006   // linker does for these sections.
5007
5008   // It is hard to handle this in a principled way, so we don't even
5009   // try.  We use a table of mappings.  If the input section name is
5010   // not found in the table, we simply use it as the output section
5011   // name.
5012
5013   const Section_name_mapping* psnm = section_name_mapping;
5014   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5015     {
5016       if (psnm->fromlen > 0)
5017         {
5018           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5019             {
5020               *plen = psnm->tolen;
5021               return psnm->to;
5022             }
5023         }
5024       else
5025         {
5026           if (strcmp(name, psnm->from) == 0)
5027             {
5028               *plen = psnm->tolen;
5029               return psnm->to;
5030             }
5031         }
5032     }
5033
5034   // As an additional complication, .ctors sections are output in
5035   // either .ctors or .init_array sections, and .dtors sections are
5036   // output in either .dtors or .fini_array sections.
5037   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5038     {
5039       if (parameters->options().ctors_in_init_array())
5040         {
5041           *plen = 11;
5042           return name[1] == 'c' ? ".init_array" : ".fini_array";
5043         }
5044       else
5045         {
5046           *plen = 6;
5047           return name[1] == 'c' ? ".ctors" : ".dtors";
5048         }
5049     }
5050   if (parameters->options().ctors_in_init_array()
5051       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5052     {
5053       // To make .init_array/.fini_array work with gcc we must exclude
5054       // .ctors and .dtors sections from the crtbegin and crtend
5055       // files.
5056       if (relobj == NULL
5057           || (!Layout::match_file_name(relobj, "crtbegin")
5058               && !Layout::match_file_name(relobj, "crtend")))
5059         {
5060           *plen = 11;
5061           return name[1] == 'c' ? ".init_array" : ".fini_array";
5062         }
5063     }
5064
5065   return name;
5066 }
5067
5068 // Return true if RELOBJ is an input file whose base name matches
5069 // FILE_NAME.  The base name must have an extension of ".o", and must
5070 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5071 // to match crtbegin.o as well as crtbeginS.o without getting confused
5072 // by other possibilities.  Overall matching the file name this way is
5073 // a dreadful hack, but the GNU linker does it in order to better
5074 // support gcc, and we need to be compatible.
5075
5076 bool
5077 Layout::match_file_name(const Relobj* relobj, const char* match)
5078 {
5079   const std::string& file_name(relobj->name());
5080   const char* base_name = lbasename(file_name.c_str());
5081   size_t match_len = strlen(match);
5082   if (strncmp(base_name, match, match_len) != 0)
5083     return false;
5084   size_t base_len = strlen(base_name);
5085   if (base_len != match_len + 2 && base_len != match_len + 3)
5086     return false;
5087   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5088 }
5089
5090 // Check if a comdat group or .gnu.linkonce section with the given
5091 // NAME is selected for the link.  If there is already a section,
5092 // *KEPT_SECTION is set to point to the existing section and the
5093 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5094 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5095 // *KEPT_SECTION is set to the internal copy and the function returns
5096 // true.
5097
5098 bool
5099 Layout::find_or_add_kept_section(const std::string& name,
5100                                  Relobj* object,
5101                                  unsigned int shndx,
5102                                  bool is_comdat,
5103                                  bool is_group_name,
5104                                  Kept_section** kept_section)
5105 {
5106   // It's normal to see a couple of entries here, for the x86 thunk
5107   // sections.  If we see more than a few, we're linking a C++
5108   // program, and we resize to get more space to minimize rehashing.
5109   if (this->signatures_.size() > 4
5110       && !this->resized_signatures_)
5111     {
5112       reserve_unordered_map(&this->signatures_,
5113                             this->number_of_input_files_ * 64);
5114       this->resized_signatures_ = true;
5115     }
5116
5117   Kept_section candidate;
5118   std::pair<Signatures::iterator, bool> ins =
5119     this->signatures_.insert(std::make_pair(name, candidate));
5120
5121   if (kept_section != NULL)
5122     *kept_section = &ins.first->second;
5123   if (ins.second)
5124     {
5125       // This is the first time we've seen this signature.
