i915_gem.c: Simplify fence code
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * $FreeBSD: head/sys/dev/drm2/i915/i915_gem.c 253497 2013-07-20 13:52:40Z kib $
54  */
55
56 #include <sys/resourcevar.h>
57 #include <sys/sfbuf.h>
58
59 #include <drm/drmP.h>
60 #include <drm/i915_drm.h>
61 #include "i915_drv.h"
62 #include "intel_drv.h"
63 #include "intel_ringbuffer.h"
64 #include <linux/completion.h>
65 #include <linux/jiffies.h>
66 #include <linux/time.h>
67
68 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
70 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
71 static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
72     unsigned alignment, bool map_and_fenceable);
73
74 static int i915_gem_phys_pwrite(struct drm_device *dev,
75     struct drm_i915_gem_object *obj, uint64_t data_ptr, uint64_t offset,
76     uint64_t size, struct drm_file *file_priv);
77
78 static uint32_t i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size,
79     int tiling_mode);
80 static uint32_t i915_gem_get_gtt_alignment(struct drm_device *dev,
81     uint32_t size, int tiling_mode);
82 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
83     int flags);
84 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj);
85 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
86 static int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj);
87 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj);
88 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj);
89 static vm_page_t i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex);
90 static void i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
91     uint32_t flush_domains);
92 static void i915_gem_clear_fence_reg(struct drm_device *dev,
93     struct drm_i915_fence_reg *reg);
94 static void i915_gem_reset_fences(struct drm_device *dev);
95 static void i915_gem_lowmem(void *arg);
96
97 static int i915_gem_obj_io(struct drm_device *dev, uint32_t handle, uint64_t data_ptr,
98     uint64_t size, uint64_t offset, enum uio_rw rw, struct drm_file *file);
99
100 MALLOC_DEFINE(DRM_I915_GEM, "i915gem", "Allocations from i915 gem");
101 long i915_gem_wired_pages_cnt;
102
103 /* some bookkeeping */
104 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
105                                   size_t size)
106 {
107
108         dev_priv->mm.object_count++;
109         dev_priv->mm.object_memory += size;
110 }
111
112 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
113                                      size_t size)
114 {
115
116         dev_priv->mm.object_count--;
117         dev_priv->mm.object_memory -= size;
118 }
119
120 static int
121 i915_gem_wait_for_error(struct drm_device *dev)
122 {
123         struct drm_i915_private *dev_priv = dev->dev_private;
124         struct completion *x = &dev_priv->error_completion;
125         int ret;
126
127         if (!atomic_read(&dev_priv->mm.wedged))
128                 return 0;
129
130         /*
131          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
132          * userspace. If it takes that long something really bad is going on and
133          * we should simply try to bail out and fail as gracefully as possible.
134          */
135         ret = wait_for_completion_interruptible_timeout(x, 10*hz);
136         if (ret == 0) {
137                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
138                 return -EIO;
139         } else if (ret < 0) {
140                 return ret;
141         }
142
143         if (atomic_read(&dev_priv->mm.wedged)) {
144                 /* GPU is hung, bump the completion count to account for
145                  * the token we just consumed so that we never hit zero and
146                  * end up waiting upon a subsequent completion event that
147                  * will never happen.
148                  */
149                 spin_lock(&x->wait.lock);
150                 x->done++;
151                 spin_unlock(&x->wait.lock);
152         }
153         return 0;
154 }
155
156 int i915_mutex_lock_interruptible(struct drm_device *dev)
157 {
158         int ret;
159
160         ret = i915_gem_wait_for_error(dev);
161         if (ret != 0)
162                 return (ret);
163
164         ret = lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_SLEEPFAIL);
165         if (ret)
166                 return -EINTR;
167
168         WARN_ON(i915_verify_lists(dev));
169         return 0;
170 }
171
172 static inline bool
173 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
174 {
175         return (obj->gtt_space && !obj->active && obj->pin_count == 0);
176 }
177
178 int
179 i915_gem_init_ioctl(struct drm_device *dev, void *data,
180     struct drm_file *file)
181 {
182         struct drm_i915_gem_init *args;
183         drm_i915_private_t *dev_priv;
184
185         dev_priv = dev->dev_private;
186         args = data;
187
188         if (args->gtt_start >= args->gtt_end ||
189             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
190                 return (-EINVAL);
191
192         /*
193          * XXXKIB. The second-time initialization should be guarded
194          * against.
195          */
196         lockmgr(&dev->dev_lock, LK_EXCLUSIVE|LK_RETRY|LK_CANRECURSE);
197         i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
198         lockmgr(&dev->dev_lock, LK_RELEASE);
199
200         return 0;
201 }
202
203 int
204 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
205                             struct drm_file *file)
206 {
207         struct drm_i915_private *dev_priv;
208         struct drm_i915_gem_get_aperture *args;
209         struct drm_i915_gem_object *obj;
210         size_t pinned;
211
212         dev_priv = dev->dev_private;
213         args = data;
214
215         pinned = 0;
216         DRM_LOCK(dev);
217         list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
218                 pinned += obj->gtt_space->size;
219         DRM_UNLOCK(dev);
220
221         args->aper_size = dev_priv->mm.gtt_total;
222         args->aper_available_size = args->aper_size - pinned;
223
224         return (0);
225 }
226
227 static int
228 i915_gem_create(struct drm_file *file, struct drm_device *dev, uint64_t size,
229     uint32_t *handle_p)
230 {
231         struct drm_i915_gem_object *obj;
232         uint32_t handle;
233         int ret;
234
235         size = roundup(size, PAGE_SIZE);
236         if (size == 0)
237                 return (-EINVAL);
238
239         obj = i915_gem_alloc_object(dev, size);
240         if (obj == NULL)
241                 return (-ENOMEM);
242
243         handle = 0;
244         ret = drm_gem_handle_create(file, &obj->base, &handle);
245         if (ret != 0) {
246                 drm_gem_object_release(&obj->base);
247                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
248                 drm_free(obj, DRM_I915_GEM);
249                 return (-ret);
250         }
251
252         /* drop reference from allocate - handle holds it now */
253         drm_gem_object_unreference(&obj->base);
254         *handle_p = handle;
255         return (0);
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263
264         /* have to work out size/pitch and return them */
265         args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64);
266         args->size = args->pitch * args->height;
267         return (i915_gem_create(file, dev, args->size, &args->handle));
268 }
269
270 int i915_gem_dumb_destroy(struct drm_file *file,
271                           struct drm_device *dev,
272                           uint32_t handle)
273 {
274
275         return (drm_gem_handle_delete(file, handle));
276 }
277
278 /**
279  * Creates a new mm object and returns a handle to it.
280  */
281 int
282 i915_gem_create_ioctl(struct drm_device *dev, void *data,
283                       struct drm_file *file)
284 {
285         struct drm_i915_gem_create *args = data;
286
287         return (i915_gem_create(file, dev, args->size, &args->handle));
288 }
289
290 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
291 {
292         drm_i915_private_t *dev_priv;
293
294         dev_priv = obj->base.dev->dev_private;
295         return (dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
296             obj->tiling_mode != I915_TILING_NONE);
297 }
298
299 /**
300  * Reads data from the object referenced by handle.
301  *
302  * On error, the contents of *data are undefined.
303  */
304 int
305 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
306                      struct drm_file *file)
307 {
308         struct drm_i915_gem_pread *args;
309
310         args = data;
311         return (i915_gem_obj_io(dev, args->handle, args->data_ptr, args->size,
312             args->offset, UIO_READ, file));
313 }
314
315 /**
316  * Writes data to the object referenced by handle.
317  *
318  * On error, the contents of the buffer that were to be modified are undefined.
319  */
320 int
321 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
322                       struct drm_file *file)
323 {
324         struct drm_i915_gem_pwrite *args;
325
326         args = data;
327         return (i915_gem_obj_io(dev, args->handle, args->data_ptr, args->size,
328             args->offset, UIO_WRITE, file));
329 }
330
331 int
332 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
333                      bool interruptible)
334 {
335         if (atomic_read(&dev_priv->mm.wedged)) {
336                 struct completion *x = &dev_priv->error_completion;
337                 bool recovery_complete;
338
339                 /* Give the error handler a chance to run. */
340                 spin_lock(&x->wait.lock);
341                 recovery_complete = x->done > 0;
342                 spin_unlock(&x->wait.lock);
343
344                 /* Non-interruptible callers can't handle -EAGAIN, hence return
345                  * -EIO unconditionally for these. */
346                 if (!interruptible)
347                         return -EIO;
348
349                 /* Recovery complete, but still wedged means reset failure. */
350                 if (recovery_complete)
351                         return -EIO;
352
353                 return -EAGAIN;
354         }
355
356         return 0;
357 }
358
359 /*
360  * Compare seqno against outstanding lazy request. Emit a request if they are
361  * equal.
362  */
363 static int
364 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
365 {
366         int ret;
367
368         DRM_LOCK_ASSERT(ring->dev);
369
370         ret = 0;
371         if (seqno == ring->outstanding_lazy_request)
372                 ret = i915_add_request(ring, NULL, NULL);
373
374         return ret;
375 }
376
377 /**
378  * __wait_seqno - wait until execution of seqno has finished
379  * @ring: the ring expected to report seqno
380  * @seqno: duh!
381  * @interruptible: do an interruptible wait (normally yes)
382  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
383  *
384  * Returns 0 if the seqno was found within the alloted time. Else returns the
385  * errno with remaining time filled in timeout argument.
386  */
387 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
388                         bool interruptible, struct timespec *timeout)
389 {
390         drm_i915_private_t *dev_priv = ring->dev->dev_private;
391         struct timespec before, now, wait_time={1,0};
392         unsigned long timeout_jiffies;
393         long end;
394         bool wait_forever = true;
395         int ret;
396
397         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
398                 return 0;
399
400         if (timeout != NULL) {
401                 wait_time = *timeout;
402                 wait_forever = false;
403         }
404
405         timeout_jiffies = timespec_to_jiffies(&wait_time);
406
407         if (WARN_ON(!ring->irq_get(ring)))
408                 return -ENODEV;
409
410         /* Record current time in case interrupted by signal, or wedged * */
411         getrawmonotonic(&before);
412
413 #define EXIT_COND \
414         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
415         atomic_read(&dev_priv->mm.wedged))
416         do {
417                 if (interruptible)
418                         end = wait_event_interruptible_timeout(ring->irq_queue,
419                                                                EXIT_COND,
420                                                                timeout_jiffies);
421                 else
422                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
423                                                  timeout_jiffies);
424
425                 ret = i915_gem_check_wedge(dev_priv, interruptible);
426                 if (ret)
427                         end = ret;
428         } while (end == 0 && wait_forever);
429
430         getrawmonotonic(&now);
431
432         ring->irq_put(ring);
433 #undef EXIT_COND
434
435         if (timeout) {
436                 struct timespec sleep_time = timespec_sub(now, before);
437                 *timeout = timespec_sub(*timeout, sleep_time);
438         }
439
440         switch (end) {
441         case -EIO:
442         case -EAGAIN: /* Wedged */
443         case -ERESTARTSYS: /* Signal */
444                 return (int)end;
445         case 0: /* Timeout */
446                 if (timeout)
447                         set_normalized_timespec(timeout, 0, 0);
448                 return -ETIMEDOUT;      /* -ETIME on Linux */
449         default: /* Completed */
450                 WARN_ON(end < 0); /* We're not aware of other errors */
451                 return 0;
452         }
453 }
454
455 /**
456  * Waits for a sequence number to be signaled, and cleans up the
457  * request and object lists appropriately for that event.
458  */
459 int
460 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
461 {
462         drm_i915_private_t *dev_priv = ring->dev->dev_private;
463         int ret = 0;
464
465         BUG_ON(seqno == 0);
466
467         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
468         if (ret)
469                 return ret;
470
471         ret = i915_gem_check_olr(ring, seqno);
472         if (ret)
473                 return ret;
474
475         ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
476
477         return ret;
478 }
479
480 /**
481  * Ensures that all rendering to the object has completed and the object is
482  * safe to unbind from the GTT or access from the CPU.
483  */
484 static __must_check int
485 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
486                                bool readonly)
487 {
488         u32 seqno;
489         int ret;
490
491         /* This function only exists to support waiting for existing rendering,
492          * not for emitting required flushes.
493          */
494         BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
495
496         /* If there is rendering queued on the buffer being evicted, wait for
497          * it.
498          */
499         if (readonly)
500                 seqno = obj->last_write_seqno;
501         else
502                 seqno = obj->last_read_seqno;
503         if (seqno == 0)
504                 return 0;
505
506         ret = i915_wait_seqno(obj->ring, seqno);
507         if (ret)
508                 return ret;
509
510         /* Manually manage the write flush as we may have not yet retired
511          * the buffer.
512          */
513         if (obj->last_write_seqno &&
514             i915_seqno_passed(seqno, obj->last_write_seqno)) {
515                 obj->last_write_seqno = 0;
516                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
517         }
518
519         i915_gem_retire_requests_ring(obj->ring);
520         return 0;
521 }
522
523 /**
524  * Ensures that an object will eventually get non-busy by flushing any required
525  * write domains, emitting any outstanding lazy request and retiring and
526  * completed requests.
527  */
528 static int
529 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
530 {
531         int ret;
532
533         if (obj->active) {
534                 ret = i915_gem_object_flush_gpu_write_domain(obj);
535                 if (ret)
536                         return ret;
537
538                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
539                 if (ret)
540                         return ret;
541
542                 i915_gem_retire_requests_ring(obj->ring);
543         }
544
545         return 0;
546 }
547
548 /**
549  * Called when user space prepares to use an object with the CPU, either
550  * through the mmap ioctl's mapping or a GTT mapping.
