hammer2 - Flesh out span code, API cleanups
[dragonfly.git] / sbin / hammer2 / msg_lnk.c
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS
36  *
37  * This code supports the LNK_SPAN protocol.  Essentially all PFS's
38  * clients and services rendezvous with the userland hammer2 service and
39  * open LNK_SPAN transactions using a message header linkid of 0,
40  * registering any PFS's they have connectivity to with us.
41  *
42  * --
43  *
44  * Each registration maintains its own open LNK_SPAN message transaction.
45  * The SPANs are collected, aggregated, and retransmitted over available
46  * connections through the maintainance of additional LNK_SPAN message
47  * transactions on each link.
48  *
49  * The msgid for each active LNK_SPAN transaction we receive allows us to
50  * send a message to the target PFS (which might be one of many belonging
51  * to the same cluster), by specifying that msgid as the linkid in any
52  * message we send to the target PFS.
53  *
54  * Similarly the msgid we allocate for any LNK_SPAN transaction we transmit
55  * (and remember we will maintain multiple open LNK_SPAN transactions on
56  * each connection representing the topology span, so every node sees every
57  * other node as a separate open transaction).  So, similarly the msgid for
58  * these active transactions which we initiated can be used by the other
59  * end to route messages through us to another node, ultimately winding up
60  * at the identified hammer2 PFS.  We have to adjust the spanid in the message
61  * header at each hop to be representative of the outgoing LNK_SPAN we
62  * are forwarding the message through.
63  *
64  * --
65  *
66  * If we were to retransmit every LNK_SPAN transaction we receive it would
67  * create a huge mess, so we have to aggregate all received LNK_SPAN
68  * transactions, sort them by the fsid (the cluster) and sub-sort them by
69  * the pfs_fsid (individual nodes in the cluster), and only retransmit
70  * (create outgoing transactions) for a subset of the nearest weighted-hops
71  * for each individual node.
72  *
73  * The higher level protocols can then issue transactions to the nodes making
74  * up a cluster to perform all actions required.
75  *
76  * --
77  *
78  * Since this is a large topology and a spanning tree protocol, links can
79  * go up and down all the time.  Any time a link goes down its transaction
80  * is closed.  The transaction has to be closed on both ends before we can
81  * delete (and potentially reuse) the related spanid.  The LNK_SPAN being
82  * closed may have been propagated out to other connections and those related
83  * LNK_SPANs are also closed.  Ultimately all routes via the lost LNK_SPAN
84  * go away, ultimately reaching all sources and all targets.
85  *
86  * Any messages in-transit using a route that goes away will be thrown away.
87  * Open transactions are only tracked at the two end-points.  When a link
88  * failure propagates to an end-point the related open transactions lose
89  * their spanid and are automatically aborted.
90  *
91  * It is important to note that internal route nodes cannot just associate
92  * a lost LNK_SPAN transaction with another route to the same destination.
93  * Message transactions MUST be serialized and MUST be ordered.  All messages
94  * for a transaction must run over the same route.  So if the route used by
95  * an active transaction is lost, the related messages will be fully aborted
96  * and the higher protocol levels will retry as appropriate.
97  *
98  * It is also important to note that several paths to the same PFS can be
99  * propagated along the same link, which allows concurrency and even
100  * redundancy over several network interfaces or via different routes through
101  * the topology.  Any given transaction will use only a single route but busy
102  * servers will often have hundreds of transactions active simultaniously,
103  * so having multiple active paths through the network topology for A<->B
104  * will improve performance.
105  *
106  * --
107  *
108  * Most protocols consolidate operations rather than simply relaying them.
109  * This is particularly true of LEAF protocols (such as strict HAMMER2
110  * clients), of which there can be millions connecting into the cluster at
111  * various points.  The SPAN protocol is not used for these LEAF elements.
112  *
113  * Instead the primary service they connect to implements a proxy for the
114  * client protocols so the core topology only has to propagate a couple of
115  * LNK_SPANs and not millions.  LNK_SPANs are meant to be used only for
116  * core master nodes and satellite slaves and cache nodes.
117  */
118
119 #include "hammer2.h"
120
121 /*
122  * RED-BLACK TREE DEFINITIONS
123  *
124  * We need to track
125  *
126  * (1) shared fsid's (a cluster).
127  * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions.
128  *
129  * We need to aggegate all active LNK_SPANs, aggregate, and create our own
130  * outgoing LNK_SPAN transactions on each of our connections representing
131  * the aggregated state.
132  *
133  * h2span_connect       - list of iocom connections who wish to receive SPAN
134  *                        propagation from other connections.  Might contain
135  *                        a filter string.  Only iocom's with an open
136  *                        LNK_CONN transactions are applicable for SPAN
137  *                        propagation.