5126       ins.first->second.set_object(object);
5127       ins.first->second.set_shndx(shndx);
5128       if (is_comdat)
5129         ins.first->second.set_is_comdat();
5130       if (is_group_name)
5131         ins.first->second.set_is_group_name();
5132       return true;
5133     }
5134
5135   // We have already seen this signature.
5136
5137   if (ins.first->second.is_group_name())
5138     {
5139       // We've already seen a real section group with this signature.
5140       // If the kept group is from a plugin object, and we're in the
5141       // replacement phase, accept the new one as a replacement.
5142       if (ins.first->second.object() == NULL
5143           && parameters->options().plugins()->in_replacement_phase())
5144         {
5145           ins.first->second.set_object(object);
5146           ins.first->second.set_shndx(shndx);
5147           return true;
5148         }
5149       return false;
5150     }
5151   else if (is_group_name)
5152     {
5153       // This is a real section group, and we've already seen a
5154       // linkonce section with this signature.  Record that we've seen
5155       // a section group, and don't include this section group.
5156       ins.first->second.set_is_group_name();
5157       return false;
5158     }
5159   else
5160     {
5161       // We've already seen a linkonce section and this is a linkonce
5162       // section.  These don't block each other--this may be the same
5163       // symbol name with different section types.
5164       return true;
5165     }
5166 }
5167
5168 // Store the allocated sections into the section list.
5169
5170 void
5171 Layout::get_allocated_sections(Section_list* section_list) const
5172 {
5173   for (Section_list::const_iterator p = this->section_list_.begin();
5174        p != this->section_list_.end();
5175        ++p)
5176     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5177       section_list->push_back(*p);
5178 }
5179
5180 // Store the executable sections into the section list.
5181
5182 void
5183 Layout::get_executable_sections(Section_list* section_list) const
5184 {
5185   for (Section_list::const_iterator p = this->section_list_.begin();
5186        p != this->section_list_.end();
5187        ++p)
5188     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5189         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5190       section_list->push_back(*p);
5191 }
5192
5193 // Create an output segment.
5194
5195 Output_segment*
5196 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5197 {
5198   gold_assert(!parameters->options().relocatable());
5199   Output_segment* oseg = new Output_segment(type, flags);
5200   this->segment_list_.push_back(oseg);
5201
5202   if (type == elfcpp::PT_TLS)
5203     this->tls_segment_ = oseg;
5204   else if (type == elfcpp::PT_GNU_RELRO)
5205     this->relro_segment_ = oseg;
5206   else if (type == elfcpp::PT_INTERP)
5207     this->interp_segment_ = oseg;
5208
5209   return oseg;
5210 }
5211
5212 // Return the file offset of the normal symbol table.
5213
5214 off_t
5215 Layout::symtab_section_offset() const
5216 {
5217   if (this->symtab_section_ != NULL)
5218     return this->symtab_section_->offset();
5219   return 0;
5220 }
5221
5222 // Return the section index of the normal symbol table.  It may have
5223 // been stripped by the -s/--strip-all option.
5224
5225 unsigned int
5226 Layout::symtab_section_shndx() const
5227 {
5228   if (this->symtab_section_ != NULL)
5229     return this->symtab_section_->out_shndx();
5230   return 0;
5231 }
5232
5233 // Write out the Output_sections.  Most won't have anything to write,
5234 // since most of the data will come from input sections which are
5235 // handled elsewhere.  But some Output_sections do have Output_data.
5236
5237 void
5238 Layout::write_output_sections(Output_file* of) const
5239 {
5240   for (Section_list::const_iterator p = this->section_list_.begin();
5241        p != this->section_list_.end();
5242        ++p)
5243     {
5244       if (!(*p)->after_input_sections())
5245         (*p)->write(of);
5246     }
5247 }
5248
5249 // Write out data not associated with a section or the symbol table.
