Merge branch 'vendor/FILE'
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * A chain is topologically stable once it has been inserted into the
44  * in-memory topology.  Modifications which copy, move, or resize the chain
45  * are handled via the DELETE-DUPLICATE mechanic where the original chain
46  * stays intact but is marked deleted and a new chain is allocated which
47  * shares the old chain's children.
48  *
49  * This sharing is handled via the hammer2_chain_core structure.
50  *
51  * The DELETE-DUPLICATE mechanism allows the same topological level to contain
52  * many overloadings.  However, our RBTREE mechanics require that there be
53  * no overlaps so we accomplish the overloading by moving conflicting chains
54  * with smaller or equal radii into a sub-RBTREE under the chain being
55  * overloaded.
56  *
57  * DELETE-DUPLICATE is also used when a modification to a chain crosses a
58  * flush synchronization boundary, allowing the flush code to continue flushing
59  * the older version of the topology and not be disrupted by new frontend
60  * operations.
61  *
62  *                              LIVE VS FLUSH VIEW
63  *
64  * All lookup and iterate operations and most modifications are done on the
65  * live view.  During flushes lookups are not normally done and modifications
66  * may be run on the flush view.  However, flushes often needs to allocate
67  * blocks and the freemap_alloc/free code issues lookups.  This code is
68  * special cased to use the live view when called from a flush.
69  *
70  * General chain lookup/iteration functions are NOT aware of the flush view,
71  * they only know about live views.
72  */
73 #include <sys/cdefs.h>
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/types.h>
77 #include <sys/lock.h>
78 #include <sys/kern_syscall.h>
79 #include <sys/uuid.h>
80
81 #include "hammer2.h"
82
83 static int hammer2_indirect_optimize;   /* XXX SYSCTL */
84
85 static hammer2_chain_t *hammer2_chain_create_indirect(
86                 hammer2_trans_t *trans, hammer2_chain_t *parent,
87                 hammer2_key_t key, int keybits, int for_type, int *errorp);
88 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
89 static hammer2_chain_t *hammer2_combined_find(
90                 hammer2_chain_t *parent,
91                 hammer2_blockref_t *base, int count,
92                 int *cache_indexp, hammer2_key_t *key_nextp,
93                 hammer2_key_t key_beg, hammer2_key_t key_end,
94                 hammer2_blockref_t **bresp);
95
96 /*
97  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
98  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
99  * dbtree or to dbq.
100  *
101  * Chains in delete-duplicate sequences can always iterate through core_entry
102  * to locate the live version of the chain.
103  */
104 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
105
106 int
107 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
108 {
109         hammer2_key_t c1_beg;
110         hammer2_key_t c1_end;
111         hammer2_key_t c2_beg;
112         hammer2_key_t c2_end;
113
114         /*
115          * Compare chains.  Overlaps are not supposed to happen and catch
116          * any software issues early we count overlaps as a match.
117          */
118         c1_beg = chain1->bref.key;
119         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
120         c2_beg = chain2->bref.key;
121         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
122
123         if (c1_end < c2_beg)    /* fully to the left */
124                 return(-1);
125         if (c1_beg > c2_end)    /* fully to the right */
126                 return(1);
127         return(0);              /* overlap (must not cross edge boundary) */
128 }
129
130 static __inline
131 int
132 hammer2_isclusterable(hammer2_chain_t *chain)
133 {
134         if (hammer2_cluster_enable) {
135                 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
136                     chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
137                     chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
138                         return(1);
139                 }
140         }
141         return(0);
142 }
143
144 /*
145  * Recursively set update_xhi starting at chain and moving upward.  Stop early
146  * if we hit a PFS transition (PFS flush code will have to detect the case
147  * and perform an update within its own transaction).  The transaction xid
148  * is only good within the current PFS.
149  *
150  * This controls top-down visibility for flushes.  The child has just one
151  * 'above' core, but the core itself can be multi-homed with parents iterated
152  * via core->ownerq.  The last parent is the 'live' parent (all others had to
153  * have been delete-duplicated).  We always propagate upward through the live
154  * parent.
155  *
156  * This function is not used during a flush (except when the flush is
157  * allocating which requires the live tree).  The flush keeps track of its
158  * recursion itself.
159  *
160  * XXX SMP races.  For now we do not allow concurrent transactions with
161  *     different transaction ids and there should be no race, but if we do
162  *     later on there will be a problem.
163  */
164 void
165 hammer2_chain_setsubmod(hammer2_trans_t *trans, hammer2_chain_t *chain)
166 {
167         hammer2_chain_core_t *above;
168
169         if (chain->update_xhi < trans->sync_xid)
170                 chain->update_xhi = trans->sync_xid;
171
172         while ((above = chain->above) != NULL) {
173                 spin_lock(&above->cst.spin);
174                 chain = TAILQ_LAST(&above->ownerq, h2_core_list);
175                 if (chain->update_xhi < trans->sync_xid)
176                         chain->update_xhi = trans->sync_xid;
177                 spin_unlock(&above->cst.spin);
178         }
179 }
180
181 /*
182  * Allocate a new disconnected chain element representing the specified
183  * bref.  chain->refs is set to 1 and the passed bref is copied to
184  * chain->bref.  chain->bytes is derived from the bref.
185  *
186  * chain->core is NOT allocated and the media data and bp pointers are left
187  * NULL.  The caller must call chain_core_alloc() to allocate or associate
188  * a core with the chain.
189  *
190  * chain->pmp inherits pmp unless the chain is an inode (other than the
191  * super-root inode).
192  *
193  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
194  */
195 hammer2_chain_t *
196 hammer2_chain_alloc(hammer2_mount_t *hmp, hammer2_pfsmount_t *pmp,
197                     hammer2_trans_t *trans, hammer2_blockref_t *bref)
198 {
199         hammer2_chain_t *chain;
200         u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
201
202         /*
203          * Construct the appropriate system structure.
204          */
205         switch(bref->type) {
206         case HAMMER2_BREF_TYPE_INODE:
207         case HAMMER2_BREF_TYPE_INDIRECT:
208         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
209         case HAMMER2_BREF_TYPE_DATA:
210         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
211                 /*
212                  * Chain's are really only associated with the hmp but we
213                  * maintain a pmp association for per-mount memory tracking
214                  * purposes.  The pmp can be NULL.
215                  */
216                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
217                 break;
218         case HAMMER2_BREF_TYPE_VOLUME:
219         case HAMMER2_BREF_TYPE_FREEMAP:
220                 chain = NULL;
221                 panic("hammer2_chain_alloc volume type illegal for op");
222         default:
223                 chain = NULL;
224                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
225                       bref->type);
226         }
227
228         /*
229          * Initialize the new chain structure.
230          */
231         chain->pmp = pmp;
232         chain->hmp = hmp;
233         chain->bref = *bref;
234         chain->bytes = bytes;
235         chain->refs = 1;
236         chain->flags = HAMMER2_CHAIN_ALLOCATED;
237         chain->delete_xid = HAMMER2_XID_MAX;
238
239         /*
240          * Set the PFS boundary flag if this chain represents a PFS root.
