Merge branch 'vendor/TNFTP'
[dragonfly.git] / contrib / binutils-2.25 / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Return the number of PLT entries.
183   unsigned int
184   entry_count() const
185   { return this->count_ + this->irelative_count_; }
186
187   // Return the offset of the first non-reserved PLT entry.
188   unsigned int
189   first_plt_entry_offset()
190   { return this->get_plt_entry_size(); }
191
192   // Return the size of a PLT entry.
193   unsigned int
194   get_plt_entry_size() const
195   { return this->do_get_plt_entry_size(); }
196
197   // Reserve a slot in the PLT for an existing symbol in an incremental update.
198   void
199   reserve_slot(unsigned int plt_index)
200   {
201     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202                             (plt_index + 2) * this->get_plt_entry_size());
203   }
204
205   // Return the PLT address to use for a global symbol.
206   uint64_t
207   address_for_global(const Symbol*);
208
209   // Return the PLT address to use for a local symbol.
210   uint64_t
211   address_for_local(const Relobj*, unsigned int symndx);
212
213   // Add .eh_frame information for the PLT.
214   void
215   add_eh_frame(Layout* layout)
216   { this->do_add_eh_frame(layout); }
217
218  protected:
219   // Fill in the first PLT entry.
220   void
221   fill_first_plt_entry(unsigned char* pov,
222                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226   // Fill in a normal PLT entry.  Returns the offset into the entry that
227   // should be the initial GOT slot value.
228   unsigned int
229   fill_plt_entry(unsigned char* pov,
230                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232                  unsigned int got_offset,
233                  unsigned int plt_offset,
234                  unsigned int plt_index)
235   {
236     return this->do_fill_plt_entry(pov, got_address, plt_address,
237                                    got_offset, plt_offset, plt_index);
238   }
239
240   // Fill in the reserved TLSDESC PLT entry.
241   void
242   fill_tlsdesc_entry(unsigned char* pov,
243                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246                      unsigned int tlsdesc_got_offset,
247                      unsigned int plt_offset)
248   {
249     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250                                 tlsdesc_got_offset, plt_offset);
251   }
252
253   virtual unsigned int
254   do_get_plt_entry_size() const = 0;
255
256   virtual void
257   do_fill_first_plt_entry(unsigned char* pov,
258                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260     = 0;
261
262   virtual unsigned int
263   do_fill_plt_entry(unsigned char* pov,
264                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266                     unsigned int got_offset,
267                     unsigned int plt_offset,
268                     unsigned int plt_index) = 0;
269
270   virtual void
271   do_fill_tlsdesc_entry(unsigned char* pov,
272                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275                         unsigned int tlsdesc_got_offset,
276                         unsigned int plt_offset) = 0;
277
278   virtual void
279   do_add_eh_frame(Layout* layout) = 0;
280
281   void
282   do_adjust_output_section(Output_section* os);
283
284   // Write to a map file.
285   void
286   do_print_to_mapfile(Mapfile* mapfile) const
287   { mapfile->print_output_data(this, _("** PLT")); }
288
289   // The CIE of the .eh_frame unwind information for the PLT.
290   static const int plt_eh_frame_cie_size = 16;
291   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293  private:
294   // Set the final size.
295   void
296   set_final_data_size();
297
298   // Write out the PLT data.
299   void
300   do_write(Output_file*);
301
302   // The reloc section.
303   Reloc_section* rel_;
304   // The TLSDESC relocs, if necessary.  These must follow the regular
305   // PLT relocs.
306   Reloc_section* tlsdesc_rel_;
307   // The IRELATIVE relocs, if necessary.  These must follow the
308   // regular PLT relocations and the TLSDESC relocations.
309   Reloc_section* irelative_rel_;
310   // The .got section.
311   Output_data_got<64, false>* got_;
312   // The .got.plt section.
313   Output_data_got_plt_x86_64* got_plt_;
314   // The part of the .got.plt section used for IRELATIVE relocs.
315   Output_data_space* got_irelative_;
316   // The number of PLT entries.
317   unsigned int count_;
318   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
319   // follow the regular PLT entries.
320   unsigned int irelative_count_;
321   // Offset of the reserved TLSDESC_GOT entry when needed.
322   unsigned int tlsdesc_got_offset_;
323   // List of available regions within the section, for incremental
324   // update links.
325   Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331  public:
332   Output_data_plt_x86_64_standard(Layout* layout,
333                                   Output_data_got<64, false>* got,
334                                   Output_data_got_plt_x86_64* got_plt,
335                                   Output_data_space* got_irelative)
336     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337                                    got, got_plt, got_irelative)
338   { }
339
340   Output_data_plt_x86_64_standard(Layout* layout,
341                                   Output_data_got<64, false>* got,
342                                   Output_data_got_plt_x86_64* got_plt,
343                                   Output_data_space* got_irelative,
344                                   unsigned int plt_count)
345     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346                                    got, got_plt, got_irelative,
347                                    plt_count)
348   { }
349
350  protected:
351   virtual unsigned int
352   do_get_plt_entry_size() const
353   { return plt_entry_size; }
354
355   virtual void
356   do_add_eh_frame(Layout* layout)
357   {
358     layout->add_eh_frame_for_plt(this,
359                                  this->plt_eh_frame_cie,
360                                  this->plt_eh_frame_cie_size,
361                                  plt_eh_frame_fde,
362                                  plt_eh_frame_fde_size);
363   }
364
365   virtual void
366   do_fill_first_plt_entry(unsigned char* pov,
367                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370   virtual unsigned int
371   do_fill_plt_entry(unsigned char* pov,
372                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374                     unsigned int got_offset,
375                     unsigned int plt_offset,
376                     unsigned int plt_index);
377
378   virtual void
379   do_fill_tlsdesc_entry(unsigned char* pov,
380                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383                         unsigned int tlsdesc_got_offset,
384                         unsigned int plt_offset);
385
386  private:
387   // The size of an entry in the PLT.
388   static const int plt_entry_size = 16;
389
390   // The first entry in the PLT.
391   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392   // procedure linkage table for both programs and shared objects."
393   static const unsigned char first_plt_entry[plt_entry_size];
394
395   // Other entries in the PLT for an executable.
396   static const unsigned char plt_entry[plt_entry_size];
397
398   // The reserved TLSDESC entry in the PLT for an executable.
399   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401   // The .eh_frame unwind information for the PLT.
402   static const int plt_eh_frame_fde_size = 32;
403   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 // The x86_64 target class.
407 // See the ABI at
408 //   http://www.x86-64.org/documentation/abi.pdf
409 // TLS info comes from
410 //   http://people.redhat.com/drepper/tls.pdf
411 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
412
413 template<int size>
414 class Target_x86_64 : public Sized_target<size, false>
415 {
416  public:
417   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
418   // uses only Elf64_Rela relocation entries with explicit addends."
419   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
420
421   Target_x86_64(const Target::Target_info* info = &x86_64_info)
422     : Sized_target<size, false>(info),
423       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
424       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
425       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
426       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
427       tls_base_symbol_defined_(false)
428   { }
429
430   // Hook for a new output section.
431   void
432   do_new_output_section(Output_section*) const;
433
434   // Scan the relocations to look for symbol adjustments.
435   void
436   gc_process_relocs(Symbol_table* symtab,
437                     Layout* layout,
438                     Sized_relobj_file<size, false>* object,
439                     unsigned int data_shndx,
440                     unsigned int sh_type,
441                     const unsigned char* prelocs,
442                     size_t reloc_count,
443                     Output_section* output_section,
444                     bool needs_special_offset_handling,
445                     size_t local_symbol_count,
446                     const unsigned char* plocal_symbols);
447
448   // Scan the relocations to look for symbol adjustments.
449   void
450   scan_relocs(Symbol_table* symtab,
451               Layout* layout,
452               Sized_relobj_file<size, false>* object,
453               unsigned int data_shndx,
454               unsigned int sh_type,
455               const unsigned char* prelocs,
456               size_t reloc_count,
457               Output_section* output_section,
458               bool needs_special_offset_handling,
459               size_t local_symbol_count,
460               const unsigned char* plocal_symbols);
461
462   // Finalize the sections.
463   void
464   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
465
466   // Return the value to use for a dynamic which requires special
467   // treatment.
468   uint64_t
469   do_dynsym_value(const Symbol*) const;
470
471   // Relocate a section.
472   void
473   relocate_section(const Relocate_info<size, false>*,
474                    unsigned int sh_type,
475                    const unsigned char* prelocs,
476                    size_t reloc_count,
477                    Output_section* output_section,
478                    bool needs_special_offset_handling,
479                    unsigned char* view,
480                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
481                    section_size_type view_size,
482                    const Reloc_symbol_changes*);
483
484   // Scan the relocs during a relocatable link.
485   void
486   scan_relocatable_relocs(Symbol_table* symtab,
487                           Layout* layout,
488                           Sized_relobj_file<size, false>* object,
489                           unsigned int data_shndx,
490                           unsigned int sh_type,
491                           const unsigned char* prelocs,
492                           size_t reloc_count,
493                           Output_section* output_section,
494                           bool needs_special_offset_handling,
495                           size_t local_symbol_count,
496                           const unsigned char* plocal_symbols,
497                           Relocatable_relocs*);
498
499   // Emit relocations for a section.
500   void
501   relocate_relocs(
502       const Relocate_info<size, false>*,
503       unsigned int sh_type,
504       const unsigned char* prelocs,
505       size_t reloc_count,
506       Output_section* output_section,
507       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
508       const Relocatable_relocs*,
509       unsigned char* view,
510       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
511       section_size_type view_size,
512       unsigned char* reloc_view,
513       section_size_type reloc_view_size);
514
515   // Return a string used to fill a code section with nops.
516   std::string
517   do_code_fill(section_size_type length) const;
518
519   // Return whether SYM is defined by the ABI.
520   bool
521   do_is_defined_by_abi(const Symbol* sym) const
522   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
523
524   // Return the symbol index to use for a target specific relocation.
525   // The only target specific relocation is R_X86_64_TLSDESC for a
526   // local symbol, which is an absolute reloc.
527   unsigned int
528   do_reloc_symbol_index(void*, unsigned int r_type) const
529   {
530     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
531     return 0;
532   }
533
534   // Return the addend to use for a target specific relocation.
535   uint64_t
536   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
537
538   // Return the PLT section.
539   uint64_t
540   do_plt_address_for_global(const Symbol* gsym) const
541   { return this->plt_section()->address_for_global(gsym); }
542
543   uint64_t
544   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
545   { return this->plt_section()->address_for_local(relobj, symndx); }
546
547   // This function should be defined in targets that can use relocation
548   // types to determine (implemented in local_reloc_may_be_function_pointer
549   // and global_reloc_may_be_function_pointer)
550   // if a function's pointer is taken.  ICF uses this in safe mode to only
551   // fold those functions whose pointer is defintely not taken.  For x86_64
552   // pie binaries, safe ICF cannot be done by looking at relocation types.
553   bool
554   do_can_check_for_function_pointers() const
555   { return !parameters->options().pie(); }
556
557   // Return the base for a DW_EH_PE_datarel encoding.
558   uint64_t
559   do_ehframe_datarel_base() const;
560
561   // Adjust -fsplit-stack code which calls non-split-stack code.
562   void
563   do_calls_non_split(Relobj* object, unsigned int shndx,
564                      section_offset_type fnoffset, section_size_type fnsize,
565                      unsigned char* view, section_size_type view_size,
566                      std::string* from, std::string* to) const;
567
568   // Return the size of the GOT section.
569   section_size_type
570   got_size() const
571   {
572     gold_assert(this->got_ != NULL);
573     return this->got_->data_size();
574   }
575
576   // Return the number of entries in the GOT.
577   unsigned int
578   got_entry_count() const
579   {
580     if (this->got_ == NULL)
581       return 0;
582     return this->got_size() / 8;
583   }
584
585   // Return the number of entries in the PLT.
586   unsigned int
587   plt_entry_count() const;
588
589   // Return the offset of the first non-reserved PLT entry.
590   unsigned int
591   first_plt_entry_offset() const;
592
593   // Return the size of each PLT entry.
594   unsigned int
595   plt_entry_size() const;
596
597   // Create the GOT section for an incremental update.
598   Output_data_got_base*
599   init_got_plt_for_update(Symbol_table* symtab,
600                           Layout* layout,
601                           unsigned int got_count,
602                           unsigned int plt_count);
603
604   // Reserve a GOT entry for a local symbol, and regenerate any
605   // necessary dynamic relocations.
606   void
607   reserve_local_got_entry(unsigned int got_index,
608                           Sized_relobj<size, false>* obj,
609                           unsigned int r_sym,
610                           unsigned int got_type);
611
612   // Reserve a GOT entry for a global symbol, and regenerate any
613   // necessary dynamic relocations.
614   void
615   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
616                            unsigned int got_type);
617
618   // Register an existing PLT entry for a global symbol.
619   void
620   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
621                             Symbol* gsym);
622
623   // Force a COPY relocation for a given symbol.
624   void
625   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
626
627   // Apply an incremental relocation.
628   void
629   apply_relocation(const Relocate_info<size, false>* relinfo,
630                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
631                    unsigned int r_type,
632                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
633                    const Symbol* gsym,
634                    unsigned char* view,
635                    typename elfcpp::Elf_types<size>::Elf_Addr address,
636                    section_size_type view_size);
637
638   // Add a new reloc argument, returning the index in the vector.
639   size_t
640   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
641   {
642     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
643     return this->tlsdesc_reloc_info_.size() - 1;
644   }
645
646   Output_data_plt_x86_64<size>*
647   make_data_plt(Layout* layout,
648                 Output_data_got<64, false>* got,
649                 Output_data_got_plt_x86_64* got_plt,
650                 Output_data_space* got_irelative)
651   {
652     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
653   }
654
655   Output_data_plt_x86_64<size>*
656   make_data_plt(Layout* layout,
657                 Output_data_got<64, false>* got,
658                 Output_data_got_plt_x86_64* got_plt,
659                 Output_data_space* got_irelative,
660                 unsigned int plt_count)
661   {
662     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
663                                   plt_count);
664   }
665
666   virtual Output_data_plt_x86_64<size>*
667   do_make_data_plt(Layout* layout,
668                    Output_data_got<64, false>* got,
669                    Output_data_got_plt_x86_64* got_plt,
670                    Output_data_space* got_irelative)
671   {
672     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
673                                                      got_irelative);
674   }
675
676   virtual Output_data_plt_x86_64<size>*
677   do_make_data_plt(Layout* layout,
678                    Output_data_got<64, false>* got,
679                    Output_data_got_plt_x86_64* got_plt,
680                    Output_data_space* got_irelative,
681                    unsigned int plt_count)
682   {
683     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
684                                                      got_irelative,
685                                                      plt_count);
686   }
687
688  private:
689   // The class which scans relocations.
690   class Scan
691   {
692   public:
693     Scan()
694       : issued_non_pic_error_(false)
695     { }
696
697     static inline int
698     get_reference_flags(unsigned int r_type);
699
700     inline void
701     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
702           Sized_relobj_file<size, false>* object,
703           unsigned int data_shndx,
704           Output_section* output_section,
705           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
706           const elfcpp::Sym<size, false>& lsym,
707           bool is_discarded);
708
709     inline void
710     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
711            Sized_relobj_file<size, false>* object,
712            unsigned int data_shndx,
713            Output_section* output_section,
714            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
715            Symbol* gsym);
716
717     inline bool
718     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
719                                         Target_x86_64* target,
720                                         Sized_relobj_file<size, false>* object,
721                                         unsigned int data_shndx,
722                                         Output_section* output_section,
723                                         const elfcpp::Rela<size, false>& reloc,
724                                         unsigned int r_type,
725                                         const elfcpp::Sym<size, false>& lsym);
726
727     inline bool
728     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
729                                          Target_x86_64* target,
730                                          Sized_relobj_file<size, false>* object,
731                                          unsigned int data_shndx,
732                                          Output_section* output_section,
733                                          const elfcpp::Rela<size, false>& reloc,
734                                          unsigned int r_type,
735                                          Symbol* gsym);
736
737   private:
738     static void
739     unsupported_reloc_local(Sized_relobj_file<size, false>*,
740                             unsigned int r_type);
741
742     static void
743     unsupported_reloc_global(Sized_relobj_file<size, false>*,
744                              unsigned int r_type, Symbol*);
745
746     void
747     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
748
749     inline bool
750     possible_function_pointer_reloc(unsigned int r_type);
751
752     bool
753     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
754                               unsigned int r_type);
755
756     // Whether we have issued an error about a non-PIC compilation.
757     bool issued_non_pic_error_;
758   };
759
760   // The class which implements relocation.
761   class Relocate
762   {
763    public:
764     Relocate()
765       : skip_call_tls_get_addr_(false)
766     { }
767
768     ~Relocate()
769     {
770       if (this->skip_call_tls_get_addr_)
771         {
772           // FIXME: This needs to specify the location somehow.
773           gold_error(_("missing expected TLS relocation"));
774         }
775     }
776
777     // Do a relocation.  Return false if the caller should not issue
778     // any warnings about this relocation.
779     inline bool
780     relocate(const Relocate_info<size, false>*, Target_x86_64*,
781              Output_section*,
782              size_t relnum, const elfcpp::Rela<size, false>&,
783              unsigned int r_type, const Sized_symbol<size>*,
784              const Symbol_value<size>*,
785              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
786              section_size_type);
787
788    private:
789     // Do a TLS relocation.
790     inline void
791     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
792                  size_t relnum, const elfcpp::Rela<size, false>&,
793                  unsigned int r_type, const Sized_symbol<size>*,
794                  const Symbol_value<size>*,
795                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
796                  section_size_type);
797
798     // Do a TLS General-Dynamic to Initial-Exec transition.
799     inline void
800     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
801                  Output_segment* tls_segment,
802                  const elfcpp::Rela<size, false>&, unsigned int r_type,
803                  typename elfcpp::Elf_types<size>::Elf_Addr value,
804                  unsigned char* view,
805                  typename elfcpp::Elf_types<size>::Elf_Addr,
806                  section_size_type view_size);
807
808     // Do a TLS General-Dynamic to Local-Exec transition.
809     inline void
810     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
811                  Output_segment* tls_segment,
812                  const elfcpp::Rela<size, false>&, unsigned int r_type,
813                  typename elfcpp::Elf_types<size>::Elf_Addr value,
814                  unsigned char* view,
815                  section_size_type view_size);
816
817     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
818     inline void
819     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
820                       Output_segment* tls_segment,
821                       const elfcpp::Rela<size, false>&, unsigned int r_type,
822                       typename elfcpp::Elf_types<size>::Elf_Addr value,
823                       unsigned char* view,
824                       typename elfcpp::Elf_types<size>::Elf_Addr,
825                       section_size_type view_size);
826
827     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
828     inline void
829     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
830                       Output_segment* tls_segment,
831                       const elfcpp::Rela<size, false>&, unsigned int r_type,
832                       typename elfcpp::Elf_types<size>::Elf_Addr value,
833                       unsigned char* view,
834                       section_size_type view_size);
835
836     // Do a TLS Local-Dynamic to Local-Exec transition.