551  */
552 int
553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
554                           struct drm_file *file)
555 {
556         struct drm_i915_gem_set_domain *args;
557         struct drm_i915_gem_object *obj;
558         uint32_t read_domains;
559         uint32_t write_domain;
560         int ret;
561
562         args = data;
563         read_domains = args->read_domains;
564         write_domain = args->write_domain;
565
566         if ((write_domain & I915_GEM_GPU_DOMAINS) != 0 ||
567             (read_domains & I915_GEM_GPU_DOMAINS) != 0 ||
568             (write_domain != 0 && read_domains != write_domain))
569                 return (-EINVAL);
570
571         ret = i915_mutex_lock_interruptible(dev);
572         if (ret != 0)
573                 return (ret);
574
575         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
576         if (&obj->base == NULL) {
577                 ret = -ENOENT;
578                 goto unlock;
579         }
580
581         if ((read_domains & I915_GEM_DOMAIN_GTT) != 0) {
582                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
583                 if (ret == -EINVAL)
584                         ret = 0;
585         } else
586                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
587
588         drm_gem_object_unreference(&obj->base);
589 unlock:
590         DRM_UNLOCK(dev);
591         return (ret);
592 }
593
594 /**
595  * Called when user space has done writes to this buffer
596  */
597 int
598 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
599                          struct drm_file *file)
600 {
601         struct drm_i915_gem_sw_finish *args = data;
602         struct drm_i915_gem_object *obj;
603         int ret = 0;
604
605         ret = i915_mutex_lock_interruptible(dev);
606         if (ret != 0)
607                 return (ret);
608         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
609         if (&obj->base == NULL) {
610                 ret = -ENOENT;
611                 goto unlock;
612         }
613         if (obj->pin_count != 0)
614                 i915_gem_object_flush_cpu_write_domain(obj);
615         drm_gem_object_unreference(&obj->base);
616 unlock:
617         DRM_UNLOCK(dev);
618         return (ret);
619 }
620
621 /**
622  * Maps the contents of an object, returning the address it is mapped
623  * into.
624  *
625  * While the mapping holds a reference on the contents of the object, it doesn't
626  * imply a ref on the object itself.
627  */
628 int
629 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
630                     struct drm_file *file)
631 {
632         struct drm_i915_gem_mmap *args;
633         struct drm_gem_object *obj;
634         struct proc *p;
635         vm_map_t map;
636         vm_offset_t addr;
637         vm_size_t size;
638         int error, rv;
639
640         args = data;
641
642         obj = drm_gem_object_lookup(dev, file, args->handle);
643         if (obj == NULL)
644                 return (-ENOENT);
645         error = 0;
646         if (args->size == 0)
647                 goto out;
648         p = curproc;
649         map = &p->p_vmspace->vm_map;
650         size = round_page(args->size);
651         PROC_LOCK(p);
652         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
653                 PROC_UNLOCK(p);
654                 error = ENOMEM;
655                 goto out;
656         }
657         PROC_UNLOCK(p);
658
659         addr = 0;
660         vm_object_hold(obj->vm_obj);
661         vm_object_reference_locked(obj->vm_obj);
662         vm_object_drop(obj->vm_obj);
663         DRM_UNLOCK(dev);
664         rv = vm_map_find(map, obj->vm_obj, args->offset, &addr, args->size,
665             PAGE_SIZE, /* align */
666             TRUE, /* fitit */
667             VM_MAPTYPE_NORMAL, /* maptype */
668             VM_PROT_READ | VM_PROT_WRITE, /* prot */
669             VM_PROT_READ | VM_PROT_WRITE, /* max */
670             MAP_SHARED /* cow */);
671         if (rv != KERN_SUCCESS) {
672                 vm_object_deallocate(obj->vm_obj);
673                 error = -vm_mmap_to_errno(rv);
674         } else {
675                 args->addr_ptr = (uint64_t)addr;
676         }
677         DRM_LOCK(dev);
678 out:
679         drm_gem_object_unreference(obj);
680         return (error);
681 }
682
683 /**
684  * i915_gem_release_mmap - remove physical page mappings
685  * @obj: obj in question
686  *
687  * Preserve the reservation of the mmapping with the DRM core code, but
688  * relinquish ownership of the pages back to the system.
689  *
690  * It is vital that we remove the page mapping if we have mapped a tiled
691  * object through the GTT and then lose the fence register due to
692  * resource pressure. Similarly if the object has been moved out of the
693  * aperture, than pages mapped into userspace must be revoked. Removing the
694  * mapping will then trigger a page fault on the next user access, allowing
695  * fixup by i915_gem_fault().
696  */
697 void
698 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
699 {
700         vm_object_t devobj;
701         vm_page_t m;
702         int i, page_count;
703
704         if (!obj->fault_mappable)
705                 return;
706
707         devobj = cdev_pager_lookup(obj);
708         if (devobj != NULL) {
709                 page_count = OFF_TO_IDX(obj->base.size);
710
711                 VM_OBJECT_LOCK(devobj);
712                 for (i = 0; i < page_count; i++) {
713                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
714                         if (m == NULL)
715                                 continue;
716                         cdev_pager_free_page(devobj, m);
717                 }
718                 VM_OBJECT_UNLOCK(devobj);
719                 vm_object_deallocate(devobj);
720         }
721
722         obj->fault_mappable = false;
723 }
724
725 static uint32_t
726 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
727 {
728         uint32_t gtt_size;
729
730         if (INTEL_INFO(dev)->gen >= 4 ||
731             tiling_mode == I915_TILING_NONE)
732                 return (size);
733
734         /* Previous chips need a power-of-two fence region when tiling */
735         if (INTEL_INFO(dev)->gen == 3)
736                 gtt_size = 1024*1024;
737         else
738                 gtt_size = 512*1024;
739
740         while (gtt_size < size)
741                 gtt_size <<= 1;
742
743         return (gtt_size);
744 }
745
746 /**
747  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
748  * @obj: object to check
749  *
750  * Return the required GTT alignment for an object, taking into account
751  * potential fence register mapping.
752  */
753 static uint32_t
754 i915_gem_get_gtt_alignment(struct drm_device *dev,
755                            uint32_t size,
756                            int tiling_mode)
757 {
758
759         /*
760          * Minimum alignment is 4k (GTT page size), but might be greater
761          * if a fence register is needed for the object.
762          */
763         if (INTEL_INFO(dev)->gen >= 4 ||
764             tiling_mode == I915_TILING_NONE)
765                 return (4096);
766
767         /*
768          * Previous chips need to be aligned to the size of the smallest
769          * fence register that can contain the object.
770          */
771         return (i915_gem_get_gtt_size(dev, size, tiling_mode));
772 }
773
774 /**
775  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
776  *                                       unfenced object
777  * @dev: the device
778  * @size: size of the object
779  * @tiling_mode: tiling mode of the object
780  *
781  * Return the required GTT alignment for an object, only taking into account
782  * unfenced tiled surface requirements.
783  */
784 uint32_t
785 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
786                                     uint32_t size,
787                                     int tiling_mode)
788 {
789
790         if (tiling_mode == I915_TILING_NONE)
791                 return (4096);
792
793         /*
794          * Minimum alignment is 4k (GTT page size) for sane hw.
795          */
796         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev))
797                 return (4096);
798
799         /*
800          * Previous hardware however needs to be aligned to a power-of-two
801          * tile height. The simplest method for determining this is to reuse
802          * the power-of-tile object size.
803          */
804         return (i915_gem_get_gtt_size(dev, size, tiling_mode));
805 }
806
807 int
808 i915_gem_mmap_gtt(struct drm_file *file,
809                   struct drm_device *dev,
810                   uint32_t handle,
811                   uint64_t *offset)
812 {
813         struct drm_i915_private *dev_priv;
814         struct drm_i915_gem_object *obj;
815         int ret;
816
817         dev_priv = dev->dev_private;
818
819         ret = i915_mutex_lock_interruptible(dev);
820         if (ret != 0)
821                 return (ret);
822
823         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
824         if (&obj->base == NULL) {
825                 ret = -ENOENT;
826                 goto unlock;
827         }
828
829         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
830                 ret = -E2BIG;
831                 goto out;
832         }
833
834         if (obj->madv != I915_MADV_WILLNEED) {
835                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
836                 ret = -EINVAL;
837                 goto out;
838         }
839
840         ret = drm_gem_create_mmap_offset(&obj->base);
841         if (ret != 0)
842                 goto out;
843
844         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
845             DRM_GEM_MAPPING_KEY;
846 out:
847         drm_gem_object_unreference(&obj->base);
848 unlock:
849         DRM_UNLOCK(dev);
850         return (ret);
851 }
852
853 /**
854  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
855  * @dev: DRM device
856  * @data: GTT mapping ioctl data
857  * @file: GEM object info
858  *
859  * Simply returns the fake offset to userspace so it can mmap it.
860  * The mmap call will end up in drm_gem_mmap(), which will set things
861  * up so we can get faults in the handler above.
862  *
863  * The fault handler will take care of binding the object into the GTT
864  * (since it may have been evicted to make room for something), allocating
865  * a fence register, and mapping the appropriate aperture address into
866  * userspace.
867  */
868 int
869 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
870                         struct drm_file *file)
871 {
872         struct drm_i915_private *dev_priv;
873         struct drm_i915_gem_mmap_gtt *args = data;
874
875         dev_priv = dev->dev_private;
876
877         return (i915_gem_mmap_gtt(file, dev, args->handle, &args->offset));
878 }
879
880 /* Immediately discard the backing storage */
881 static void
882 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
883 {
884         vm_object_t vm_obj;
885
886         vm_obj = obj->base.vm_obj;
887         VM_OBJECT_LOCK(vm_obj);
888         vm_object_page_remove(vm_obj, 0, 0, false);
889         VM_OBJECT_UNLOCK(vm_obj);
890         obj->madv = __I915_MADV_PURGED;
891 }
892
893 static inline int
894 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
895 {
896         return obj->madv == I915_MADV_DONTNEED;
897 }
898
899 static inline void vm_page_reference(vm_page_t m)
900 {
901         vm_page_flag_set(m, PG_REFERENCED);
902 }
903
904 static void
905 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
906 {
907         vm_page_t m;
908         int page_count, i;
909
910         BUG_ON(obj->madv == __I915_MADV_PURGED);
911
912         if (obj->tiling_mode != I915_TILING_NONE)
913                 i915_gem_object_save_bit_17_swizzle(obj);
914         if (obj->madv == I915_MADV_DONTNEED)
915                 obj->dirty = 0;
916         page_count = obj->base.size / PAGE_SIZE;
917         VM_OBJECT_LOCK(obj->base.vm_obj);
918 #if GEM_PARANOID_CHECK_GTT
919         i915_gem_assert_pages_not_mapped(obj->base.dev, obj->pages, page_count);
920 #endif
921         for (i = 0; i < page_count; i++) {
922                 m = obj->pages[i];
923                 if (obj->dirty)
924                         vm_page_dirty(m);
925                 if (obj->madv == I915_MADV_WILLNEED)
926                         vm_page_reference(m);
927                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
928                 vm_page_unwire(obj->pages[i], 1);
929                 vm_page_wakeup(obj->pages[i]);
930                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
931         }
932         VM_OBJECT_UNLOCK(obj->base.vm_obj);
933         obj->dirty = 0;
934         drm_free(obj->pages, DRM_I915_GEM);
935         obj->pages = NULL;
936 }
937
938 static int
939 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
940     int flags)
941 {
942         struct drm_device *dev;
943         vm_object_t vm_obj;
944         vm_page_t m;
945         int page_count, i, j;
946
947         dev = obj->base.dev;
948         KASSERT(obj->pages == NULL, ("Obj already has pages"));
949         page_count = obj->base.size / PAGE_SIZE;
950         obj->pages = kmalloc(page_count * sizeof(vm_page_t), DRM_I915_GEM,
951             M_WAITOK);
952         vm_obj = obj->base.vm_obj;
953         VM_OBJECT_LOCK(vm_obj);
954         for (i = 0; i < page_count; i++) {
955                 if ((obj->pages[i] = i915_gem_wire_page(vm_obj, i)) == NULL)
956                         goto failed;
957         }
958         VM_OBJECT_UNLOCK(vm_obj);
959         if (i915_gem_object_needs_bit17_swizzle(obj))
960                 i915_gem_object_do_bit_17_swizzle(obj);
961         return (0);
962
963 failed:
964         for (j = 0; j < i; j++) {
965                 m = obj->pages[j];
966                 vm_page_busy_wait(m, FALSE, "i915gem");
967                 vm_page_unwire(m, 0);
968                 vm_page_wakeup(m);
969                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
970         }
971         VM_OBJECT_UNLOCK(vm_obj);
972         drm_free(obj->pages, DRM_I915_GEM);
973         obj->pages = NULL;
974         return (-EIO);
975 }
976
977 void
978 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
979                                struct intel_ring_buffer *ring,
980                                u32 seqno)
981 {
982         struct drm_device *dev = obj->base.dev;
983         struct drm_i915_private *dev_priv = dev->dev_private;
984
985         BUG_ON(ring == NULL);
986         obj->ring = ring;
987
988         /* Add a reference if we're newly entering the active list. */
989         if (!obj->active) {
990                 drm_gem_object_reference(&obj->base);
991                 obj->active = 1;
992         }
993
994         /* Move from whatever list we were on to the tail of execution. */
995         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
996         list_move_tail(&obj->ring_list, &ring->active_list);
997
998         obj->last_read_seqno = seqno;
999
1000         if (obj->fenced_gpu_access) {
1001                 obj->last_fenced_seqno = seqno;
1002
1003                 /* Bump MRU to take account of the delayed flush */
1004                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1005                         struct drm_i915_fence_reg *reg;
1006
1007                         reg = &dev_priv->fence_regs[obj->fence_reg];
1008                         list_move_tail(&reg->lru_list,
1009                                        &dev_priv->mm.fence_list);
1010                 }
1011         }
1012 }
1013
1014 static void
1015 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1016 {
1017         list_del_init(&obj->ring_list);
1018         obj->last_read_seqno = 0;
1019         obj->last_write_seqno = 0;
1020         obj->last_fenced_seqno = 0;
1021 }
1022
1023 static void
1024 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1025 {
1026         struct drm_device *dev = obj->base.dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028
1029         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1030
1031         BUG_ON(!list_empty(&obj->gpu_write_list));
1032         BUG_ON(!obj->active);
1033         obj->ring = NULL;
1034
1035         i915_gem_object_move_off_active(obj);
1036         obj->fenced_gpu_access = false;
1037
1038         obj->active = 0;
1039         drm_gem_object_unreference(&obj->base);
1040
1041         WARN_ON(i915_verify_lists(dev));
1042 }
1043
1044 static u32
1045 i915_gem_get_seqno(struct drm_device *dev)
1046 {
1047         drm_i915_private_t *dev_priv = dev->dev_private;
1048         u32 seqno = dev_priv->next_seqno;
1049
1050         /* reserve 0 for non-seqno */
1051         if (++dev_priv->next_seqno == 0)
1052                 dev_priv->next_seqno = 1;
1053
1054         return seqno;
1055 }
1056
1057 int
1058 i915_add_request(struct intel_ring_buffer *ring,
1059                  struct drm_file *file,
1060                  struct drm_i915_gem_request *request)
1061 {
1062         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1063         uint32_t seqno;
1064         u32 request_ring_position;
1065         int was_empty;
1066         int ret;
1067
1068         /*
1069          * Emit any outstanding flushes - execbuf can fail to emit the flush
1070          * after having emitted the batchbuffer command. Hence we need to fix
1071          * things up similar to emitting the lazy request. The difference here
1072          * is that the flush _must_ happen before the next request, no matter
1073          * what.