241          */
242         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
243                 chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
244
245         /*
246          * Set modify_xid if a transaction is creating the inode.
247          * Enforce update_xlo = 0 so nearby transactions do not think
248          * it has been flushed when it hasn't.
249          *
250          * NOTE: When loading a chain from backing store or creating a
251          *       snapshot, trans will be NULL and the caller is responsible
252          *       for setting these fields.
253          */
254         if (trans) {
255                 chain->modify_xid = trans->sync_xid;
256                 chain->update_xlo = 0;
257         }
258
259         return (chain);
260 }
261
262 /*
263  * Associate an existing core with the chain or allocate a new core.
264  *
265  * The core is not locked.  No additional refs on the chain are made.
266  * (trans) must not be NULL if (core) is not NULL.
267  *
268  * When chains are delete-duplicated during flushes we insert nchain on
269  * the ownerq after ochain instead of at the end in order to give the
270  * drop code visibility in the correct order, otherwise drops can be missed.
271  */
272 void
273 hammer2_chain_core_alloc(hammer2_trans_t *trans,
274                          hammer2_chain_t *nchain, hammer2_chain_t *ochain)
275 {
276         hammer2_chain_core_t *core;
277
278         KKASSERT(nchain->core == NULL);
279
280         if (ochain == NULL) {
281                 /*
282                  * Fresh core under nchain (no multi-homing of ochain's
283                  * sub-tree).
284                  */
285                 core = kmalloc(sizeof(*core), nchain->hmp->mchain,
286                                M_WAITOK | M_ZERO);
287                 TAILQ_INIT(&core->ownerq);
288                 TAILQ_INIT(&core->dbq);
289                 RB_INIT(&core->rbtree); /* live chains */
290                 RB_INIT(&core->dbtree); /* deleted original (bmapped) chains */
291                 core->sharecnt = 1;
292                 core->good = 0x1234;
293                 nchain->core = core;
294                 ccms_cst_init(&core->cst, nchain);
295                 TAILQ_INSERT_TAIL(&core->ownerq, nchain, core_entry);
296         } else {
297                 /*
298                  * Propagate the PFSROOT flag which we set on all subdirs
299                  * under the super-root.
300                  */
301                 atomic_set_int(&nchain->flags,
302                                ochain->flags & HAMMER2_CHAIN_PFSROOT);
303
304                 /*
305                  * Duplicating ochain -> nchain.  Set the DUPLICATED flag on
306                  * ochain if nchain is not a snapshot.
307                  *
308                  * It is possible for the DUPLICATED flag to already be
309                  * set when called via a flush operation because flush
310                  * operations may have to work on elements with delete_xid's
311                  * beyond the flush sync_xid.  In this situation we must
312                  * ensure that nchain is placed just after ochain in the
313                  * ownerq and that the DUPLICATED flag is set on nchain so
314                  * 'live' operations skip past it to the correct chain.
315                  *
316                  * The flusher understands the blockref synchronization state
317                  * for any stale chains by observing bref.mirror_tid, which
318                  * delete-duplicate replicates.
319                  *
320                  * WARNING! However, the case is disallowed when the flusher
321                  *          is allocating freemap space because this entails
322                  *          more than just adjusting a block table.
323                  */
324                 if (ochain->flags & HAMMER2_CHAIN_DUPLICATED) {
325                         KKASSERT(trans->flags & HAMMER2_TRANS_ISFLUSH);
326                         atomic_set_int(&nchain->flags,
327                                        HAMMER2_CHAIN_DUPLICATED);
328                 }
329                 if ((nchain->flags & HAMMER2_CHAIN_SNAPSHOT) == 0) {
330                         atomic_set_int(&ochain->flags,
331                                        HAMMER2_CHAIN_DUPLICATED);
332                 }
333                 core = ochain->core;
334                 atomic_add_int(&core->sharecnt, 1);
335
336                 spin_lock(&core->cst.spin);
337                 nchain->core = core;
338
339                 /*
340                  * Maintain ordering for refactor test so we don't skip over
341                  * a snapshot.  Also, during flushes, delete-duplications
342                  * for block-table updates can occur on ochains already
343                  * deleted (delete-duplicated by a later transaction), or
344                  * on forward-indexed ochains.  We must properly insert
345                  * nchain relative to ochain.
346                  */
347                 if (trans && trans->sync_xid < ochain->modify_xid) {
348                         TAILQ_INSERT_BEFORE(ochain, nchain, core_entry);
349                 } else {
350                         TAILQ_INSERT_AFTER(&core->ownerq, ochain,
351                                            nchain, core_entry);
352                 }
353                 spin_unlock(&core->cst.spin);
354         }
355 }
356
357 /*
358  * Add a reference to a chain element, preventing its destruction.
359  */
360 void
361 hammer2_chain_ref(hammer2_chain_t *chain)
362 {
363         atomic_add_int(&chain->refs, 1);
364 }
365
366 /*
367  * Insert the chain in the core rbtree.
368  *
369  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
370  * chain is a special case used by the flush code that is placed on the
371  * unstaged deleted list to avoid confusing the live view.
372  */
373 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
374 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
375 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
376
377 static
378 int
379 hammer2_chain_insert(hammer2_chain_core_t *above,
380                      hammer2_chain_t *ochain, hammer2_chain_t *nchain,
381                      int flags, int generation)
382 {
383         hammer2_chain_t *xchain;
384         int error = 0;
385
386         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
387                 spin_lock(&above->cst.spin);
388
389         /*
390          * Interlocked by spinlock, check for race
391          */
392         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
393             above->generation != generation) {
394                 error = EAGAIN;
395                 goto failed;
396         }
397
398         /*
399          * Insert nchain
400          *
401          * XXX BMAPPED might not be handled correctly for ochain/nchain
402          *     ordering in both DELETED cases (flush and non-flush-term),
403          *     so delete-duplicate code.
404          */
405         if (nchain->flags & HAMMER2_CHAIN_DELETED) {
406                 if (ochain && (ochain->flags & HAMMER2_CHAIN_BMAPPED)) {
407                         if (ochain->flags & HAMMER2_CHAIN_ONDBTREE) {
408                                 RB_REMOVE(hammer2_chain_tree,
409                                           &above->dbtree, ochain);
410                                 atomic_clear_int(&ochain->flags,
411                                                  HAMMER2_CHAIN_ONDBTREE);
412                                 TAILQ_INSERT_TAIL(&above->dbq,
413                                                   ochain, db_entry);
414                                 atomic_set_int(&ochain->flags,
415                                                 HAMMER2_CHAIN_ONDBQ);
416                         }
417                         /* clear BMAPPED (DBTREE, sometimes RBTREE) */
418                         atomic_clear_int(&ochain->flags, HAMMER2_CHAIN_BMAPPED);
419
420                         xchain = RB_INSERT(hammer2_chain_tree,
421                                            &above->dbtree, nchain);
422                         KKASSERT(xchain == NULL);
423                         atomic_set_int(&nchain->flags,
424                                        HAMMER2_CHAIN_ONDBTREE |
425                                        HAMMER2_CHAIN_BMAPPED);
426                 } else {
427                         TAILQ_INSERT_TAIL(&above->dbq, nchain, db_entry);
428                         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_ONDBQ);
429                 }
430         } else {
431                 xchain = RB_INSERT(hammer2_chain_tree, &above->rbtree, nchain);
432                 KASSERT(xchain == NULL,
433                         ("hammer2_chain_insert: collision %p", nchain));
434                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_ONRBTREE);
435         }
436
437         nchain->above = above;
438         ++above->chain_count;
439         ++above->generation;
440
441         /*
442          * We have to keep track of the effective live-view blockref count
443          * so the create code knows when to push an indirect block.