837     inline void
838     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
839                  Output_segment* tls_segment,
840                  const elfcpp::Rela<size, false>&, unsigned int r_type,
841                  typename elfcpp::Elf_types<size>::Elf_Addr value,
842                  unsigned char* view,
843                  section_size_type view_size);
844
845     // Do a TLS Initial-Exec to Local-Exec transition.
846     static inline void
847     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
848                  Output_segment* tls_segment,
849                  const elfcpp::Rela<size, false>&, unsigned int r_type,
850                  typename elfcpp::Elf_types<size>::Elf_Addr value,
851                  unsigned char* view,
852                  section_size_type view_size);
853
854     // This is set if we should skip the next reloc, which should be a
855     // PLT32 reloc against ___tls_get_addr.
856     bool skip_call_tls_get_addr_;
857   };
858
859   // A class which returns the size required for a relocation type,
860   // used while scanning relocs during a relocatable link.
861   class Relocatable_size_for_reloc
862   {
863    public:
864     unsigned int
865     get_size_for_reloc(unsigned int, Relobj*);
866   };
867
868   // Adjust TLS relocation type based on the options and whether this
869   // is a local symbol.
870   static tls::Tls_optimization
871   optimize_tls_reloc(bool is_final, int r_type);
872
873   // Get the GOT section, creating it if necessary.
874   Output_data_got<64, false>*
875   got_section(Symbol_table*, Layout*);
876
877   // Get the GOT PLT section.
878   Output_data_got_plt_x86_64*
879   got_plt_section() const
880   {
881     gold_assert(this->got_plt_ != NULL);
882     return this->got_plt_;
883   }
884
885   // Get the GOT section for TLSDESC entries.
886   Output_data_got<64, false>*
887   got_tlsdesc_section() const
888   {
889     gold_assert(this->got_tlsdesc_ != NULL);
890     return this->got_tlsdesc_;
891   }
892
893   // Create the PLT section.
894   void
895   make_plt_section(Symbol_table* symtab, Layout* layout);
896
897   // Create a PLT entry for a global symbol.
898   void
899   make_plt_entry(Symbol_table*, Layout*, Symbol*);
900
901   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
902   void
903   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
904                              Sized_relobj_file<size, false>* relobj,
905                              unsigned int local_sym_index);
906
907   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
908   void
909   define_tls_base_symbol(Symbol_table*, Layout*);
910
911   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
912   void
913   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
914
915   // Create a GOT entry for the TLS module index.
916   unsigned int
917   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
918                       Sized_relobj_file<size, false>* object);
919
920   // Get the PLT section.
921   Output_data_plt_x86_64<size>*
922   plt_section() const
923   {
924     gold_assert(this->plt_ != NULL);
925     return this->plt_;
926   }
927
928   // Get the dynamic reloc section, creating it if necessary.
929   Reloc_section*
930   rela_dyn_section(Layout*);
931
932   // Get the section to use for TLSDESC relocations.
933   Reloc_section*
934   rela_tlsdesc_section(Layout*) const;
935
936   // Get the section to use for IRELATIVE relocations.
937   Reloc_section*
938   rela_irelative_section(Layout*);
939
940   // Add a potential copy relocation.
941   void
942   copy_reloc(Symbol_table* symtab, Layout* layout,
943              Sized_relobj_file<size, false>* object,
944              unsigned int shndx, Output_section* output_section,
945              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
946   {
947     this->copy_relocs_.copy_reloc(symtab, layout,
948                                   symtab->get_sized_symbol<size>(sym),
949                                   object, shndx, output_section,
950                                   reloc, this->rela_dyn_section(layout));
951   }
952
953   // Information about this specific target which we pass to the
954   // general Target structure.
955   static const Target::Target_info x86_64_info;
956
957   // The types of GOT entries needed for this platform.
958   // These values are exposed to the ABI in an incremental link.
959   // Do not renumber existing values without changing the version
960   // number of the .gnu_incremental_inputs section.
961   enum Got_type
962   {
963     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
964     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
965     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
966     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
967   };
968
969   // This type is used as the argument to the target specific
970   // relocation routines.  The only target specific reloc is
971   // R_X86_64_TLSDESC against a local symbol.
972   struct Tlsdesc_info
973   {
974     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
975       : object(a_object), r_sym(a_r_sym)
976     { }
977
978     // The object in which the local symbol is defined.
979     Sized_relobj_file<size, false>* object;
980     // The local symbol index in the object.
981     unsigned int r_sym;
982   };
983
984   // The GOT section.
985   Output_data_got<64, false>* got_;
986   // The PLT section.
987   Output_data_plt_x86_64<size>* plt_;
988   // The GOT PLT section.
989   Output_data_got_plt_x86_64* got_plt_;
990   // The GOT section for IRELATIVE relocations.
991   Output_data_space* got_irelative_;
992   // The GOT section for TLSDESC relocations.
993   Output_data_got<64, false>* got_tlsdesc_;
994   // The _GLOBAL_OFFSET_TABLE_ symbol.
995   Symbol* global_offset_table_;
996   // The dynamic reloc section.
997   Reloc_section* rela_dyn_;
998   // The section to use for IRELATIVE relocs.
999   Reloc_section* rela_irelative_;
1000   // Relocs saved to avoid a COPY reloc.
1001   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1002   // Offset of the GOT entry for the TLS module index.
1003   unsigned int got_mod_index_offset_;
1004   // We handle R_X86_64_TLSDESC against a local symbol as a target
1005   // specific relocation.  Here we store the object and local symbol
1006   // index for the relocation.
1007   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1008   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1009   bool tls_base_symbol_defined_;
1010 };
1011
1012 template<>
1013 const Target::Target_info Target_x86_64<64>::x86_64_info =
1014 {
1015   64,                   // size
1016   false,                // is_big_endian
1017   elfcpp::EM_X86_64,    // machine_code
1018   false,                // has_make_symbol
1019   false,                // has_resolve
1020   true,                 // has_code_fill
1021   true,                 // is_default_stack_executable
1022   true,                 // can_icf_inline_merge_sections
1023   '\0',                 // wrap_char
1024   "/lib/ld64.so.1",     // program interpreter
1025   0x400000,             // default_text_segment_address
1026   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1027   0x1000,               // common_pagesize (overridable by -z common-page-size)
1028   false,                // isolate_execinstr
1029   0,                    // rosegment_gap
1030   elfcpp::SHN_UNDEF,    // small_common_shndx
1031   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1032   0,                    // small_common_section_flags
1033   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1034   NULL,                 // attributes_section
1035   NULL,                 // attributes_vendor
1036   "_start"              // entry_symbol_name
1037 };
1038
1039 template<>
1040 const Target::Target_info Target_x86_64<32>::x86_64_info =
1041 {
1042   32,                   // size
1043   false,                // is_big_endian
1044   elfcpp::EM_X86_64,    // machine_code
1045   false,                // has_make_symbol
1046   false,                // has_resolve
1047   true,                 // has_code_fill
1048   true,                 // is_default_stack_executable
1049   true,                 // can_icf_inline_merge_sections
1050   '\0',                 // wrap_char
1051   "/libx32/ldx32.so.1", // program interpreter
1052   0x400000,             // default_text_segment_address
1053   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1054   0x1000,               // common_pagesize (overridable by -z common-page-size)
1055   false,                // isolate_execinstr
1056   0,                    // rosegment_gap
1057   elfcpp::SHN_UNDEF,    // small_common_shndx
1058   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1059   0,                    // small_common_section_flags
1060   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1061   NULL,                 // attributes_section
1062   NULL,                 // attributes_vendor
1063   "_start"              // entry_symbol_name
1064 };
1065
1066 // This is called when a new output section is created.  This is where
1067 // we handle the SHF_X86_64_LARGE.
1068
1069 template<int size>
1070 void
1071 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1072 {
1073   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1074     os->set_is_large_section();
1075 }
1076
1077 // Get the GOT section, creating it if necessary.
1078
1079 template<int size>
1080 Output_data_got<64, false>*
1081 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1082 {
1083   if (this->got_ == NULL)
1084     {
1085       gold_assert(symtab != NULL && layout != NULL);
1086
1087       // When using -z now, we can treat .got.plt as a relro section.
1088       // Without -z now, it is modified after program startup by lazy
1089       // PLT relocations.
1090       bool is_got_plt_relro = parameters->options().now();
1091       Output_section_order got_order = (is_got_plt_relro
1092                                         ? ORDER_RELRO
1093                                         : ORDER_RELRO_LAST);
1094       Output_section_order got_plt_order = (is_got_plt_relro
1095                                             ? ORDER_RELRO
1096                                             : ORDER_NON_RELRO_FIRST);
1097
1098       this->got_ = new Output_data_got<64, false>();
1099
1100       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1101                                       (elfcpp::SHF_ALLOC
1102                                        | elfcpp::SHF_WRITE),
1103                                       this->got_, got_order, true);
1104
1105       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1106       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1107                                       (elfcpp::SHF_ALLOC
1108                                        | elfcpp::SHF_WRITE),
1109                                       this->got_plt_, got_plt_order,
1110                                       is_got_plt_relro);
1111
1112       // The first three entries are reserved.
1113       this->got_plt_->set_current_data_size(3 * 8);
1114
1115       if (!is_got_plt_relro)
1116         {
1117           // Those bytes can go into the relro segment.
1118           layout->increase_relro(3 * 8);
1119         }
1120
1121       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1122       this->global_offset_table_ =
1123         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1124                                       Symbol_table::PREDEFINED,
1125                                       this->got_plt_,
1126                                       0, 0, elfcpp::STT_OBJECT,
1127                                       elfcpp::STB_LOCAL,
1128                                       elfcpp::STV_HIDDEN, 0,
1129                                       false, false);
1130
1131       // If there are any IRELATIVE relocations, they get GOT entries
1132       // in .got.plt after the jump slot entries.
1133       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1134       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1135                                       (elfcpp::SHF_ALLOC
1136                                        | elfcpp::SHF_WRITE),
1137                                       this->got_irelative_,
1138                                       got_plt_order, is_got_plt_relro);
1139
1140       // If there are any TLSDESC relocations, they get GOT entries in
1141       // .got.plt after the jump slot and IRELATIVE entries.
1142       this->got_tlsdesc_ = new Output_data_got<64, false>();
1143       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1144                                       (elfcpp::SHF_ALLOC
1145                                        | elfcpp::SHF_WRITE),
1146                                       this->got_tlsdesc_,
1147                                       got_plt_order, is_got_plt_relro);
1148     }
1149
1150   return this->got_;
1151 }
1152
1153 // Get the dynamic reloc section, creating it if necessary.
1154
1155 template<int size>
1156 typename Target_x86_64<size>::Reloc_section*
1157 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1158 {
1159   if (this->rela_dyn_ == NULL)
1160     {
1161       gold_assert(layout != NULL);
1162       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1163       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1164                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1165                                       ORDER_DYNAMIC_RELOCS, false);
1166     }
1167   return this->rela_dyn_;
1168 }
1169
1170 // Get the section to use for IRELATIVE relocs, creating it if
1171 // necessary.  These go in .rela.dyn, but only after all other dynamic
1172 // relocations.  They need to follow the other dynamic relocations so
1173 // that they can refer to global variables initialized by those
1174 // relocs.
1175
1176 template<int size>
1177 typename Target_x86_64<size>::Reloc_section*
1178 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1179 {
1180   if (this->rela_irelative_ == NULL)
1181     {
1182       // Make sure we have already created the dynamic reloc section.
1183       this->rela_dyn_section(layout);
1184       this->rela_irelative_ = new Reloc_section(false);
1185       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1186                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1187                                       ORDER_DYNAMIC_RELOCS, false);
1188       gold_assert(this->rela_dyn_->output_section()
1189                   == this->rela_irelative_->output_section());
1190     }
1191   return this->rela_irelative_;
1192 }
1193
1194 // Write the first three reserved words of the .got.plt section.
1195 // The remainder of the section is written while writing the PLT
1196 // in Output_data_plt_i386::do_write.
1197
1198 void
1199 Output_data_got_plt_x86_64::do_write(Output_file* of)
1200 {
1201   // The first entry in the GOT is the address of the .dynamic section
1202   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1203   // We saved space for them when we created the section in
1204   // Target_x86_64::got_section.
1205   const off_t got_file_offset = this->offset();
1206   gold_assert(this->data_size() >= 24);
1207   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1208   Output_section* dynamic = this->layout_->dynamic_section();
1209   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1210   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1211   memset(got_view + 8, 0, 16);
1212   of->write_output_view(got_file_offset, 24, got_view);
1213 }
1214
1215 // Initialize the PLT section.
1216
1217 template<int size>
1218 void
1219 Output_data_plt_x86_64<size>::init(Layout* layout)
1220 {
1221   this->rel_ = new Reloc_section(false);
1222   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1223                                   elfcpp::SHF_ALLOC, this->rel_,
1224                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1225 }
1226
1227 template<int size>
1228 void
1229 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1230 {
1231   os->set_entsize(this->get_plt_entry_size());
1232 }
1233
1234 // Add an entry to the PLT.
1235
1236 template<int size>
1237 void
1238 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1239                                         Symbol* gsym)
1240 {
1241   gold_assert(!gsym->has_plt_offset());
1242
1243   unsigned int plt_index;
1244   off_t plt_offset;
1245   section_offset_type got_offset;
1246
1247   unsigned int* pcount;
1248   unsigned int offset;
1249   unsigned int reserved;
1250   Output_section_data_build* got;
1251   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1252       && gsym->can_use_relative_reloc(false))
1253     {
1254       pcount = &this->irelative_count_;
1255       offset = 0;
1256       reserved = 0;
1257       got = this->got_irelative_;
1258     }
1259   else
1260     {
1261       pcount = &this->count_;
1262       offset = 1;
1263       reserved = 3;
1264       got = this->got_plt_;
1265     }
1266
1267   if (!this->is_data_size_valid())
1268     {
1269       // Note that when setting the PLT offset for a non-IRELATIVE
1270       // entry we skip the initial reserved PLT entry.
1271       plt_index = *pcount + offset;
1272       plt_offset = plt_index * this->get_plt_entry_size();
1273
1274       ++*pcount;
1275
1276       got_offset = (plt_index - offset + reserved) * 8;
1277       gold_assert(got_offset == got->current_data_size());
1278
1279       // Every PLT entry needs a GOT entry which points back to the PLT
1280       // entry (this will be changed by the dynamic linker, normally
1281       // lazily when the function is called).
1282       got->set_current_data_size(got_offset + 8);
1283     }
1284   else
1285     {
1286       // FIXME: This is probably not correct for IRELATIVE relocs.
1287
1288       // For incremental updates, find an available slot.
1289       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1290                                              this->get_plt_entry_size(), 0);
1291       if (plt_offset == -1)
1292         gold_fallback(_("out of patch space (PLT);"
1293                         " relink with --incremental-full"));
1294
1295       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1296       // can be calculated from the PLT index, adjusting for the three
1297       // reserved entries at the beginning of the GOT.
1298       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1299       got_offset = (plt_index - offset + reserved) * 8;
1300     }
1301
1302   gsym->set_plt_offset(plt_offset);
1303
1304   // Every PLT entry needs a reloc.
1305   this->add_relocation(symtab, layout, gsym, got_offset);
1306
1307   // Note that we don't need to save the symbol.  The contents of the
1308   // PLT are independent of which symbols are used.  The symbols only
1309   // appear in the relocations.
1310 }
1311
1312 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1313 // the PLT offset.
1314
1315 template<int size>
1316 unsigned int
1317 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1318     Symbol_table* symtab,
1319     Layout* layout,
1320     Sized_relobj_file<size, false>* relobj,
1321     unsigned int local_sym_index)
1322 {
1323   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1324   ++this->irelative_count_;
1325
1326   section_offset_type got_offset = this->got_irelative_->current_data_size();
1327
1328   // Every PLT entry needs a GOT entry which points back to the PLT
1329   // entry.
1330   this->got_irelative_->set_current_data_size(got_offset + 8);
1331
1332   // Every PLT entry needs a reloc.
1333   Reloc_section* rela = this->rela_irelative(symtab, layout);
1334   rela->add_symbolless_local_addend(relobj, local_sym_index,
1335                                     elfcpp::R_X86_64_IRELATIVE,
1336                                     this->got_irelative_, got_offset, 0);
1337
1338   return plt_offset;
1339 }
1340
1341 // Add the relocation for a PLT entry.
1342
1343 template<int size>
1344 void
1345 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1346                                              Layout* layout,
1347                                              Symbol* gsym,
1348                                              unsigned int got_offset)
1349 {
1350   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1351       && gsym->can_use_relative_reloc(false))
1352     {
1353       Reloc_section* rela = this->rela_irelative(symtab, layout);
1354       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1355                                          this->got_irelative_, got_offset, 0);
1356     }
1357   else
1358     {
1359       gsym->set_needs_dynsym_entry();
1360       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1361                              got_offset, 0);
1362     }
1363 }
1364
1365 // Return where the TLSDESC relocations should go, creating it if
1366 // necessary.  These follow the JUMP_SLOT relocations.
1367
1368 template<int size>
1369 typename Output_data_plt_x86_64<size>::Reloc_section*
1370 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1371 {
1372   if (this->tlsdesc_rel_ == NULL)
1373     {
1374       this->tlsdesc_rel_ = new Reloc_section(false);
1375       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1376                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1377                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1378       gold_assert(this->tlsdesc_rel_->output_section()
1379                   == this->rel_->output_section());
1380     }
1381   return this->tlsdesc_rel_;
1382 }
1383
1384 // Return where the IRELATIVE relocations should go in the PLT.  These
1385 // follow the JUMP_SLOT and the TLSDESC relocations.
1386
1387 template<int size>
1388 typename Output_data_plt_x86_64<size>::Reloc_section*
1389 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1390                                              Layout* layout)
1391 {
1392   if (this->irelative_rel_ == NULL)
1393     {
1394       // Make sure we have a place for the TLSDESC relocations, in
1395       // case we see any later on.
1396       this->rela_tlsdesc(layout);
1397       this->irelative_rel_ = new Reloc_section(false);
1398       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1399                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1400                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1401       gold_assert(this->irelative_rel_->output_section()
1402                   == this->rel_->output_section());
1403
1404       if (parameters->doing_static_link())
1405         {
1406           // A statically linked executable will only have a .rela.plt
1407           // section to hold R_X86_64_IRELATIVE relocs for
1408           // STT_GNU_IFUNC symbols.  The library will use these
1409           // symbols to locate the IRELATIVE relocs at program startup
1410           // time.