138  *
139  * h2span_relay         - List of links relayed (via SPAN).  Essentially
140  *                        each relay structure represents a LNK_SPAN
141  *                        transaction that we initiated, verses h2span_link
142  *                        which is a LNK_SPAN transaction that we received.
143  *
144  * --
145  *
146  * h2span_cluster       - Organizes the shared fsid's.  One structure for
147  *                        each cluster.
148  *
149  * h2span_node          - Organizes the nodes in a cluster.  One structure
150  *                        for each unique {cluster,node}, aka {fsid, pfs_fsid}.
151  *
152  * h2span_link          - Organizes all incoming and outgoing LNK_SPAN message
153  *                        transactions related to a node.
154  *
155  *                        One h2span_link structure for each incoming LNK_SPAN
156  *                        transaction.  Links selected for propagation back
157  *                        out are also where the outgoing LNK_SPAN messages
158  *                        are indexed into (so we can propagate changes).
159  *
160  *                        The h2span_link's use a red-black tree to sort the
161  *                        weighted hop metric for the incoming LNK_SPAN.  We
162  *                        then select the top N for outgoing.  When the
163  *                        topology changes the top N may also change and cause
164  *                        new outgoing LNK_SPAN transactions to be opened
165  *                        and less desireable ones to be closed, causing
166  *                        transactional aborts within the message flow in
167  *                        the process.
168  *
169  * Also note            - All outgoing LNK_SPAN message transactions are also
170  *                        entered into a red-black tree for use by the routing
171  *                        function.  This is handled by msg.c in the state
172  *                        code, not here.
173  */
174
175 struct h2span_link;
176 struct h2span_relay;
177 TAILQ_HEAD(h2span_connect_queue, h2span_connect);
178 TAILQ_HEAD(h2span_relay_queue, h2span_relay);
179
180 RB_HEAD(h2span_cluster_tree, h2span_cluster);
181 RB_HEAD(h2span_node_tree, h2span_node);
182 RB_HEAD(h2span_link_tree, h2span_link);
183 RB_HEAD(h2span_relay_tree, h2span_relay);
184
185 /*
186  * Received LNK_CONN transaction enables SPAN protocol over connection.
187  * (may contain filter).
188  */
189 struct h2span_connect {
190         TAILQ_ENTRY(h2span_connect) entry;
191         struct h2span_relay_tree tree;
192         hammer2_state_t *state;
193 };
194
195 /*
196  * All received LNK_SPANs are organized by cluster (pfs_clid),
197  * node (pfs_fsid), and link (received LNK_SPAN transaction).
198  */
199 struct h2span_cluster {
200         RB_ENTRY(h2span_cluster) rbnode;
201         struct h2span_node_tree tree;
202         uuid_t  pfs_clid;               /* shared fsid */
203 };
204
205 struct h2span_node  {
206         RB_ENTRY(h2span_node) rbnode;
207         struct h2span_link_tree tree;
208         struct h2span_cluster *cls;
209         uuid_t  pfs_fsid;               /* unique fsid */
210 };
211
212 struct h2span_link {
213         RB_ENTRY(h2span_link) rbnode;
214         hammer2_state_t *state;         /* state<->link */
215         struct h2span_node *node;       /* related node */
216         int32_t weight;
217         struct h2span_relay_queue relayq; /* relay out */
218 };
219
220 /*
221  * Any LNK_SPAN transactions we receive which are relayed out other
222  * connections utilize this structure to track the LNK_SPAN transaction
223  * we initiate on the other connections, if selected for relay.
224  *
225  * In many respects this is the core of the protocol... actually figuring
226  * out what LNK_SPANs to relay.  The spanid used for relaying is the
227  * address of the 'state' structure, which is why h2span_relay has to
228  * be entered into a RB-TREE based at h2span_connect (so we can look
229  * up the spanid to validate it).