444          */
445         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
446                 atomic_add_int(&above->live_count, 1);
447 failed:
448         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
449                 spin_unlock(&above->cst.spin);
450         return error;
451 }
452
453 /*
454  * Drop the caller's reference to the chain.  When the ref count drops to
455  * zero this function will try to disassociate the chain from its parent and
456  * deallocate it, then recursely drop the parent using the implied ref
457  * from the chain's chain->parent.
458  */
459 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
460                                                struct h2_core_list *delayq);
461
462 void
463 hammer2_chain_drop(hammer2_chain_t *chain)
464 {
465         struct h2_core_list delayq;
466         hammer2_chain_t *scan;
467         u_int refs;
468         u_int need = 0;
469
470         if (hammer2_debug & 0x200000)
471                 Debugger("drop");
472
473         if (chain->flags & HAMMER2_CHAIN_FLUSH_CREATE)
474                 ++need;
475         if (chain->flags & HAMMER2_CHAIN_FLUSH_DELETE)
476                 ++need;
477         if (chain->flags & HAMMER2_CHAIN_MODIFIED)
478                 ++need;
479         KKASSERT(chain->refs > need);
480
481         TAILQ_INIT(&delayq);
482
483         while (chain) {
484                 refs = chain->refs;
485                 cpu_ccfence();
486                 KKASSERT(refs > 0);
487
488                 if (refs == 1) {
489                         chain = hammer2_chain_lastdrop(chain, &delayq);
490                 } else {
491                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
492                                 break;
493                         /* retry the same chain */
494                 }
495
496                 /*
497                  * When we've exhausted lastdrop chaining pull off of delayq.
498                  * chains on delayq are dead but are used to placehold other
499                  * chains which we added a ref to for the purpose of dropping.
500                  */
501                 if (chain == NULL) {
502                         hammer2_mount_t *hmp;
503
504                         if ((scan = TAILQ_FIRST(&delayq)) != NULL) {
505                                 chain = (void *)scan->data;
506                                 TAILQ_REMOVE(&delayq, scan, core_entry);
507                                 scan->flags &= ~HAMMER2_CHAIN_ALLOCATED;
508                                 hmp = scan->hmp;
509                                 scan->hmp = NULL;
510                                 kfree(scan, hmp->mchain);
511                         }
512                 }
513         }
514 }
515
516 /*
517  * Safe handling of the 1->0 transition on chain.  Returns a chain for
518  * recursive drop or NULL, possibly returning the same chain if the atomic
519  * op fails.
520  *
521  * Whem two chains need to be recursively dropped we use the chain
522  * we would otherwise free to placehold the additional chain.  It's a bit
523  * convoluted but we can't just recurse without potentially blowing out
524  * the kernel stack.
525  *
526  * The chain cannot be freed if it has a non-empty core (children) or
527  * it is not at the head of ownerq.
528  *
529  * The cst spinlock is allowed nest child-to-parent (not parent-to-child).
530  */
531 static
532 hammer2_chain_t *
533 hammer2_chain_lastdrop(hammer2_chain_t *chain, struct h2_core_list *delayq)
534 {
535         hammer2_pfsmount_t *pmp;
536         hammer2_mount_t *hmp;
537         hammer2_chain_core_t *above;
538         hammer2_chain_core_t *core;
539         hammer2_chain_t *rdrop1;
540         hammer2_chain_t *rdrop2;
541
542         /*
543          * Spinlock the core and check to see if it is empty.  If it is
544          * not empty we leave chain intact with refs == 0.  The elements
545          * in core->rbtree are associated with other chains contemporary
546          * with ours but not with our chain directly.
547          */
548         if ((core = chain->core) != NULL) {
549                 spin_lock(&core->cst.spin);
550
551                 /*
552                  * We can't free non-stale chains with children until we are
553                  * able to free the children because there might be a flush
554                  * dependency.  Flushes of stale children (which should also
555                  * have their deleted flag set) short-cut recursive flush
556                  * dependencies and can be freed here.  Any flushes which run
557                  * through stale children due to the flush synchronization
558                  * point should have a FLUSH_* bit set in the chain and not
559                  * reach lastdrop at this time.
560                  *
561                  * NOTE: We return (chain) on failure to retry.
562                  */
563                 if (core->chain_count &&
564                     (chain->flags & HAMMER2_CHAIN_DUPLICATED) == 0) {
565                         if (atomic_cmpset_int(&chain->refs, 1, 0))
566                                 chain = NULL;   /* success */
567                         spin_unlock(&core->cst.spin);
568                         return(chain);
569                 }
570                 /* no chains left under us */
571
572                 /*
573                  * Various parts of the code might be holding a ref on a
574                  * stale chain as a placemarker which must be iterated to
575                  * locate a later non-stale (live) chain.  We must be sure
576                  * NOT to free the later non-stale chain (which might have
577                  * no refs).  Otherwise mass confusion may result.
578                  *
579                  * The DUPLICATED flag tells us whether the chain is stale
580                  * or not, so the rule is that any chain whos DUPLICATED flag
581                  * is NOT set must also be at the head of the ownerq.
582                  *
583                  * Note that the DELETED flag is not involved.  That is, a
584                  * live chain can represent a deletion that has not yet been
585                  * flushed (or still has refs).
586                  */
587 #if 0
588                 if (TAILQ_NEXT(chain, core_entry) == NULL &&
589                     TAILQ_FIRST(&core->ownerq) != chain) {
590 #endif
591                 if ((chain->flags & HAMMER2_CHAIN_DUPLICATED) == 0 &&
592                     TAILQ_FIRST(&core->ownerq) != chain) {
593                         if (atomic_cmpset_int(&chain->refs, 1, 0))
594                                 chain = NULL;   /* success */
595                         spin_unlock(&core->cst.spin);
596                         return(chain);
597                 }
598         }
599
600         /*
601          * chain->core has no children left so no accessors can get to our
602          * chain from there.  Now we have to lock the above core to interlock
603          * remaining possible accessors that might bump chain's refs before
604          * we can safely drop chain's refs with intent to free the chain.
605          */
606         hmp = chain->hmp;
607         pmp = chain->pmp;       /* can be NULL */
608         rdrop1 = NULL;
609         rdrop2 = NULL;
610
611         /*
612          * Spinlock the parent and try to drop the last ref on chain.
613          * On success remove chain from its parent, otherwise return NULL.
614          *
615          * (normal core locks are top-down recursive but we define core
616          *  spinlocks as bottom-up recursive, so this is safe).