1411           symtab->define_in_output_data("__rela_iplt_start", NULL,
1412                                         Symbol_table::PREDEFINED,
1413                                         this->irelative_rel_, 0, 0,
1414                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1415                                         elfcpp::STV_HIDDEN, 0, false, true);
1416           symtab->define_in_output_data("__rela_iplt_end", NULL,
1417                                         Symbol_table::PREDEFINED,
1418                                         this->irelative_rel_, 0, 0,
1419                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1420                                         elfcpp::STV_HIDDEN, 0, true, true);
1421         }
1422     }
1423   return this->irelative_rel_;
1424 }
1425
1426 // Return the PLT address to use for a global symbol.
1427
1428 template<int size>
1429 uint64_t
1430 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1431 {
1432   uint64_t offset = 0;
1433   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1434       && gsym->can_use_relative_reloc(false))
1435     offset = (this->count_ + 1) * this->get_plt_entry_size();
1436   return this->address() + offset + gsym->plt_offset();
1437 }
1438
1439 // Return the PLT address to use for a local symbol.  These are always
1440 // IRELATIVE relocs.
1441
1442 template<int size>
1443 uint64_t
1444 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1445                                                 unsigned int r_sym)
1446 {
1447   return (this->address()
1448           + (this->count_ + 1) * this->get_plt_entry_size()
1449           + object->local_plt_offset(r_sym));
1450 }
1451
1452 // Set the final size.
1453 template<int size>
1454 void
1455 Output_data_plt_x86_64<size>::set_final_data_size()
1456 {
1457   unsigned int count = this->count_ + this->irelative_count_;
1458   if (this->has_tlsdesc_entry())
1459     ++count;
1460   this->set_data_size((count + 1) * this->get_plt_entry_size());
1461 }
1462
1463 // The first entry in the PLT for an executable.
1464
1465 template<int size>
1466 const unsigned char
1467 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1468 {
1469   // From AMD64 ABI Draft 0.98, page 76
1470   0xff, 0x35,   // pushq contents of memory address
1471   0, 0, 0, 0,   // replaced with address of .got + 8
1472   0xff, 0x25,   // jmp indirect
1473   0, 0, 0, 0,   // replaced with address of .got + 16
1474   0x90, 0x90, 0x90, 0x90   // noop (x4)
1475 };
1476
1477 template<int size>
1478 void
1479 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1480     unsigned char* pov,
1481     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1482     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1483 {
1484   memcpy(pov, first_plt_entry, plt_entry_size);
1485   // We do a jmp relative to the PC at the end of this instruction.
1486   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1487                                               (got_address + 8
1488                                                - (plt_address + 6)));
1489   elfcpp::Swap<32, false>::writeval(pov + 8,
1490                                     (got_address + 16
1491                                      - (plt_address + 12)));
1492 }
1493
1494 // Subsequent entries in the PLT for an executable.
1495
1496 template<int size>
1497 const unsigned char
1498 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1499 {
1500   // From AMD64 ABI Draft 0.98, page 76
1501   0xff, 0x25,   // jmpq indirect
1502   0, 0, 0, 0,   // replaced with address of symbol in .got
1503   0x68,         // pushq immediate
1504   0, 0, 0, 0,   // replaced with offset into relocation table
1505   0xe9,         // jmpq relative
1506   0, 0, 0, 0    // replaced with offset to start of .plt
1507 };
1508
1509 template<int size>
1510 unsigned int
1511 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1512     unsigned char* pov,
1513     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1514     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1515     unsigned int got_offset,
1516     unsigned int plt_offset,
1517     unsigned int plt_index)
1518 {
1519   memcpy(pov, plt_entry, plt_entry_size);
1520   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1521                                               (got_address + got_offset
1522                                                - (plt_address + plt_offset
1523                                                   + 6)));
1524
1525   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1526   elfcpp::Swap<32, false>::writeval(pov + 12,
1527                                     - (plt_offset + plt_entry_size));
1528
1529   return 6;
1530 }
1531
1532 // The reserved TLSDESC entry in the PLT for an executable.
1533
1534 template<int size>
1535 const unsigned char
1536 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1537 {
1538   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1539   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1540   0xff, 0x35,   // pushq x(%rip)
1541   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1542   0xff, 0x25,   // jmpq *y(%rip)
1543   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1544   0x0f, 0x1f,   // nop
1545   0x40, 0
1546 };
1547
1548 template<int size>
1549 void
1550 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1551     unsigned char* pov,
1552     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1553     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1554     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1555     unsigned int tlsdesc_got_offset,
1556     unsigned int plt_offset)
1557 {
1558   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1559   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1560                                               (got_address + 8
1561                                                - (plt_address + plt_offset
1562                                                   + 6)));
1563   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1564                                               (got_base
1565                                                + tlsdesc_got_offset
1566                                                - (plt_address + plt_offset
1567                                                   + 12)));
1568 }
1569
1570 // The .eh_frame unwind information for the PLT.
1571
1572 template<int size>
1573 const unsigned char
1574 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1575 {
1576   1,                            // CIE version.
1577   'z',                          // Augmentation: augmentation size included.
1578   'R',                          // Augmentation: FDE encoding included.
1579   '\0',                         // End of augmentation string.
1580   1,                            // Code alignment factor.
1581   0x78,                         // Data alignment factor.
1582   16,                           // Return address column.
1583   1,                            // Augmentation size.
1584   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1585    | elfcpp::DW_EH_PE_sdata4),
1586   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1587   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1588   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1589   elfcpp::DW_CFA_nop
1590 };
1591
1592 template<int size>
1593 const unsigned char
1594 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1595 {
1596   0, 0, 0, 0,                           // Replaced with offset to .plt.
1597   0, 0, 0, 0,                           // Replaced with size of .plt.
1598   0,                                    // Augmentation size.
1599   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1600   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1601   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1602   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1603   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1604   11,                                   // Block length.
1605   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1606   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1607   elfcpp::DW_OP_lit15,                  // Push 0xf.
1608   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1609   elfcpp::DW_OP_lit11,                  // Push 0xb.
1610   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1611   elfcpp::DW_OP_lit3,                   // Push 3.
1612   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1613   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1614   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1615   elfcpp::DW_CFA_nop,
1616   elfcpp::DW_CFA_nop,
1617   elfcpp::DW_CFA_nop
1618 };
1619
1620 // Write out the PLT.  This uses the hand-coded instructions above,
1621 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1622
1623 template<int size>
1624 void
1625 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1626 {
1627   const off_t offset = this->offset();
1628   const section_size_type oview_size =
1629     convert_to_section_size_type(this->data_size());
1630   unsigned char* const oview = of->get_output_view(offset, oview_size);
1631
1632   const off_t got_file_offset = this->got_plt_->offset();
1633   gold_assert(parameters->incremental_update()
1634               || (got_file_offset + this->got_plt_->data_size()
1635                   == this->got_irelative_->offset()));
1636   const section_size_type got_size =
1637     convert_to_section_size_type(this->got_plt_->data_size()
1638                                  + this->got_irelative_->data_size());
1639   unsigned char* const got_view = of->get_output_view(got_file_offset,
1640                                                       got_size);
1641
1642   unsigned char* pov = oview;
1643
1644   // The base address of the .plt section.
1645   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1646   // The base address of the .got section.
1647   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1648   // The base address of the PLT portion of the .got section,
1649   // which is where the GOT pointer will point, and where the
1650   // three reserved GOT entries are located.
1651   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1652     = this->got_plt_->address();
1653
1654   this->fill_first_plt_entry(pov, got_address, plt_address);
1655   pov += this->get_plt_entry_size();
1656
1657   // The first three entries in the GOT are reserved, and are written
1658   // by Output_data_got_plt_x86_64::do_write.
1659   unsigned char* got_pov = got_view + 24;
1660
1661   unsigned int plt_offset = this->get_plt_entry_size();
1662   unsigned int got_offset = 24;
1663   const unsigned int count = this->count_ + this->irelative_count_;
1664   for (unsigned int plt_index = 0;
1665        plt_index < count;
1666        ++plt_index,
1667          pov += this->get_plt_entry_size(),
1668          got_pov += 8,
1669          plt_offset += this->get_plt_entry_size(),
1670          got_offset += 8)
1671     {
1672       // Set and adjust the PLT entry itself.
1673       unsigned int lazy_offset = this->fill_plt_entry(pov,
1674                                                       got_address, plt_address,
1675                                                       got_offset, plt_offset,
1676                                                       plt_index);
1677
1678       // Set the entry in the GOT.
1679       elfcpp::Swap<64, false>::writeval(got_pov,
1680                                         plt_address + plt_offset + lazy_offset);
1681     }
1682
1683   if (this->has_tlsdesc_entry())
1684     {
1685       // Set and adjust the reserved TLSDESC PLT entry.
1686       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1687       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1688                                tlsdesc_got_offset, plt_offset);
1689       pov += this->get_plt_entry_size();
1690     }
1691
1692   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1693   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1694
1695   of->write_output_view(offset, oview_size, oview);
1696   of->write_output_view(got_file_offset, got_size, got_view);
1697 }
1698
1699 // Create the PLT section.
1700
1701 template<int size>
1702 void
1703 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1704 {
1705   if (this->plt_ == NULL)
1706     {
1707       // Create the GOT sections first.
1708       this->got_section(symtab, layout);
1709
1710       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1711                                        this->got_irelative_);
1712
1713       // Add unwind information if requested.
1714       if (parameters->options().ld_generated_unwind_info())
1715         this->plt_->add_eh_frame(layout);
1716
1717       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1718                                       (elfcpp::SHF_ALLOC
1719                                        | elfcpp::SHF_EXECINSTR),
1720                                       this->plt_, ORDER_PLT, false);
1721
1722       // Make the sh_info field of .rela.plt point to .plt.
1723       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1724       rela_plt_os->set_info_section(this->plt_->output_section());
1725     }
1726 }
1727
1728 // Return the section for TLSDESC relocations.
1729
1730 template<int size>
1731 typename Target_x86_64<size>::Reloc_section*
1732 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1733 {
1734   return this->plt_section()->rela_tlsdesc(layout);
1735 }
1736
1737 // Create a PLT entry for a global symbol.
1738
1739 template<int size>
1740 void
1741 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1742                                     Symbol* gsym)
1743 {
1744   if (gsym->has_plt_offset())
1745     return;
1746
1747   if (this->plt_ == NULL)
1748     this->make_plt_section(symtab, layout);
1749
1750   this->plt_->add_entry(symtab, layout, gsym);
1751 }
1752
1753 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1754
1755 template<int size>
1756 void
1757 Target_x86_64<size>::make_local_ifunc_plt_entry(
1758     Symbol_table* symtab, Layout* layout,
1759     Sized_relobj_file<size, false>* relobj,
1760     unsigned int local_sym_index)
1761 {
1762   if (relobj->local_has_plt_offset(local_sym_index))
1763     return;
1764   if (this->plt_ == NULL)
1765     this->make_plt_section(symtab, layout);
1766   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1767                                                               relobj,
1768                                                               local_sym_index);
1769   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1770 }
1771
1772 // Return the number of entries in the PLT.
1773
1774 template<int size>
1775 unsigned int
1776 Target_x86_64<size>::plt_entry_count() const
1777 {
1778   if (this->plt_ == NULL)
1779     return 0;
1780   return this->plt_->entry_count();
1781 }
1782
1783 // Return the offset of the first non-reserved PLT entry.
1784
1785 template<int size>
1786 unsigned int
1787 Target_x86_64<size>::first_plt_entry_offset() const
1788 {
1789   return this->plt_->first_plt_entry_offset();
1790 }
1791
1792 // Return the size of each PLT entry.
1793
1794 template<int size>
1795 unsigned int
1796 Target_x86_64<size>::plt_entry_size() const
1797 {
1798   return this->plt_->get_plt_entry_size();
1799 }
1800
1801 // Create the GOT and PLT sections for an incremental update.
1802
1803 template<int size>
1804 Output_data_got_base*
1805 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1806                                        Layout* layout,
1807                                        unsigned int got_count,
1808                                        unsigned int plt_count)
1809 {
1810   gold_assert(this->got_ == NULL);
1811
1812   this->got_ = new Output_data_got<64, false>(got_count * 8);
1813   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1814                                   (elfcpp::SHF_ALLOC
1815                                    | elfcpp::SHF_WRITE),
1816                                   this->got_, ORDER_RELRO_LAST,
1817                                   true);
1818
1819   // Add the three reserved entries.
1820   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1821   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1822                                   (elfcpp::SHF_ALLOC
1823                                    | elfcpp::SHF_WRITE),
1824                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1825                                   false);
1826
1827   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1828   this->global_offset_table_ =
1829     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1830                                   Symbol_table::PREDEFINED,
1831                                   this->got_plt_,
1832                                   0, 0, elfcpp::STT_OBJECT,
1833                                   elfcpp::STB_LOCAL,
1834                                   elfcpp::STV_HIDDEN, 0,
1835                                   false, false);
1836
1837   // If there are any TLSDESC relocations, they get GOT entries in
1838   // .got.plt after the jump slot entries.
1839   // FIXME: Get the count for TLSDESC entries.
1840   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1841   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1842                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1843                                   this->got_tlsdesc_,
1844                                   ORDER_NON_RELRO_FIRST, false);
1845
1846   // If there are any IRELATIVE relocations, they get GOT entries in
1847   // .got.plt after the jump slot and TLSDESC entries.
1848   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1849   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1850                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1851                                   this->got_irelative_,
1852                                   ORDER_NON_RELRO_FIRST, false);
1853
1854   // Create the PLT section.
1855   this->plt_ = this->make_data_plt(layout, this->got_,
1856                                    this->got_plt_,
1857                                    this->got_irelative_,
1858                                    plt_count);
1859
1860   // Add unwind information if requested.
1861   if (parameters->options().ld_generated_unwind_info())
1862     this->plt_->add_eh_frame(layout);
1863
1864   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1865                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1866                                   this->plt_, ORDER_PLT, false);
1867
1868   // Make the sh_info field of .rela.plt point to .plt.
1869   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1870   rela_plt_os->set_info_section(this->plt_->output_section());
1871
1872   // Create the rela_dyn section.
1873   this->rela_dyn_section(layout);
1874
1875   return this->got_;
1876 }
1877
1878 // Reserve a GOT entry for a local symbol, and regenerate any
1879 // necessary dynamic relocations.
1880
1881 template<int size>
1882 void
1883 Target_x86_64<size>::reserve_local_got_entry(
1884     unsigned int got_index,
1885     Sized_relobj<size, false>* obj,
1886     unsigned int r_sym,
1887     unsigned int got_type)
1888 {
1889   unsigned int got_offset = got_index * 8;
1890   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1891
1892   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1893   switch (got_type)
1894     {
1895     case GOT_TYPE_STANDARD:
1896       if (parameters->options().output_is_position_independent())
1897         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1898                                      this->got_, got_offset, 0, false);
1899       break;
1900     case GOT_TYPE_TLS_OFFSET:
1901       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1902                           this->got_, got_offset, 0);
1903       break;
1904     case GOT_TYPE_TLS_PAIR:
1905       this->got_->reserve_slot(got_index + 1);
1906       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1907                           this->got_, got_offset, 0);
1908       break;
1909     case GOT_TYPE_TLS_DESC:
1910       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1911       // this->got_->reserve_slot(got_index + 1);
1912       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1913       //                               this->got_, got_offset, 0);
1914       break;
1915     default:
1916       gold_unreachable();
1917     }
1918 }
1919
1920 // Reserve a GOT entry for a global symbol, and regenerate any
1921 // necessary dynamic relocations.
1922
1923 template<int size>
1924 void
1925 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1926                                               Symbol* gsym,
1927                                               unsigned int got_type)
1928 {
1929   unsigned int got_offset = got_index * 8;
1930   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1931
1932   this->got_->reserve_global(got_index, gsym, got_type);
1933   switch (got_type)
1934     {
1935     case GOT_TYPE_STANDARD:
1936       if (!gsym->final_value_is_known())
1937         {
1938           if (gsym->is_from_dynobj()
1939               || gsym->is_undefined()
1940               || gsym->is_preemptible()
1941               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1942             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1943                                  this->got_, got_offset, 0);
1944           else
1945             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1946                                           this->got_, got_offset, 0, false);
1947         }
1948       break;
1949     case GOT_TYPE_TLS_OFFSET:
1950       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1951                                     this->got_, got_offset, 0, false);
1952       break;
1953     case GOT_TYPE_TLS_PAIR:
1954       this->got_->reserve_slot(got_index + 1);
1955       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1956                                     this->got_, got_offset, 0, false);
1957       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1958                                     this->got_, got_offset + 8, 0, false);
1959       break;
1960     case GOT_TYPE_TLS_DESC:
1961       this->got_->reserve_slot(got_index + 1);
1962       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1963                                     this->got_, got_offset, 0, false);
1964       break;
1965     default:
1966       gold_unreachable();
1967     }
1968 }
1969
1970 // Register an existing PLT entry for a global symbol.
1971
1972 template<int size>
1973 void
1974 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
1975                                                Layout* layout,
1976                                                unsigned int plt_index,
1977                                                Symbol* gsym)
1978 {
1979   gold_assert(this->plt_ != NULL);
1980   gold_assert(!gsym->has_plt_offset());
1981
1982   this->plt_->reserve_slot(plt_index);
1983
1984   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1985
1986   unsigned int got_offset = (plt_index + 3) * 8;
1987   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1988 }
1989
1990 // Force a COPY relocation for a given symbol.
1991
1992 template<int size>
1993 void
1994 Target_x86_64<size>::emit_copy_reloc(
1995     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1996 {
1997   this->copy_relocs_.emit_copy_reloc(symtab,
1998                                      symtab->get_sized_symbol<size>(sym),
1999                                      os,
2000                                      offset,
2001                                      this->rela_dyn_section(NULL));
2002 }
2003
2004 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2005
2006 template<int size>
2007 void
2008 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2009                                             Layout* layout)
2010 {
2011   if (this->tls_base_symbol_defined_)
2012     return;
2013
2014   Output_segment* tls_segment = layout->tls_segment();
2015   if (tls_segment != NULL)
2016     {
2017       bool is_exec = parameters->options().output_is_executable();
2018       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2019                                        Symbol_table::PREDEFINED,
2020                                        tls_segment, 0, 0,
2021                                        elfcpp::STT_TLS,
2022                                        elfcpp::STB_LOCAL,
2023                                        elfcpp::STV_HIDDEN, 0,
2024                                        (is_exec
2025                                         ? Symbol::SEGMENT_END
2026                                         : Symbol::SEGMENT_START),
2027                                        true);
2028     }
2029   this->tls_base_symbol_defined_ = true;
2030 }
2031
2032 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2033
2034 template<int size>
2035 void
2036 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2037                                              Layout* layout)
2038 {
2039   if (this->plt_ == NULL)
2040     this->make_plt_section(symtab, layout);
2041
2042   if (!this->plt_->has_tlsdesc_entry())
2043     {
2044       // Allocate the TLSDESC_GOT entry.