1074          */
1075         if (ring->gpu_caches_dirty) {
1076                 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1077                 if (ret)
1078                         return ret;
1079
1080                 ring->gpu_caches_dirty = false;
1081         }
1082
1083         if (request == NULL) {
1084                 request = kmalloc(sizeof(*request), DRM_I915_GEM,
1085                     M_WAITOK | M_ZERO);
1086                 if (request == NULL)
1087                         return -ENOMEM;
1088         }
1089
1090         seqno = i915_gem_next_request_seqno(ring);
1091
1092         /* Record the position of the start of the request so that
1093          * should we detect the updated seqno part-way through the
1094          * GPU processing the request, we never over-estimate the
1095          * position of the head.
1096          */
1097         request_ring_position = intel_ring_get_tail(ring);
1098
1099         ret = ring->add_request(ring, &seqno);
1100         if (ret) {
1101                 kfree(request, DRM_I915_GEM);
1102                 return ret;
1103         }
1104
1105         request->seqno = seqno;
1106         request->ring = ring;
1107         request->tail = request_ring_position;
1108         request->emitted_jiffies = jiffies;
1109         was_empty = list_empty(&ring->request_list);
1110         list_add_tail(&request->list, &ring->request_list);
1111         request->file_priv = NULL;
1112
1113         if (file) {
1114                 struct drm_i915_file_private *file_priv = file->driver_priv;
1115
1116                 spin_lock(&file_priv->mm.lock);
1117                 request->file_priv = file_priv;
1118                 list_add_tail(&request->client_list,
1119                               &file_priv->mm.request_list);
1120                 spin_unlock(&file_priv->mm.lock);
1121         }
1122
1123         ring->outstanding_lazy_request = 0;
1124
1125         if (!dev_priv->mm.suspended) {
1126                 if (i915_enable_hangcheck) {
1127                         mod_timer(&dev_priv->hangcheck_timer,
1128                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
1129                 }
1130                 if (was_empty) {
1131                         queue_delayed_work(dev_priv->wq,
1132                                            &dev_priv->mm.retire_work,
1133                                            round_jiffies_up_relative(hz));
1134                         intel_mark_busy(dev_priv->dev);
1135                 }
1136         }
1137
1138         WARN_ON(!list_empty(&ring->gpu_write_list));
1139
1140         return 0;
1141 }
1142
1143 static inline void
1144 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1145 {
1146         struct drm_i915_file_private *file_priv = request->file_priv;
1147
1148         if (!file_priv)
1149                 return;
1150
1151         DRM_LOCK_ASSERT(request->ring->dev);
1152
1153         spin_lock(&file_priv->mm.lock);
1154         if (request->file_priv != NULL) {
1155                 list_del(&request->client_list);
1156                 request->file_priv = NULL;
1157         }
1158         spin_unlock(&file_priv->mm.lock);
1159 }
1160
1161 static void
1162 i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1163     struct intel_ring_buffer *ring)
1164 {
1165
1166         if (ring->dev != NULL)
1167                 DRM_LOCK_ASSERT(ring->dev);
1168
1169         while (!list_empty(&ring->request_list)) {
1170                 struct drm_i915_gem_request *request;
1171
1172                 request = list_first_entry(&ring->request_list,
1173                     struct drm_i915_gem_request, list);
1174
1175                 list_del(&request->list);
1176                 i915_gem_request_remove_from_client(request);
1177                 drm_free(request, DRM_I915_GEM);
1178         }
1179
1180         while (!list_empty(&ring->active_list)) {
1181                 struct drm_i915_gem_object *obj;
1182
1183                 obj = list_first_entry(&ring->active_list,
1184                     struct drm_i915_gem_object, ring_list);
1185
1186                 obj->base.write_domain = 0;
1187                 list_del_init(&obj->gpu_write_list);
1188                 i915_gem_object_move_to_inactive(obj);
1189         }
1190 }
1191
1192 static void
1193 i915_gem_reset_fences(struct drm_device *dev)
1194 {
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         int i;
1197
1198         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1199                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1200                 struct drm_i915_gem_object *obj = reg->obj;
1201
1202                 if (!obj)
1203                         continue;
1204
1205                 if (obj->tiling_mode)
1206                         i915_gem_release_mmap(obj);
1207
1208                 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1209                 reg->obj->fenced_gpu_access = false;
1210                 reg->obj->last_fenced_seqno = 0;
1211                 i915_gem_clear_fence_reg(dev, reg);
1212         }
1213 }
1214
1215 void i915_gem_reset(struct drm_device *dev)
1216 {
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         struct drm_i915_gem_object *obj;
1219         int i;
1220
1221         for (i = 0; i < I915_NUM_RINGS; i++)
1222                 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1223
1224         /* Remove anything from the flushing lists. The GPU cache is likely
1225          * to be lost on reset along with the data, so simply move the
1226          * lost bo to the inactive list.
1227          */
1228         while (!list_empty(&dev_priv->mm.flushing_list)) {
1229                 obj = list_first_entry(&dev_priv->mm.flushing_list,
1230                                       struct drm_i915_gem_object,
1231                                       mm_list);
1232
1233                 obj->base.write_domain = 0;
1234                 list_del_init(&obj->gpu_write_list);
1235                 i915_gem_object_move_to_inactive(obj);
1236         }
1237
1238         /* Move everything out of the GPU domains to ensure we do any
1239          * necessary invalidation upon reuse.
1240          */
1241         list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) {
1242                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1243         }
1244
1245         /* The fence registers are invalidated so clear them out */
1246         i915_gem_reset_fences(dev);
1247 }
1248
1249 static void
1250 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1251 {
1252         struct drm_device *dev = obj->base.dev;
1253         drm_i915_private_t *dev_priv = dev->dev_private;
1254
1255         KASSERT(obj->active, ("Object not active"));
1256         list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1257
1258         i915_gem_object_move_off_active(obj);
1259 }
1260
1261 /**
1262  * This function clears the request list as sequence numbers are passed.
1263  */
1264 void
1265 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1266 {
1267         uint32_t seqno;
1268         int i;
1269
1270         if (list_empty(&ring->request_list))
1271                 return;
1272
1273         WARN_ON(i915_verify_lists(ring->dev));
1274
1275         seqno = ring->get_seqno(ring, true);
1276
1277         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1278                 if (seqno >= ring->sync_seqno[i])
1279                         ring->sync_seqno[i] = 0;
1280
1281         while (!list_empty(&ring->request_list)) {
1282                 struct drm_i915_gem_request *request;
1283
1284                 request = list_first_entry(&ring->request_list,
1285                                            struct drm_i915_gem_request,
1286                                            list);
1287
1288                 if (!i915_seqno_passed(seqno, request->seqno))
1289                         break;
1290
1291                 /* We know the GPU must have read the request to have
1292                  * sent us the seqno + interrupt, so use the position
1293                  * of tail of the request to update the last known position
1294                  * of the GPU head.
1295                  */
1296                 ring->last_retired_head = request->tail;
1297
1298                 list_del(&request->list);
1299                 i915_gem_request_remove_from_client(request);
1300                 kfree(request, DRM_I915_GEM);
1301         }
1302
1303         /* Move any buffers on the active list that are no longer referenced
1304          * by the ringbuffer to the flushing/inactive lists as appropriate.
1305          */
1306         while (!list_empty(&ring->active_list)) {
1307                 struct drm_i915_gem_object *obj;
1308
1309                 obj = list_first_entry(&ring->active_list,
1310                                       struct drm_i915_gem_object,
1311                                       ring_list);
1312
1313                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1314                         break;
1315
1316                 if (obj->base.write_domain != 0)
1317                         i915_gem_object_move_to_flushing(obj);
1318                 else
1319                         i915_gem_object_move_to_inactive(obj);
1320         }
1321
1322         if (unlikely(ring->trace_irq_seqno &&
1323                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1324                 ring->irq_put(ring);
1325                 ring->trace_irq_seqno = 0;
1326         }
1327
1328 }
1329
1330 static void
1331 i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
1332
1333 void
1334 i915_gem_retire_requests(struct drm_device *dev)
1335 {
1336         drm_i915_private_t *dev_priv = dev->dev_private;
1337         struct drm_i915_gem_object *obj, *next;
1338         int i;
1339
1340         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1341                 list_for_each_entry_safe(obj, next,
1342                     &dev_priv->mm.deferred_free_list, mm_list)
1343                         i915_gem_free_object_tail(obj);
1344         }
1345
1346         for (i = 0; i < I915_NUM_RINGS; i++)
1347                 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1348 }
1349
1350 static void
1351 i915_gem_retire_work_handler(struct work_struct *work)
1352 {
1353         drm_i915_private_t *dev_priv;
1354         struct drm_device *dev;
1355         struct intel_ring_buffer *ring;
1356         bool idle;
1357         int i;
1358
1359         dev_priv = container_of(work, drm_i915_private_t,
1360                                 mm.retire_work.work);
1361         dev = dev_priv->dev;
1362
1363         /* Come back later if the device is busy... */
1364         if (lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_NOWAIT)) {
1365                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
1366                                    round_jiffies_up_relative(hz));
1367                 return;
1368         }
1369
1370         i915_gem_retire_requests(dev);
1371
1372         /* Send a periodic flush down the ring so we don't hold onto GEM
1373          * objects indefinitely.
1374          */
1375         idle = true;
1376         for_each_ring(ring, dev_priv, i) {
1377                 if (ring->gpu_caches_dirty)
1378                         i915_add_request(ring, NULL, NULL);
1379
1380                 idle &= list_empty(&ring->request_list);
1381         }
1382
1383         if (!dev_priv->mm.suspended && !idle)
1384                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
1385                                    round_jiffies_up_relative(hz));
1386         if (idle)
1387                 intel_mark_idle(dev);
1388
1389         DRM_UNLOCK(dev);
1390 }
1391
1392 /**
1393  * i915_gem_object_sync - sync an object to a ring.
1394  *
1395  * @obj: object which may be in use on another ring.
1396  * @to: ring we wish to use the object on. May be NULL.
1397  *
1398  * This code is meant to abstract object synchronization with the GPU.
1399  * Calling with NULL implies synchronizing the object with the CPU
1400  * rather than a particular GPU ring.
1401  *
1402  * Returns 0 if successful, else propagates up the lower layer error.