230  */
231 struct h2span_relay {
232         RB_ENTRY(h2span_relay) rbnode;  /* from h2span_connect */
233         TAILQ_ENTRY(h2span_relay) entry; /* from link */
234         struct h2span_connect *conn;
235         hammer2_state_t *state;         /* transmitted LNK_SPAN */
236         struct h2span_link *link;       /* received LNK_SPAN */
237 };
238
239
240 typedef struct h2span_connect h2span_connect_t;
241 typedef struct h2span_cluster h2span_cluster_t;
242 typedef struct h2span_node h2span_node_t;
243 typedef struct h2span_link h2span_link_t;
244 typedef struct h2span_relay h2span_relay_t;
245
246 static
247 int
248 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2)
249 {
250         return(uuid_compare(&cls1->pfs_clid, &cls2->pfs_clid, NULL));
251 }
252
253 static
254 int
255 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2)
256 {
257         return(uuid_compare(&node1->pfs_fsid, &node2->pfs_fsid, NULL));
258 }
259
260 static
261 int
262 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2)
263 {
264         if (link1->weight < link2->weight)
265                 return(-1);
266         if (link1->weight > link2->weight)
267                 return(1);
268         if ((intptr_t)link1 < (intptr_t)link2)
269                 return(-1);
270         if ((intptr_t)link1 > (intptr_t)link2)
271                 return(1);
272         return(0);
273 }
274
275 static
276 int
277 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2)
278 {
279         if ((intptr_t)relay1->state < (intptr_t)relay2->state)
280                 return(-1);
281         if ((intptr_t)relay1->state > (intptr_t)relay2->state)
282                 return(1);
283         return(0);
284 }
285
286 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster,
287              rbnode, h2span_cluster_cmp);
288 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node,
289              rbnode, h2span_node_cmp);
290 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link,
291              rbnode, h2span_link_cmp);
292 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay,
293              rbnode, h2span_relay_cmp);
294
295 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster,
296              rbnode, h2span_cluster_cmp);
297 RB_GENERATE_STATIC(h2span_node_tree, h2span_node,
298              rbnode, h2span_node_cmp);
299 RB_GENERATE_STATIC(h2span_link_tree, h2span_link,
300              rbnode, h2span_link_cmp);
301 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay,
302              rbnode, h2span_relay_cmp);
303
304 /*
305  * Global mutex protects cluster_tree lookups.
306  */
307 static pthread_mutex_t cluster_mtx;
308 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree);
309 static struct h2span_connect_queue connq = TAILQ_HEAD_INITIALIZER(connq);
310
311 static void hammer2_lnk_span(hammer2_state_t *state, hammer2_msg_t *msg);
312 static void hammer2_lnk_conn(hammer2_state_t *state, hammer2_msg_t *msg);
313 static void hammer2_lnk_conn_update(h2span_connect_t *conn);
314
315 /*
316  * Receive a HAMMER2_MSG_PROTO_LNK message.  This only called for
317  * one-way and opening-transactions since state->func will be assigned
318  * in all other cases.
319  */
320 void
321 hammer2_msg_lnk(hammer2_iocom_t *iocom, hammer2_msg_t *msg)
322 {
323         switch(msg->any.head.cmd & HAMMER2_MSGF_BASECMDMASK) {
324         case HAMMER2_LNK_CONN:
325                 hammer2_lnk_conn(msg->state, msg);
326                 break;
327         case HAMMER2_LNK_SPAN:
328                 hammer2_lnk_span(msg->state, msg);
329                 break;
330         default:
331                 fprintf(stderr,
332                         "MSG_PROTO_LNK: Unknown msg %08x\n", msg->any.head.cmd);
333                 hammer2_msg_reply(iocom, msg, HAMMER2_MSG_ERR_UNKNOWN);
334                 /* state invalid after reply */
335                 break;
336         }
337 }
338
339 void
340 hammer2_lnk_conn(hammer2_state_t *state, hammer2_msg_t *msg)
341 {
342         h2span_connect_t *conn;
343         h2span_relay_t *relay;
344         char *alloc = NULL;
345
346         pthread_mutex_lock(&cluster_mtx);
347
348         /*
349          * On transaction start we allocate a new h2span_connect and
350          * acknowledge the request, leaving the transaction open.
351          */
352         if (msg->any.head.cmd & HAMMER2_MSGF_CREATE) {
353                 state->func = hammer2_lnk_conn;
354
355                 fprintf(stderr, "LNK_CONN(%016jx): %s/%s\n",
356                         (intmax_t)msg->any.head.msgid,
357                         hammer2_uuid_to_str(&msg->any.lnk_conn.pfs_clid,
358                                             &alloc),
359                         msg->any.lnk_conn.label);
360                 free(alloc);
361
362                 conn = hammer2_alloc(sizeof(*conn));
363
364                 RB_INIT(&conn->tree);
365                 conn->state = state;
366                 state->any.conn = conn;
367                 TAILQ_INSERT_TAIL(&connq, conn, entry);
368
369                 hammer2_lnk_conn_update(conn);
370                 hammer2_msg_result(state->iocom, msg, 0);
371         }
372
373         /*
374          * On transaction terminate we clean out our h2span_connect
375          * and acknowledge the request, closing the transaction.