2045       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2046       unsigned int got_offset = got->add_constant(0);
2047
2048       // Allocate the TLSDESC_PLT entry.
2049       this->plt_->reserve_tlsdesc_entry(got_offset);
2050     }
2051 }
2052
2053 // Create a GOT entry for the TLS module index.
2054
2055 template<int size>
2056 unsigned int
2057 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2058                                          Sized_relobj_file<size, false>* object)
2059 {
2060   if (this->got_mod_index_offset_ == -1U)
2061     {
2062       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2063       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2064       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2065       unsigned int got_offset = got->add_constant(0);
2066       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2067                           got_offset, 0);
2068       got->add_constant(0);
2069       this->got_mod_index_offset_ = got_offset;
2070     }
2071   return this->got_mod_index_offset_;
2072 }
2073
2074 // Optimize the TLS relocation type based on what we know about the
2075 // symbol.  IS_FINAL is true if the final address of this symbol is
2076 // known at link time.
2077
2078 template<int size>
2079 tls::Tls_optimization
2080 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2081 {
2082   // If we are generating a shared library, then we can't do anything
2083   // in the linker.
2084   if (parameters->options().shared())
2085     return tls::TLSOPT_NONE;
2086
2087   switch (r_type)
2088     {
2089     case elfcpp::R_X86_64_TLSGD:
2090     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2091     case elfcpp::R_X86_64_TLSDESC_CALL:
2092       // These are General-Dynamic which permits fully general TLS
2093       // access.  Since we know that we are generating an executable,
2094       // we can convert this to Initial-Exec.  If we also know that
2095       // this is a local symbol, we can further switch to Local-Exec.
2096       if (is_final)
2097         return tls::TLSOPT_TO_LE;
2098       return tls::TLSOPT_TO_IE;
2099
2100     case elfcpp::R_X86_64_TLSLD:
2101       // This is Local-Dynamic, which refers to a local symbol in the
2102       // dynamic TLS block.  Since we know that we generating an
2103       // executable, we can switch to Local-Exec.
2104       return tls::TLSOPT_TO_LE;
2105
2106     case elfcpp::R_X86_64_DTPOFF32:
2107     case elfcpp::R_X86_64_DTPOFF64:
2108       // Another Local-Dynamic reloc.
2109       return tls::TLSOPT_TO_LE;
2110
2111     case elfcpp::R_X86_64_GOTTPOFF:
2112       // These are Initial-Exec relocs which get the thread offset
2113       // from the GOT.  If we know that we are linking against the
2114       // local symbol, we can switch to Local-Exec, which links the
2115       // thread offset into the instruction.
2116       if (is_final)
2117         return tls::TLSOPT_TO_LE;
2118       return tls::TLSOPT_NONE;
2119
2120     case elfcpp::R_X86_64_TPOFF32:
2121       // When we already have Local-Exec, there is nothing further we
2122       // can do.
2123       return tls::TLSOPT_NONE;
2124
2125     default:
2126       gold_unreachable();
2127     }
2128 }
2129
2130 // Get the Reference_flags for a particular relocation.
2131
2132 template<int size>
2133 int
2134 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2135 {
2136   switch (r_type)
2137     {
2138     case elfcpp::R_X86_64_NONE:
2139     case elfcpp::R_X86_64_GNU_VTINHERIT:
2140     case elfcpp::R_X86_64_GNU_VTENTRY:
2141     case elfcpp::R_X86_64_GOTPC32:
2142     case elfcpp::R_X86_64_GOTPC64:
2143       // No symbol reference.
2144       return 0;
2145
2146     case elfcpp::R_X86_64_64:
2147     case elfcpp::R_X86_64_32:
2148     case elfcpp::R_X86_64_32S:
2149     case elfcpp::R_X86_64_16:
2150     case elfcpp::R_X86_64_8:
2151       return Symbol::ABSOLUTE_REF;
2152
2153     case elfcpp::R_X86_64_PC64:
2154     case elfcpp::R_X86_64_PC32:
2155     case elfcpp::R_X86_64_PC32_BND:
2156     case elfcpp::R_X86_64_PC16:
2157     case elfcpp::R_X86_64_PC8:
2158     case elfcpp::R_X86_64_GOTOFF64:
2159       return Symbol::RELATIVE_REF;
2160
2161     case elfcpp::R_X86_64_PLT32:
2162     case elfcpp::R_X86_64_PLT32_BND:
2163     case elfcpp::R_X86_64_PLTOFF64:
2164       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2165
2166     case elfcpp::R_X86_64_GOT64:
2167     case elfcpp::R_X86_64_GOT32:
2168     case elfcpp::R_X86_64_GOTPCREL64:
2169     case elfcpp::R_X86_64_GOTPCREL:
2170     case elfcpp::R_X86_64_GOTPLT64:
2171       // Absolute in GOT.
2172       return Symbol::ABSOLUTE_REF;
2173
2174     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2175     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2176     case elfcpp::R_X86_64_TLSDESC_CALL:
2177     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2178     case elfcpp::R_X86_64_DTPOFF32:
2179     case elfcpp::R_X86_64_DTPOFF64:
2180     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2181     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2182       return Symbol::TLS_REF;
2183
2184     case elfcpp::R_X86_64_COPY:
2185     case elfcpp::R_X86_64_GLOB_DAT:
2186     case elfcpp::R_X86_64_JUMP_SLOT:
2187     case elfcpp::R_X86_64_RELATIVE:
2188     case elfcpp::R_X86_64_IRELATIVE:
2189     case elfcpp::R_X86_64_TPOFF64:
2190     case elfcpp::R_X86_64_DTPMOD64:
2191     case elfcpp::R_X86_64_TLSDESC:
2192     case elfcpp::R_X86_64_SIZE32:
2193     case elfcpp::R_X86_64_SIZE64:
2194     default:
2195       // Not expected.  We will give an error later.
2196       return 0;
2197     }
2198 }
2199
2200 // Report an unsupported relocation against a local symbol.
2201
2202 template<int size>
2203 void
2204 Target_x86_64<size>::Scan::unsupported_reloc_local(
2205      Sized_relobj_file<size, false>* object,
2206      unsigned int r_type)
2207 {
2208   gold_error(_("%s: unsupported reloc %u against local symbol"),
2209              object->name().c_str(), r_type);
2210 }
2211
2212 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2213 // dynamic linker does not support it, issue an error.  The GNU linker
2214 // only issues a non-PIC error for an allocated read-only section.
2215 // Here we know the section is allocated, but we don't know that it is
2216 // read-only.  But we check for all the relocation types which the
2217 // glibc dynamic linker supports, so it seems appropriate to issue an
2218 // error even if the section is not read-only.  If GSYM is not NULL,
2219 // it is the symbol the relocation is against; if it is NULL, the
2220 // relocation is against a local symbol.
2221
2222 template<int size>
2223 void
2224 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2225                                          Symbol* gsym)
2226 {
2227   switch (r_type)
2228     {
2229       // These are the relocation types supported by glibc for x86_64
2230       // which should always work.
2231     case elfcpp::R_X86_64_RELATIVE:
2232     case elfcpp::R_X86_64_IRELATIVE:
2233     case elfcpp::R_X86_64_GLOB_DAT:
2234     case elfcpp::R_X86_64_JUMP_SLOT:
2235     case elfcpp::R_X86_64_DTPMOD64:
2236     case elfcpp::R_X86_64_DTPOFF64:
2237     case elfcpp::R_X86_64_TPOFF64:
2238     case elfcpp::R_X86_64_64:
2239     case elfcpp::R_X86_64_COPY:
2240       return;
2241
2242       // glibc supports these reloc types, but they can overflow.
2243     case elfcpp::R_X86_64_PC32:
2244     case elfcpp::R_X86_64_PC32_BND:
2245       // A PC relative reference is OK against a local symbol or if
2246       // the symbol is defined locally.
2247       if (gsym == NULL
2248           || (!gsym->is_from_dynobj()
2249               && !gsym->is_undefined()
2250               && !gsym->is_preemptible()))
2251         return;
2252       /* Fall through.  */
2253     case elfcpp::R_X86_64_32:
2254       // R_X86_64_32 is OK for x32.
2255       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2256         return;
2257       if (this->issued_non_pic_error_)
2258         return;
2259       gold_assert(parameters->options().output_is_position_independent());
2260       if (gsym == NULL)
2261         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2262                         "overflow at runtime; recompile with -fPIC"));
2263       else
2264         {
2265           const char *r_name;
2266           switch (r_type)
2267             {
2268             case elfcpp::R_X86_64_32:
2269               r_name = "R_X86_64_32";
2270               break;
2271             case elfcpp::R_X86_64_PC32:
2272               r_name = "R_X86_64_PC32";
2273               break;
2274             case elfcpp::R_X86_64_PC32_BND:
2275               r_name = "R_X86_64_PC32_BND";
2276               break;
2277             default:
2278               gold_unreachable();
2279               break;
2280             }
2281           object->error(_("requires dynamic %s reloc against '%s' "
2282                           "which may overflow at runtime; recompile "
2283                           "with -fPIC"),
2284                         r_name, gsym->name());
2285         }
2286       this->issued_non_pic_error_ = true;
2287       return;
2288
2289     default:
2290       // This prevents us from issuing more than one error per reloc
2291       // section.  But we can still wind up issuing more than one
2292       // error per object file.
2293       if (this->issued_non_pic_error_)
2294         return;
2295       gold_assert(parameters->options().output_is_position_independent());
2296       object->error(_("requires unsupported dynamic reloc %u; "
2297                       "recompile with -fPIC"),
2298                     r_type);
2299       this->issued_non_pic_error_ = true;
2300       return;
2301
2302     case elfcpp::R_X86_64_NONE:
2303       gold_unreachable();
2304     }
2305 }
2306
2307 // Return whether we need to make a PLT entry for a relocation of the
2308 // given type against a STT_GNU_IFUNC symbol.
2309
2310 template<int size>
2311 bool
2312 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2313      Sized_relobj_file<size, false>* object,
2314      unsigned int r_type)
2315 {
2316   int flags = Scan::get_reference_flags(r_type);
2317   if (flags & Symbol::TLS_REF)
2318     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2319                object->name().c_str(), r_type);
2320   return flags != 0;
2321 }
2322
2323 // Scan a relocation for a local symbol.
2324
2325 template<int size>
2326 inline void
2327 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2328                                  Layout* layout,
2329                                  Target_x86_64<size>* target,
2330                                  Sized_relobj_file<size, false>* object,
2331                                  unsigned int data_shndx,
2332                                  Output_section* output_section,
2333                                  const elfcpp::Rela<size, false>& reloc,
2334                                  unsigned int r_type,
2335                                  const elfcpp::Sym<size, false>& lsym,
2336                                  bool is_discarded)
2337 {
2338   if (is_discarded)
2339     return;
2340
2341   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2342   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2343   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2344     {
2345       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2346       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2347     }
2348
2349   switch (r_type)
2350     {
2351     case elfcpp::R_X86_64_NONE:
2352     case elfcpp::R_X86_64_GNU_VTINHERIT:
2353     case elfcpp::R_X86_64_GNU_VTENTRY:
2354       break;
2355
2356     case elfcpp::R_X86_64_64:
2357       // If building a shared library (or a position-independent
2358       // executable), we need to create a dynamic relocation for this
2359       // location.  The relocation applied at link time will apply the
2360       // link-time value, so we flag the location with an
2361       // R_X86_64_RELATIVE relocation so the dynamic loader can
2362       // relocate it easily.
2363       if (parameters->options().output_is_position_independent())
2364         {
2365           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2366           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2367           rela_dyn->add_local_relative(object, r_sym,
2368                                        (size == 32
2369                                         ? elfcpp::R_X86_64_RELATIVE64
2370                                         : elfcpp::R_X86_64_RELATIVE),
2371                                        output_section, data_shndx,
2372                                        reloc.get_r_offset(),
2373                                        reloc.get_r_addend(), is_ifunc);
2374         }
2375       break;
2376
2377     case elfcpp::R_X86_64_32:
2378     case elfcpp::R_X86_64_32S:
2379     case elfcpp::R_X86_64_16:
2380     case elfcpp::R_X86_64_8:
2381       // If building a shared library (or a position-independent
2382       // executable), we need to create a dynamic relocation for this
2383       // location.  We can't use an R_X86_64_RELATIVE relocation
2384       // because that is always a 64-bit relocation.
2385       if (parameters->options().output_is_position_independent())
2386         {
2387           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2388           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2389             {
2390               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2391               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2392               rela_dyn->add_local_relative(object, r_sym,
2393                                            elfcpp::R_X86_64_RELATIVE,
2394                                            output_section, data_shndx,
2395                                            reloc.get_r_offset(),
2396                                            reloc.get_r_addend(), is_ifunc);
2397               break;
2398             }
2399
2400           this->check_non_pic(object, r_type, NULL);
2401
2402           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2403           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2404           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2405             rela_dyn->add_local(object, r_sym, r_type, output_section,
2406                                 data_shndx, reloc.get_r_offset(),
2407                                 reloc.get_r_addend());
2408           else
2409             {
2410               gold_assert(lsym.get_st_value() == 0);
2411               unsigned int shndx = lsym.get_st_shndx();
2412               bool is_ordinary;
2413               shndx = object->adjust_sym_shndx(r_sym, shndx,
2414                                                &is_ordinary);
2415               if (!is_ordinary)
2416                 object->error(_("section symbol %u has bad shndx %u"),
2417                               r_sym, shndx);
2418               else
2419                 rela_dyn->add_local_section(object, shndx,
2420                                             r_type, output_section,
2421                                             data_shndx, reloc.get_r_offset(),
2422                                             reloc.get_r_addend());
2423             }
2424         }
2425       break;
2426
2427     case elfcpp::R_X86_64_PC64:
2428     case elfcpp::R_X86_64_PC32:
2429     case elfcpp::R_X86_64_PC32_BND:
2430     case elfcpp::R_X86_64_PC16:
2431     case elfcpp::R_X86_64_PC8:
2432       break;
2433
2434     case elfcpp::R_X86_64_PLT32:
2435     case elfcpp::R_X86_64_PLT32_BND:
2436       // Since we know this is a local symbol, we can handle this as a
2437       // PC32 reloc.
2438       break;
2439
2440     case elfcpp::R_X86_64_GOTPC32:
2441     case elfcpp::R_X86_64_GOTOFF64:
2442     case elfcpp::R_X86_64_GOTPC64:
2443     case elfcpp::R_X86_64_PLTOFF64:
2444       // We need a GOT section.
2445       target->got_section(symtab, layout);
2446       // For PLTOFF64, we'd normally want a PLT section, but since we
2447       // know this is a local symbol, no PLT is needed.
2448       break;
2449
2450     case elfcpp::R_X86_64_GOT64:
2451     case elfcpp::R_X86_64_GOT32:
2452     case elfcpp::R_X86_64_GOTPCREL64:
2453     case elfcpp::R_X86_64_GOTPCREL:
2454     case elfcpp::R_X86_64_GOTPLT64:
2455       {
2456         // The symbol requires a GOT entry.
2457         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2458         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2459
2460         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2461         // lets function pointers compare correctly with shared
2462         // libraries.  Otherwise we would need an IRELATIVE reloc.
2463         bool is_new;
2464         if (is_ifunc)
2465           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2466         else
2467           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2468         if (is_new)
2469           {
2470             // If we are generating a shared object, we need to add a
2471             // dynamic relocation for this symbol's GOT entry.
2472             if (parameters->options().output_is_position_independent())
2473               {
2474                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2475                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2476                 if (r_type != elfcpp::R_X86_64_GOT32)
2477                   {
2478                     unsigned int got_offset =
2479                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2480                     rela_dyn->add_local_relative(object, r_sym,
2481                                                  elfcpp::R_X86_64_RELATIVE,
2482                                                  got, got_offset, 0, is_ifunc);
2483                   }
2484                 else
2485                   {
2486                     this->check_non_pic(object, r_type, NULL);
2487
2488                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2489                     rela_dyn->add_local(
2490                         object, r_sym, r_type, got,
2491                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2492                   }
2493               }
2494           }
2495         // For GOTPLT64, we'd normally want a PLT section, but since
2496         // we know this is a local symbol, no PLT is needed.
2497       }
2498       break;
2499
2500     case elfcpp::R_X86_64_COPY:
2501     case elfcpp::R_X86_64_GLOB_DAT:
2502     case elfcpp::R_X86_64_JUMP_SLOT:
2503     case elfcpp::R_X86_64_RELATIVE:
2504     case elfcpp::R_X86_64_IRELATIVE:
2505       // These are outstanding tls relocs, which are unexpected when linking
2506     case elfcpp::R_X86_64_TPOFF64:
2507     case elfcpp::R_X86_64_DTPMOD64:
2508     case elfcpp::R_X86_64_TLSDESC:
2509       gold_error(_("%s: unexpected reloc %u in object file"),
2510                  object->name().c_str(), r_type);
2511       break;
2512
2513       // These are initial tls relocs, which are expected when linking
2514     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2515     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2516     case elfcpp::R_X86_64_TLSDESC_CALL:
2517     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2518     case elfcpp::R_X86_64_DTPOFF32:
2519     case elfcpp::R_X86_64_DTPOFF64:
2520     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2521     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2522       {
2523         bool output_is_shared = parameters->options().shared();
2524         const tls::Tls_optimization optimized_type
2525             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2526                                                       r_type);
2527         switch (r_type)
2528           {
2529           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2530             if (optimized_type == tls::TLSOPT_NONE)
2531               {
2532                 // Create a pair of GOT entries for the module index and
2533                 // dtv-relative offset.
2534                 Output_data_got<64, false>* got
2535                     = target->got_section(symtab, layout);
2536                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2537                 unsigned int shndx = lsym.get_st_shndx();
2538                 bool is_ordinary;
2539                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2540                 if (!is_ordinary)
2541                   object->error(_("local symbol %u has bad shndx %u"),
2542                               r_sym, shndx);
2543                 else
2544                   got->add_local_pair_with_rel(object, r_sym,
2545                                                shndx,
2546                                                GOT_TYPE_TLS_PAIR,
2547                                                target->rela_dyn_section(layout),
2548                                                elfcpp::R_X86_64_DTPMOD64);
2549               }
2550             else if (optimized_type != tls::TLSOPT_TO_LE)
2551               unsupported_reloc_local(object, r_type);
2552             break;
2553
2554           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2555             target->define_tls_base_symbol(symtab, layout);
2556             if (optimized_type == tls::TLSOPT_NONE)
2557               {
2558                 // Create reserved PLT and GOT entries for the resolver.