617          */
618         if ((above = chain->above) != NULL) {
619                 spin_lock(&above->cst.spin);
620                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
621                         /* 1->0 transition failed */
622                         spin_unlock(&above->cst.spin);
623                         if (core)
624                                 spin_unlock(&core->cst.spin);
625                         return(chain);  /* retry */
626                 }
627
628                 /*
629                  * 1->0 transition successful, remove chain from its
630                  * above core.
631                  */
632                 switch (chain->flags & (HAMMER2_CHAIN_ONRBTREE |
633                                         HAMMER2_CHAIN_ONDBTREE |
634                                         HAMMER2_CHAIN_ONDBQ)) {
635                 case HAMMER2_CHAIN_ONRBTREE:
636                         RB_REMOVE(hammer2_chain_tree, &above->rbtree, chain);
637                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
638                         break;
639                 case HAMMER2_CHAIN_ONDBTREE:
640                         RB_REMOVE(hammer2_chain_tree, &above->dbtree, chain);
641                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONDBTREE);
642                         break;
643                 case HAMMER2_CHAIN_ONDBQ:
644                         TAILQ_REMOVE(&above->dbq, chain, db_entry);
645                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONDBQ);
646                         break;
647                 default:
648                         panic("hammer2_chain_lastdrop: chain %p badflags %08x",
649                               chain, chain->flags);
650                         break;
651                 }
652
653                 --above->chain_count;
654                 chain->above = NULL;
655
656                 /*
657                  * If our chain was the last chain in the parent's core the
658                  * core is now empty and its parents might now be droppable.
659                  * Try to drop the first multi-homed parent by gaining a
660                  * ref on it here and then dropping it below.
661                  */
662                 if (above->chain_count == 0) {
663                         rdrop1 = TAILQ_FIRST(&above->ownerq);
664                         if (rdrop1 &&
665                             atomic_cmpset_int(&rdrop1->refs, 0, 1) == 0) {
666                                 rdrop1 = NULL;
667                         }
668                 }
669                 spin_unlock(&above->cst.spin);
670                 above = NULL;   /* safety */
671         }
672
673         /*
674          * Successful 1->0 transition and the chain can be destroyed now.
675          *
676          * We still have the core spinlock (if core is non-NULL), and core's
677          * chain_count is 0.  The above spinlock is gone.
678          *
679          * Remove chain from ownerq.  Once core has no more owners (and no
680          * children which is already the case) we can destroy core.
681          *
682          * If core has more owners we may be able to continue a bottom-up
683          * drop with our next sibling.
684          */
685         if (core) {
686                 chain->core = NULL;
687
688                 TAILQ_REMOVE(&core->ownerq, chain, core_entry);
689                 rdrop2 = TAILQ_FIRST(&core->ownerq);
690                 if (rdrop2 && atomic_cmpset_int(&rdrop2->refs, 0, 1) == 0)
691                         rdrop2 = NULL;
692                 spin_unlock(&core->cst.spin);
693
694                 /*
695                  * We can do the final 1->0 transition with an atomic op
696                  * after releasing core's spinlock.
697                  */
698                 if (atomic_fetchadd_int(&core->sharecnt, -1) == 1) {
699                         /*
700                          * On the 1->0 transition of core we can destroy
701                          * it.
702                          */
703                         KKASSERT(TAILQ_EMPTY(&core->ownerq));
704                         KKASSERT(RB_EMPTY(&core->rbtree) &&
705                                  RB_EMPTY(&core->dbtree) &&
706                                  TAILQ_EMPTY(&core->dbq) &&
707                                  core->chain_count == 0);
708                         KKASSERT(core->cst.count == 0);
709                         KKASSERT(core->cst.upgrade == 0);
710                         core->good = 0x5678;
711                         kfree(core, hmp->mchain);
712                 }
713                 core = NULL;    /* safety */
714         }
715
716         /*
717          * All spin locks are gone, finish freeing stuff.
718          */
719         KKASSERT((chain->flags & (HAMMER2_CHAIN_FLUSH_CREATE |
720                                   HAMMER2_CHAIN_FLUSH_DELETE |
721                                   HAMMER2_CHAIN_MODIFIED)) == 0);
722         hammer2_chain_drop_data(chain, 1);
723
724         KKASSERT(chain->dio == NULL);
725
726         /*
727          * Once chain resources are gone we can use the now dead chain
728          * structure to placehold what might otherwise require a recursive
729          * drop, because we have potentially two things to drop and can only
730          * return one directly.
731          */
732         if (rdrop1 && rdrop2) {
733                 KKASSERT(chain->flags & HAMMER2_CHAIN_ALLOCATED);
734                 chain->data = (void *)rdrop1;
735                 TAILQ_INSERT_TAIL(delayq, chain, core_entry);
736                 rdrop1 = NULL;
737         } else if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
738                 chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
739                 chain->hmp = NULL;
740                 kfree(chain, hmp->mchain);
741         }
742
743         /*
744          * Either or both can be NULL.  We already handled the case where
745          * both might not have been NULL.
746          */
747         if (rdrop1)
748                 return(rdrop1);
749         else
750                 return(rdrop2);
751 }
752
753 /*
754  * On either last lock release or last drop
755  */
756 static void
757 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
758 {
759         /*hammer2_mount_t *hmp = chain->hmp;*/
760
761         switch(chain->bref.type) {
762         case HAMMER2_BREF_TYPE_VOLUME:
763         case HAMMER2_BREF_TYPE_FREEMAP:
764                 if (lastdrop)
765                         chain->data = NULL;
766                 break;
767         default:
768                 KKASSERT(chain->data == NULL);
769                 break;
770         }
771 }
772
773 /*
774  * Ref and lock a chain element, acquiring its data with I/O if necessary,
775  * and specify how you would like the data to be resolved.
776  *
777  * Returns 0 on success or an error code if the data could not be acquired.
778  * The chain element is locked on return regardless of whether an error
779  * occurred or not.
780  *
781  * The lock is allowed to recurse, multiple locking ops will aggregate
782  * the requested resolve types.  Once data is assigned it will not be
783  * removed until the last unlock.
784  *
785  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
786  *                         (typically used to avoid device/logical buffer
787  *                          aliasing for data)
788  *
789  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
790  *                         the INITIAL-create state (indirect blocks only).
791  *
792  *                         Do not resolve data elements for DATA chains.
793  *                         (typically used to avoid device/logical buffer
794  *                          aliasing for data)
795  *
796  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
797  *
798  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
799  *                         it will be locked exclusive.
800  *
801  * NOTE: Embedded elements (volume header, inodes) are always resolved
802  *       regardless.
803  *
804  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
805  *       element will instantiate and zero its buffer, and flush it on
806  *       release.
807  *
808  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
809  *       so as not to instantiate a device buffer, which could alias against
810  *       a logical file buffer.  However, if ALWAYS is specified the
811  *       device buffer will be instantiated anyway.
812  *
813  * WARNING! If data must be fetched a shared lock will temporarily be
814  *          upgraded to exclusive.  However, a deadlock can occur if
815  *          the caller owns more than one shared lock.