1403  */
1404 int
1405 i915_gem_object_sync(struct drm_i915_gem_object *obj,
1406                      struct intel_ring_buffer *to)
1407 {
1408         struct intel_ring_buffer *from = obj->ring;
1409         u32 seqno;
1410         int ret, idx;
1411
1412         if (from == NULL || to == from)
1413                 return 0;
1414
1415         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1416                 return i915_gem_object_wait_rendering(obj, false);
1417
1418         idx = intel_ring_sync_index(from, to);
1419
1420         seqno = obj->last_read_seqno;
1421         if (seqno <= from->sync_seqno[idx])
1422                 return 0;
1423
1424         ret = i915_gem_check_olr(obj->ring, seqno);
1425         if (ret)
1426                 return ret;
1427
1428         ret = to->sync_to(to, from, seqno);
1429         if (!ret)
1430                 from->sync_seqno[idx] = seqno;
1431
1432         return ret;
1433 }
1434
1435 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1436 {
1437         u32 old_write_domain, old_read_domains;
1438
1439         /* Act a barrier for all accesses through the GTT */
1440         cpu_mfence();
1441
1442         /* Force a pagefault for domain tracking on next user access */
1443         i915_gem_release_mmap(obj);
1444
1445         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1446                 return;
1447
1448         old_read_domains = obj->base.read_domains;
1449         old_write_domain = obj->base.write_domain;
1450
1451         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
1452         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
1453
1454 }
1455
1456 int
1457 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
1458 {
1459         drm_i915_private_t *dev_priv;
1460         int ret;
1461
1462         dev_priv = obj->base.dev->dev_private;
1463         ret = 0;
1464         if (obj->gtt_space == NULL)
1465                 return (0);
1466         if (obj->pin_count != 0) {
1467                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1468                 return (-EINVAL);
1469         }
1470
1471         ret = i915_gem_object_finish_gpu(obj);
1472         if (ret == -ERESTART || ret == -EINTR)
1473                 return (ret);
1474
1475         i915_gem_object_finish_gtt(obj);
1476
1477         if (ret == 0)
1478                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1479         if (ret == -ERESTART || ret == -EINTR)
1480                 return (ret);
1481         if (ret != 0) {
1482                 i915_gem_clflush_object(obj);
1483                 obj->base.read_domains = obj->base.write_domain =
1484                     I915_GEM_DOMAIN_CPU;
1485         }
1486
1487         ret = i915_gem_object_put_fence(obj);
1488         if (ret == -ERESTART)
1489                 return (ret);
1490
1491         i915_gem_gtt_unbind_object(obj);
1492         if (obj->has_aliasing_ppgtt_mapping) {
1493                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
1494                 obj->has_aliasing_ppgtt_mapping = 0;
1495         }
1496         i915_gem_object_put_pages_gtt(obj);
1497
1498         list_del_init(&obj->gtt_list);
1499         list_del_init(&obj->mm_list);
1500         obj->map_and_fenceable = true;
1501
1502         drm_mm_put_block(obj->gtt_space);
1503         obj->gtt_space = NULL;
1504         obj->gtt_offset = 0;
1505
1506         if (i915_gem_object_is_purgeable(obj))
1507                 i915_gem_object_truncate(obj);
1508
1509         return (ret);
1510 }
1511
1512 int i915_gpu_idle(struct drm_device *dev)
1513 {
1514         drm_i915_private_t *dev_priv = dev->dev_private;
1515         struct intel_ring_buffer *ring;
1516         int ret, i;
1517
1518         /* Flush everything onto the inactive list. */
1519         for_each_ring(ring, dev_priv, i) {
1520                 ret = intel_ring_idle(ring);
1521                 if (ret)
1522                         return ret;
1523         }
1524
1525         return 0;
1526 }
1527
1528 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj)
1529 {
1530         struct drm_device *dev = obj->base.dev;
1531         drm_i915_private_t *dev_priv = dev->dev_private;
1532         u32 size = obj->gtt_space->size;
1533         int regnum = obj->fence_reg;
1534         uint64_t val;
1535
1536         val = (uint64_t)((obj->gtt_offset + size - 4096) &
1537                          0xfffff000) << 32;
1538         val |= obj->gtt_offset & 0xfffff000;
1539         val |= (uint64_t)((obj->stride / 128) - 1) <<
1540                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
1541
1542         if (obj->tiling_mode == I915_TILING_Y)
1543                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1544         val |= I965_FENCE_REG_VALID;
1545
1546         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
1547
1548         return 0;
1549 }
1550
1551 static int i965_write_fence_reg(struct drm_i915_gem_object *obj)
1552 {
1553         struct drm_device *dev = obj->base.dev;
1554         drm_i915_private_t *dev_priv = dev->dev_private;
1555         u32 size = obj->gtt_space->size;
1556         int regnum = obj->fence_reg;
1557         uint64_t val;
1558
1559         val = (uint64_t)((obj->gtt_offset + size - 4096) &
1560                     0xfffff000) << 32;
1561         val |= obj->gtt_offset & 0xfffff000;
1562         val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1563         if (obj->tiling_mode == I915_TILING_Y)
1564                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1565         val |= I965_FENCE_REG_VALID;
1566
1567         I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
1568
1569         return 0;
1570 }
1571
1572 static int i915_write_fence_reg(struct drm_i915_gem_object *obj)
1573 {
1574         struct drm_device *dev = obj->base.dev;
1575         drm_i915_private_t *dev_priv = dev->dev_private;
1576         u32 size = obj->gtt_space->size;
1577         u32 fence_reg, val, pitch_val;
1578         int tile_width;
1579
1580         if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
1581                  (size & -size) != size ||
1582                  (obj->gtt_offset & (size - 1)),
1583                  "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
1584                  obj->gtt_offset, obj->map_and_fenceable, size))
1585                 return -EINVAL;
1586
1587         if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1588                 tile_width = 128;
1589         else
1590                 tile_width = 512;
1591
1592         /* Note: pitch better be a power of two tile widths */
1593         pitch_val = obj->stride / tile_width;
1594         pitch_val = ffs(pitch_val) - 1;
1595
1596         val = obj->gtt_offset;
1597         if (obj->tiling_mode == I915_TILING_Y)
1598                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1599         val |= I915_FENCE_SIZE_BITS(size);
1600         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1601         val |= I830_FENCE_REG_VALID;
1602
1603         fence_reg = obj->fence_reg;
1604         if (fence_reg < 8)
1605                 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
1606         else
1607                 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
1608
1609         I915_WRITE(fence_reg, val);
1610
1611         return 0;
1612 }
1613
1614 static int i830_write_fence_reg(struct drm_i915_gem_object *obj)
1615 {
1616         struct drm_device *dev = obj->base.dev;
1617         drm_i915_private_t *dev_priv = dev->dev_private;
1618         u32 size = obj->gtt_space->size;
1619         int regnum = obj->fence_reg;
1620         uint32_t val;
1621         uint32_t pitch_val;
1622
1623         if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
1624                  (size & -size) != size ||
1625                  (obj->gtt_offset & (size - 1)),
1626                  "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
1627                  obj->gtt_offset, size))
1628                 return -EINVAL;
1629
1630         pitch_val = obj->stride / 128;
1631         pitch_val = ffs(pitch_val) - 1;
1632
1633         val = obj->gtt_offset;
1634         if (obj->tiling_mode == I915_TILING_Y)
1635                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1636         val |= I830_FENCE_SIZE_BITS(size);
1637         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1638         val |= I830_FENCE_REG_VALID;
1639
1640         I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
1641
1642         return 0;
1643 }
1644
1645 static int
1646 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
1647 {
1648         int ret;
1649
1650         if (obj->fenced_gpu_access) {
1651                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1652                         ret = i915_gem_flush_ring(obj->ring,
1653                                                   0, obj->base.write_domain);
1654                         if (ret)
1655                                 return ret;
1656                 }
1657
1658                 obj->fenced_gpu_access = false;
1659         }
1660
1661         if (obj->last_fenced_seqno) {
1662                 ret = i915_wait_seqno(obj->ring,
1663                                         obj->last_fenced_seqno);
1664                 if (ret)
1665                         return ret;
1666
1667                 obj->last_fenced_seqno = 0;
1668         }
1669
1670         /* Ensure that all CPU reads are completed before installing a fence
1671          * and all writes before removing the fence.
1672          */
1673         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
1674                 cpu_mfence();
1675
1676         return 0;
1677 }
1678
1679 int
1680 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
1681 {
1682         int ret;
1683
1684         if (obj->tiling_mode)
1685                 i915_gem_release_mmap(obj);
1686
1687         ret = i915_gem_object_flush_fence(obj);
1688         if (ret)
1689                 return ret;
1690
1691         if (obj->fence_reg != I915_FENCE_REG_NONE) {
1692                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1693
1694                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
1695                 i915_gem_clear_fence_reg(obj->base.dev,
1696                                          &dev_priv->fence_regs[obj->fence_reg]);
1697
1698                 obj->fence_reg = I915_FENCE_REG_NONE;
1699         }
1700
1701         return 0;
1702 }
1703
1704 static struct drm_i915_fence_reg *
1705 i915_find_fence_reg(struct drm_device *dev)
1706 {
1707         struct drm_i915_private *dev_priv = dev->dev_private;
1708         struct drm_i915_fence_reg *reg, *avail;
1709         int i;
1710
1711         /* First try to find a free reg */
1712         avail = NULL;
1713         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1714                 reg = &dev_priv->fence_regs[i];
1715                 if (!reg->obj)
1716                         return reg;
1717
1718                 if (!reg->pin_count)
1719                         avail = reg;
1720         }
1721
1722         if (avail == NULL)
1723                 return NULL;
1724
1725         /* None available, try to steal one or wait for a user to finish */
1726         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1727                 if (reg->pin_count)
1728                         continue;
1729
1730                 return reg;
1731         }
1732
1733         return NULL;
1734 }
1735
1736 /**
1737  * i915_gem_object_get_fence - set up fencing for an object
1738  * @obj: object to map through a fence reg
1739  *
1740  * When mapping objects through the GTT, userspace wants to be able to write
1741  * to them without having to worry about swizzling if the object is tiled.
1742  * This function walks the fence regs looking for a free one for @obj,
1743  * stealing one if it can't find any.
1744  *
1745  * It then sets up the reg based on the object's properties: address, pitch
1746  * and tiling format.
1747  *
1748  * For an untiled surface, this removes any existing fence.
1749  */
1750 int
1751 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
1752 {
1753         struct drm_device *dev = obj->base.dev;
1754         struct drm_i915_private *dev_priv = dev->dev_private;
1755         struct drm_i915_fence_reg *reg;
1756         int ret;
1757
1758         if (obj->tiling_mode == I915_TILING_NONE)
1759                 return i915_gem_object_put_fence(obj);
1760
1761         /* Just update our place in the LRU if our fence is getting reused. */
1762         if (obj->fence_reg != I915_FENCE_REG_NONE) {
1763                 reg = &dev_priv->fence_regs[obj->fence_reg];
1764                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1765
1766                 if (obj->tiling_changed) {
1767                         ret = i915_gem_object_flush_fence(obj);
1768                         if (ret)
1769                                 return ret;
1770
1771                         goto update;
1772                 }
1773
1774                 return 0;
1775         }
1776
1777         reg = i915_find_fence_reg(dev);
1778         if (reg == NULL)
1779                 return -EDEADLK;
1780
1781         ret = i915_gem_object_flush_fence(obj);
1782         if (ret)
1783                 return ret;
1784
1785         if (reg->obj) {
1786                 struct drm_i915_gem_object *old = reg->obj;
1787
1788                 drm_gem_object_reference(&old->base);
1789
1790                 if (old->tiling_mode)
1791                         i915_gem_release_mmap(old);
1792
1793                 ret = i915_gem_object_flush_fence(old);
1794                 if (ret) {
1795                         drm_gem_object_unreference(&old->base);
1796                         return ret;
1797                 }
1798
1799                 old->fence_reg = I915_FENCE_REG_NONE;
1800                 old->last_fenced_seqno = 0;
1801
1802                 drm_gem_object_unreference(&old->base);
1803         }
1804
1805         reg->obj = obj;
1806         list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1807         obj->fence_reg = reg - dev_priv->fence_regs;
1808
1809 update:
1810         obj->tiling_changed = false;
1811         switch (INTEL_INFO(dev)->gen) {
1812         case 7:
1813         case 6:
1814                 ret = sandybridge_write_fence_reg(obj);
1815                 break;
1816         case 5:
1817         case 4:
1818                 ret = i965_write_fence_reg(obj);
1819                 break;
1820         case 3:
1821                 ret = i915_write_fence_reg(obj);
1822                 break;
1823         case 2:
1824                 ret = i830_write_fence_reg(obj);
1825                 break;
1826         }
1827
1828         return ret;
1829 }
1830
1831 static int
1832 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
1833     unsigned alignment, bool map_and_fenceable)
1834 {
1835         struct drm_device *dev;
1836         struct drm_i915_private *dev_priv;
1837         struct drm_mm_node *free_space;
1838         uint32_t size, fence_size, fence_alignment, unfenced_alignment;
1839         bool mappable, fenceable;
1840         int ret;
1841
1842         dev = obj->base.dev;
1843         dev_priv = dev->dev_private;
1844
1845         if (obj->madv != I915_MADV_WILLNEED) {
1846                 DRM_ERROR("Attempting to bind a purgeable object\n");
1847                 return (-EINVAL);
1848         }
1849
1850         fence_size = i915_gem_get_gtt_size(dev, obj->base.size,
1851             obj->tiling_mode);
1852         fence_alignment = i915_gem_get_gtt_alignment(dev, obj->base.size,
1853             obj->tiling_mode);
1854         unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(dev,
1855             obj->base.size, obj->tiling_mode);
1856         if (alignment == 0)
1857                 alignment = map_and_fenceable ? fence_alignment :
1858                     unfenced_alignment;
1859         if (map_and_fenceable && (alignment & (fence_alignment - 1)) != 0) {
1860                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1861                 return (-EINVAL);
1862         }
1863
1864         size = map_and_fenceable ? fence_size : obj->base.size;
1865
1866         /* If the object is bigger than the entire aperture, reject it early
1867          * before evicting everything in a vain attempt to find space.
1868          */
1869         if (obj->base.size > (map_and_fenceable ?
1870             dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
1871                 DRM_ERROR(
1872 "Attempting to bind an object larger than the aperture\n");
1873                 return (-E2BIG);
1874         }
1875
1876  search_free:
1877         if (map_and_fenceable)
1878                 free_space = drm_mm_search_free_in_range(
1879                     &dev_priv->mm.gtt_space, size, alignment, 0,
1880                     dev_priv->mm.gtt_mappable_end, 0);
1881         else
1882                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1883                     size, alignment, 0);
1884         if (free_space != NULL) {
1885                 int color = 0;
1886                 if (map_and_fenceable)
1887                         obj->gtt_space = drm_mm_get_block_range_generic(
1888                             free_space, size, alignment, color, 0,
1889                             dev_priv->mm.gtt_mappable_end, 1);
1890                 else
1891                         obj->gtt_space = drm_mm_get_block_generic(free_space,
1892                             size, alignment, color, 1);
1893         }
1894         if (obj->gtt_space == NULL) {
1895                 ret = i915_gem_evict_something(dev, size, alignment,
1896                     map_and_fenceable);
1897                 if (ret != 0)
1898                         return (ret);
1899                 goto search_free;
1900         }
1901
1902         /*
1903          * NOTE: i915_gem_object_get_pages_gtt() cannot
1904          *       return ENOMEM, since we used VM_ALLOC_RETRY.
1905          */
1906         ret = i915_gem_object_get_pages_gtt(obj, 0);
1907         if (ret != 0) {
1908                 drm_mm_put_block(obj->gtt_space);
1909                 obj->gtt_space = NULL;
1910                 return (ret);
1911         }
1912
1913         i915_gem_gtt_bind_object(obj, obj->cache_level);
1914         if (ret != 0) {
1915                 i915_gem_object_put_pages_gtt(obj);
1916                 drm_mm_put_block(obj->gtt_space);
1917                 obj->gtt_space = NULL;
1918                 if (i915_gem_evict_everything(dev))
1919                         return (ret);
1920                 goto search_free;
1921         }
1922
1923         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
1924         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1925
1926         obj->gtt_offset = obj->gtt_space->start;
1927
1928         fenceable =
1929                 obj->gtt_space->size == fence_size &&
1930                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
1931
1932         mappable =
1933                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
1934         obj->map_and_fenceable = mappable && fenceable;
1935
1936         return (0);
1937 }
1938
1939 void
1940 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
1941 {
1942
1943         /* If we don't have a page list set up, then we're not pinned
1944          * to GPU, and we can ignore the cache flush because it'll happen
1945          * again at bind time.
1946          */
1947         if (obj->pages == NULL)
1948                 return;
1949
1950         /* If the GPU is snooping the contents of the CPU cache,
1951          * we do not need to manually clear the CPU cache lines.  However,
1952          * the caches are only snooped when the render cache is
1953          * flushed/invalidated.  As we always have to emit invalidations
1954          * and flushes when moving into and out of the RENDER domain, correct
1955          * snooping behaviour occurs naturally as the result of our domain
1956          * tracking.