2559                 target->reserve_tlsdesc_entries(symtab, layout);
2560
2561                 // Generate a double GOT entry with an
2562                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2563                 // is resolved lazily, so the GOT entry needs to be in
2564                 // an area in .got.plt, not .got.  Call got_section to
2565                 // make sure the section has been created.
2566                 target->got_section(symtab, layout);
2567                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2568                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2569                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2570                   {
2571                     unsigned int got_offset = got->add_constant(0);
2572                     got->add_constant(0);
2573                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2574                                                  got_offset);
2575                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2576                     // We store the arguments we need in a vector, and
2577                     // use the index into the vector as the parameter
2578                     // to pass to the target specific routines.
2579                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2580                     void* arg = reinterpret_cast<void*>(intarg);
2581                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2582                                             got, got_offset, 0);
2583                   }
2584               }
2585             else if (optimized_type != tls::TLSOPT_TO_LE)
2586               unsupported_reloc_local(object, r_type);
2587             break;
2588
2589           case elfcpp::R_X86_64_TLSDESC_CALL:
2590             break;
2591
2592           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2593             if (optimized_type == tls::TLSOPT_NONE)
2594               {
2595                 // Create a GOT entry for the module index.
2596                 target->got_mod_index_entry(symtab, layout, object);
2597               }
2598             else if (optimized_type != tls::TLSOPT_TO_LE)
2599               unsupported_reloc_local(object, r_type);
2600             break;
2601
2602           case elfcpp::R_X86_64_DTPOFF32:
2603           case elfcpp::R_X86_64_DTPOFF64:
2604             break;
2605
2606           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2607             layout->set_has_static_tls();
2608             if (optimized_type == tls::TLSOPT_NONE)
2609               {
2610                 // Create a GOT entry for the tp-relative offset.
2611                 Output_data_got<64, false>* got
2612                     = target->got_section(symtab, layout);
2613                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2614                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2615                                         target->rela_dyn_section(layout),
2616                                         elfcpp::R_X86_64_TPOFF64);
2617               }
2618             else if (optimized_type != tls::TLSOPT_TO_LE)
2619               unsupported_reloc_local(object, r_type);
2620             break;
2621
2622           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2623             layout->set_has_static_tls();
2624             if (output_is_shared)
2625               unsupported_reloc_local(object, r_type);
2626             break;
2627
2628           default:
2629             gold_unreachable();
2630           }
2631       }
2632       break;
2633
2634     case elfcpp::R_X86_64_SIZE32:
2635     case elfcpp::R_X86_64_SIZE64:
2636     default:
2637       gold_error(_("%s: unsupported reloc %u against local symbol"),
2638                  object->name().c_str(), r_type);
2639       break;
2640     }
2641 }
2642
2643
2644 // Report an unsupported relocation against a global symbol.
2645
2646 template<int size>
2647 void
2648 Target_x86_64<size>::Scan::unsupported_reloc_global(
2649     Sized_relobj_file<size, false>* object,
2650     unsigned int r_type,
2651     Symbol* gsym)
2652 {
2653   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2654              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2655 }
2656
2657 // Returns true if this relocation type could be that of a function pointer.
2658 template<int size>
2659 inline bool
2660 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2661 {
2662   switch (r_type)
2663     {
2664     case elfcpp::R_X86_64_64:
2665     case elfcpp::R_X86_64_32:
2666     case elfcpp::R_X86_64_32S:
2667     case elfcpp::R_X86_64_16:
2668     case elfcpp::R_X86_64_8:
2669     case elfcpp::R_X86_64_GOT64:
2670     case elfcpp::R_X86_64_GOT32:
2671     case elfcpp::R_X86_64_GOTPCREL64:
2672     case elfcpp::R_X86_64_GOTPCREL:
2673     case elfcpp::R_X86_64_GOTPLT64:
2674       {
2675         return true;
2676       }
2677     }
2678   return false;
2679 }
2680
2681 // For safe ICF, scan a relocation for a local symbol to check if it
2682 // corresponds to a function pointer being taken.  In that case mark
2683 // the function whose pointer was taken as not foldable.
2684
2685 template<int size>
2686 inline bool
2687 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2688   Symbol_table* ,
2689   Layout* ,
2690   Target_x86_64<size>* ,
2691   Sized_relobj_file<size, false>* ,
2692   unsigned int ,
2693   Output_section* ,
2694   const elfcpp::Rela<size, false>& ,
2695   unsigned int r_type,
2696   const elfcpp::Sym<size, false>&)
2697 {
2698   // When building a shared library, do not fold any local symbols as it is
2699   // not possible to distinguish pointer taken versus a call by looking at
2700   // the relocation types.
2701   return (parameters->options().shared()
2702           || possible_function_pointer_reloc(r_type));
2703 }
2704
2705 // For safe ICF, scan a relocation for a global symbol to check if it
2706 // corresponds to a function pointer being taken.  In that case mark
2707 // the function whose pointer was taken as not foldable.
2708
2709 template<int size>
2710 inline bool
2711 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2712   Symbol_table*,
2713   Layout* ,
2714   Target_x86_64<size>* ,
2715   Sized_relobj_file<size, false>* ,
2716   unsigned int ,
2717   Output_section* ,
2718   const elfcpp::Rela<size, false>& ,
2719   unsigned int r_type,
2720   Symbol* gsym)
2721 {
2722   // When building a shared library, do not fold symbols whose visibility
2723   // is hidden, internal or protected.
2724   return ((parameters->options().shared()
2725            && (gsym->visibility() == elfcpp::STV_INTERNAL
2726                || gsym->visibility() == elfcpp::STV_PROTECTED
2727                || gsym->visibility() == elfcpp::STV_HIDDEN))
2728           || possible_function_pointer_reloc(r_type));
2729 }
2730
2731 // Scan a relocation for a global symbol.
2732
2733 template<int size>
2734 inline void
2735 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2736                             Layout* layout,
2737                             Target_x86_64<size>* target,
2738                             Sized_relobj_file<size, false>* object,
2739                             unsigned int data_shndx,
2740                             Output_section* output_section,
2741                             const elfcpp::Rela<size, false>& reloc,
2742                             unsigned int r_type,
2743                             Symbol* gsym)
2744 {
2745   // A STT_GNU_IFUNC symbol may require a PLT entry.
2746   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2747       && this->reloc_needs_plt_for_ifunc(object, r_type))
2748     target->make_plt_entry(symtab, layout, gsym);
2749
2750   switch (r_type)
2751     {
2752     case elfcpp::R_X86_64_NONE:
2753     case elfcpp::R_X86_64_GNU_VTINHERIT:
2754     case elfcpp::R_X86_64_GNU_VTENTRY:
2755       break;
2756
2757     case elfcpp::R_X86_64_64:
2758     case elfcpp::R_X86_64_32:
2759     case elfcpp::R_X86_64_32S:
2760     case elfcpp::R_X86_64_16:
2761     case elfcpp::R_X86_64_8:
2762       {
2763         // Make a PLT entry if necessary.
2764         if (gsym->needs_plt_entry())
2765           {
2766             target->make_plt_entry(symtab, layout, gsym);
2767             // Since this is not a PC-relative relocation, we may be
2768             // taking the address of a function. In that case we need to
2769             // set the entry in the dynamic symbol table to the address of
2770             // the PLT entry.
2771             if (gsym->is_from_dynobj() && !parameters->options().shared())
2772               gsym->set_needs_dynsym_value();
2773           }
2774         // Make a dynamic relocation if necessary.
2775         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2776           {
2777             if (!parameters->options().output_is_position_independent()
2778                 && gsym->may_need_copy_reloc())
2779               {
2780                 target->copy_reloc(symtab, layout, object,
2781                                    data_shndx, output_section, gsym, reloc);
2782               }
2783             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2784                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2785                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2786                      && gsym->can_use_relative_reloc(false)
2787                      && !gsym->is_from_dynobj()
2788                      && !gsym->is_undefined()
2789                      && !gsym->is_preemptible())
2790               {
2791                 // Use an IRELATIVE reloc for a locally defined
2792                 // STT_GNU_IFUNC symbol.  This makes a function
2793                 // address in a PIE executable match the address in a
2794                 // shared library that it links against.
2795                 Reloc_section* rela_dyn =
2796                   target->rela_irelative_section(layout);
2797                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2798                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2799                                                        output_section, object,
2800                                                        data_shndx,
2801                                                        reloc.get_r_offset(),
2802                                                        reloc.get_r_addend());
2803               }
2804             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2805                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2806                      && gsym->can_use_relative_reloc(false))
2807               {
2808                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2809                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2810                                               output_section, object,
2811                                               data_shndx,
2812                                               reloc.get_r_offset(),
2813                                               reloc.get_r_addend(), false);
2814               }
2815             else
2816               {
2817                 this->check_non_pic(object, r_type, gsym);
2818                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2819                 rela_dyn->add_global(gsym, r_type, output_section, object,
2820                                      data_shndx, reloc.get_r_offset(),
2821                                      reloc.get_r_addend());
2822               }
2823           }
2824       }
2825       break;
2826
2827     case elfcpp::R_X86_64_PC64:
2828     case elfcpp::R_X86_64_PC32:
2829     case elfcpp::R_X86_64_PC32_BND:
2830     case elfcpp::R_X86_64_PC16:
2831     case elfcpp::R_X86_64_PC8:
2832       {
2833         // Make a PLT entry if necessary.
2834         if (gsym->needs_plt_entry())
2835           target->make_plt_entry(symtab, layout, gsym);
2836         // Make a dynamic relocation if necessary.
2837         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2838           {
2839             if (parameters->options().output_is_executable()
2840                 && gsym->may_need_copy_reloc())
2841               {
2842                 target->copy_reloc(symtab, layout, object,
2843                                    data_shndx, output_section, gsym, reloc);
2844               }
2845             else
2846               {
2847                 this->check_non_pic(object, r_type, gsym);
2848                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2849                 rela_dyn->add_global(gsym, r_type, output_section, object,
2850                                      data_shndx, reloc.get_r_offset(),
2851                                      reloc.get_r_addend());
2852               }
2853           }
2854       }
2855       break;
2856
2857     case elfcpp::R_X86_64_GOT64:
2858     case elfcpp::R_X86_64_GOT32:
2859     case elfcpp::R_X86_64_GOTPCREL64:
2860     case elfcpp::R_X86_64_GOTPCREL:
2861     case elfcpp::R_X86_64_GOTPLT64:
2862       {
2863         // The symbol requires a GOT entry.
2864         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2865         if (gsym->final_value_is_known())
2866           {
2867             // For a STT_GNU_IFUNC symbol we want the PLT address.
2868             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2869               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2870             else
2871               got->add_global(gsym, GOT_TYPE_STANDARD);
2872           }
2873         else
2874           {
2875             // If this symbol is not fully resolved, we need to add a
2876             // dynamic relocation for it.
2877             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2878
2879             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2880             //
2881             // 1) The symbol may be defined in some other module.
2882             //
2883             // 2) We are building a shared library and this is a
2884             // protected symbol; using GLOB_DAT means that the dynamic
2885             // linker can use the address of the PLT in the main
2886             // executable when appropriate so that function address
2887             // comparisons work.
2888             //
2889             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2890             // code, again so that function address comparisons work.
2891             if (gsym->is_from_dynobj()
2892                 || gsym->is_undefined()
2893                 || gsym->is_preemptible()
2894                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2895                     && parameters->options().shared())
2896                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2897                     && parameters->options().output_is_position_independent()))
2898               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2899                                        elfcpp::R_X86_64_GLOB_DAT);
2900             else
2901               {
2902                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2903                 // offset into the GOT, so that function pointer
2904                 // comparisons work correctly.
2905                 bool is_new;
2906                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2907                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2908                 else
2909                   {
2910                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2911                     // Tell the dynamic linker to use the PLT address
2912                     // when resolving relocations.
2913                     if (gsym->is_from_dynobj()
2914                         && !parameters->options().shared())
2915                       gsym->set_needs_dynsym_value();
2916                   }
2917                 if (is_new)
2918                   {
2919                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2920                     rela_dyn->add_global_relative(gsym,
2921                                                   elfcpp::R_X86_64_RELATIVE,
2922                                                   got, got_off, 0, false);
2923                   }
2924               }
2925           }
2926         // For GOTPLT64, we also need a PLT entry (but only if the
2927         // symbol is not fully resolved).
2928         if (r_type == elfcpp::R_X86_64_GOTPLT64
2929             && !gsym->final_value_is_known())
2930           target->make_plt_entry(symtab, layout, gsym);
2931       }
2932       break;
2933
2934     case elfcpp::R_X86_64_PLT32:
2935     case elfcpp::R_X86_64_PLT32_BND:
2936       // If the symbol is fully resolved, this is just a PC32 reloc.
2937       // Otherwise we need a PLT entry.
2938       if (gsym->final_value_is_known())
2939         break;
2940       // If building a shared library, we can also skip the PLT entry
2941       // if the symbol is defined in the output file and is protected
2942       // or hidden.
2943       if (gsym->is_defined()
2944           && !gsym->is_from_dynobj()
2945           && !gsym->is_preemptible())
2946         break;
2947       target->make_plt_entry(symtab, layout, gsym);
2948       break;
2949
2950     case elfcpp::R_X86_64_GOTPC32:
2951     case elfcpp::R_X86_64_GOTOFF64:
2952     case elfcpp::R_X86_64_GOTPC64:
2953     case elfcpp::R_X86_64_PLTOFF64:
2954       // We need a GOT section.
2955       target->got_section(symtab, layout);
2956       // For PLTOFF64, we also need a PLT entry (but only if the
2957       // symbol is not fully resolved).
2958       if (r_type == elfcpp::R_X86_64_PLTOFF64
2959           && !gsym->final_value_is_known())
2960         target->make_plt_entry(symtab, layout, gsym);
2961       break;
2962
2963     case elfcpp::R_X86_64_COPY:
2964     case elfcpp::R_X86_64_GLOB_DAT:
2965     case elfcpp::R_X86_64_JUMP_SLOT:
2966     case elfcpp::R_X86_64_RELATIVE:
2967     case elfcpp::R_X86_64_IRELATIVE:
2968       // These are outstanding tls relocs, which are unexpected when linking
2969     case elfcpp::R_X86_64_TPOFF64:
2970     case elfcpp::R_X86_64_DTPMOD64:
2971     case elfcpp::R_X86_64_TLSDESC:
2972       gold_error(_("%s: unexpected reloc %u in object file"),
2973                  object->name().c_str(), r_type);
2974       break;
2975
2976       // These are initial tls relocs, which are expected for global()
2977     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2978     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2979     case elfcpp::R_X86_64_TLSDESC_CALL:
2980     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2981     case elfcpp::R_X86_64_DTPOFF32:
2982     case elfcpp::R_X86_64_DTPOFF64:
2983     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2984     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2985       {
2986         const bool is_final = gsym->final_value_is_known();
2987         const tls::Tls_optimization optimized_type
2988             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
2989         switch (r_type)
2990           {
2991           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2992             if (optimized_type == tls::TLSOPT_NONE)
2993               {
2994                 // Create a pair of GOT entries for the module index and
2995                 // dtv-relative offset.
2996                 Output_data_got<64, false>* got
2997                     = target->got_section(symtab, layout);
2998                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2999                                               target->rela_dyn_section(layout),
3000                                               elfcpp::R_X86_64_DTPMOD64,
3001                                               elfcpp::R_X86_64_DTPOFF64);
3002               }
3003             else if (optimized_type == tls::TLSOPT_TO_IE)
3004               {
3005                 // Create a GOT entry for the tp-relative offset.
3006                 Output_data_got<64, false>* got
3007                     = target->got_section(symtab, layout);
3008                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3009                                          target->rela_dyn_section(layout),
3010                                          elfcpp::R_X86_64_TPOFF64);
3011               }
3012             else if (optimized_type != tls::TLSOPT_TO_LE)
3013               unsupported_reloc_global(object, r_type, gsym);
3014             break;
3015
3016           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3017             target->define_tls_base_symbol(symtab, layout);
3018             if (optimized_type == tls::TLSOPT_NONE)
3019               {
3020                 // Create reserved PLT and GOT entries for the resolver.
3021                 target->reserve_tlsdesc_entries(symtab, layout);
3022
3023                 // Create a double GOT entry with an R_X86_64_TLSDESC
3024                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3025                 // lazily, so the GOT entry needs to be in an area in
3026                 // .got.plt, not .got.  Call got_section to make sure
3027                 // the section has been created.
3028                 target->got_section(symtab, layout);
3029                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3030                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3031                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3032                                               elfcpp::R_X86_64_TLSDESC, 0);
3033               }
3034             else if (optimized_type == tls::TLSOPT_TO_IE)
3035               {
3036                 // Create a GOT entry for the tp-relative offset.
3037                 Output_data_got<64, false>* got
3038                     = target->got_section(symtab, layout);
3039                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3040                                          target->rela_dyn_section(layout),
3041                                          elfcpp::R_X86_64_TPOFF64);
3042               }
3043             else if (optimized_type != tls::TLSOPT_TO_LE)
3044               unsupported_reloc_global(object, r_type, gsym);
3045             break;
3046
3047           case elfcpp::R_X86_64_TLSDESC_CALL:
3048             break;
3049
3050           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3051             if (optimized_type == tls::TLSOPT_NONE)
3052               {
3053                 // Create a GOT entry for the module index.
3054                 target->got_mod_index_entry(symtab, layout, object);
3055               }
3056             else if (optimized_type != tls::TLSOPT_TO_LE)
3057               unsupported_reloc_global(object, r_type, gsym);
3058             break;
3059
3060           case elfcpp::R_X86_64_DTPOFF32:
3061           case elfcpp::R_X86_64_DTPOFF64:
3062             break;
3063
3064           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3065             layout->set_has_static_tls();
3066             if (optimized_type == tls::TLSOPT_NONE)
3067               {
3068                 // Create a GOT entry for the tp-relative offset.