816  */
817 int
818 hammer2_chain_lock(hammer2_chain_t *chain, int how)
819 {
820         hammer2_mount_t *hmp;
821         hammer2_chain_core_t *core;
822         hammer2_blockref_t *bref;
823         ccms_state_t ostate;
824         char *bdata;
825         int error;
826
827         /*
828          * Ref and lock the element.  Recursive locks are allowed.
829          */
830         if ((how & HAMMER2_RESOLVE_NOREF) == 0)
831                 hammer2_chain_ref(chain);
832         atomic_add_int(&chain->lockcnt, 1);
833
834         hmp = chain->hmp;
835         KKASSERT(hmp != NULL);
836
837         /*
838          * Get the appropriate lock.
839          */
840         core = chain->core;
841         if (how & HAMMER2_RESOLVE_SHARED)
842                 ccms_thread_lock(&core->cst, CCMS_STATE_SHARED);
843         else
844                 ccms_thread_lock(&core->cst, CCMS_STATE_EXCLUSIVE);
845
846         /*
847          * If we already have a valid data pointer no further action is
848          * necessary.
849          */
850         if (chain->data)
851                 return (0);
852
853         /*
854          * Do we have to resolve the data?
855          */
856         switch(how & HAMMER2_RESOLVE_MASK) {
857         case HAMMER2_RESOLVE_NEVER:
858                 return(0);
859         case HAMMER2_RESOLVE_MAYBE:
860                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
861                         return(0);
862                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
863                         return(0);
864 #if 0
865                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
866                         return(0);
867 #endif
868                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
869                         return(0);
870                 /* fall through */
871         case HAMMER2_RESOLVE_ALWAYS:
872                 break;
873         }
874
875         /*
876          * Upgrade to an exclusive lock so we can safely manipulate the
877          * buffer cache.  If another thread got to it before us we
878          * can just return.
879          */
880         ostate = ccms_thread_lock_upgrade(&core->cst);
881         if (chain->data) {
882                 ccms_thread_lock_downgrade(&core->cst, ostate);
883                 return (0);
884         }
885
886         /*
887          * We must resolve to a device buffer, either by issuing I/O or
888          * by creating a zero-fill element.  We do not mark the buffer
889          * dirty when creating a zero-fill element (the hammer2_chain_modify()
890          * API must still be used to do that).
891          *
892          * The device buffer is variable-sized in powers of 2 down
893          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
894          * chunk always contains buffers of the same size. (XXX)
895          *
896          * The minimum physical IO size may be larger than the variable
897          * block size.
898          */
899         bref = &chain->bref;
900
901         /*
902          * The getblk() optimization can only be used on newly created
903          * elements if the physical block size matches the request.
904          */
905         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
906                 error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
907                                         &chain->dio);
908         } else {
909                 error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
910                                          &chain->dio);
911                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
912         }
913
914         if (error) {
915                 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
916                         (intmax_t)bref->data_off, error);
917                 hammer2_io_bqrelse(&chain->dio);
918                 ccms_thread_lock_downgrade(&core->cst, ostate);
919                 return (error);
920         }
921
922 #if 0
923         /*
924          * No need for this, always require that hammer2_chain_modify()
925          * be called before any modifying operations.
926          */
927         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) &&
928             !hammer2_io_isdirty(chain->dio)) {
929                 hammer2_io_setdirty(chain->dio);
930         }
931 #endif
932
933         /*
934          * We can clear the INITIAL state now, we've resolved the buffer
935          * to zeros and marked it dirty with hammer2_io_new().
936          */
937         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
938         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
939                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
940         }
941
942         /*
943          * Setup the data pointer, either pointing it to an embedded data
944          * structure and copying the data from the buffer, or pointing it
945          * into the buffer.
946          *
947          * The buffer is not retained when copying to an embedded data
948          * structure in order to avoid potential deadlocks or recursions
949          * on the same physical buffer.
950          */
951         switch (bref->type) {
952         case HAMMER2_BREF_TYPE_VOLUME:
953         case HAMMER2_BREF_TYPE_FREEMAP:
954                 /*
955                  * Copy data from bp to embedded buffer
956                  */
957                 panic("hammer2_chain_lock: called on unresolved volume header");
958                 break;
959         case HAMMER2_BREF_TYPE_INODE:
960         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
961         case HAMMER2_BREF_TYPE_INDIRECT:
962         case HAMMER2_BREF_TYPE_DATA:
963         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
964         default:
965                 /*
966                  * Point data at the device buffer and leave dio intact.
967                  */
968                 chain->data = (void *)bdata;
969                 break;
970         }
971         ccms_thread_lock_downgrade(&core->cst, ostate);
972         return (0);
973 }
974
975 /*
976  * This basically calls hammer2_io_breadcb() but does some pre-processing
977  * of the chain first to handle certain cases.
978  */
979 void
980 hammer2_chain_load_async(hammer2_cluster_t *cluster,
981                          void (*callback)(hammer2_io_t *dio,
982                                           hammer2_cluster_t *cluster,
983                                           hammer2_chain_t *chain,
984                                           void *arg_p, off_t arg_o),
985                          void *arg_p)
986 {
987         hammer2_chain_t *chain;
988         hammer2_mount_t *hmp;
989         struct hammer2_io *dio;
990         hammer2_blockref_t *bref;
991         int error;
992         int i;
993
994         /*
995          * If no chain specified see if any chain data is available and use
996          * that, otherwise begin an I/O iteration using the first chain.
997          */
998         chain = NULL;
999         for (i = 0; i < cluster->nchains; ++i) {
1000                 chain = cluster->array[i];
1001                 if (chain && chain->data)
1002                         break;
1003         }
1004         if (i == cluster->nchains) {
1005                 chain = cluster->array[0];
1006                 i = 0;
1007         }
1008
1009         if (chain->data) {
1010                 callback(NULL, cluster, chain, arg_p, (off_t)i);
1011                 return;
1012         }
1013
1014         /*
1015          * We must resolve to a device buffer, either by issuing I/O or
1016          * by creating a zero-fill element.  We do not mark the buffer
1017          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1018          * API must still be used to do that).
1019          *
1020          * The device buffer is variable-sized in powers of 2 down
1021          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1022          * chunk always contains buffers of the same size. (XXX)
1023          *
1024          * The minimum physical IO size may be larger than the variable
1025          * block size.
1026          */
1027         bref = &chain->bref;
1028         hmp = chain->hmp;
1029
1030         /*
1031          * The getblk() optimization can only be used on newly created
1032          * elements if the physical block size matches the request.
1033          */
1034         if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
1035             chain->bytes == hammer2_devblksize(chain->bytes)) {
1036                 error = hammer2_io_new(hmp, bref->data_off, chain->bytes, &dio);
1037                 KKASSERT(error == 0);
1038                 callback(dio, cluster, chain, arg_p, (off_t)i);
1039                 return;
1040         }
1041
1042         /*
1043          * Otherwise issue a read
1044          */
1045         hammer2_adjreadcounter(&chain->bref, chain->bytes);
1046         hammer2_io_breadcb(hmp, bref->data_off, chain->bytes,
1047                            callback, cluster, chain, arg_p, (off_t)i);
1048 }
1049
1050 /*
1051  * Unlock and deref a chain element.