376          */
377         if (msg->any.head.cmd & HAMMER2_MSGF_DELETE) {
378                 fprintf(stderr, "LNK_CONN: Terminated\n");
379                 conn = state->any.conn;
380                 assert(conn);
381                 while ((relay = RB_ROOT(&conn->tree)) != NULL) {
382                         RB_REMOVE(h2span_relay_tree, &conn->tree, relay);
383                         TAILQ_REMOVE(&relay->link->relayq, relay, entry);
384
385                         if (relay->state) {
386                                 relay->state->any.relay = NULL;
387                                 hammer2_state_reply(relay->state, 0);
388                                 /* state invalid after reply */
389                                 relay->state = NULL;
390                         }
391                         relay->conn = NULL;
392                         relay->link = NULL;
393                         hammer2_free(relay);
394                 }
395
396                 /*
397                  * Clean out conn
398                  */
399                 conn->state = NULL;
400                 msg->state->any.conn = NULL;
401                 TAILQ_REMOVE(&connq, conn, entry);
402                 hammer2_free(conn);
403
404                 hammer2_msg_reply(state->iocom, msg, 0);
405                 /* state invalid after reply */
406         }
407         pthread_mutex_unlock(&cluster_mtx);
408 }
409
410 void
411 hammer2_lnk_span(hammer2_state_t *state, hammer2_msg_t *msg)
412 {
413         h2span_cluster_t dummy_cls;
414         h2span_node_t dummy_node;
415         h2span_cluster_t *cls;
416         h2span_node_t *node;
417         h2span_link_t *slink;
418         h2span_relay_t *relay;
419         char *alloc = NULL;
420
421         pthread_mutex_lock(&cluster_mtx);
422
423         /*
424          * On transaction start we initialize the tracking infrastructure
425          */
426         if (msg->any.head.cmd & HAMMER2_MSGF_CREATE) {
427                 state->func = hammer2_lnk_span;
428
429                 fprintf(stderr, "LNK_SPAN: %s/%s\n",
430                         hammer2_uuid_to_str(&msg->any.lnk_span.pfs_clid,
431                                             &alloc),
432                         msg->any.lnk_span.label);
433                 free(alloc);
434
435                 /*
436                  * Find the cluster
437                  */
438                 dummy_cls.pfs_clid = msg->any.lnk_span.pfs_clid;
439                 cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
440                 if (cls == NULL) {
441                         cls = hammer2_alloc(sizeof(*cls));
442                         cls->pfs_clid = msg->any.lnk_span.pfs_clid;
443                         RB_INIT(&cls->tree);
444                         RB_INSERT(h2span_cluster_tree, &cluster_tree, cls);
445                 }
446
447                 /*
448                  * Find the node
449                  */
450                 dummy_node.pfs_fsid = msg->any.lnk_span.pfs_fsid;
451                 node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node);
452                 if (node == NULL) {
453                         node = hammer2_alloc(sizeof(*node));
454                         node->pfs_fsid = msg->any.lnk_span.pfs_fsid;
455                         node->cls = cls;
456                         RB_INIT(&node->tree);
457                         RB_INSERT(h2span_node_tree, &cls->tree, node);
458                 }
459
460                 /*
461                  * Create the link
462                  */
463                 assert(state->any.link == NULL);
464                 slink = hammer2_alloc(sizeof(*slink));
465                 slink->node = node;
466                 slink->weight = msg->any.lnk_span.weight;
467                 slink->state = state;
468                 state->any.link = slink;
469                 RB_INSERT(h2span_link_tree, &node->tree, slink);
470
471                 /*
472                  * Now filter and relay the span to all other iocoms. XXX
473                  */
474         }
475
476         /*
477          * On transaction terminate we remove the tracking infrastructure.
478          */
479         if (msg->any.head.cmd & HAMMER2_MSGF_DELETE) {
480                 slink = state->any.link;
481                 assert(slink != NULL);
482                 node = slink->node;
483                 cls = node->cls;
484
485                 /*
486                  * Clean out all relays
487                  */
488                 while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) {
489                         RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay);
490                         TAILQ_REMOVE(&slink->relayq, relay, entry);
491
492                         if (relay->state) {
493                                 relay->state->any.relay = NULL;
494                                 hammer2_state_reply(relay->state, 0);
495                                 /* state invalid after reply */
496                                 relay->state = NULL;
497                         }
498                         relay->conn = NULL;
499                         relay->link = NULL;
500                         hammer2_free(relay);
501                 }
502
503                 /*
504                  * Clean out the topology
505                  */
506                 RB_REMOVE(h2span_link_tree, &node->tree, slink);
507                 if (RB_EMPTY(&node->tree)) {
508                         RB_REMOVE(h2span_node_tree, &cls->tree, node);
509                         if (RB_EMPTY(&cls->tree)) {
510                                 RB_REMOVE(h2span_cluster_tree,
511                                           &cluster_tree, cls);
512                                 hammer2_free(cls);
513                         }
514                         node->cls = NULL;
515                         hammer2_free(node);
516                 }
517                 state->any.link = NULL;
518                 slink->state = NULL;
519                 slink->node = NULL;
520                 hammer2_free(slink);
521         }
522
523         pthread_mutex_unlock(&cluster_mtx);
524 }
525
526 /*
527  * Initiate/Update the relayed spans associated with a connection.
528  */
529 static void
530 hammer2_lnk_conn_update(h2span_connect_t *conn __unused)
531 {
532 }