3069                 Output_data_got<64, false>* got
3070                     = target->got_section(symtab, layout);
3071                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3072                                          target->rela_dyn_section(layout),
3073                                          elfcpp::R_X86_64_TPOFF64);
3074               }
3075             else if (optimized_type != tls::TLSOPT_TO_LE)
3076               unsupported_reloc_global(object, r_type, gsym);
3077             break;
3078
3079           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3080             layout->set_has_static_tls();
3081             if (parameters->options().shared())
3082               unsupported_reloc_global(object, r_type, gsym);
3083             break;
3084
3085           default:
3086             gold_unreachable();
3087           }
3088       }
3089       break;
3090
3091     case elfcpp::R_X86_64_SIZE32:
3092     case elfcpp::R_X86_64_SIZE64:
3093     default:
3094       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3095                  object->name().c_str(), r_type,
3096                  gsym->demangled_name().c_str());
3097       break;
3098     }
3099 }
3100
3101 template<int size>
3102 void
3103 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3104                                        Layout* layout,
3105                                        Sized_relobj_file<size, false>* object,
3106                                        unsigned int data_shndx,
3107                                        unsigned int sh_type,
3108                                        const unsigned char* prelocs,
3109                                        size_t reloc_count,
3110                                        Output_section* output_section,
3111                                        bool needs_special_offset_handling,
3112                                        size_t local_symbol_count,
3113                                        const unsigned char* plocal_symbols)
3114 {
3115
3116   if (sh_type == elfcpp::SHT_REL)
3117     {
3118       return;
3119     }
3120
3121    gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3122                            typename Target_x86_64<size>::Scan,
3123                            typename Target_x86_64<size>::Relocatable_size_for_reloc>(
3124     symtab,
3125     layout,
3126     this,
3127     object,
3128     data_shndx,
3129     prelocs,
3130     reloc_count,
3131     output_section,
3132     needs_special_offset_handling,
3133     local_symbol_count,
3134     plocal_symbols);
3135
3136 }
3137 // Scan relocations for a section.
3138
3139 template<int size>
3140 void
3141 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3142                                  Layout* layout,
3143                                  Sized_relobj_file<size, false>* object,
3144                                  unsigned int data_shndx,
3145                                  unsigned int sh_type,
3146                                  const unsigned char* prelocs,
3147                                  size_t reloc_count,
3148                                  Output_section* output_section,
3149                                  bool needs_special_offset_handling,
3150                                  size_t local_symbol_count,
3151                                  const unsigned char* plocal_symbols)
3152 {
3153   if (sh_type == elfcpp::SHT_REL)
3154     {
3155       gold_error(_("%s: unsupported REL reloc section"),
3156                  object->name().c_str());
3157       return;
3158     }
3159
3160   gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3161       typename Target_x86_64<size>::Scan>(
3162     symtab,
3163     layout,
3164     this,
3165     object,
3166     data_shndx,
3167     prelocs,
3168     reloc_count,
3169     output_section,
3170     needs_special_offset_handling,
3171     local_symbol_count,
3172     plocal_symbols);
3173 }
3174
3175 // Finalize the sections.
3176
3177 template<int size>
3178 void
3179 Target_x86_64<size>::do_finalize_sections(
3180     Layout* layout,
3181     const Input_objects*,
3182     Symbol_table* symtab)
3183 {
3184   const Reloc_section* rel_plt = (this->plt_ == NULL
3185                                   ? NULL
3186                                   : this->plt_->rela_plt());
3187   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3188                                   this->rela_dyn_, true, false);
3189
3190   // Fill in some more dynamic tags.
3191   Output_data_dynamic* const odyn = layout->dynamic_data();
3192   if (odyn != NULL)
3193     {
3194       if (this->plt_ != NULL
3195           && this->plt_->output_section() != NULL
3196           && this->plt_->has_tlsdesc_entry())
3197         {
3198           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3199           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3200           this->got_->finalize_data_size();
3201           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3202                                         this->plt_, plt_offset);
3203           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3204                                         this->got_, got_offset);
3205         }
3206     }
3207
3208   // Emit any relocs we saved in an attempt to avoid generating COPY
3209   // relocs.
3210   if (this->copy_relocs_.any_saved_relocs())
3211     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3212
3213   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3214   // the .got.plt section.
3215   Symbol* sym = this->global_offset_table_;
3216   if (sym != NULL)
3217     {
3218       uint64_t data_size = this->got_plt_->current_data_size();
3219       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3220     }
3221
3222   if (parameters->doing_static_link()
3223       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3224     {
3225       // If linking statically, make sure that the __rela_iplt symbols
3226       // were defined if necessary, even if we didn't create a PLT.
3227       static const Define_symbol_in_segment syms[] =
3228         {
3229           {
3230             "__rela_iplt_start",        // name
3231             elfcpp::PT_LOAD,            // segment_type
3232             elfcpp::PF_W,               // segment_flags_set
3233             elfcpp::PF(0),              // segment_flags_clear
3234             0,                          // value
3235             0,                          // size
3236             elfcpp::STT_NOTYPE,         // type
3237             elfcpp::STB_GLOBAL,         // binding
3238             elfcpp::STV_HIDDEN,         // visibility
3239             0,                          // nonvis
3240             Symbol::SEGMENT_START,      // offset_from_base
3241             true                        // only_if_ref
3242           },
3243           {
3244             "__rela_iplt_end",          // name
3245             elfcpp::PT_LOAD,            // segment_type
3246             elfcpp::PF_W,               // segment_flags_set
3247             elfcpp::PF(0),              // segment_flags_clear
3248             0,                          // value
3249             0,                          // size
3250             elfcpp::STT_NOTYPE,         // type
3251             elfcpp::STB_GLOBAL,         // binding
3252             elfcpp::STV_HIDDEN,         // visibility
3253             0,                          // nonvis
3254             Symbol::SEGMENT_START,      // offset_from_base
3255             true                        // only_if_ref
3256           }
3257         };
3258
3259       symtab->define_symbols(layout, 2, syms,
3260                              layout->script_options()->saw_sections_clause());
3261     }
3262 }
3263
3264 // Perform a relocation.
3265
3266 template<int size>
3267 inline bool
3268 Target_x86_64<size>::Relocate::relocate(
3269     const Relocate_info<size, false>* relinfo,
3270     Target_x86_64<size>* target,
3271     Output_section*,
3272     size_t relnum,
3273     const elfcpp::Rela<size, false>& rela,
3274     unsigned int r_type,
3275     const Sized_symbol<size>* gsym,
3276     const Symbol_value<size>* psymval,
3277     unsigned char* view,
3278     typename elfcpp::Elf_types<size>::Elf_Addr address,
3279     section_size_type view_size)
3280 {
3281   if (this->skip_call_tls_get_addr_)
3282     {
3283       if ((r_type != elfcpp::R_X86_64_PLT32
3284            && r_type != elfcpp::R_X86_64_PLT32_BND
3285            && r_type != elfcpp::R_X86_64_PC32_BND
3286            && r_type != elfcpp::R_X86_64_PC32)
3287           || gsym == NULL
3288           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3289         {
3290           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3291                                  _("missing expected TLS relocation"));
3292         }
3293       else
3294         {
3295           this->skip_call_tls_get_addr_ = false;
3296           return false;
3297         }
3298     }
3299
3300   if (view == NULL)
3301     return true;
3302
3303   const Sized_relobj_file<size, false>* object = relinfo->object;
3304
3305   // Pick the value to use for symbols defined in the PLT.
3306   Symbol_value<size> symval;
3307   if (gsym != NULL
3308       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3309     {
3310       symval.set_output_value(target->plt_address_for_global(gsym));
3311       psymval = &symval;
3312     }
3313   else if (gsym == NULL && psymval->is_ifunc_symbol())
3314     {
3315       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3316       if (object->local_has_plt_offset(r_sym))
3317         {
3318           symval.set_output_value(target->plt_address_for_local(object, r_sym));
3319           psymval = &symval;
3320         }
3321     }
3322
3323   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3324
3325   // Get the GOT offset if needed.
3326   // The GOT pointer points to the end of the GOT section.
3327   // We need to subtract the size of the GOT section to get
3328   // the actual offset to use in the relocation.
3329   bool have_got_offset = false;
3330   // Since the actual offset is always negative, we use signed int to
3331   // support 64-bit GOT relocations.
3332   int got_offset = 0;
3333   switch (r_type)
3334     {
3335     case elfcpp::R_X86_64_GOT32:
3336     case elfcpp::R_X86_64_GOT64:
3337     case elfcpp::R_X86_64_GOTPLT64:
3338     case elfcpp::R_X86_64_GOTPCREL:
3339     case elfcpp::R_X86_64_GOTPCREL64:
3340       if (gsym != NULL)
3341         {
3342           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3343           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3344         }
3345       else
3346         {
3347           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3348           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3349           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3350                         - target->got_size());
3351         }
3352       have_got_offset = true;
3353       break;
3354
3355     default:
3356       break;
3357     }
3358
3359   switch (r_type)
3360     {
3361     case elfcpp::R_X86_64_NONE:
3362     case elfcpp::R_X86_64_GNU_VTINHERIT:
3363     case elfcpp::R_X86_64_GNU_VTENTRY:
3364       break;
3365
3366     case elfcpp::R_X86_64_64:
3367       Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3368       break;
3369
3370     case elfcpp::R_X86_64_PC64:
3371       Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3372                                               address);
3373       break;
3374
3375     case elfcpp::R_X86_64_32:
3376       // FIXME: we need to verify that value + addend fits into 32 bits:
3377       //    uint64_t x = value + addend;
3378       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3379       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3380       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3381       break;
3382
3383     case elfcpp::R_X86_64_32S:
3384       // FIXME: we need to verify that value + addend fits into 32 bits:
3385       //    int64_t x = value + addend;   // note this quantity is signed!
3386       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
3387       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3388       break;
3389
3390     case elfcpp::R_X86_64_PC32:
3391     case elfcpp::R_X86_64_PC32_BND:
3392       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3393                                                 address);
3394       break;
3395
3396     case elfcpp::R_X86_64_16:
3397       Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3398       break;
3399
3400     case elfcpp::R_X86_64_PC16:
3401       Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3402                                                 address);
3403       break;
3404
3405     case elfcpp::R_X86_64_8:
3406       Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3407       break;
3408
3409     case elfcpp::R_X86_64_PC8:
3410       Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3411                                                address);
3412       break;
3413
3414     case elfcpp::R_X86_64_PLT32:
3415     case elfcpp::R_X86_64_PLT32_BND:
3416       gold_assert(gsym == NULL
3417                   || gsym->has_plt_offset()
3418                   || gsym->final_value_is_known()
3419                   || (gsym->is_defined()
3420                       && !gsym->is_from_dynobj()
3421                       && !gsym->is_preemptible()));
3422       // Note: while this code looks the same as for R_X86_64_PC32, it
3423       // behaves differently because psymval was set to point to
3424       // the PLT entry, rather than the symbol, in Scan::global().
3425       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3426                                                 address);
3427       break;
3428
3429     case elfcpp::R_X86_64_PLTOFF64:
3430       {
3431         gold_assert(gsym);
3432         gold_assert(gsym->has_plt_offset()
3433                     || gsym->final_value_is_known());
3434         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3435         // This is the address of GLOBAL_OFFSET_TABLE.
3436         got_address = target->got_plt_section()->address();
3437         Relocate_functions<size, false>::rela64(view, object, psymval,
3438                                                 addend - got_address);
3439       }
3440       break;
3441
3442     case elfcpp::R_X86_64_GOT32:
3443       gold_assert(have_got_offset);
3444       Relocate_functions<size, false>::rela32(view, got_offset, addend);
3445       break;
3446
3447     case elfcpp::R_X86_64_GOTPC32:
3448       {
3449         gold_assert(gsym);
3450         typename elfcpp::Elf_types<size>::Elf_Addr value;
3451         value = target->got_plt_section()->address();
3452         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3453       }
3454       break;
3455
3456     case elfcpp::R_X86_64_GOT64:
3457       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
3458       // Since we always add a PLT entry, this is equivalent.
3459     case elfcpp::R_X86_64_GOTPLT64:
3460       gold_assert(have_got_offset);
3461       Relocate_functions<size, false>::rela64(view, got_offset, addend);
3462       break;
3463
3464     case elfcpp::R_X86_64_GOTPC64:
3465       {
3466         gold_assert(gsym);
3467         typename elfcpp::Elf_types<size>::Elf_Addr value;
3468         value = target->got_plt_section()->address();
3469         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3470       }
3471       break;
3472
3473     case elfcpp::R_X86_64_GOTOFF64:
3474       {
3475         typename elfcpp::Elf_types<size>::Elf_Addr value;
3476         value = (psymval->value(object, 0)
3477                  - target->got_plt_section()->address());
3478         Relocate_functions<size, false>::rela64(view, value, addend);
3479       }
3480       break;
3481
3482     case elfcpp::R_X86_64_GOTPCREL:
3483       {
3484         gold_assert(have_got_offset);
3485         typename elfcpp::Elf_types<size>::Elf_Addr value;
3486         value = target->got_plt_section()->address() + got_offset;
3487         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3488       }
3489       break;
3490
3491     case elfcpp::R_X86_64_GOTPCREL64:
3492       {
3493         gold_assert(have_got_offset);
3494         typename elfcpp::Elf_types<size>::Elf_Addr value;
3495         value = target->got_plt_section()->address() + got_offset;
3496         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3497       }
3498       break;
3499
3500     case elfcpp::R_X86_64_COPY:
3501     case elfcpp::R_X86_64_GLOB_DAT:
3502     case elfcpp::R_X86_64_JUMP_SLOT:
3503     case elfcpp::R_X86_64_RELATIVE:
3504     case elfcpp::R_X86_64_IRELATIVE:
3505       // These are outstanding tls relocs, which are unexpected when linking
3506     case elfcpp::R_X86_64_TPOFF64:
3507     case elfcpp::R_X86_64_DTPMOD64:
3508     case elfcpp::R_X86_64_TLSDESC:
3509       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3510                              _("unexpected reloc %u in object file"),
3511                              r_type);
3512       break;
3513
3514       // These are initial tls relocs, which are expected when linking
3515     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3516     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3517     case elfcpp::R_X86_64_TLSDESC_CALL:
3518     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3519     case elfcpp::R_X86_64_DTPOFF32:
3520     case elfcpp::R_X86_64_DTPOFF64:
3521     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3522     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3523       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3524                          view, address, view_size);
3525       break;
3526
3527     case elfcpp::R_X86_64_SIZE32:
3528     case elfcpp::R_X86_64_SIZE64:
3529     default:
3530       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3531                              _("unsupported reloc %u"),
3532                              r_type);
3533       break;
3534     }
3535
3536   return true;
3537 }
3538
3539 // Perform a TLS relocation.
3540
3541 template<int size>
3542 inline void
3543 Target_x86_64<size>::Relocate::relocate_tls(
3544     const Relocate_info<size, false>* relinfo,
3545     Target_x86_64<size>* target,
3546     size_t relnum,
3547     const elfcpp::Rela<size, false>& rela,
3548     unsigned int r_type,
3549     const Sized_symbol<size>* gsym,
3550     const Symbol_value<size>* psymval,
3551     unsigned char* view,
3552     typename elfcpp::Elf_types<size>::Elf_Addr address,
3553     section_size_type view_size)
3554 {
3555   Output_segment* tls_segment = relinfo->layout->tls_segment();
3556
3557   const Sized_relobj_file<size, false>* object = relinfo->object;
3558   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3559   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3560   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3561
3562   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3563
3564   const bool is_final = (gsym == NULL
3565                          ? !parameters->options().shared()
3566                          : gsym->final_value_is_known());
3567   tls::Tls_optimization optimized_type
3568       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3569   switch (r_type)
3570     {
3571     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3572       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3573         {
3574           // If this code sequence is used in a non-executable section,
3575           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3576           // on the assumption that it's being used by itself in a debug
3577           // section.  Therefore, in the unlikely event that the code
3578           // sequence appears in a non-executable section, we simply
3579           // leave it unoptimized.
3580           optimized_type = tls::TLSOPT_NONE;
3581         }
3582       if (optimized_type == tls::TLSOPT_TO_LE)
3583         {
3584           if (tls_segment == NULL)
3585             {
3586               gold_assert(parameters->errors()->error_count() > 0
3587                           || issue_undefined_symbol_error(gsym));
3588               return;
3589             }
3590           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3591                              rela, r_type, value, view,
3592                              view_size);
3593           break;
3594         }
3595       else
3596         {
3597           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3598                                    ? GOT_TYPE_TLS_OFFSET
3599                                    : GOT_TYPE_TLS_PAIR);
3600           unsigned int got_offset;
3601           if (gsym != NULL)
3602             {
3603               gold_assert(gsym->has_got_offset(got_type));
3604               got_offset = gsym->got_offset(got_type) - target->got_size();
3605             }
3606           else
3607             {
3608               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3609               gold_assert(object->local_has_got_offset(r_sym, got_type));
3610               got_offset = (object->local_got_offset(r_sym, got_type)
3611                             - target->got_size());
3612             }
3613           if (optimized_type == tls::TLSOPT_TO_IE)
3614             {
3615               value = target->got_plt_section()->address() + got_offset;
3616               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3617                                  value, view, address, view_size);
3618               break;
3619             }
3620           else if (optimized_type == tls::TLSOPT_NONE)
3621             {
3622               // Relocate the field with the offset of the pair of GOT
3623               // entries.
3624               value = target->got_plt_section()->address() + got_offset;
3625               Relocate_functions<size, false>::pcrela32(view, value, addend,
3626                                                         address);
3627               break;
3628             }
3629         }
3630       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3631                              _("unsupported reloc %u"), r_type);
3632       break;
3633
3634     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3635     case elfcpp::R_X86_64_TLSDESC_CALL:
3636       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3637         {
3638           // See above comment for R_X86_64_TLSGD.
3639           optimized_type = tls::TLSOPT_NONE;
3640         }
3641       if (optimized_type == tls::TLSOPT_TO_LE)
3642         {
3643           if (tls_segment == NULL)
3644             {
3645               gold_assert(parameters->errors()->error_count() > 0
3646                           || issue_undefined_symbol_error(gsym));
3647               return;
3648             }
3649           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3650                                   rela, r_type, value, view,
3651                                   view_size);
3652           break;
3653         }
3654       else
3655         {
3656           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3657                                    ? GOT_TYPE_TLS_OFFSET
3658                                    : GOT_TYPE_TLS_DESC);
3659           unsigned int got_offset = 0;
3660           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3661               && optimized_type == tls::TLSOPT_NONE)
3662             {
3663               // We created GOT entries in the .got.tlsdesc portion of
3664               // the .got.plt section, but the offset stored in the
3665               // symbol is the offset within .got.tlsdesc.