1957          */
1958         if (obj->cache_level != I915_CACHE_NONE)
1959                 return;
1960
1961         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
1962 }
1963
1964 /** Flushes the GTT write domain for the object if it's dirty. */
1965 static void
1966 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
1967 {
1968         uint32_t old_write_domain;
1969
1970         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
1971                 return;
1972
1973         /* No actual flushing is required for the GTT write domain.  Writes
1974          * to it immediately go to main memory as far as we know, so there's
1975          * no chipset flush.  It also doesn't land in render cache.
1976          *
1977          * However, we do have to enforce the order so that all writes through
1978          * the GTT land before any writes to the device, such as updates to
1979          * the GATT itself.
1980          */
1981         cpu_sfence();
1982
1983         old_write_domain = obj->base.write_domain;
1984         obj->base.write_domain = 0;
1985 }
1986
1987 /** Flushes the CPU write domain for the object if it's dirty. */
1988 static void
1989 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
1990 {
1991         uint32_t old_write_domain;
1992
1993         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
1994                 return;
1995
1996         i915_gem_clflush_object(obj);
1997         intel_gtt_chipset_flush();
1998         old_write_domain = obj->base.write_domain;
1999         obj->base.write_domain = 0;
2000 }
2001
2002 static int
2003 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2004 {
2005
2006         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2007                 return (0);
2008         return (i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain));
2009 }
2010
2011 /**
2012  * Moves a single object to the GTT read, and possibly write domain.
2013  *
2014  * This function returns when the move is complete, including waiting on
2015  * flushes to occur.
2016  */
2017 int
2018 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2019 {
2020         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2021         uint32_t old_write_domain, old_read_domains;
2022         int ret;
2023
2024         /* Not valid to be called on unbound objects. */
2025         if (obj->gtt_space == NULL)
2026                 return -EINVAL;
2027
2028         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2029                 return 0;
2030
2031         ret = i915_gem_object_flush_gpu_write_domain(obj);
2032         if (ret)
2033                 return ret;
2034
2035         ret = i915_gem_object_wait_rendering(obj, !write);
2036         if (ret)
2037                 return ret;
2038
2039         i915_gem_object_flush_cpu_write_domain(obj);
2040
2041         old_write_domain = obj->base.write_domain;
2042         old_read_domains = obj->base.read_domains;
2043
2044         /* It should now be out of any other write domains, and we can update
2045          * the domain values for our changes.
2046          */
2047         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2048         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2049         if (write) {
2050                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2051                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2052                 obj->dirty = 1;
2053         }
2054
2055         /* And bump the LRU for this access */
2056         if (i915_gem_object_is_inactive(obj))
2057                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2058
2059         return 0;
2060 }
2061
2062 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2063                                     enum i915_cache_level cache_level)
2064 {
2065         struct drm_device *dev = obj->base.dev;
2066         drm_i915_private_t *dev_priv = dev->dev_private;
2067         int ret;
2068
2069         if (obj->cache_level == cache_level)
2070                 return 0;
2071
2072         if (obj->pin_count) {
2073                 DRM_DEBUG("can not change the cache level of pinned objects\n");
2074                 return -EBUSY;
2075         }
2076
2077         if (obj->gtt_space) {
2078                 ret = i915_gem_object_finish_gpu(obj);
2079                 if (ret != 0)
2080                         return (ret);
2081
2082                 i915_gem_object_finish_gtt(obj);
2083
2084                 /* Before SandyBridge, you could not use tiling or fence
2085                  * registers with snooped memory, so relinquish any fences
2086                  * currently pointing to our region in the aperture.
2087                  */
2088                 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2089                         ret = i915_gem_object_put_fence(obj);
2090                         if (ret)
2091                                 return ret;
2092                 }
2093
2094                 if (obj->has_global_gtt_mapping)
2095                         i915_gem_gtt_bind_object(obj, cache_level);
2096                 if (obj->has_aliasing_ppgtt_mapping)
2097                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2098                                                obj, cache_level);
2099         }
2100
2101         if (cache_level == I915_CACHE_NONE) {
2102                 u32 old_read_domains, old_write_domain;
2103
2104                 /* If we're coming from LLC cached, then we haven't
2105                  * actually been tracking whether the data is in the
2106                  * CPU cache or not, since we only allow one bit set
2107                  * in obj->write_domain and have been skipping the clflushes.
2108                  * Just set it to the CPU cache for now.
2109                  */
2110                 KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) == 0,
2111                     ("obj %p in CPU write domain", obj));
2112                 KASSERT((obj->base.read_domains & ~I915_GEM_DOMAIN_CPU) == 0,
2113                     ("obj %p in CPU read domain", obj));
2114
2115                 old_read_domains = obj->base.read_domains;
2116                 old_write_domain = obj->base.write_domain;
2117
2118                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2119                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2120
2121         }
2122
2123         obj->cache_level = cache_level;
2124         return 0;
2125 }
2126
2127 /*
2128  * Prepare buffer for display plane (scanout, cursors, etc).
2129  * Can be called from an uninterruptible phase (modesetting) and allows
2130  * any flushes to be pipelined (for pageflips).
2131  */
2132 int
2133 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2134                                      u32 alignment,
2135                                      struct intel_ring_buffer *pipelined)
2136 {
2137         u32 old_read_domains, old_write_domain;
2138         int ret;
2139
2140         ret = i915_gem_object_flush_gpu_write_domain(obj);
2141         if (ret)
2142                 return ret;
2143
2144         if (pipelined != obj->ring) {
2145                 ret = i915_gem_object_sync(obj, pipelined);
2146                 if (ret)
2147                         return ret;
2148         }
2149
2150         /* The display engine is not coherent with the LLC cache on gen6.  As
2151          * a result, we make sure that the pinning that is about to occur is
2152          * done with uncached PTEs. This is lowest common denominator for all
2153          * chipsets.
2154          *
2155          * However for gen6+, we could do better by using the GFDT bit instead
2156          * of uncaching, which would allow us to flush all the LLC-cached data
2157          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2158          */
2159         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2160         if (ret)
2161                 return ret;
2162
2163         /* As the user may map the buffer once pinned in the display plane
2164          * (e.g. libkms for the bootup splash), we have to ensure that we
2165          * always use map_and_fenceable for all scanout buffers.
2166          */
2167         ret = i915_gem_object_pin(obj, alignment, true);
2168         if (ret)
2169                 return ret;
2170
2171         i915_gem_object_flush_cpu_write_domain(obj);
2172
2173         old_write_domain = obj->base.write_domain;
2174         old_read_domains = obj->base.read_domains;
2175
2176         /* It should now be out of any other write domains, and we can update
2177          * the domain values for our changes.
2178          */
2179         obj->base.write_domain = 0;
2180         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2181
2182         return 0;
2183 }
2184
2185 int
2186 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2187 {
2188         int ret;
2189
2190         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2191                 return 0;
2192
2193         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2194                 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2195                 if (ret)
2196                         return ret;
2197         }
2198
2199         ret = i915_gem_object_wait_rendering(obj, false);
2200         if (ret)
2201                 return ret;
2202
2203         /* Ensure that we invalidate the GPU's caches and TLBs. */
2204         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2205         return 0;
2206 }
2207
2208 /**
2209  * Moves a single object to the CPU read, and possibly write domain.
2210  *
2211  * This function returns when the move is complete, including waiting on
2212  * flushes to occur.
2213  */
2214 int
2215 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2216 {
2217         uint32_t old_write_domain, old_read_domains;
2218         int ret;
2219
2220         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2221                 return 0;
2222
2223         ret = i915_gem_object_flush_gpu_write_domain(obj);
2224         if (ret)
2225                 return ret;
2226
2227         ret = i915_gem_object_wait_rendering(obj, !write);
2228         if (ret)
2229                 return ret;
2230
2231         i915_gem_object_flush_gtt_write_domain(obj);
2232
2233         old_write_domain = obj->base.write_domain;
2234         old_read_domains = obj->base.read_domains;
2235
2236         /* Flush the CPU cache if it's still invalid. */
2237         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2238                 i915_gem_clflush_object(obj);
2239
2240                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2241         }
2242
2243         /* It should now be out of any other write domains, and we can update
2244          * the domain values for our changes.
2245          */
2246         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2247
2248         /* If we're writing through the CPU, then the GPU read domains will
2249          * need to be invalidated at next use.
2250          */
2251         if (write) {
2252                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2253                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2254         }
2255
2256         return 0;
2257 }
2258
2259 /* Throttle our rendering by waiting until the ring has completed our requests
2260  * emitted over 20 msec ago.
2261  *
2262  * Note that if we were to use the current jiffies each time around the loop,
2263  * we wouldn't escape the function with any frames outstanding if the time to
2264  * render a frame was over 20ms.
2265  *
2266  * This should get us reasonable parallelism between CPU and GPU but also
2267  * relatively low latency when blocking on a particular request to finish.
2268  */
2269 static int
2270 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2271 {
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273         struct drm_i915_file_private *file_priv = file->driver_priv;
2274         unsigned long recent_enough = ticks - (20 * hz / 1000);
2275         struct drm_i915_gem_request *request;
2276         struct intel_ring_buffer *ring = NULL;
2277         u32 seqno = 0;
2278         int ret;
2279
2280         if (atomic_read(&dev_priv->mm.wedged))
2281                 return -EIO;
2282
2283         spin_lock(&file_priv->mm.lock);
2284         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
2285                 if (time_after_eq(request->emitted_jiffies, recent_enough))
2286                         break;
2287
2288                 ring = request->ring;
2289                 seqno = request->seqno;
2290         }
2291         spin_unlock(&file_priv->mm.lock);
2292
2293         if (seqno == 0)
2294                 return 0;
2295
2296         ret = __wait_seqno(ring, seqno, true, NULL);
2297
2298         if (ret == 0)
2299                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2300
2301         return ret;
2302 }
2303
2304 int
2305 i915_gem_object_pin(struct drm_i915_gem_object *obj, uint32_t alignment,
2306      bool map_and_fenceable)
2307 {
2308         struct drm_device *dev;
2309         struct drm_i915_private *dev_priv;
2310         int ret;
2311
2312         dev = obj->base.dev;
2313         dev_priv = dev->dev_private;
2314
2315         KASSERT(obj->pin_count != DRM_I915_GEM_OBJECT_MAX_PIN_COUNT,
2316             ("Max pin count"));
2317
2318         if (obj->gtt_space != NULL) {
2319                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
2320                     (map_and_fenceable && !obj->map_and_fenceable)) {
2321                         DRM_DEBUG("bo is already pinned with incorrect alignment:"
2322                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
2323                              " obj->map_and_fenceable=%d\n",
2324                              obj->gtt_offset, alignment,
2325                              map_and_fenceable,
2326                              obj->map_and_fenceable);
2327                         ret = i915_gem_object_unbind(obj);
2328                         if (ret != 0)
2329                                 return (ret);
2330                 }
2331         }
2332
2333         if (obj->gtt_space == NULL) {
2334                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
2335                     map_and_fenceable);
2336                 if (ret)
2337                         return (ret);
2338         }
2339
2340         if (obj->pin_count++ == 0 && !obj->active)
2341                 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
2342         obj->pin_mappable |= map_and_fenceable;
2343
2344 #if 1
2345         KIB_NOTYET();
2346 #else
2347         WARN_ON(i915_verify_lists(dev));
2348 #endif
2349         return (0);
2350 }
2351
2352 void
2353 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
2354 {
2355         struct drm_device *dev;
2356         drm_i915_private_t *dev_priv;
2357
2358         dev = obj->base.dev;
2359         dev_priv = dev->dev_private;
2360
2361 #if 1
2362         KIB_NOTYET();
2363 #else
2364         WARN_ON(i915_verify_lists(dev));
2365 #endif
2366         
2367         KASSERT(obj->pin_count != 0, ("zero pin count"));
2368         KASSERT(obj->gtt_space != NULL, ("No gtt mapping"));
2369
2370         if (--obj->pin_count == 0) {
2371                 if (!obj->active)
2372                         list_move_tail(&obj->mm_list,
2373                             &dev_priv->mm.inactive_list);
2374                 obj->pin_mappable = false;
2375         }
2376 #if 1
2377         KIB_NOTYET();
2378 #else
2379         WARN_ON(i915_verify_lists(dev));
2380 #endif
2381 }
2382
2383 int
2384 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2385     struct drm_file *file)
2386 {
2387         struct drm_i915_gem_pin *args;
2388         struct drm_i915_gem_object *obj;
2389         struct drm_gem_object *gobj;
2390         int ret;
2391
2392         args = data;
2393
2394         ret = i915_mutex_lock_interruptible(dev);
2395         if (ret != 0)
2396                 return ret;
2397
2398         gobj = drm_gem_object_lookup(dev, file, args->handle);
2399         if (gobj == NULL) {
2400                 ret = -ENOENT;
2401                 goto unlock;
2402         }
2403         obj = to_intel_bo(gobj);
2404
2405         if (obj->madv != I915_MADV_WILLNEED) {
2406                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
2407                 ret = -EINVAL;
2408                 goto out;
2409         }
2410
2411         if (obj->pin_filp != NULL && obj->pin_filp != file) {
2412                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2413                     args->handle);
2414                 ret = -EINVAL;
2415                 goto out;
2416         }
2417
2418         obj->user_pin_count++;
2419         obj->pin_filp = file;
2420         if (obj->user_pin_count == 1) {
2421                 ret = i915_gem_object_pin(obj, args->alignment, true);
2422                 if (ret != 0)
2423                         goto out;
2424         }
2425
2426         /* XXX - flush the CPU caches for pinned objects
2427          * as the X server doesn't manage domains yet
2428          */
2429         i915_gem_object_flush_cpu_write_domain(obj);
2430         args->offset = obj->gtt_offset;
2431 out:
2432         drm_gem_object_unreference(&obj->base);
2433 unlock:
2434         DRM_UNLOCK(dev);
2435         return (ret);
2436 }
2437
2438 int
2439 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2440     struct drm_file *file)
2441 {
2442         struct drm_i915_gem_pin *args;
2443         struct drm_i915_gem_object *obj;
2444         int ret;
2445
2446         args = data;
2447         ret = i915_mutex_lock_interruptible(dev);
2448         if (ret != 0)
2449                 return (ret);
2450
2451         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2452         if (&obj->base == NULL) {
2453                 ret = -ENOENT;
2454                 goto unlock;
2455         }
2456
2457         if (obj->pin_filp != file) {
2458                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2459                     args->handle);
2460                 ret = -EINVAL;
2461                 goto out;
2462         }
2463         obj->user_pin_count--;
2464         if (obj->user_pin_count == 0) {
2465                 obj->pin_filp = NULL;
2466                 i915_gem_object_unpin(obj);
2467         }
2468
2469 out:
2470         drm_gem_object_unreference(&obj->base);
2471 unlock:
2472         DRM_UNLOCK(dev);
2473         return (ret);
2474 }
2475
2476 int
2477 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2478                     struct drm_file *file)
2479 {
2480         struct drm_i915_gem_busy *args = data;
2481         struct drm_i915_gem_object *obj;
2482         int ret;
2483
2484         ret = i915_mutex_lock_interruptible(dev);
2485         if (ret)
2486                 return ret;
2487
2488         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2489         if (&obj->base == NULL) {
2490                 ret = -ENOENT;
2491                 goto unlock;
2492         }
2493
2494         /* Count all active objects as busy, even if they are currently not used
2495          * by the gpu. Users of this interface expect objects to eventually
2496          * become non-busy without any further actions, therefore emit any
2497          * necessary flushes here.