5250
5251 void
5252 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5253 {
5254   if (!parameters->options().strip_all())
5255     {
5256       const Output_section* symtab_section = this->symtab_section_;
5257       for (Section_list::const_iterator p = this->section_list_.begin();
5258            p != this->section_list_.end();
5259            ++p)
5260         {
5261           if ((*p)->needs_symtab_index())
5262             {
5263               gold_assert(symtab_section != NULL);
5264               unsigned int index = (*p)->symtab_index();
5265               gold_assert(index > 0 && index != -1U);
5266               off_t off = (symtab_section->offset()
5267                            + index * symtab_section->entsize());
5268               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5269             }
5270         }
5271     }
5272
5273   const Output_section* dynsym_section = this->dynsym_section_;
5274   for (Section_list::const_iterator p = this->section_list_.begin();
5275        p != this->section_list_.end();
5276        ++p)
5277     {
5278       if ((*p)->needs_dynsym_index())
5279         {
5280           gold_assert(dynsym_section != NULL);
5281           unsigned int index = (*p)->dynsym_index();
5282           gold_assert(index > 0 && index != -1U);
5283           off_t off = (dynsym_section->offset()
5284                        + index * dynsym_section->entsize());
5285           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5286         }
5287     }
5288
5289   // Write out the Output_data which are not in an Output_section.
5290   for (Data_list::const_iterator p = this->special_output_list_.begin();
5291        p != this->special_output_list_.end();
5292        ++p)
5293     (*p)->write(of);
5294
5295   // Write out the Output_data which are not in an Output_section
5296   // and are regenerated in each iteration of relaxation.
5297   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5298        p != this->relax_output_list_.end();
5299        ++p)
5300     (*p)->write(of);
5301 }
5302
5303 // Write out the Output_sections which can only be written after the
5304 // input sections are complete.
5305
5306 void
5307 Layout::write_sections_after_input_sections(Output_file* of)
5308 {
5309   // Determine the final section offsets, and thus the final output
5310   // file size.  Note we finalize the .shstrab last, to allow the
5311   // after_input_section sections to modify their section-names before
5312   // writing.
5313   if (this->any_postprocessing_sections_)
5314     {
5315       off_t off = this->output_file_size_;
5316       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5317
5318       // Now that we've finalized the names, we can finalize the shstrab.
5319       off =
5320         this->set_section_offsets(off,
5321                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5322
5323       if (off > this->output_file_size_)
5324         {
5325           of->resize(off);
5326           this->output_file_size_ = off;
5327         }
5328     }
5329
5330   for (Section_list::const_iterator p = this->section_list_.begin();
5331        p != this->section_list_.end();
5332        ++p)
5333     {
5334       if ((*p)->after_input_sections())
5335         (*p)->write(of);
5336     }
5337
5338   this->section_headers_->write(of);
5339 }
5340
5341 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5342 // or as a "tree" where each chunk of the string is hashed and then those
5343 // hashes are put into a (much smaller) string which is hashed with sha1.
5344 // We compute a checksum over the entire file because that is simplest.
5345
5346 Task_token*
5347 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5348                              Output_file* of)
5349 {
5350   const size_t filesize = (this->output_file_size() <= 0 ? 0
5351                            : static_cast<size_t>(this->output_file_size()));
5352   if (this->build_id_note_ != NULL
5353       && strcmp(parameters->options().build_id(), "tree") == 0
5354       && parameters->options().build_id_chunk_size_for_treehash() > 0
5355       && filesize > 0
5356       && (filesize >=
5357           parameters->options().build_id_min_file_size_for_treehash()))
5358     {
5359       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5360       const size_t chunk_size =
5361           parameters->options().build_id_chunk_size_for_treehash();
5362       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5363       Task_token* post_hash_tasks_blocker = new Task_token(true);
5364       post_hash_tasks_blocker->add_blockers(num_hashes);
5365       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5366       const unsigned char* src = of->get_input_view(0, filesize);
5367       this->input_view_ = src;
5368       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5369       this->array_of_hashes_ = dst;
5370       for (size_t i = 0, src_offset = 0; i < num_hashes;
5371            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5372         {
5373           size_t size = std::min(chunk_size, filesize - src_offset);
5374           workqueue->queue(new Hash_task(src + src_offset,
5375                                          size,
5376                                          dst,
5377                                          build_id_blocker,
5378                                          post_hash_tasks_blocker));
5379         }
5380       return post_hash_tasks_blocker;
5381     }
5382   return build_id_blocker;
5383 }
5384
5385 // If a tree-style build ID was requested, the parallel part of that computation
5386 // is already done, and the final hash-of-hashes is computed here.  For other
5387 // types of build IDs, all the work is done here.