3666               got_offset = (target->got_size()
3667                             + target->got_plt_section()->data_size());
3668             }
3669           if (gsym != NULL)
3670             {
3671               gold_assert(gsym->has_got_offset(got_type));
3672               got_offset += gsym->got_offset(got_type) - target->got_size();
3673             }
3674           else
3675             {
3676               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3677               gold_assert(object->local_has_got_offset(r_sym, got_type));
3678               got_offset += (object->local_got_offset(r_sym, got_type)
3679                              - target->got_size());
3680             }
3681           if (optimized_type == tls::TLSOPT_TO_IE)
3682             {
3683               if (tls_segment == NULL)
3684                 {
3685                   gold_assert(parameters->errors()->error_count() > 0
3686                               || issue_undefined_symbol_error(gsym));
3687                   return;
3688                 }
3689               value = target->got_plt_section()->address() + got_offset;
3690               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3691                                       rela, r_type, value, view, address,
3692                                       view_size);
3693               break;
3694             }
3695           else if (optimized_type == tls::TLSOPT_NONE)
3696             {
3697               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3698                 {
3699                   // Relocate the field with the offset of the pair of GOT
3700                   // entries.
3701                   value = target->got_plt_section()->address() + got_offset;
3702                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3703                                                             address);
3704                 }
3705               break;
3706             }
3707         }
3708       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3709                              _("unsupported reloc %u"), r_type);
3710       break;
3711
3712     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3713       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3714         {
3715           // See above comment for R_X86_64_TLSGD.
3716           optimized_type = tls::TLSOPT_NONE;
3717         }
3718       if (optimized_type == tls::TLSOPT_TO_LE)
3719         {
3720           if (tls_segment == NULL)
3721             {
3722               gold_assert(parameters->errors()->error_count() > 0
3723                           || issue_undefined_symbol_error(gsym));
3724               return;
3725             }
3726           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3727                              value, view, view_size);
3728           break;
3729         }
3730       else if (optimized_type == tls::TLSOPT_NONE)
3731         {
3732           // Relocate the field with the offset of the GOT entry for
3733           // the module index.
3734           unsigned int got_offset;
3735           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3736                         - target->got_size());
3737           value = target->got_plt_section()->address() + got_offset;
3738           Relocate_functions<size, false>::pcrela32(view, value, addend,
3739                                                     address);
3740           break;
3741         }
3742       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3743                              _("unsupported reloc %u"), r_type);
3744       break;
3745
3746     case elfcpp::R_X86_64_DTPOFF32:
3747       // This relocation type is used in debugging information.
3748       // In that case we need to not optimize the value.  If the
3749       // section is not executable, then we assume we should not
3750       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3751       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3752       // R_X86_64_TLSLD.
3753       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3754         {
3755           if (tls_segment == NULL)
3756             {
3757               gold_assert(parameters->errors()->error_count() > 0
3758                           || issue_undefined_symbol_error(gsym));
3759               return;
3760             }
3761           value -= tls_segment->memsz();
3762         }
3763       Relocate_functions<size, false>::rela32(view, value, addend);
3764       break;
3765
3766     case elfcpp::R_X86_64_DTPOFF64:
3767       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3768       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3769         {
3770           if (tls_segment == NULL)
3771             {
3772               gold_assert(parameters->errors()->error_count() > 0
3773                           || issue_undefined_symbol_error(gsym));
3774               return;
3775             }
3776           value -= tls_segment->memsz();
3777         }
3778       Relocate_functions<size, false>::rela64(view, value, addend);
3779       break;
3780
3781     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3782       if (optimized_type == tls::TLSOPT_TO_LE)
3783         {
3784           if (tls_segment == NULL)
3785             {
3786               gold_assert(parameters->errors()->error_count() > 0
3787                           || issue_undefined_symbol_error(gsym));
3788               return;
3789             }
3790           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3791                                                       tls_segment, rela,
3792                                                       r_type, value, view,
3793                                                       view_size);
3794           break;
3795         }
3796       else if (optimized_type == tls::TLSOPT_NONE)
3797         {
3798           // Relocate the field with the offset of the GOT entry for
3799           // the tp-relative offset of the symbol.
3800           unsigned int got_offset;
3801           if (gsym != NULL)
3802             {
3803               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3804               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3805                             - target->got_size());
3806             }
3807           else
3808             {
3809               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3810               gold_assert(object->local_has_got_offset(r_sym,
3811                                                        GOT_TYPE_TLS_OFFSET));
3812               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3813                             - target->got_size());
3814             }
3815           value = target->got_plt_section()->address() + got_offset;
3816           Relocate_functions<size, false>::pcrela32(view, value, addend,
3817                                                     address);
3818           break;
3819         }
3820       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3821                              _("unsupported reloc type %u"),
3822                              r_type);
3823       break;
3824
3825     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3826       if (tls_segment == NULL)
3827         {
3828           gold_assert(parameters->errors()->error_count() > 0
3829                       || issue_undefined_symbol_error(gsym));
3830           return;
3831         }
3832       value -= tls_segment->memsz();
3833       Relocate_functions<size, false>::rela32(view, value, addend);
3834       break;
3835     }
3836 }
3837
3838 // Do a relocation in which we convert a TLS General-Dynamic to an
3839 // Initial-Exec.
3840
3841 template<int size>
3842 inline void
3843 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3844     const Relocate_info<size, false>* relinfo,
3845     size_t relnum,
3846     Output_segment*,
3847     const elfcpp::Rela<size, false>& rela,
3848     unsigned int,
3849     typename elfcpp::Elf_types<size>::Elf_Addr value,
3850     unsigned char* view,
3851     typename elfcpp::Elf_types<size>::Elf_Addr address,
3852     section_size_type view_size)
3853 {
3854   // For SIZE == 64:
3855   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3856   //    .word 0x6666; rex64; call __tls_get_addr
3857   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3858   // For SIZE == 32:
3859   //    leaq foo@tlsgd(%rip),%rdi;
3860   //    .word 0x6666; rex64; call __tls_get_addr
3861   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
3862
3863   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3864   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3865                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3866
3867   if (size == 64)
3868     {
3869       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3870                        -4);
3871       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3872                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3873       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3874              16);
3875     }
3876   else
3877     {
3878       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3879                        -3);
3880       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3881                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3882       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3883              15);
3884     }
3885
3886   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3887   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
3888                                             address);
3889
3890   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3891   // We can skip it.
3892   this->skip_call_tls_get_addr_ = true;
3893 }
3894
3895 // Do a relocation in which we convert a TLS General-Dynamic to a
3896 // Local-Exec.
3897
3898 template<int size>
3899 inline void
3900 Target_x86_64<size>::Relocate::tls_gd_to_le(
3901     const Relocate_info<size, false>* relinfo,
3902     size_t relnum,
3903     Output_segment* tls_segment,
3904     const elfcpp::Rela<size, false>& rela,
3905     unsigned int,
3906     typename elfcpp::Elf_types<size>::Elf_Addr value,
3907     unsigned char* view,
3908     section_size_type view_size)
3909 {
3910   // For SIZE == 64:
3911   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3912   //    .word 0x6666; rex64; call __tls_get_addr
3913   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3914   // For SIZE == 32:
3915   //    leaq foo@tlsgd(%rip),%rdi;
3916   //    .word 0x6666; rex64; call __tls_get_addr
3917   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
3918
3919   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3920   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3921                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3922
3923   if (size == 64)
3924     {
3925       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3926                        -4);
3927       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3928                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3929       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
3930              16);
3931     }
3932   else
3933     {
3934       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3935                        -3);
3936       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3937                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3938
3939       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
3940              15);
3941     }
3942
3943   value -= tls_segment->memsz();
3944   Relocate_functions<size, false>::rela32(view + 8, value, 0);
3945
3946   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3947   // We can skip it.
3948   this->skip_call_tls_get_addr_ = true;
3949 }
3950
3951 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3952
3953 template<int size>
3954 inline void
3955 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
3956     const Relocate_info<size, false>* relinfo,
3957     size_t relnum,
3958     Output_segment*,
3959     const elfcpp::Rela<size, false>& rela,
3960     unsigned int r_type,
3961     typename elfcpp::Elf_types<size>::Elf_Addr value,
3962     unsigned char* view,
3963     typename elfcpp::Elf_types<size>::Elf_Addr address,
3964     section_size_type view_size)
3965 {
3966   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3967     {
3968       // leaq foo@tlsdesc(%rip), %rax
3969       // ==> movq foo@gottpoff(%rip), %rax
3970       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3971       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3972       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3973                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3974       view[-2] = 0x8b;
3975       const elfcpp::Elf_Xword addend = rela.get_r_addend();
3976       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3977     }
3978   else
3979     {
3980       // call *foo@tlscall(%rax)
3981       // ==> nop; nop
3982       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3983       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3984       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3985                      view[0] == 0xff && view[1] == 0x10);
3986       view[0] = 0x66;
3987       view[1] = 0x90;
3988     }
3989 }
3990
3991 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3992
3993 template<int size>
3994 inline void
3995 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
3996     const Relocate_info<size, false>* relinfo,
3997     size_t relnum,
3998     Output_segment* tls_segment,
3999     const elfcpp::Rela<size, false>& rela,
4000     unsigned int r_type,
4001     typename elfcpp::Elf_types<size>::Elf_Addr value,
4002     unsigned char* view,
4003     section_size_type view_size)
4004 {
4005   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4006     {
4007       // leaq foo@tlsdesc(%rip), %rax
4008       // ==> movq foo@tpoff, %rax
4009       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4010       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4011       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4012                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4013       view[-2] = 0xc7;
4014       view[-1] = 0xc0;
4015       value -= tls_segment->memsz();
4016       Relocate_functions<size, false>::rela32(view, value, 0);
4017     }
4018   else
4019     {
4020       // call *foo@tlscall(%rax)
4021       // ==> nop; nop
4022       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4023       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4024       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4025                      view[0] == 0xff && view[1] == 0x10);
4026       view[0] = 0x66;
4027       view[1] = 0x90;
4028     }
4029 }
4030
4031 template<int size>
4032 inline void
4033 Target_x86_64<size>::Relocate::tls_ld_to_le(
4034     const Relocate_info<size, false>* relinfo,
4035     size_t relnum,
4036     Output_segment*,
4037     const elfcpp::Rela<size, false>& rela,
4038     unsigned int,
4039     typename elfcpp::Elf_types<size>::Elf_Addr,
4040     unsigned char* view,
4041     section_size_type view_size)
4042 {
4043   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4044   // For SIZE == 64:
4045   // ... leq foo@dtpoff(%rax),%reg
4046   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4047   // For SIZE == 32:
4048   // ... leq foo@dtpoff(%rax),%reg
4049   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4050
4051   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4052   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4053
4054   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4055                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4056
4057   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4058
4059   if (size == 64)
4060     memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4061   else
4062     memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4063
4064   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4065   // We can skip it.
4066   this->skip_call_tls_get_addr_ = true;
4067 }
4068
4069 // Do a relocation in which we convert a TLS Initial-Exec to a
4070 // Local-Exec.
4071
4072 template<int size>
4073 inline void
4074 Target_x86_64<size>::Relocate::tls_ie_to_le(
4075     const Relocate_info<size, false>* relinfo,
4076     size_t relnum,
4077     Output_segment* tls_segment,
4078     const elfcpp::Rela<size, false>& rela,
4079     unsigned int,
4080     typename elfcpp::Elf_types<size>::Elf_Addr value,
4081     unsigned char* view,
4082     section_size_type view_size)
4083 {
4084   // We need to examine the opcodes to figure out which instruction we
4085   // are looking at.
4086
4087   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4088   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4089
4090   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4091   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4092
4093   unsigned char op1 = view[-3];
4094   unsigned char op2 = view[-2];
4095   unsigned char op3 = view[-1];
4096   unsigned char reg = op3 >> 3;
4097
4098   if (op2 == 0x8b)
4099     {
4100       // movq
4101       if (op1 == 0x4c)
4102         view[-3] = 0x49;
4103       else if (size == 32 && op1 == 0x44)
4104         view[-3] = 0x41;
4105       view[-2] = 0xc7;
4106       view[-1] = 0xc0 | reg;
4107     }
4108   else if (reg == 4)
4109     {
4110       // Special handling for %rsp.
4111       if (op1 == 0x4c)
4112         view[-3] = 0x49;
4113       else if (size == 32 && op1 == 0x44)
4114         view[-3] = 0x41;
4115       view[-2] = 0x81;
4116       view[-1] = 0xc0 | reg;
4117     }
4118   else
4119     {
4120       // addq
4121       if (op1 == 0x4c)
4122         view[-3] = 0x4d;
4123       else if (size == 32 && op1 == 0x44)
4124         view[-3] = 0x45;
4125       view[-2] = 0x8d;
4126       view[-1] = 0x80 | reg | (reg << 3);
4127     }
4128
4129   value -= tls_segment->memsz();
4130   Relocate_functions<size, false>::rela32(view, value, 0);
4131 }
4132
4133 // Relocate section data.
4134
4135 template<int size>
4136 void
4137 Target_x86_64<size>::relocate_section(
4138     const Relocate_info<size, false>* relinfo,
4139     unsigned int sh_type,
4140     const unsigned char* prelocs,
4141     size_t reloc_count,
4142     Output_section* output_section,
4143     bool needs_special_offset_handling,
4144     unsigned char* view,
4145     typename elfcpp::Elf_types<size>::Elf_Addr address,
4146     section_size_type view_size,
4147     const Reloc_symbol_changes* reloc_symbol_changes)
4148 {
4149   gold_assert(sh_type == elfcpp::SHT_RELA);
4150
4151   gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
4152                          typename Target_x86_64<size>::Relocate,
4153                          gold::Default_comdat_behavior>(
4154     relinfo,
4155     this,
4156     prelocs,
4157     reloc_count,
4158     output_section,
4159     needs_special_offset_handling,
4160     view,
4161     address,
4162     view_size,
4163     reloc_symbol_changes);
4164 }
4165
4166 // Apply an incremental relocation.  Incremental relocations always refer
4167 // to global symbols.
4168
4169 template<int size>
4170 void
4171 Target_x86_64<size>::apply_relocation(
4172     const Relocate_info<size, false>* relinfo,
4173     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4174     unsigned int r_type,
4175     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4176     const Symbol* gsym,
4177     unsigned char* view,
4178     typename elfcpp::Elf_types<size>::Elf_Addr address,
4179     section_size_type view_size)
4180 {
4181   gold::apply_relocation<size, false, Target_x86_64<size>,
4182                          typename Target_x86_64<size>::Relocate>(
4183     relinfo,
4184     this,
4185     r_offset,
4186     r_type,
4187     r_addend,
4188     gsym,
4189     view,
4190     address,
4191     view_size);
4192 }
4193
4194 // Return the size of a relocation while scanning during a relocatable
4195 // link.
4196
4197 template<int size>
4198 unsigned int
4199 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4200     unsigned int r_type,
4201     Relobj* object)
4202 {
4203   switch (r_type)
4204     {
4205     case elfcpp::R_X86_64_NONE:
4206     case elfcpp::R_X86_64_GNU_VTINHERIT:
4207     case elfcpp::R_X86_64_GNU_VTENTRY:
4208     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4209     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4210     case elfcpp::R_X86_64_TLSDESC_CALL:
4211     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4212     case elfcpp::R_X86_64_DTPOFF32:
4213     case elfcpp::R_X86_64_DTPOFF64:
4214     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4215     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4216       return 0;
4217
4218     case elfcpp::R_X86_64_64:
4219     case elfcpp::R_X86_64_PC64:
4220     case elfcpp::R_X86_64_GOTOFF64:
4221     case elfcpp::R_X86_64_GOTPC64:
4222     case elfcpp::R_X86_64_PLTOFF64:
4223     case elfcpp::R_X86_64_GOT64:
4224     case elfcpp::R_X86_64_GOTPCREL64:
4225     case elfcpp::R_X86_64_GOTPCREL:
4226     case elfcpp::R_X86_64_GOTPLT64:
4227       return 8;
4228
4229     case elfcpp::R_X86_64_32:
4230     case elfcpp::R_X86_64_32S:
4231     case elfcpp::R_X86_64_PC32:
4232     case elfcpp::R_X86_64_PC32_BND:
4233     case elfcpp::R_X86_64_PLT32:
4234     case elfcpp::R_X86_64_PLT32_BND:
4235     case elfcpp::R_X86_64_GOTPC32:
4236     case elfcpp::R_X86_64_GOT32:
4237       return 4;
4238
4239     case elfcpp::R_X86_64_16:
4240     case elfcpp::R_X86_64_PC16:
4241       return 2;
4242
4243     case elfcpp::R_X86_64_8:
4244     case elfcpp::R_X86_64_PC8:
4245       return 1;
4246
4247     case elfcpp::R_X86_64_COPY:
4248     case elfcpp::R_X86_64_GLOB_DAT:
4249     case elfcpp::R_X86_64_JUMP_SLOT:
4250     case elfcpp::R_X86_64_RELATIVE:
4251     case elfcpp::R_X86_64_IRELATIVE:
4252       // These are outstanding tls relocs, which are unexpected when linking
4253     case elfcpp::R_X86_64_TPOFF64:
4254     case elfcpp::R_X86_64_DTPMOD64:
4255     case elfcpp::R_X86_64_TLSDESC:
4256       object->error(_("unexpected reloc %u in object file"), r_type);
4257       return 0;
4258
4259     case elfcpp::R_X86_64_SIZE32:
4260     case elfcpp::R_X86_64_SIZE64:
4261     default:
4262       object->error(_("unsupported reloc %u against local symbol"), r_type);
4263       return 0;
4264     }
4265 }
4266
4267 // Scan the relocs during a relocatable link.
4268
4269 template<int size>
4270 void
4271 Target_x86_64<size>::scan_relocatable_relocs(
4272     Symbol_table* symtab,
4273     Layout* layout,
4274     Sized_relobj_file<size, false>* object,
4275     unsigned int data_shndx,
4276     unsigned int sh_type,
4277     const unsigned char* prelocs,
4278     size_t reloc_count,
4279     Output_section* output_section,
4280     bool needs_special_offset_handling,
4281     size_t local_symbol_count,
4282     const unsigned char* plocal_symbols,
4283     Relocatable_relocs* rr)
4284 {
4285   gold_assert(sh_type == elfcpp::SHT_RELA);
4286
4287   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4288     Relocatable_size_for_reloc> Scan_relocatable_relocs;
4289
4290   gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
4291       Scan_relocatable_relocs>(
4292     symtab,
4293     layout,
4294     object,
4295     data_shndx,
4296     prelocs,
4297     reloc_count,
4298     output_section,
4299     needs_special_offset_handling,
4300     local_symbol_count,
4301     plocal_symbols,
4302     rr);
4303 }
4304
4305 // Relocate a section during a relocatable link.