1052  *
1053  * On the last lock release any non-embedded data (chain->dio) will be
1054  * retired.
1055  */
1056 void
1057 hammer2_chain_unlock(hammer2_chain_t *chain)
1058 {
1059         hammer2_chain_core_t *core = chain->core;
1060         ccms_state_t ostate;
1061         long *counterp;
1062         u_int lockcnt;
1063
1064         /*
1065          * The core->cst lock can be shared across several chains so we
1066          * need to track the per-chain lockcnt separately.
1067          *
1068          * If multiple locks are present (or being attempted) on this
1069          * particular chain we can just unlock, drop refs, and return.
1070          *
1071          * Otherwise fall-through on the 1->0 transition.
1072          */
1073         for (;;) {
1074                 lockcnt = chain->lockcnt;
1075                 KKASSERT(lockcnt > 0);
1076                 cpu_ccfence();
1077                 if (lockcnt > 1) {
1078                         if (atomic_cmpset_int(&chain->lockcnt,
1079                                               lockcnt, lockcnt - 1)) {
1080                                 ccms_thread_unlock(&core->cst);
1081                                 hammer2_chain_drop(chain);
1082                                 return;
1083                         }
1084                 } else {
1085                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1086                                 break;
1087                 }
1088                 /* retry */
1089         }
1090
1091         /*
1092          * On the 1->0 transition we upgrade the core lock (if necessary)
1093          * to exclusive for terminal processing.  If after upgrading we find
1094          * that lockcnt is non-zero, another thread is racing us and will
1095          * handle the unload for us later on, so just cleanup and return
1096          * leaving the data/io intact
1097          *
1098          * Otherwise if lockcnt is still 0 it is possible for it to become
1099          * non-zero and race, but since we hold the core->cst lock
1100          * exclusively all that will happen is that the chain will be
1101          * reloaded after we unload it.
1102          */
1103         ostate = ccms_thread_lock_upgrade(&core->cst);
1104         if (chain->lockcnt) {
1105                 ccms_thread_unlock_upgraded(&core->cst, ostate);
1106                 hammer2_chain_drop(chain);
1107                 return;
1108         }
1109
1110         /*
1111          * Shortcut the case if the data is embedded or not resolved.
1112          *
1113          * Do NOT NULL out chain->data (e.g. inode data), it might be
1114          * dirty.
1115          */
1116         if (chain->dio == NULL) {
1117                 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
1118                         hammer2_chain_drop_data(chain, 0);
1119                 ccms_thread_unlock_upgraded(&core->cst, ostate);
1120                 hammer2_chain_drop(chain);
1121                 return;
1122         }
1123
1124         /*
1125          * Statistics
1126          */
1127         if (hammer2_io_isdirty(chain->dio) == 0) {
1128                 ;
1129         } else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
1130                 switch(chain->bref.type) {
1131                 case HAMMER2_BREF_TYPE_DATA:
1132                         counterp = &hammer2_ioa_file_write;
1133                         break;
1134                 case HAMMER2_BREF_TYPE_INODE:
1135                         counterp = &hammer2_ioa_meta_write;
1136                         break;
1137                 case HAMMER2_BREF_TYPE_INDIRECT:
1138                         counterp = &hammer2_ioa_indr_write;
1139                         break;
1140                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1141                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1142                         counterp = &hammer2_ioa_fmap_write;
1143                         break;
1144                 default:
1145                         counterp = &hammer2_ioa_volu_write;
1146                         break;
1147                 }
1148                 *counterp += chain->bytes;
1149         } else {
1150                 switch(chain->bref.type) {
1151                 case HAMMER2_BREF_TYPE_DATA:
1152                         counterp = &hammer2_iod_file_write;
1153                         break;
1154                 case HAMMER2_BREF_TYPE_INODE:
1155                         counterp = &hammer2_iod_meta_write;
1156                         break;
1157                 case HAMMER2_BREF_TYPE_INDIRECT:
1158                         counterp = &hammer2_iod_indr_write;
1159                         break;
1160                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1161                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1162                         counterp = &hammer2_iod_fmap_write;
1163                         break;
1164                 default:
1165                         counterp = &hammer2_iod_volu_write;
1166                         break;
1167                 }
1168                 *counterp += chain->bytes;
1169         }
1170
1171         /*
1172          * Clean out the dio.
1173          *
1174          * If a device buffer was used for data be sure to destroy the
1175          * buffer when we are done to avoid aliases (XXX what about the
1176          * underlying VM pages?).
1177          *
1178          * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
1179          *       is possible.
1180          *
1181          * NOTE: The isdirty check tracks whether we have to bdwrite() the
1182          *       buffer or not.  The buffer might already be dirty.  The
1183          *       flag is re-set when chain_modify() is called, even if
1184          *       MODIFIED is already set, allowing the OS to retire the
1185          *       buffer independent of a hammer2 flush.
1186          */
1187         chain->data = NULL;
1188         if ((chain->flags & HAMMER2_CHAIN_IOFLUSH) &&
1189             hammer2_io_isdirty(chain->dio)) {
1190                 hammer2_io_bawrite(&chain->dio);
1191         } else {
1192                 hammer2_io_bqrelse(&chain->dio);
1193         }
1194         ccms_thread_unlock_upgraded(&core->cst, ostate);
1195         hammer2_chain_drop(chain);
1196 }
1197
1198 /*
1199  * This counts the number of live blockrefs in a block array and
1200  * also calculates the point at which all remaining blockrefs are empty.
1201  * This routine can only be called on a live chain (DUPLICATED flag not set).
1202  *
1203  * NOTE: Flag is not set until after the count is complete, allowing
1204  *       callers to test the flag without holding the spinlock.
1205  *
1206  * NOTE: If base is NULL the related chain is still in the INITIAL
1207  *       state and there are no blockrefs to count.
1208  *
1209  * NOTE: live_count may already have some counts accumulated due to
1210  *       creation and deletion and could even be initially negative.
1211  */
1212 void
1213 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1214                          hammer2_blockref_t *base, int count)
1215 {
1216         hammer2_chain_core_t *core = chain->core;
1217
1218         KKASSERT((chain->flags & HAMMER2_CHAIN_DUPLICATED) == 0);
1219
1220         spin_lock(&core->cst.spin);
1221         if ((core->flags & HAMMER2_CORE_COUNTEDBREFS) == 0) {
1222                 if (base) {
1223                         while (--count >= 0) {
1224                                 if (base[count].type)
1225                                         break;
1226                         }
1227                         core->live_zero = count + 1;
1228                         while (count >= 0) {
1229                                 if (base[count].type)
1230                                         atomic_add_int(&core->live_count, 1);
1231                                 --count;
1232                         }
1233                 } else {
1234                         core->live_zero = 0;
1235                 }
1236                 /* else do not modify live_count */
1237                 atomic_set_int(&core->flags, HAMMER2_CORE_COUNTEDBREFS);
1238         }
1239         spin_unlock(&core->cst.spin);
1240 }
1241
1242 /*
1243  * Resize the chain's physical storage allocation in-place.  This may
1244  * replace the passed-in chain with a new chain.