2498          */
2499         ret = i915_gem_object_flush_active(obj);
2500
2501         args->busy = obj->active;
2502         if (obj->ring) {
2503                 args->busy |= intel_ring_flag(obj->ring) << 17;
2504         }
2505
2506         drm_gem_object_unreference(&obj->base);
2507 unlock:
2508         DRM_UNLOCK(dev);
2509         return ret;
2510 }
2511
2512 int
2513 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2514     struct drm_file *file_priv)
2515 {
2516
2517         return (i915_gem_ring_throttle(dev, file_priv));
2518 }
2519
2520 int
2521 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2522                        struct drm_file *file_priv)
2523 {
2524         struct drm_i915_gem_madvise *args = data;
2525         struct drm_i915_gem_object *obj;
2526         int ret;
2527
2528         switch (args->madv) {
2529         case I915_MADV_DONTNEED:
2530         case I915_MADV_WILLNEED:
2531             break;
2532         default:
2533             return -EINVAL;
2534         }
2535
2536         ret = i915_mutex_lock_interruptible(dev);
2537         if (ret)
2538                 return ret;
2539
2540         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
2541         if (&obj->base == NULL) {
2542                 ret = -ENOENT;
2543                 goto unlock;
2544         }
2545
2546         if (obj->pin_count) {
2547                 ret = -EINVAL;
2548                 goto out;
2549         }
2550
2551         if (obj->madv != __I915_MADV_PURGED)
2552                 obj->madv = args->madv;
2553
2554         /* if the object is no longer attached, discard its backing storage */
2555         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2556                 i915_gem_object_truncate(obj);
2557
2558         args->retained = obj->madv != __I915_MADV_PURGED;
2559
2560 out:
2561         drm_gem_object_unreference(&obj->base);
2562 unlock:
2563         DRM_UNLOCK(dev);
2564         return ret;
2565 }
2566
2567 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2568                                                   size_t size)
2569 {
2570         struct drm_i915_private *dev_priv;
2571         struct drm_i915_gem_object *obj;
2572
2573         dev_priv = dev->dev_private;
2574
2575         obj = kmalloc(sizeof(*obj), DRM_I915_GEM, M_WAITOK | M_ZERO);
2576
2577         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
2578                 drm_free(obj, DRM_I915_GEM);
2579                 return (NULL);
2580         }
2581
2582         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2583         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2584
2585         if (HAS_LLC(dev))
2586                 obj->cache_level = I915_CACHE_LLC;
2587         else
2588                 obj->cache_level = I915_CACHE_NONE;
2589         obj->base.driver_private = NULL;
2590         obj->fence_reg = I915_FENCE_REG_NONE;
2591         INIT_LIST_HEAD(&obj->mm_list);
2592         INIT_LIST_HEAD(&obj->gtt_list);
2593         INIT_LIST_HEAD(&obj->ring_list);
2594         INIT_LIST_HEAD(&obj->exec_list);
2595         INIT_LIST_HEAD(&obj->gpu_write_list);
2596         obj->madv = I915_MADV_WILLNEED;
2597         /* Avoid an unnecessary call to unbind on the first bind. */
2598         obj->map_and_fenceable = true;
2599
2600         i915_gem_info_add_obj(dev_priv, size);
2601
2602         return (obj);
2603 }
2604
2605 int i915_gem_init_object(struct drm_gem_object *obj)
2606 {
2607
2608         kprintf("i915_gem_init_object called\n");
2609         return (0);
2610 }
2611
2612 static void
2613 i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
2614 {
2615         struct drm_device *dev;
2616         drm_i915_private_t *dev_priv;
2617         int ret;
2618
2619         dev = obj->base.dev;
2620         dev_priv = dev->dev_private;
2621
2622         ret = i915_gem_object_unbind(obj);
2623         if (ret == -ERESTART) {
2624                 list_move(&obj->mm_list, &dev_priv->mm.deferred_free_list);
2625                 return;
2626         }
2627
2628         drm_gem_free_mmap_offset(&obj->base);
2629         drm_gem_object_release(&obj->base);
2630         i915_gem_info_remove_obj(dev_priv, obj->base.size);
2631
2632         drm_free(obj->bit_17, DRM_I915_GEM);
2633         drm_free(obj, DRM_I915_GEM);
2634 }
2635
2636 void
2637 i915_gem_free_object(struct drm_gem_object *gem_obj)
2638 {
2639         struct drm_i915_gem_object *obj;
2640         struct drm_device *dev;
2641
2642         obj = to_intel_bo(gem_obj);
2643         dev = obj->base.dev;
2644
2645         while (obj->pin_count > 0)
2646                 i915_gem_object_unpin(obj);
2647
2648         if (obj->phys_obj != NULL)
2649                 i915_gem_detach_phys_object(dev, obj);
2650
2651         i915_gem_free_object_tail(obj);
2652 }
2653
2654 int
2655 i915_gem_do_init(struct drm_device *dev, unsigned long start,
2656     unsigned long mappable_end, unsigned long end)
2657 {
2658         drm_i915_private_t *dev_priv;
2659         unsigned long mappable;
2660         int error;
2661
2662         dev_priv = dev->dev_private;
2663         mappable = min(end, mappable_end) - start;
2664
2665         drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
2666
2667         dev_priv->mm.gtt_start = start;
2668         dev_priv->mm.gtt_mappable_end = mappable_end;
2669         dev_priv->mm.gtt_end = end;
2670         dev_priv->mm.gtt_total = end - start;
2671         dev_priv->mm.mappable_gtt_total = mappable;
2672
2673         /* Take over this portion of the GTT */
2674         intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
2675         device_printf(dev->dev,
2676             "taking over the fictitious range 0x%lx-0x%lx\n",
2677             dev->agp->base + start, dev->agp->base + start + mappable);
2678         error = -vm_phys_fictitious_reg_range(dev->agp->base + start,
2679             dev->agp->base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2680         return (error);
2681 }
2682
2683 int
2684 i915_gem_idle(struct drm_device *dev)
2685 {
2686         drm_i915_private_t *dev_priv;
2687         int ret;
2688
2689         dev_priv = dev->dev_private;
2690         if (dev_priv->mm.suspended)
2691                 return (0);
2692
2693         ret = i915_gpu_idle(dev);
2694         if (ret != 0)
2695                 return (ret);
2696
2697         /* Under UMS, be paranoid and evict. */
2698         if (!drm_core_check_feature(dev, DRIVER_MODESET))
2699                 i915_gem_evict_everything(dev);
2700
2701         i915_gem_reset_fences(dev);
2702
2703         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
2704          * We need to replace this with a semaphore, or something.
2705          * And not confound mm.suspended!
2706          */
2707         dev_priv->mm.suspended = 1;
2708         del_timer_sync(&dev_priv->hangcheck_timer);
2709
2710         i915_kernel_lost_context(dev);
2711         i915_gem_cleanup_ringbuffer(dev);
2712
2713         /* Cancel the retire work handler, which should be idle now. */
2714         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2715
2716         return (ret);
2717 }
2718
2719 void i915_gem_l3_remap(struct drm_device *dev)
2720 {
2721         drm_i915_private_t *dev_priv = dev->dev_private;
2722         u32 misccpctl;
2723         int i;
2724
2725         if (!HAS_L3_GPU_CACHE(dev))
2726                 return;
2727
2728         if (!dev_priv->l3_parity.remap_info)
2729                 return;
2730
2731         misccpctl = I915_READ(GEN7_MISCCPCTL);
2732         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
2733         POSTING_READ(GEN7_MISCCPCTL);
2734
2735         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
2736                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
2737                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
2738                         DRM_DEBUG("0x%x was already programmed to %x\n",
2739                                   GEN7_L3LOG_BASE + i, remap);
2740                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
2741                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
2742                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
2743         }
2744
2745         /* Make sure all the writes land before disabling dop clock gating */
2746         POSTING_READ(GEN7_L3LOG_BASE);
2747
2748         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
2749 }
2750
2751 void
2752 i915_gem_init_swizzling(struct drm_device *dev)
2753 {
2754         drm_i915_private_t *dev_priv;
2755
2756         dev_priv = dev->dev_private;
2757
2758         if (INTEL_INFO(dev)->gen < 5 ||
2759             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
2760                 return;
2761
2762         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
2763                                  DISP_TILE_SURFACE_SWIZZLING);
2764
2765         if (IS_GEN5(dev))
2766                 return;
2767
2768         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
2769         if (IS_GEN6(dev))
2770                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
2771         else
2772                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
2773 }
2774
2775 static bool
2776 intel_enable_blt(struct drm_device *dev)
2777 {
2778         int revision;
2779
2780         if (!HAS_BLT(dev))
2781                 return false;
2782
2783         /* The blitter was dysfunctional on early prototypes */
2784         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
2785         if (IS_GEN6(dev) && revision < 8) {
2786                 DRM_INFO("BLT not supported on this pre-production hardware;"
2787                          " graphics performance will be degraded.\n");
2788                 return false;
2789         }
2790
2791         return true;
2792 }
2793
2794 int
2795 i915_gem_init_hw(struct drm_device *dev)
2796 {
2797         drm_i915_private_t *dev_priv = dev->dev_private;
2798         int ret;
2799
2800         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
2801                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
2802
2803         i915_gem_l3_remap(dev);
2804
2805         i915_gem_init_swizzling(dev);
2806
2807         ret = intel_init_render_ring_buffer(dev);
2808         if (ret)
2809                 return ret;
2810
2811         if (HAS_BSD(dev)) {
2812                 ret = intel_init_bsd_ring_buffer(dev);
2813                 if (ret)
2814                         goto cleanup_render_ring;
2815         }
2816
2817         if (intel_enable_blt(dev)) {
2818                 ret = intel_init_blt_ring_buffer(dev);
2819                 if (ret)
2820                         goto cleanup_bsd_ring;
2821         }
2822
2823         dev_priv->next_seqno = 1;
2824
2825         /*
2826          * XXX: There was some w/a described somewhere suggesting loading
2827          * contexts before PPGTT.