5388
5389 void
5390 Layout::write_build_id(Output_file* of) const
5391 {
5392   if (this->build_id_note_ == NULL)
5393     return;
5394
5395   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5396                                           this->build_id_note_->data_size());
5397
5398   if (this->array_of_hashes_ == NULL)
5399     {
5400       const size_t output_file_size = this->output_file_size();
5401       const unsigned char* iv = of->get_input_view(0, output_file_size);
5402       const char* style = parameters->options().build_id();
5403
5404       // If we get here with style == "tree" then the output must be
5405       // too small for chunking, and we use SHA-1 in that case.
5406       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5407         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5408       else if (strcmp(style, "md5") == 0)
5409         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5410       else
5411         gold_unreachable();
5412
5413       of->free_input_view(0, output_file_size, iv);
5414     }
5415   else
5416     {
5417       // Non-overlapping substrings of the output file have been hashed.
5418       // Compute SHA-1 hash of the hashes.
5419       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5420                   this->size_of_array_of_hashes_, ov);
5421       delete[] this->array_of_hashes_;
5422       of->free_input_view(0, this->output_file_size(), this->input_view_);
5423     }
5424
5425   of->write_output_view(this->build_id_note_->offset(),
5426                         this->build_id_note_->data_size(),
5427                         ov);
5428 }
5429
5430 // Write out a binary file.  This is called after the link is
5431 // complete.  IN is the temporary output file we used to generate the
5432 // ELF code.  We simply walk through the segments, read them from
5433 // their file offset in IN, and write them to their load address in
5434 // the output file.  FIXME: with a bit more work, we could support
5435 // S-records and/or Intel hex format here.
5436
5437 void
5438 Layout::write_binary(Output_file* in) const
5439 {
5440   gold_assert(parameters->options().oformat_enum()
5441               == General_options::OBJECT_FORMAT_BINARY);
5442
5443   // Get the size of the binary file.
5444   uint64_t max_load_address = 0;
5445   for (Segment_list::const_iterator p = this->segment_list_.begin();
5446        p != this->segment_list_.end();
5447        ++p)
5448     {
5449       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5450         {
5451           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5452           if (max_paddr > max_load_address)
5453             max_load_address = max_paddr;
5454         }
5455     }
5456
5457   Output_file out(parameters->options().output_file_name());
5458   out.open(max_load_address);
5459
5460   for (Segment_list::const_iterator p = this->segment_list_.begin();
5461        p != this->segment_list_.end();
5462        ++p)
5463     {
5464       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5465         {
5466           const unsigned char* vin = in->get_input_view((*p)->offset(),
5467                                                         (*p)->filesz());
5468           unsigned char* vout = out.get_output_view((*p)->paddr(),
5469                                                     (*p)->filesz());
5470           memcpy(vout, vin, (*p)->filesz());
5471           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5472           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5473         }
5474     }
5475
5476   out.close();
5477 }
5478
5479 // Print the output sections to the map file.
5480
5481 void
5482 Layout::print_to_mapfile(Mapfile* mapfile) const
5483 {
5484   for (Segment_list::const_iterator p = this->segment_list_.begin();
5485        p != this->segment_list_.end();
5486        ++p)
5487     (*p)->print_sections_to_mapfile(mapfile);
5488 }
5489
5490 // Print statistical information to stderr.  This is used for --stats.
5491
5492 void
5493 Layout::print_stats() const
5494 {
5495   this->namepool_.print_stats("section name pool");
5496   this->sympool_.print_stats("output symbol name pool");
5497   this->dynpool_.print_stats("dynamic name pool");
5498
5499   for (Section_list::const_iterator p = this->section_list_.begin();
5500        p != this->section_list_.end();
5501        ++p)
5502     (*p)->print_merge_stats();
5503 }
5504
5505 // Write_sections_task methods.
5506
5507 // We can always run this task.
5508
5509 Task_token*
5510 Write_sections_task::is_runnable()
5511 {
5512   return NULL;
5513 }
5514
5515 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5516 // when finished.
5517
5518 void
5519 Write_sections_task::locks(Task_locker* tl)
5520 {
5521   tl->add(this, this->output_sections_blocker_);
5522   tl->add(this, this->final_blocker_);
5523 }
5524
5525 // Run the task--write out the data.