1245  *
1246  * Chains can be resized smaller without reallocating the storage.
1247  * Resizing larger will reallocate the storage.
1248  *
1249  * Must be passed an exclusively locked parent and chain, returns a new
1250  * exclusively locked chain at the same index and unlocks the old chain.
1251  * Flushes the buffer if necessary.
1252  *
1253  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1254  * to avoid instantiating a device buffer that conflicts with the vnode
1255  * data buffer.  That is, the passed-in bp is a logical buffer, whereas
1256  * any chain-oriented bp would be a device buffer.
1257  *
1258  * XXX return error if cannot resize.
1259  */
1260 void
1261 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
1262                      hammer2_chain_t *parent, hammer2_chain_t **chainp,
1263                      int nradix, int flags)
1264 {
1265         hammer2_mount_t *hmp;
1266         hammer2_chain_t *chain;
1267         size_t obytes;
1268         size_t nbytes;
1269
1270         chain = *chainp;
1271         hmp = chain->hmp;
1272
1273         /*
1274          * Only data and indirect blocks can be resized for now.
1275          * (The volu root, inodes, and freemap elements use a fixed size).
1276          */
1277         KKASSERT(chain != &hmp->vchain);
1278         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1279                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
1280
1281         /*
1282          * Nothing to do if the element is already the proper size
1283          */
1284         obytes = chain->bytes;
1285         nbytes = 1U << nradix;
1286         if (obytes == nbytes)
1287                 return;
1288
1289         /*
1290          * Delete the old chain and duplicate it at the same (parent, index),
1291          * returning a new chain.  This allows the old chain to still be
1292          * used by the flush code.  The new chain will be returned in a
1293          * modified state.
1294          *
1295          * The parent does not have to be locked for the delete/duplicate call,
1296          * but is in this particular code path.
1297          *
1298          * NOTE: If we are not crossing a synchronization point the
1299          *       duplication code will simply reuse the existing chain
1300          *       structure.
1301          */
1302         hammer2_chain_delete_duplicate(trans, &chain, 0);
1303
1304         /*
1305          * Relocate the block, even if making it smaller (because different
1306          * block sizes may be in different regions).
1307          *
1308          * (data blocks only, we aren't copying the storage here).
1309          */
1310         hammer2_freemap_alloc(trans, chain, nbytes);
1311         chain->bytes = nbytes;
1312         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_FORCECOW);
1313         /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1314
1315         /*
1316          * For now just support it on DATA chains (and not on indirect
1317          * blocks).
1318          */
1319         KKASSERT(chain->dio == NULL);
1320
1321         *chainp = chain;
1322 }
1323
1324 #if 0
1325
1326 /*
1327  * REMOVED - see cluster code
1328  *
1329  * Set a chain modified, making it read-write and duplicating it if necessary.
1330  * This function will assign a new physical block to the chain if necessary
1331  *
1332  * Duplication of already-modified chains is possible when the modification
1333  * crosses a flush synchronization boundary.
1334  *
1335  * Non-data blocks - The chain should be locked to at least the RESOLVE_MAYBE
1336  *                   level or the COW operation will not work.
1337  *
1338  * Data blocks     - The chain is usually locked RESOLVE_NEVER so as not to
1339  *                   run the data through the device buffers.
1340  *
1341  * This function may return a different chain than was passed, in which case
1342  * the old chain will be unlocked and the new chain will be locked.
1343  *
1344  * ip->chain may be adjusted by hammer2_chain_modify_ip().
1345  */
1346 hammer2_inode_data_t *
1347 hammer2_chain_modify_ip(hammer2_trans_t *trans, hammer2_inode_t *ip,
1348                         hammer2_chain_t **chainp, int flags)
1349 {
1350         atomic_set_int(&ip->flags, HAMMER2_INODE_MODIFIED);
1351         hammer2_chain_modify(trans, chainp, flags);
1352         if (ip->chain != *chainp)
1353                 hammer2_inode_repoint(ip, NULL, *chainp);
1354         if (ip->vp)
1355                 vsetisdirty(ip->vp);
1356         return(&ip->chain->data->ipdata);
1357 }
1358
1359 #endif
1360
1361 void
1362 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t **chainp,
1363                      int flags)
1364 {
1365         hammer2_mount_t *hmp;
1366         hammer2_chain_t *chain;
1367         hammer2_io_t *dio;
1368         int error;
1369         int wasinitial;
1370         char *bdata;
1371
1372         chain = *chainp;
1373         hmp = chain->hmp;
1374
1375         /*
1376          * data is not optional for freemap chains (we must always be sure
1377          * to copy the data on COW storage allocations).
1378          */
1379         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1380             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1381                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1382                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1383         }
1384
1385         /*
1386          * Determine if a delete-duplicate is needed.
1387          *
1388          * (a) Modify_tid is part of a prior flush
1389          * (b) Transaction is concurrent with a flush (has higher tid)
1390          * (c) and chain is not in the initial state (freshly created)
1391          * (d) and caller didn't request an in-place modification.
1392          *
1393          * The freemap and volume header special chains are never D-Dd.
1394          */
1395         if (chain->modify_xid != trans->sync_xid &&        /* cross boundary */
1396             (flags & HAMMER2_MODIFY_INPLACE) == 0) {       /* from d-d */
1397                 if (chain != &hmp->fchain && chain != &hmp->vchain) {
1398                         KKASSERT((flags & HAMMER2_MODIFY_ASSERTNOCOPY) == 0);
1399                         hammer2_chain_delete_duplicate(trans, chainp, 0);
1400                         chain = *chainp;
1401                 }
1402         }
1403
1404         /*
1405          * Data must be resolved if already assigned unless explicitly
1406          * flagged otherwise.
1407          */
1408         if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1409             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1410                 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1411                 hammer2_chain_unlock(chain);
1412         }
1413
1414         /*
1415          * Otherwise do initial-chain handling.  Set MODIFIED to indicate
1416          * that the chain has been modified.  Set FLUSH_CREATE to flush
1417          * the new blockref (the D-D set FLUSH_DELETE on the old chain to
1418          * delete the old blockref).
1419          */
1420         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1421                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1422                 hammer2_chain_ref(chain);
1423                 hammer2_pfs_memory_inc(chain->pmp);
1424         }
1425         if ((chain->flags & HAMMER2_CHAIN_FLUSH_CREATE) == 0) {
1426                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_FLUSH_CREATE);
1427                 hammer2_chain_ref(chain);
1428         }
1429
1430         /*
1431          * The modification or re-modification requires an allocation and
1432          * possible COW.