2828          */
2829 #if 0   /* XXX: HW context support */
2830         i915_gem_context_init(dev);
2831 #endif
2832         i915_gem_init_ppgtt(dev);
2833
2834         return 0;
2835
2836 cleanup_bsd_ring:
2837         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
2838 cleanup_render_ring:
2839         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
2840         return ret;
2841 }
2842
2843 void
2844 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2845 {
2846         drm_i915_private_t *dev_priv;
2847         int i;
2848
2849         dev_priv = dev->dev_private;
2850         for (i = 0; i < I915_NUM_RINGS; i++)
2851                 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
2852 }
2853
2854 int
2855 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2856                        struct drm_file *file_priv)
2857 {
2858         drm_i915_private_t *dev_priv = dev->dev_private;
2859         int ret;
2860
2861         if (drm_core_check_feature(dev, DRIVER_MODESET))
2862                 return 0;
2863
2864         if (atomic_read(&dev_priv->mm.wedged)) {
2865                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2866                 atomic_set(&dev_priv->mm.wedged, 0);
2867         }
2868
2869         DRM_LOCK(dev);
2870         dev_priv->mm.suspended = 0;
2871
2872         ret = i915_gem_init_hw(dev);
2873         if (ret != 0) {
2874                 DRM_UNLOCK(dev);
2875                 return ret;
2876         }
2877
2878         KASSERT(list_empty(&dev_priv->mm.active_list), ("active list"));
2879         DRM_UNLOCK(dev);
2880
2881         ret = drm_irq_install(dev);
2882         if (ret)
2883                 goto cleanup_ringbuffer;
2884
2885         return 0;
2886
2887 cleanup_ringbuffer:
2888         DRM_LOCK(dev);
2889         i915_gem_cleanup_ringbuffer(dev);
2890         dev_priv->mm.suspended = 1;
2891         DRM_UNLOCK(dev);
2892
2893         return ret;
2894 }
2895
2896 int
2897 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2898     struct drm_file *file_priv)
2899 {
2900
2901         if (drm_core_check_feature(dev, DRIVER_MODESET))
2902                 return 0;
2903
2904         drm_irq_uninstall(dev);
2905         return (i915_gem_idle(dev));
2906 }
2907
2908 void
2909 i915_gem_lastclose(struct drm_device *dev)
2910 {
2911         int ret;
2912
2913         if (drm_core_check_feature(dev, DRIVER_MODESET))
2914                 return;
2915
2916         ret = i915_gem_idle(dev);
2917         if (ret != 0)
2918                 DRM_ERROR("failed to idle hardware: %d\n", ret);
2919 }
2920
2921 static void
2922 init_ring_lists(struct intel_ring_buffer *ring)
2923 {
2924
2925         INIT_LIST_HEAD(&ring->active_list);
2926         INIT_LIST_HEAD(&ring->request_list);
2927         INIT_LIST_HEAD(&ring->gpu_write_list);
2928 }
2929
2930 void
2931 i915_gem_load(struct drm_device *dev)
2932 {
2933         int i;
2934         drm_i915_private_t *dev_priv = dev->dev_private;
2935
2936         INIT_LIST_HEAD(&dev_priv->mm.active_list);
2937         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2938         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2939         INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
2940         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2941         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
2942         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
2943         for (i = 0; i < I915_NUM_RINGS; i++)
2944                 init_ring_lists(&dev_priv->ring[i]);
2945         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2946                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2947         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2948                           i915_gem_retire_work_handler);
2949         init_completion(&dev_priv->error_completion);
2950
2951         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
2952         if (IS_GEN3(dev)) {
2953                 I915_WRITE(MI_ARB_STATE,
2954                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2955         }
2956
2957         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
2958
2959         /* Old X drivers will take 0-2 for front, back, depth buffers */
2960         if (!drm_core_check_feature(dev, DRIVER_MODESET))
2961                 dev_priv->fence_reg_start = 3;
2962
2963         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2964                 dev_priv->num_fence_regs = 16;
2965         else
2966                 dev_priv->num_fence_regs = 8;
2967
2968         /* Initialize fence registers to zero */
2969         i915_gem_reset_fences(dev);
2970
2971         i915_gem_detect_bit_6_swizzle(dev);
2972
2973         dev_priv->mm.interruptible = true;
2974
2975         dev_priv->mm.i915_lowmem = EVENTHANDLER_REGISTER(vm_lowmem,
2976             i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY);
2977 }
2978
2979 static int
2980 i915_gem_init_phys_object(struct drm_device *dev, int id, int size, int align)
2981 {
2982         drm_i915_private_t *dev_priv;
2983         struct drm_i915_gem_phys_object *phys_obj;
2984         int ret;
2985
2986         dev_priv = dev->dev_private;
2987         if (dev_priv->mm.phys_objs[id - 1] != NULL || size == 0)
2988                 return (0);
2989
2990         phys_obj = kmalloc(sizeof(struct drm_i915_gem_phys_object), DRM_I915_GEM,
2991             M_WAITOK | M_ZERO);
2992
2993         phys_obj->id = id;
2994
2995         phys_obj->handle = drm_pci_alloc(dev, size, align, ~0);
2996         if (phys_obj->handle == NULL) {
2997                 ret = -ENOMEM;
2998                 goto free_obj;
2999         }
3000         pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
3001             size / PAGE_SIZE, PAT_WRITE_COMBINING);
3002
3003         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3004
3005         return (0);
3006
3007 free_obj:
3008         drm_free(phys_obj, DRM_I915_GEM);
3009         return (ret);
3010 }
3011
3012 static void
3013 i915_gem_free_phys_object(struct drm_device *dev, int id)
3014 {
3015         drm_i915_private_t *dev_priv;
3016         struct drm_i915_gem_phys_object *phys_obj;
3017
3018         dev_priv = dev->dev_private;
3019         if (dev_priv->mm.phys_objs[id - 1] == NULL)
3020                 return;
3021
3022         phys_obj = dev_priv->mm.phys_objs[id - 1];
3023         if (phys_obj->cur_obj != NULL)
3024                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3025
3026         drm_pci_free(dev, phys_obj->handle);
3027         drm_free(phys_obj, DRM_I915_GEM);
3028         dev_priv->mm.phys_objs[id - 1] = NULL;
3029 }
3030
3031 void
3032 i915_gem_free_all_phys_object(struct drm_device *dev)
3033 {
3034         int i;
3035
3036         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3037                 i915_gem_free_phys_object(dev, i);
3038 }
3039
3040 void
3041 i915_gem_detach_phys_object(struct drm_device *dev,
3042     struct drm_i915_gem_object *obj)
3043 {
3044         vm_page_t m;
3045         struct sf_buf *sf;
3046         char *vaddr, *dst;
3047         int i, page_count;
3048
3049         if (obj->phys_obj == NULL)
3050                 return;
3051         vaddr = obj->phys_obj->handle->vaddr;
3052
3053         page_count = obj->base.size / PAGE_SIZE;
3054         VM_OBJECT_LOCK(obj->base.vm_obj);
3055         for (i = 0; i < page_count; i++) {
3056                 m = i915_gem_wire_page(obj->base.vm_obj, i);
3057                 if (m == NULL)
3058                         continue; /* XXX */
3059
3060                 VM_OBJECT_UNLOCK(obj->base.vm_obj);
3061                 sf = sf_buf_alloc(m);
3062                 if (sf != NULL) {
3063                         dst = (char *)sf_buf_kva(sf);
3064                         memcpy(dst, vaddr + IDX_TO_OFF(i), PAGE_SIZE);
3065                         sf_buf_free(sf);
3066                 }
3067                 drm_clflush_pages(&m, 1);
3068
3069                 VM_OBJECT_LOCK(obj->base.vm_obj);
3070                 vm_page_reference(m);
3071                 vm_page_dirty(m);
3072                 vm_page_busy_wait(m, FALSE, "i915gem");
3073                 vm_page_unwire(m, 0);
3074                 vm_page_wakeup(m);
3075                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
3076         }
3077         VM_OBJECT_UNLOCK(obj->base.vm_obj);
3078         intel_gtt_chipset_flush();
3079
3080         obj->phys_obj->cur_obj = NULL;
3081         obj->phys_obj = NULL;
3082 }
3083
3084 int
3085 i915_gem_attach_phys_object(struct drm_device *dev,
3086                             struct drm_i915_gem_object *obj,
3087                             int id,
3088                             int align)
3089 {
3090         drm_i915_private_t *dev_priv;
3091         vm_page_t m;
3092         struct sf_buf *sf;
3093         char *dst, *src;
3094         int i, page_count, ret;
3095
3096         if (id > I915_MAX_PHYS_OBJECT)
3097                 return (-EINVAL);
3098
3099         if (obj->phys_obj != NULL) {
3100                 if (obj->phys_obj->id == id)
3101                         return (0);
3102                 i915_gem_detach_phys_object(dev, obj);
3103         }
3104
3105         dev_priv = dev->dev_private;
3106         if (dev_priv->mm.phys_objs[id - 1] == NULL) {
3107                 ret = i915_gem_init_phys_object(dev, id, obj->base.size, align);
3108                 if (ret != 0) {
3109                         DRM_ERROR("failed to init phys object %d size: %zu\n",
3110                                   id, obj->base.size);
3111                         return (ret);
3112                 }
3113         }
3114
3115         /* bind to the object */
3116         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3117         obj->phys_obj->cur_obj = obj;
3118
3119         page_count = obj->base.size / PAGE_SIZE;
3120
3121         VM_OBJECT_LOCK(obj->base.vm_obj);
3122         ret = 0;
3123         for (i = 0; i < page_count; i++) {
3124                 m = i915_gem_wire_page(obj->base.vm_obj, i);
3125                 if (m == NULL) {
3126                         ret = -EIO;
3127                         break;
3128                 }
3129                 VM_OBJECT_UNLOCK(obj->base.vm_obj);
3130                 sf = sf_buf_alloc(m);
3131                 src = (char *)sf_buf_kva(sf);
3132                 dst = (char *)obj->phys_obj->handle->vaddr + IDX_TO_OFF(i);
3133                 memcpy(dst, src, PAGE_SIZE);
3134                 sf_buf_free(sf);
3135
3136                 VM_OBJECT_LOCK(obj->base.vm_obj);
3137
3138                 vm_page_reference(m);
3139                 vm_page_busy_wait(m, FALSE, "i915gem");
3140                 vm_page_unwire(m, 0);
3141                 vm_page_wakeup(m);
3142                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
3143         }
3144         VM_OBJECT_UNLOCK(obj->base.vm_obj);
3145
3146         return (0);
3147 }
3148
3149 static int
3150 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj,
3151     uint64_t data_ptr, uint64_t offset, uint64_t size,
3152     struct drm_file *file_priv)
3153 {
3154         char *user_data, *vaddr;
3155         int ret;
3156
3157         vaddr = (char *)obj->phys_obj->handle->vaddr + offset;
3158         user_data = (char *)(uintptr_t)data_ptr;
3159
3160         if (copyin_nofault(user_data, vaddr, size) != 0) {
3161                 /* The physical object once assigned is fixed for the lifetime
3162                  * of the obj, so we can safely drop the lock and continue
3163                  * to access vaddr.
3164                  */
3165                 DRM_UNLOCK(dev);
3166                 ret = -copyin(user_data, vaddr, size);
3167                 DRM_LOCK(dev);
3168                 if (ret != 0)
3169                         return (ret);
3170         }
3171
3172         intel_gtt_chipset_flush();
3173         return (0);
3174 }
3175
3176 void
3177 i915_gem_release(struct drm_device *dev, struct drm_file *file)
3178 {
3179         struct drm_i915_file_private *file_priv;
3180         struct drm_i915_gem_request *request;
3181
3182         file_priv = file->driver_priv;
3183
3184         /* Clean up our request list when the client is going away, so that
3185          * later retire_requests won't dereference our soon-to-be-gone
3186          * file_priv.
3187          */
3188         spin_lock(&file_priv->mm.lock);
3189         while (!list_empty(&file_priv->mm.request_list)) {
3190                 request = list_first_entry(&file_priv->mm.request_list,
3191                                            struct drm_i915_gem_request,
3192                                            client_list);
3193                 list_del(&request->client_list);
3194                 request->file_priv = NULL;
3195         }
3196         spin_unlock(&file_priv->mm.lock);
3197 }
3198
3199 static int
3200 i915_gem_swap_io(struct drm_device *dev, struct drm_i915_gem_object *obj,
3201     uint64_t data_ptr, uint64_t size, uint64_t offset, enum uio_rw rw,
3202     struct drm_file *file)
3203 {
3204         vm_object_t vm_obj;
3205         vm_page_t m;
3206         struct sf_buf *sf;
3207         vm_offset_t mkva;
3208         vm_pindex_t obj_pi;
3209         int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
3210
3211         if (obj->gtt_offset != 0 && rw == UIO_READ)
3212                 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
3213         else
3214                 do_bit17_swizzling = 0;
3215
3216         obj->dirty = 1;
3217         vm_obj = obj->base.vm_obj;
3218         ret = 0;
3219
3220         VM_OBJECT_LOCK(vm_obj);
3221         vm_object_pip_add(vm_obj, 1);
3222         while (size > 0) {
3223                 obj_pi = OFF_TO_IDX(offset);
3224                 obj_po = offset & PAGE_MASK;
3225
3226                 m = i915_gem_wire_page(vm_obj, obj_pi);
3227                 VM_OBJECT_UNLOCK(vm_obj);
3228
3229                 sf = sf_buf_alloc(m);
3230                 mkva = sf_buf_kva(sf);
3231                 length = min(size, PAGE_SIZE - obj_po);
3232                 while (length > 0) {
3233                         if (do_bit17_swizzling &&
3234                             (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
3235                                 cnt = roundup2(obj_po + 1, 64);
3236                                 cnt = min(cnt - obj_po, length);
3237                                 swizzled_po = obj_po ^ 64;
3238                         } else {
3239                                 cnt = length;
3240                                 swizzled_po = obj_po;
3241                         }
3242                         if (rw == UIO_READ)
3243                                 ret = -copyout_nofault(
3244                                     (char *)mkva + swizzled_po,
3245                                     (void *)(uintptr_t)data_ptr, cnt);
3246                         else
3247                                 ret = -copyin_nofault(
3248                                     (void *)(uintptr_t)data_ptr,
3249                                     (char *)mkva + swizzled_po, cnt);
3250                         if (ret != 0)
3251                                 break;
3252                         data_ptr += cnt;
3253                         size -= cnt;
3254                         length -= cnt;
3255                         offset += cnt;
3256                         obj_po += cnt;
3257                 }
3258                 sf_buf_free(sf);
3259                 VM_OBJECT_LOCK(vm_obj);
3260                 if (rw == UIO_WRITE)
3261                         vm_page_dirty(m);
3262                 vm_page_reference(m);
3263                 vm_page_busy_wait(m, FALSE, "i915gem");
3264                 vm_page_unwire(m, 1);
3265                 vm_page_wakeup(m);
3266                 atomic_add_long(&i915_gem_wired_pages_cnt, -1);
3267
3268                 if (ret != 0)
3269                         break;
3270         }
3271         vm_object_pip_wakeup(vm_obj);
3272         VM_OBJECT_UNLOCK(vm_obj);
3273
3274         return (ret);
3275 }
3276
3277 static int
3278 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
3279     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
3280 {
3281         vm_offset_t mkva;
3282         int ret;
3283
3284         /*
3285          * Pass the unaligned physical address and size to pmap_mapdev_attr()
3286          * so it can properly calculate whether an extra page needs to be
3287          * mapped or not to cover the requested range.  The function will
3288          * add the page offset into the returned mkva for us.