5526
5527 void
5528 Write_sections_task::run(Workqueue*)
5529 {
5530   this->layout_->write_output_sections(this->of_);
5531 }
5532
5533 // Write_data_task methods.
5534
5535 // We can always run this task.
5536
5537 Task_token*
5538 Write_data_task::is_runnable()
5539 {
5540   return NULL;
5541 }
5542
5543 // We need to unlock FINAL_BLOCKER when finished.
5544
5545 void
5546 Write_data_task::locks(Task_locker* tl)
5547 {
5548   tl->add(this, this->final_blocker_);
5549 }
5550
5551 // Run the task--write out the data.
5552
5553 void
5554 Write_data_task::run(Workqueue*)
5555 {
5556   this->layout_->write_data(this->symtab_, this->of_);
5557 }
5558
5559 // Write_symbols_task methods.
5560
5561 // We can always run this task.
5562
5563 Task_token*
5564 Write_symbols_task::is_runnable()
5565 {
5566   return NULL;
5567 }
5568
5569 // We need to unlock FINAL_BLOCKER when finished.
5570
5571 void
5572 Write_symbols_task::locks(Task_locker* tl)
5573 {
5574   tl->add(this, this->final_blocker_);
5575 }
5576
5577 // Run the task--write out the symbols.
5578
5579 void
5580 Write_symbols_task::run(Workqueue*)
5581 {
5582   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5583                                this->layout_->symtab_xindex(),
5584                                this->layout_->dynsym_xindex(), this->of_);
5585 }
5586
5587 // Write_after_input_sections_task methods.
5588
5589 // We can only run this task after the input sections have completed.
5590
5591 Task_token*
5592 Write_after_input_sections_task::is_runnable()
5593 {
5594   if (this->input_sections_blocker_->is_blocked())
5595     return this->input_sections_blocker_;
5596   return NULL;
5597 }
5598
5599 // We need to unlock FINAL_BLOCKER when finished.
5600
5601 void
5602 Write_after_input_sections_task::locks(Task_locker* tl)
5603 {
5604   tl->add(this, this->final_blocker_);
5605 }
5606
5607 // Run the task.
5608
5609 void
5610 Write_after_input_sections_task::run(Workqueue*)
5611 {
5612   this->layout_->write_sections_after_input_sections(this->of_);
5613 }
5614
5615 // Close_task_runner methods.
5616
5617 // Finish up the build ID computation, if necessary, and write a binary file,
5618 // if necessary.  Then close the output file.
5619
5620 void
5621 Close_task_runner::run(Workqueue*, const Task*)
5622 {
5623   // At this point the multi-threaded part of the build ID computation,
5624   // if any, is done.  See queue_build_id_tasks().
5625   this->layout_->write_build_id(this->of_);
5626
5627   // If we've been asked to create a binary file, we do so here.
5628   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5629     this->layout_->write_binary(this->of_);
5630
5631   this->of_->close();
5632 }
5633
5634 // Instantiate the templates we need.  We could use the configure
5635 // script to restrict this to only the ones for implemented targets.