4306
4307 template<int size>
4308 void
4309 Target_x86_64<size>::relocate_relocs(
4310     const Relocate_info<size, false>* relinfo,
4311     unsigned int sh_type,
4312     const unsigned char* prelocs,
4313     size_t reloc_count,
4314     Output_section* output_section,
4315     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4316     const Relocatable_relocs* rr,
4317     unsigned char* view,
4318     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4319     section_size_type view_size,
4320     unsigned char* reloc_view,
4321     section_size_type reloc_view_size)
4322 {
4323   gold_assert(sh_type == elfcpp::SHT_RELA);
4324
4325   gold::relocate_relocs<size, false, elfcpp::SHT_RELA>(
4326     relinfo,
4327     prelocs,
4328     reloc_count,
4329     output_section,
4330     offset_in_output_section,
4331     rr,
4332     view,
4333     view_address,
4334     view_size,
4335     reloc_view,
4336     reloc_view_size);
4337 }
4338
4339 // Return the value to use for a dynamic which requires special
4340 // treatment.  This is how we support equality comparisons of function
4341 // pointers across shared library boundaries, as described in the
4342 // processor specific ABI supplement.
4343
4344 template<int size>
4345 uint64_t
4346 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4347 {
4348   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4349   return this->plt_address_for_global(gsym);
4350 }
4351
4352 // Return a string used to fill a code section with nops to take up
4353 // the specified length.
4354
4355 template<int size>
4356 std::string
4357 Target_x86_64<size>::do_code_fill(section_size_type length) const
4358 {
4359   if (length >= 16)
4360     {
4361       // Build a jmpq instruction to skip over the bytes.
4362       unsigned char jmp[5];
4363       jmp[0] = 0xe9;
4364       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4365       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4366               + std::string(length - 5, static_cast<char>(0x90)));
4367     }
4368
4369   // Nop sequences of various lengths.
4370   const char nop1[1] = { '\x90' };                 // nop
4371   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
4372   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4373   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
4374                          '\x00'};
4375   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
4376                          '\x00', '\x00' };
4377   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
4378                          '\x44', '\x00', '\x00' };
4379   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
4380                          '\x00', '\x00', '\x00',
4381                          '\x00' };
4382   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
4383                          '\x00', '\x00', '\x00',
4384                          '\x00', '\x00' };
4385   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
4386                          '\x84', '\x00', '\x00',
4387                          '\x00', '\x00', '\x00' };
4388   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4389                            '\x1f', '\x84', '\x00',
4390                            '\x00', '\x00', '\x00',
4391                            '\x00' };
4392   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4393                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4394                            '\x00', '\x00', '\x00',
4395                            '\x00', '\x00' };
4396   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4397                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4398                            '\x84', '\x00', '\x00',
4399                            '\x00', '\x00', '\x00' };
4400   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4401                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4402                            '\x1f', '\x84', '\x00',
4403                            '\x00', '\x00', '\x00',
4404                            '\x00' };
4405   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4406                            '\x66', '\x66', '\x2e', // data16
4407                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4408                            '\x00', '\x00', '\x00',
4409                            '\x00', '\x00' };
4410   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4411                            '\x66', '\x66', '\x66', // data16; data16
4412                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4413                            '\x84', '\x00', '\x00',
4414                            '\x00', '\x00', '\x00' };
4415
4416   const char* nops[16] = {
4417     NULL,
4418     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4419     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4420   };
4421
4422   return std::string(nops[length], length);
4423 }
4424
4425 // Return the addend to use for a target specific relocation.  The
4426 // only target specific relocation is R_X86_64_TLSDESC for a local
4427 // symbol.  We want to set the addend is the offset of the local
4428 // symbol in the TLS segment.
4429
4430 template<int size>
4431 uint64_t
4432 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4433                                      uint64_t) const
4434 {
4435   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4436   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4437   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4438   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4439   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4440   gold_assert(psymval->is_tls_symbol());
4441   // The value of a TLS symbol is the offset in the TLS segment.
4442   return psymval->value(ti.object, 0);
4443 }
4444
4445 // Return the value to use for the base of a DW_EH_PE_datarel offset
4446 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4447 // assembler can not write out the difference between two labels in
4448 // different sections, so instead of using a pc-relative value they
4449 // use an offset from the GOT.
4450
4451 template<int size>
4452 uint64_t
4453 Target_x86_64<size>::do_ehframe_datarel_base() const
4454 {
4455   gold_assert(this->global_offset_table_ != NULL);
4456   Symbol* sym = this->global_offset_table_;
4457   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4458   return ssym->value();
4459 }
4460
4461 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4462 // compiled with -fsplit-stack.  The function calls non-split-stack
4463 // code.  We have to change the function so that it always ensures
4464 // that it has enough stack space to run some random function.
4465
4466 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
4467 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
4468 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
4469
4470 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
4471 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
4472 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
4473
4474 template<int size>
4475 void
4476 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4477                                         section_offset_type fnoffset,
4478                                         section_size_type fnsize,
4479                                         unsigned char* view,
4480                                         section_size_type view_size,
4481                                         std::string* from,
4482                                         std::string* to) const
4483 {
4484   const char* const cmp_insn = reinterpret_cast<const char*>
4485       (size == 32 ? cmp_insn_32 : cmp_insn_64);
4486   const char* const lea_r10_insn = reinterpret_cast<const char*>
4487       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
4488   const char* const lea_r11_insn = reinterpret_cast<const char*>
4489       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
4490
4491   const size_t cmp_insn_len =
4492       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
4493   const size_t lea_r10_insn_len =
4494       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
4495   const size_t lea_r11_insn_len =
4496       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
4497   const size_t nop_len = (size == 32 ? 7 : 8);
4498
4499   // The function starts with a comparison of the stack pointer and a
4500   // field in the TCB.  This is followed by a jump.
4501
4502   // cmp %fs:NN,%rsp
4503   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
4504       && fnsize > nop_len + 1)
4505     {
4506       // We will call __morestack if the carry flag is set after this
4507       // comparison.  We turn the comparison into an stc instruction
4508       // and some nops.
4509       view[fnoffset] = '\xf9';
4510       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
4511     }
4512   // lea NN(%rsp),%r10
4513   // lea NN(%rsp),%r11
4514   else if ((this->match_view(view, view_size, fnoffset,
4515                              lea_r10_insn, lea_r10_insn_len)
4516             || this->match_view(view, view_size, fnoffset,
4517                                 lea_r11_insn, lea_r11_insn_len))
4518            && fnsize > 8)
4519     {
4520       // This is loading an offset from the stack pointer for a
4521       // comparison.  The offset is negative, so we decrease the
4522       // offset by the amount of space we need for the stack.  This
4523       // means we will avoid calling __morestack if there happens to
4524       // be plenty of space on the stack already.
4525       unsigned char* pval = view + fnoffset + 4;
4526       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4527       val -= parameters->options().split_stack_adjust_size();
4528       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4529     }
4530   else
4531     {
4532       if (!object->has_no_split_stack())
4533         object->error(_("failed to match split-stack sequence at "
4534                         "section %u offset %0zx"),
4535                       shndx, static_cast<size_t>(fnoffset));
4536       return;
4537     }
4538
4539   // We have to change the function so that it calls
4540   // __morestack_non_split instead of __morestack.  The former will
4541   // allocate additional stack space.
4542   *from = "__morestack";
4543   *to = "__morestack_non_split";
4544 }
4545
4546 // The selector for x86_64 object files.  Note this is never instantiated
4547 // directly.  It's only used in Target_selector_x86_64_nacl, below.
4548
4549 template<int size>
4550 class Target_selector_x86_64 : public Target_selector_freebsd
4551 {
4552 public:
4553   Target_selector_x86_64()
4554     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4555                               (size == 64
4556                                ? "elf64-x86-64" : "elf32-x86-64"),
4557                               (size == 64
4558                                ? "elf64-x86-64-freebsd"
4559                                : "elf32-x86-64-freebsd"),
4560                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4561   { }
4562
4563   Target*
4564   do_instantiate_target()
4565   { return new Target_x86_64<size>(); }
4566
4567 };
4568
4569 // NaCl variant.  It uses different PLT contents.
4570
4571 template<int size>
4572 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4573 {
4574  public:
4575   Output_data_plt_x86_64_nacl(Layout* layout,
4576                               Output_data_got<64, false>* got,
4577                               Output_data_got_plt_x86_64* got_plt,
4578                               Output_data_space* got_irelative)
4579     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4580                                    got, got_plt, got_irelative)
4581   { }
4582
4583   Output_data_plt_x86_64_nacl(Layout* layout,
4584                               Output_data_got<64, false>* got,
4585                               Output_data_got_plt_x86_64* got_plt,
4586                               Output_data_space* got_irelative,
4587                               unsigned int plt_count)
4588     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4589                                    got, got_plt, got_irelative,
4590                                    plt_count)
4591   { }
4592
4593  protected:
4594   virtual unsigned int
4595   do_get_plt_entry_size() const
4596   { return plt_entry_size; }
4597
4598   virtual void
4599   do_add_eh_frame(Layout* layout)
4600   {
4601     layout->add_eh_frame_for_plt(this,
4602                                  this->plt_eh_frame_cie,
4603                                  this->plt_eh_frame_cie_size,
4604                                  plt_eh_frame_fde,
4605                                  plt_eh_frame_fde_size);
4606   }
4607
4608   virtual void
4609   do_fill_first_plt_entry(unsigned char* pov,
4610                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4611                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4612
4613   virtual unsigned int
4614   do_fill_plt_entry(unsigned char* pov,
4615                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4616                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4617                     unsigned int got_offset,
4618                     unsigned int plt_offset,
4619                     unsigned int plt_index);
4620
4621   virtual void
4622   do_fill_tlsdesc_entry(unsigned char* pov,
4623                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4624                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4625                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4626                         unsigned int tlsdesc_got_offset,
4627                         unsigned int plt_offset);
4628
4629  private:
4630   // The size of an entry in the PLT.
4631   static const int plt_entry_size = 64;
4632
4633   // The first entry in the PLT.
4634   static const unsigned char first_plt_entry[plt_entry_size];
4635
4636   // Other entries in the PLT for an executable.
4637   static const unsigned char plt_entry[plt_entry_size];
4638
4639   // The reserved TLSDESC entry in the PLT for an executable.
4640   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4641
4642   // The .eh_frame unwind information for the PLT.
4643   static const int plt_eh_frame_fde_size = 32;
4644   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4645 };
4646
4647 template<int size>
4648 class Target_x86_64_nacl : public Target_x86_64<size>
4649 {
4650  public:
4651   Target_x86_64_nacl()
4652     : Target_x86_64<size>(&x86_64_nacl_info)
4653   { }
4654
4655   virtual Output_data_plt_x86_64<size>*
4656   do_make_data_plt(Layout* layout,
4657                    Output_data_got<64, false>* got,
4658                    Output_data_got_plt_x86_64* got_plt,
4659                    Output_data_space* got_irelative)
4660   {
4661     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4662                                                  got_irelative);
4663   }
4664
4665   virtual Output_data_plt_x86_64<size>*
4666   do_make_data_plt(Layout* layout,
4667                    Output_data_got<64, false>* got,
4668                    Output_data_got_plt_x86_64* got_plt,
4669                    Output_data_space* got_irelative,
4670                    unsigned int plt_count)
4671   {
4672     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4673                                                  got_irelative,
4674                                                  plt_count);
4675   }
4676
4677   virtual std::string
4678   do_code_fill(section_size_type length) const;
4679
4680  private:
4681   static const Target::Target_info x86_64_nacl_info;
4682 };
4683
4684 template<>
4685 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4686 {
4687   64,                   // size
4688   false,                // is_big_endian
4689   elfcpp::EM_X86_64,    // machine_code
4690   false,                // has_make_symbol
4691   false,                // has_resolve
4692   true,                 // has_code_fill
4693   true,                 // is_default_stack_executable
4694   true,                 // can_icf_inline_merge_sections
4695   '\0',                 // wrap_char
4696   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4697   0x20000,              // default_text_segment_address
4698   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4699   0x10000,              // common_pagesize (overridable by -z common-page-size)
4700   true,                 // isolate_execinstr
4701   0x10000000,           // rosegment_gap
4702   elfcpp::SHN_UNDEF,    // small_common_shndx
4703   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4704   0,                    // small_common_section_flags
4705   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4706   NULL,                 // attributes_section
4707   NULL,                 // attributes_vendor
4708   "_start"              // entry_symbol_name
4709 };
4710
4711 template<>
4712 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4713 {
4714   32,                   // size
4715   false,                // is_big_endian
4716   elfcpp::EM_X86_64,    // machine_code
4717   false,                // has_make_symbol
4718   false,                // has_resolve
4719   true,                 // has_code_fill
4720   true,                 // is_default_stack_executable
4721   true,                 // can_icf_inline_merge_sections
4722   '\0',                 // wrap_char
4723   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4724   0x20000,              // default_text_segment_address
4725   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4726   0x10000,              // common_pagesize (overridable by -z common-page-size)
4727   true,                 // isolate_execinstr
4728   0x10000000,           // rosegment_gap
4729   elfcpp::SHN_UNDEF,    // small_common_shndx
4730   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4731   0,                    // small_common_section_flags
4732   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4733   NULL,                 // attributes_section
4734   NULL,                 // attributes_vendor
4735   "_start"              // entry_symbol_name
4736 };
4737
4738 #define NACLMASK        0xe0            // 32-byte alignment mask.
4739
4740 // The first entry in the PLT.
4741
4742 template<int size>
4743 const unsigned char
4744 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4745 {
4746   0xff, 0x35,                         // pushq contents of memory address
4747   0, 0, 0, 0,                         // replaced with address of .got + 8
4748   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
4749   0, 0, 0, 0,                         // replaced with address of .got + 16
4750   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
4751   0x4d, 0x01, 0xfb,                   // add %r15, %r11
4752   0x41, 0xff, 0xe3,                   // jmpq *%r11
4753
4754   // 9-byte nop sequence to pad out to the next 32-byte boundary.
4755   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
4756
4757   // 32 bytes of nop to pad out to the standard size
4758   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4759   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4760   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4761   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4762   0x66,                                  // excess data32 prefix
4763   0x90                                   // nop
4764 };
4765
4766 template<int size>
4767 void
4768 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4769     unsigned char* pov,
4770     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4771     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4772 {
4773   memcpy(pov, first_plt_entry, plt_entry_size);
4774   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4775                                               (got_address + 8
4776                                                - (plt_address + 2 + 4)));
4777   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4778                                               (got_address + 16
4779                                                - (plt_address + 9 + 4)));
4780 }
4781
4782 // Subsequent entries in the PLT.
4783
4784 template<int size>
4785 const unsigned char
4786 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4787 {
4788   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
4789   0, 0, 0, 0,                    // replaced with address of symbol in .got
4790   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
4791   0x4d, 0x01, 0xfb,              // add %r15, %r11
4792   0x41, 0xff, 0xe3,              // jmpq *%r11
4793
4794   // 15-byte nop sequence to pad out to the next 32-byte boundary.
4795   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4796   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4797
4798   // Lazy GOT entries point here (32-byte aligned).
4799   0x68,                       // pushq immediate
4800   0, 0, 0, 0,                 // replaced with index into relocation table
4801   0xe9,                       // jmp relative
4802   0, 0, 0, 0,                 // replaced with offset to start of .plt0
4803
4804   // 22 bytes of nop to pad out to the standard size.
4805   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4806   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4807   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
4808 };
4809
4810 template<int size>
4811 unsigned int
4812 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4813     unsigned char* pov,
4814     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4815     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4816     unsigned int got_offset,
4817     unsigned int plt_offset,
4818     unsigned int plt_index)
4819 {
4820   memcpy(pov, plt_entry, plt_entry_size);
4821   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4822                                               (got_address + got_offset
4823                                                - (plt_address + plt_offset
4824                                                   + 3 + 4)));
4825
4826   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
4827   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
4828                                               - (plt_offset + 38 + 4));
4829
4830   return 32;
4831 }
4832
4833 // The reserved TLSDESC entry in the PLT.
4834
4835 template<int size>
4836 const unsigned char
4837 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
4838 {
4839   0xff, 0x35,                   // pushq x(%rip)
4840   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
4841   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
4842   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
4843   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
4844   0x4d, 0x01, 0xfb,             // add %r15, %r11
4845   0x41, 0xff, 0xe3,             // jmpq *%r11
4846
4847   // 41 bytes of nop to pad out to the standard size.
4848   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4849   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4850   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4851   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4852   0x66, 0x66,                            // excess data32 prefixes
4853   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4854 };
4855
4856 template<int size>
4857 void
4858 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
4859     unsigned char* pov,
4860     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4861     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4862     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4863     unsigned int tlsdesc_got_offset,
4864     unsigned int plt_offset)
4865 {
4866   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
4867   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4868                                               (got_address + 8
4869                                                - (plt_address + plt_offset
4870                                                   + 2 + 4)));
4871   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4872                                               (got_base
4873                                                + tlsdesc_got_offset
4874                                                - (plt_address + plt_offset
4875                                                   + 9 + 4)));
4876 }
4877
4878 // The .eh_frame unwind information for the PLT.
4879
4880 template<int size>
4881 const unsigned char
4882 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4883 {
4884   0, 0, 0, 0,                           // Replaced with offset to .plt.
4885   0, 0, 0, 0,                           // Replaced with size of .plt.
4886   0,                                    // Augmentation size.
4887   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
4888   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
4889   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
4890   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
4891   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
4892   13,                                   // Block length.
4893   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
4894   elfcpp::DW_OP_breg16, 0,              // Push %rip.
4895   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
4896   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
4897   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
4898   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
4899   elfcpp::DW_OP_lit3,                   // Push 3.
4900   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
4901   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
4902   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
4903   elfcpp::DW_CFA_nop
4904 };
4905
4906 // Return a string used to fill a code section with nops.
4907 // For NaCl, long NOPs are only valid if they do not cross
4908 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
4909 template<int size>
4910 std::string
4911 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
4912 {
4913   return std::string(length, static_cast<char>(0x90));
4914 }
4915
4916 // The selector for x86_64-nacl object files.
4917
4918 template<int size>
4919 class Target_selector_x86_64_nacl
4920   : public Target_selector_nacl<Target_selector_x86_64<size>,
4921                                 Target_x86_64_nacl<size> >
4922 {
4923  public:
4924   Target_selector_x86_64_nacl()
4925     : Target_selector_nacl<Target_selector_x86_64<size>,
4926                            Target_x86_64_nacl<size> >("x86-64",
4927                                                       size == 64
4928                                                       ? "elf64-x86-64-nacl"
4929                                                       : "elf32-x86-64-nacl",
4930                                                       size == 64
4931                                                       ? "elf_x86_64_nacl"
4932                                                       : "elf32_x86_64_nacl")
4933   { }
4934 };
4935
4936 Target_selector_x86_64_nacl<64> target_selector_x86_64;
4937 Target_selector_x86_64_nacl<32> target_selector_x32;
4938
4939 } // End anonymous namespace.