3289          */
3290         mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset +
3291             offset, size, PAT_WRITE_COMBINING);
3292         ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
3293         pmap_unmapdev(mkva, size);
3294         return (ret);
3295 }
3296
3297 static int
3298 i915_gem_obj_io(struct drm_device *dev, uint32_t handle, uint64_t data_ptr,
3299     uint64_t size, uint64_t offset, enum uio_rw rw, struct drm_file *file)
3300 {
3301         struct drm_i915_gem_object *obj;
3302         vm_page_t *ma;
3303         vm_offset_t start, end;
3304         int npages, ret;
3305
3306         if (size == 0)
3307                 return (0);
3308         start = trunc_page(data_ptr);
3309         end = round_page(data_ptr + size);
3310         npages = howmany(end - start, PAGE_SIZE);
3311         ma = kmalloc(npages * sizeof(vm_page_t), DRM_I915_GEM, M_WAITOK |
3312             M_ZERO);
3313         npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
3314             (vm_offset_t)data_ptr, size,
3315             (rw == UIO_READ ? VM_PROT_WRITE : 0 ) | VM_PROT_READ, ma, npages);
3316         if (npages == -1) {
3317                 ret = -EFAULT;
3318                 goto free_ma;
3319         }
3320
3321         ret = i915_mutex_lock_interruptible(dev);
3322         if (ret != 0)
3323                 goto unlocked;
3324
3325         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
3326         if (&obj->base == NULL) {
3327                 ret = -ENOENT;
3328                 goto unlock;
3329         }
3330         if (offset > obj->base.size || size > obj->base.size - offset) {
3331                 ret = -EINVAL;
3332                 goto out;
3333         }
3334
3335         if (rw == UIO_READ) {
3336                 ret = i915_gem_swap_io(dev, obj, data_ptr, size, offset,
3337                     UIO_READ, file);
3338         } else {
3339                 if (obj->phys_obj) {
3340                         ret = i915_gem_phys_pwrite(dev, obj, data_ptr, offset,
3341                             size, file);
3342                 } else if (obj->gtt_space &&
3343                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
3344                         ret = i915_gem_object_pin(obj, 0, true);
3345                         if (ret != 0)
3346                                 goto out;
3347                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
3348                         if (ret != 0)
3349                                 goto out_unpin;
3350                         ret = i915_gem_object_put_fence(obj);
3351                         if (ret != 0)
3352                                 goto out_unpin;
3353                         ret = i915_gem_gtt_write(dev, obj, data_ptr, size,
3354                             offset, file);
3355 out_unpin:
3356                         i915_gem_object_unpin(obj);
3357                 } else {
3358                         ret = i915_gem_object_set_to_cpu_domain(obj, true);
3359                         if (ret != 0)
3360                                 goto out;
3361                         ret = i915_gem_swap_io(dev, obj, data_ptr, size, offset,
3362                             UIO_WRITE, file);
3363                 }
3364         }
3365 out:
3366         drm_gem_object_unreference(&obj->base);
3367 unlock:
3368         DRM_UNLOCK(dev);
3369 unlocked:
3370         vm_page_unhold_pages(ma, npages);
3371 free_ma:
3372         drm_free(ma, DRM_I915_GEM);
3373         return (ret);
3374 }
3375
3376 static int
3377 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
3378     vm_ooffset_t foff, struct ucred *cred, u_short *color)
3379 {
3380
3381         *color = 0; /* XXXKIB */
3382         return (0);
3383 }
3384
3385 int i915_intr_pf;
3386
3387 static int
3388 i915_gem_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
3389     vm_page_t *mres)
3390 {
3391         struct drm_gem_object *gem_obj;
3392         struct drm_i915_gem_object *obj;
3393         struct drm_device *dev;
3394         drm_i915_private_t *dev_priv;
3395         vm_page_t m, oldm;
3396         int cause, ret;
3397         bool write;
3398
3399         gem_obj = vm_obj->handle;
3400         obj = to_intel_bo(gem_obj);
3401         dev = obj->base.dev;
3402         dev_priv = dev->dev_private;
3403 #if 0
3404         write = (prot & VM_PROT_WRITE) != 0;
3405 #else
3406         write = true;
3407 #endif
3408         vm_object_pip_add(vm_obj, 1);
3409
3410         /*
3411          * Remove the placeholder page inserted by vm_fault() from the
3412          * object before dropping the object lock. If
3413          * i915_gem_release_mmap() is active in parallel on this gem
3414          * object, then it owns the drm device sx and might find the
3415          * placeholder already. Then, since the page is busy,
3416          * i915_gem_release_mmap() sleeps waiting for the busy state
3417          * of the page cleared. We will be not able to acquire drm
3418          * device lock until i915_gem_release_mmap() is able to make a
3419          * progress.
3420          */
3421         if (*mres != NULL) {
3422                 oldm = *mres;
3423                 vm_page_remove(oldm);
3424                 *mres = NULL;
3425         } else
3426                 oldm = NULL;
3427 retry:
3428         VM_OBJECT_UNLOCK(vm_obj);
3429 unlocked_vmobj:
3430         cause = ret = 0;
3431         m = NULL;
3432
3433         if (i915_intr_pf) {
3434                 ret = i915_mutex_lock_interruptible(dev);
3435                 if (ret != 0) {
3436                         cause = 10;
3437                         goto out;
3438                 }
3439         } else
3440                 DRM_LOCK(dev);
3441
3442         /*
3443          * Since the object lock was dropped, other thread might have
3444          * faulted on the same GTT address and instantiated the
3445          * mapping for the page.  Recheck.
3446          */
3447         VM_OBJECT_LOCK(vm_obj);
3448         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
3449         if (m != NULL) {
3450                 if ((m->flags & PG_BUSY) != 0) {
3451                         DRM_UNLOCK(dev);
3452 #if 0 /* XXX */
3453                         vm_page_sleep(m, "915pee");
3454 #endif
3455                         goto retry;
3456                 }
3457                 goto have_page;
3458         } else
3459                 VM_OBJECT_UNLOCK(vm_obj);
3460
3461         /* Now bind it into the GTT if needed */
3462         if (!obj->map_and_fenceable) {
3463                 ret = i915_gem_object_unbind(obj);
3464                 if (ret != 0) {
3465                         cause = 20;
3466                         goto unlock;
3467                 }
3468         }
3469         if (!obj->gtt_space) {
3470                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
3471                 if (ret != 0) {
3472                         cause = 30;
3473                         goto unlock;
3474                 }
3475
3476                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
3477                 if (ret != 0) {
3478                         cause = 40;
3479                         goto unlock;
3480                 }
3481         }
3482
3483         if (obj->tiling_mode == I915_TILING_NONE)
3484                 ret = i915_gem_object_put_fence(obj);
3485         else
3486                 ret = i915_gem_object_get_fence(obj);
3487         if (ret != 0) {
3488                 cause = 50;
3489                 goto unlock;
3490         }
3491
3492         if (i915_gem_object_is_inactive(obj))
3493                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3494
3495         obj->fault_mappable = true;
3496         VM_OBJECT_LOCK(vm_obj);
3497         m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset +
3498             offset);
3499         if (m == NULL) {
3500                 cause = 60;
3501                 ret = -EFAULT;
3502                 goto unlock;
3503         }
3504         KASSERT((m->flags & PG_FICTITIOUS) != 0,
3505             ("not fictitious %p", m));
3506         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
3507
3508         if ((m->flags & PG_BUSY) != 0) {
3509                 DRM_UNLOCK(dev);
3510 #if 0 /* XXX */
3511                 vm_page_sleep(m, "915pbs");
3512 #endif
3513                 goto retry;
3514         }
3515         m->valid = VM_PAGE_BITS_ALL;
3516         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
3517 have_page:
3518         *mres = m;
3519         vm_page_busy_try(m, false);
3520
3521         DRM_UNLOCK(dev);
3522         if (oldm != NULL) {
3523                 vm_page_free(oldm);
3524         }
3525         vm_object_pip_wakeup(vm_obj);
3526         return (VM_PAGER_OK);
3527
3528 unlock:
3529         DRM_UNLOCK(dev);
3530 out:
3531         KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
3532         if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) {
3533                 goto unlocked_vmobj;
3534         }
3535         VM_OBJECT_LOCK(vm_obj);
3536         vm_object_pip_wakeup(vm_obj);
3537         return (VM_PAGER_ERROR);
3538 }
3539
3540 static void
3541 i915_gem_pager_dtor(void *handle)
3542 {
3543         struct drm_gem_object *obj;
3544         struct drm_device *dev;
3545
3546         obj = handle;
3547         dev = obj->dev;
3548
3549         DRM_LOCK(dev);
3550         drm_gem_free_mmap_offset(obj);
3551         i915_gem_release_mmap(to_intel_bo(obj));
3552         drm_gem_object_unreference(obj);
3553         DRM_UNLOCK(dev);
3554 }
3555
3556 struct cdev_pager_ops i915_gem_pager_ops = {
3557         .cdev_pg_fault  = i915_gem_pager_fault,
3558         .cdev_pg_ctor   = i915_gem_pager_ctor,
3559         .cdev_pg_dtor   = i915_gem_pager_dtor
3560 };
3561
3562 #define GEM_PARANOID_CHECK_GTT 0
3563 #if GEM_PARANOID_CHECK_GTT
3564 static void
3565 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma,
3566     int page_count)
3567 {
3568         struct drm_i915_private *dev_priv;
3569         vm_paddr_t pa;
3570         unsigned long start, end;
3571         u_int i;
3572         int j;
3573
3574         dev_priv = dev->dev_private;
3575         start = OFF_TO_IDX(dev_priv->mm.gtt_start);
3576         end = OFF_TO_IDX(dev_priv->mm.gtt_end);
3577         for (i = start; i < end; i++) {
3578                 pa = intel_gtt_read_pte_paddr(i);
3579                 for (j = 0; j < page_count; j++) {
3580                         if (pa == VM_PAGE_TO_PHYS(ma[j])) {
3581                                 panic("Page %p in GTT pte index %d pte %x",
3582                                     ma[i], i, intel_gtt_read_pte(i));
3583                         }
3584                 }
3585         }
3586 }
3587 #endif
3588
3589 static void
3590 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
3591     uint32_t flush_domains)
3592 {
3593         struct drm_i915_gem_object *obj, *next;
3594         uint32_t old_write_domain;
3595
3596         list_for_each_entry_safe(obj, next, &ring->gpu_write_list,
3597             gpu_write_list) {
3598                 if (obj->base.write_domain & flush_domains) {
3599                         old_write_domain = obj->base.write_domain;
3600                         obj->base.write_domain = 0;
3601                         list_del_init(&obj->gpu_write_list);
3602                         i915_gem_object_move_to_active(obj, ring,
3603                             i915_gem_next_request_seqno(ring));
3604                 }
3605         }
3606 }
3607
3608 #define VM_OBJECT_LOCK_ASSERT_OWNED(object)
3609
3610 static vm_page_t
3611 i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex)
3612 {
3613         vm_page_t m;
3614         int rv;
3615
3616         VM_OBJECT_LOCK_ASSERT_OWNED(object);
3617         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3618         if (m->valid != VM_PAGE_BITS_ALL) {
3619                 if (vm_pager_has_page(object, pindex)) {
3620                         rv = vm_pager_get_page(object, &m, 1);
3621                         m = vm_page_lookup(object, pindex);
3622                         if (m == NULL)
3623                                 return (NULL);
3624                         if (rv != VM_PAGER_OK) {
3625                                 vm_page_free(m);
3626                                 return (NULL);
3627                         }
3628                 } else {
3629                         pmap_zero_page(VM_PAGE_TO_PHYS(m));
3630                         m->valid = VM_PAGE_BITS_ALL;
3631                         m->dirty = 0;
3632                 }
3633         }
3634         vm_page_wire(m);
3635         vm_page_wakeup(m);
3636         atomic_add_long(&i915_gem_wired_pages_cnt, 1);
3637         return (m);
3638 }
3639
3640 int
3641 i915_gem_flush_ring(struct intel_ring_buffer *ring, uint32_t invalidate_domains,
3642     uint32_t flush_domains)
3643 {
3644         int ret;
3645
3646         if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
3647                 return 0;
3648
3649         ret = ring->flush(ring, invalidate_domains, flush_domains);
3650         if (ret)
3651                 return ret;
3652
3653         if (flush_domains & I915_GEM_GPU_DOMAINS)
3654                 i915_gem_process_flushing_list(ring, flush_domains);
3655         return 0;
3656 }
3657
3658 u32
3659 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
3660 {
3661         if (ring->outstanding_lazy_request == 0)
3662                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
3663
3664         return ring->outstanding_lazy_request;
3665 }
3666
3667 /**
3668  * i915_gem_clear_fence_reg - clear out fence register info
3669  * @obj: object to clear
3670  *
3671  * Zeroes out the fence register itself and clears out the associated
3672  * data structures in dev_priv and obj.
3673  */
3674 static void
3675 i915_gem_clear_fence_reg(struct drm_device *dev,
3676                          struct drm_i915_fence_reg *reg)
3677 {
3678         drm_i915_private_t *dev_priv = dev->dev_private;
3679         uint32_t fence_reg = reg - dev_priv->fence_regs;
3680
3681         switch (INTEL_INFO(dev)->gen) {
3682         case 7:
3683         case 6:
3684                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
3685                 break;
3686         case 5:
3687         case 4:
3688                 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
3689                 break;
3690         case 3:
3691                 if (fence_reg >= 8)
3692                         fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
3693                 else
3694         case 2:
3695                         fence_reg = FENCE_REG_830_0 + fence_reg * 4;
3696
3697                 I915_WRITE(fence_reg, 0);
3698                 break;
3699         }
3700
3701         list_del_init(&reg->lru_list);
3702         reg->obj = NULL;
3703         reg->pin_count = 0;
3704 }
3705
3706 static int
3707 i915_gpu_is_active(struct drm_device *dev)
3708 {
3709         drm_i915_private_t *dev_priv;
3710
3711         dev_priv = dev->dev_private;
3712         return (!list_empty(&dev_priv->mm.flushing_list) ||
3713             !list_empty(&dev_priv->mm.active_list));
3714 }
3715
3716 static void
3717 i915_gem_lowmem(void *arg)
3718 {
3719         struct drm_device *dev;
3720         struct drm_i915_private *dev_priv;
3721         struct drm_i915_gem_object *obj, *next;
3722         int cnt, cnt_fail, cnt_total;
3723
3724         dev = arg;
3725         dev_priv = dev->dev_private;
3726
3727         if (lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_NOWAIT))
3728                 return;
3729
3730 rescan:
3731         /* first scan for clean buffers */
3732         i915_gem_retire_requests(dev);
3733
3734         cnt_total = cnt_fail = cnt = 0;
3735
3736         list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
3737             mm_list) {
3738                 if (i915_gem_object_is_purgeable(obj)) {
3739                         if (i915_gem_object_unbind(obj) != 0)
3740                                 cnt_total++;
3741                 } else
3742                         cnt_total++;
3743         }
3744
3745         /* second pass, evict/count anything still on the inactive list */
3746         list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
3747             mm_list) {
3748                 if (i915_gem_object_unbind(obj) == 0)
3749                         cnt++;
3750                 else
3751                         cnt_fail++;
3752         }
3753
3754         if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) {
3755                 /*
3756                  * We are desperate for pages, so as a last resort, wait
3757                  * for the GPU to finish and discard whatever we can.
3758                  * This has a dramatic impact to reduce the number of
3759                  * OOM-killer events whilst running the GPU aggressively.
3760                  */
3761                 if (i915_gpu_idle(dev) == 0)
3762                         goto rescan;
3763         }
3764         DRM_UNLOCK(dev);
3765 }
3766
3767 void
3768 i915_gem_unload(struct drm_device *dev)
3769 {
3770         struct drm_i915_private *dev_priv;
3771
3772         dev_priv = dev->dev_private;
3773         EVENTHANDLER_DEREGISTER(vm_lowmem, dev_priv->mm.i915_lowmem);
3774 }