5636
5637 #ifdef HAVE_TARGET_32_LITTLE
5638 template
5639 Output_section*
5640 Layout::init_fixed_output_section<32, false>(
5641     const char* name,
5642     elfcpp::Shdr<32, false>& shdr);
5643 #endif
5644
5645 #ifdef HAVE_TARGET_32_BIG
5646 template
5647 Output_section*
5648 Layout::init_fixed_output_section<32, true>(
5649     const char* name,
5650     elfcpp::Shdr<32, true>& shdr);
5651 #endif
5652
5653 #ifdef HAVE_TARGET_64_LITTLE
5654 template
5655 Output_section*
5656 Layout::init_fixed_output_section<64, false>(
5657     const char* name,
5658     elfcpp::Shdr<64, false>& shdr);
5659 #endif
5660
5661 #ifdef HAVE_TARGET_64_BIG
5662 template
5663 Output_section*
5664 Layout::init_fixed_output_section<64, true>(
5665     const char* name,
5666     elfcpp::Shdr<64, true>& shdr);
5667 #endif
5668
5669 #ifdef HAVE_TARGET_32_LITTLE
5670 template
5671 Output_section*
5672 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5673                           unsigned int shndx,
5674                           const char* name,
5675                           const elfcpp::Shdr<32, false>& shdr,
5676                           unsigned int, unsigned int, off_t*);
5677 #endif
5678
5679 #ifdef HAVE_TARGET_32_BIG
5680 template
5681 Output_section*
5682 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5683                          unsigned int shndx,
5684                          const char* name,
5685                          const elfcpp::Shdr<32, true>& shdr,
5686                          unsigned int, unsigned int, off_t*);
5687 #endif
5688
5689 #ifdef HAVE_TARGET_64_LITTLE
5690 template
5691 Output_section*
5692 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5693                           unsigned int shndx,
5694                           const char* name,
5695                           const elfcpp::Shdr<64, false>& shdr,
5696                           unsigned int, unsigned int, off_t*);
5697 #endif
5698
5699 #ifdef HAVE_TARGET_64_BIG
5700 template
5701 Output_section*
5702 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5703                          unsigned int shndx,
5704                          const char* name,
5705                          const elfcpp::Shdr<64, true>& shdr,
5706                          unsigned int, unsigned int, off_t*);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_32_LITTLE
5710 template
5711 Output_section*
5712 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5713                                 unsigned int reloc_shndx,
5714                                 const elfcpp::Shdr<32, false>& shdr,
5715                                 Output_section* data_section,
5716                                 Relocatable_relocs* rr);
5717 #endif
5718
5719 #ifdef HAVE_TARGET_32_BIG
5720 template
5721 Output_section*
5722 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5723                                unsigned int reloc_shndx,
5724                                const elfcpp::Shdr<32, true>& shdr,
5725                                Output_section* data_section,
5726                                Relocatable_relocs* rr);
5727 #endif
5728
5729 #ifdef HAVE_TARGET_64_LITTLE
5730 template
5731 Output_section*
5732 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5733                                 unsigned int reloc_shndx,
5734                                 const elfcpp::Shdr<64, false>& shdr,
5735                                 Output_section* data_section,
5736                                 Relocatable_relocs* rr);
5737 #endif
5738
5739 #ifdef HAVE_TARGET_64_BIG
5740 template
5741 Output_section*
5742 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5743                                unsigned int reloc_shndx,
5744                                const elfcpp::Shdr<64, true>& shdr,
5745                                Output_section* data_section,
5746                                Relocatable_relocs* rr);
5747 #endif
5748
5749 #ifdef HAVE_TARGET_32_LITTLE
5750 template
5751 void
5752 Layout::layout_group<32, false>(Symbol_table* symtab,
5753                                 Sized_relobj_file<32, false>* object,
5754                                 unsigned int,
5755                                 const char* group_section_name,
5756                                 const char* signature,
5757                                 const elfcpp::Shdr<32, false>& shdr,
5758                                 elfcpp::Elf_Word flags,
5759                                 std::vector<unsigned int>* shndxes);
5760 #endif
5761
5762 #ifdef HAVE_TARGET_32_BIG
5763 template
5764 void
5765 Layout::layout_group<32, true>(Symbol_table* symtab,
5766                                Sized_relobj_file<32, true>* object,
5767                                unsigned int,
5768                                const char* group_section_name,
5769                                const char* signature,
5770                                const elfcpp::Shdr<32, true>& shdr,
5771                                elfcpp::Elf_Word flags,
5772                                std::vector<unsigned int>* shndxes);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_64_LITTLE
5776 template
5777 void
5778 Layout::layout_group<64, false>(Symbol_table* symtab,
5779                                 Sized_relobj_file<64, false>* object,
5780                                 unsigned int,
5781                                 const char* group_section_name,
5782                                 const char* signature,
5783                                 const elfcpp::Shdr<64, false>& shdr,
5784                                 elfcpp::Elf_Word flags,
5785                                 std::vector<unsigned int>* shndxes);
5786 #endif
5787
5788 #ifdef HAVE_TARGET_64_BIG
5789 template
5790 void
5791 Layout::layout_group<64, true>(Symbol_table* symtab,
5792                                Sized_relobj_file<64, true>* object,
5793                                unsigned int,
5794                                const char* group_section_name,
5795                                const char* signature,
5796                                const elfcpp::Shdr<64, true>& shdr,
5797                                elfcpp::Elf_Word flags,
5798                                std::vector<unsigned int>* shndxes);
5799 #endif
5800
5801 #ifdef HAVE_TARGET_32_LITTLE
5802 template
5803 Output_section*
5804 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5805                                    const unsigned char* symbols,
5806                                    off_t symbols_size,
5807                                    const unsigned char* symbol_names,
5808                                    off_t symbol_names_size,
5809                                    unsigned int shndx,
5810                                    const elfcpp::Shdr<32, false>& shdr,
5811                                    unsigned int reloc_shndx,
5812                                    unsigned int reloc_type,
5813                                    off_t* off);
5814 #endif
5815
5816 #ifdef HAVE_TARGET_32_BIG
5817 template
5818 Output_section*
5819 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5820                                   const unsigned char* symbols,
5821                                   off_t symbols_size,
5822                                   const unsigned char* symbol_names,
5823                                   off_t symbol_names_size,
5824                                   unsigned int shndx,
5825                                   const elfcpp::Shdr<32, true>& shdr,
5826                                   unsigned int reloc_shndx,
5827                                   unsigned int reloc_type,
5828                                   off_t* off);
5829 #endif
5830
5831 #ifdef HAVE_TARGET_64_LITTLE
5832 template
5833 Output_section*
5834 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5835                                    const unsigned char* symbols,
5836                                    off_t symbols_size,
5837                                    const unsigned char* symbol_names,
5838                                    off_t symbol_names_size,
5839                                    unsigned int shndx,
5840                                    const elfcpp::Shdr<64, false>& shdr,
5841                                    unsigned int reloc_shndx,
5842                                    unsigned int reloc_type,
5843                                    off_t* off);
5844 #endif
5845
5846 #ifdef HAVE_TARGET_64_BIG
5847 template
5848 Output_section*
5849 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5850                                   const unsigned char* symbols,
5851                                   off_t symbols_size,
5852                                   const unsigned char* symbol_names,
5853                                   off_t symbol_names_size,
5854                                   unsigned int shndx,
5855                                   const elfcpp::Shdr<64, true>& shdr,
5856                                   unsigned int reloc_shndx,
5857                                   unsigned int reloc_type,
5858                                   off_t* off);
5859 #endif
5860
5861 #ifdef HAVE_TARGET_32_LITTLE
5862 template
5863 void
5864 Layout::add_to_gdb_index(bool is_type_unit,
5865                          Sized_relobj<32, false>* object,
5866                          const unsigned char* symbols,
5867                          off_t symbols_size,
5868                          unsigned int shndx,
5869                          unsigned int reloc_shndx,
5870                          unsigned int reloc_type);
5871 #endif
5872
5873 #ifdef HAVE_TARGET_32_BIG
5874 template
5875 void
5876 Layout::add_to_gdb_index(bool is_type_unit,
5877                          Sized_relobj<32, true>* object,
5878                          const unsigned char* symbols,
5879                          off_t symbols_size,
5880                          unsigned int shndx,
5881                          unsigned int reloc_shndx,
5882                          unsigned int reloc_type);
5883 #endif
5884
5885 #ifdef HAVE_TARGET_64_LITTLE
5886 template
5887 void
5888 Layout::add_to_gdb_index(bool is_type_unit,
5889                          Sized_relobj<64, false>* object,
5890                          const unsigned char* symbols,
5891                          off_t symbols_size,
5892                          unsigned int shndx,
5893                          unsigned int reloc_shndx,
5894                          unsigned int reloc_type);
5895 #endif
5896
5897 #ifdef HAVE_TARGET_64_BIG
5898 template
5899 void
5900 Layout::add_to_gdb_index(bool is_type_unit,
5901                          Sized_relobj<64, true>* object,
5902                          const unsigned char* symbols,
5903                          off_t symbols_size,
5904                          unsigned int shndx,
5905                          unsigned int reloc_shndx,
5906                          unsigned int reloc_type);
5907 #endif
5908
5909 } // End namespace gold.