1433          *
1434          * We normally always allocate new storage here.  If storage exists
1435          * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1436          */
1437         if (chain != &hmp->vchain && chain != &hmp->fchain) {
1438                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1439                      ((flags & HAMMER2_MODIFY_NOREALLOC) == 0 &&
1440                       chain->modify_xid != trans->sync_xid)
1441                 ) {
1442                         hammer2_freemap_alloc(trans, chain, chain->bytes);
1443                         /* XXX failed allocation */
1444                 } else if (chain->flags & HAMMER2_CHAIN_FORCECOW) {
1445                         hammer2_freemap_alloc(trans, chain, chain->bytes);
1446                         /* XXX failed allocation */
1447                 }
1448                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_FORCECOW);
1449         }
1450
1451         /*
1452          * Update modify_xid.  XXX special-case vchain/fchain because they
1453          * are always modified in-place.  Otherwise the chain being modified
1454          * must not be part of a future transaction.
1455          */
1456         if (chain == &hmp->vchain || chain == &hmp->fchain) {
1457                 if (chain->modify_xid <= trans->sync_xid)
1458                         chain->modify_xid = trans->sync_xid;
1459         } else {
1460                 KKASSERT(chain->modify_xid <= trans->sync_xid);
1461                 chain->modify_xid = trans->sync_xid;
1462         }
1463
1464         /*
1465          * Do not COW BREF_TYPE_DATA when OPTDATA is set.  This is because
1466          * data modifications are done via the logical buffer cache so COWing
1467          * it here would result in unnecessary extra copies (and possibly extra
1468          * block reallocations).  The INITIAL flag remains unchanged in this
1469          * situation.
1470          *
1471          * (This is a bit of a hack).
1472          */
1473         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1474             (flags & HAMMER2_MODIFY_OPTDATA)) {
1475                 goto skip2;
1476         }
1477
1478         /*
1479          * Clearing the INITIAL flag (for indirect blocks) indicates that
1480          * we've processed the uninitialized storage allocation.
1481          *
1482          * If this flag is already clear we are likely in a copy-on-write
1483          * situation but we have to be sure NOT to bzero the storage if
1484          * no data is present.
1485          */
1486         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1487                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1488                 wasinitial = 1;
1489         } else {
1490                 wasinitial = 0;
1491         }
1492
1493         /*
1494          * Instantiate data buffer and possibly execute COW operation
1495          */
1496         switch(chain->bref.type) {
1497         case HAMMER2_BREF_TYPE_VOLUME:
1498         case HAMMER2_BREF_TYPE_FREEMAP:
1499                 /*
1500                  * The data is embedded, no copy-on-write operation is
1501                  * needed.
1502                  */
1503                 KKASSERT(chain->dio == NULL);
1504                 break;
1505         case HAMMER2_BREF_TYPE_INODE:
1506         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1507         case HAMMER2_BREF_TYPE_DATA:
1508         case HAMMER2_BREF_TYPE_INDIRECT:
1509         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1510                 /*
1511                  * Perform the copy-on-write operation
1512                  *
1513                  * zero-fill or copy-on-write depending on whether
1514                  * chain->data exists or not and set the dirty state for
1515                  * the new buffer.  hammer2_io_new() will handle the
1516                  * zero-fill.
1517                  */
1518                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1519
1520                 if (wasinitial) {
1521                         error = hammer2_io_new(hmp, chain->bref.data_off,
1522                                                chain->bytes, &dio);
1523                 } else {
1524                         error = hammer2_io_bread(hmp, chain->bref.data_off,
1525                                                  chain->bytes, &dio);
1526                 }
1527                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1528                 KKASSERT(error == 0);
1529
1530                 bdata = hammer2_io_data(dio, chain->bref.data_off);
1531
1532                 if (chain->data) {
1533                         KKASSERT(chain->dio != NULL);
1534                         if (chain->data != (void *)bdata) {
1535                                 bcopy(chain->data, bdata, chain->bytes);
1536                         }
1537                 } else if (wasinitial == 0) {
1538                         /*
1539                          * We have a problem.  We were asked to COW but
1540                          * we don't have any data to COW with!
1541                          */
1542                         panic("hammer2_chain_modify: having a COW %p\n",
1543                               chain);
1544                 }
1545
1546                 /*
1547                  * Retire the old buffer, replace with the new
1548                  */
1549                 if (chain->dio)
1550                         hammer2_io_brelse(&chain->dio);
1551                 chain->data = (void *)bdata;
1552                 chain->dio = dio;
1553                 hammer2_io_setdirty(dio);       /* modified by bcopy above */
1554                 break;
1555         default:
1556                 panic("hammer2_chain_modify: illegal non-embedded type %d",
1557                       chain->bref.type);
1558                 break;
1559
1560         }
1561 skip2:
1562         hammer2_chain_setsubmod(trans, chain);
1563 }
1564
1565 /*
1566  * Volume header data locks
1567  */
1568 void
1569 hammer2_voldata_lock(hammer2_mount_t *hmp)
1570 {
1571         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1572 }
1573
1574 void
1575 hammer2_voldata_unlock(hammer2_mount_t *hmp)
1576 {
1577         lockmgr(&hmp->vollk, LK_RELEASE);
1578 }
1579
1580 void
1581 hammer2_voldata_modify(hammer2_mount_t *hmp)
1582 {
1583         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1584                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1585                 hammer2_chain_ref(&hmp->vchain);
1586         }
1587 }
1588
1589 /*
1590  * This function returns the chain at the nearest key within the specified
1591  * range with the highest delete_xid.  The core spinlock must be held on
1592  * call and the returned chain will be referenced but not locked.
1593  *
1594  * The returned chain may or may not be in a deleted state.  Note that
1595  * live chains have a delete_xid = XID_MAX.
1596  *
1597  * This function will recurse through chain->rbtree as necessary and will
1598  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1599  * the iteration value is less than the current value of *key_nextp.
1600  *
1601  * The caller should use (*key_nextp) to calculate the actual range of
1602  * the returned element, which will be (key_beg to *key_nextp - 1), because
1603  * there might be another element which is superior to the returned element
1604  * and overlaps it.
1605  *
1606  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1607  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1608  * it will wind up being (key_end + 1).
1609  */
1610 struct hammer2_chain_find_info {
1611         hammer2_chain_t         *best;
1612         hammer2_key_t           key_beg;
1613         hammer2_key_t           key_end;
1614         hammer2_key_t           key_next;
1615 };
1616
1617 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1618 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1619
1620 static
1621 hammer2_chain_t *
1622 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1623                           hammer2_key_t key_beg, hammer2_key_t key_end)
1624 {
1625         struct hammer2_chain_find_info info;
1626
1627         info.best = NULL;
1628         info.key_beg = key_beg;
1629         info.key_end = key_end;
1630         info.key_next = *key_nextp;
1631
1632         KKASSERT(parent->core->good == 0x1234);
1633         RB_SCAN(hammer2_chain_tree, &parent->core->rbtree,
1634                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1635                 &info);
1636         *key_nextp = info.key_next;
1637 #if 0
1638         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1639                 parent, key_beg, key_end, *key_nextp);
1640 #endif
1641
1642         return (info.best);
1643 }
1644
1645 /*
1646  * Find a deleted chain covering a block table entry.  Be careful to deal
1647  * with the race condition where the block table has been updated but the
1648  * chain has not yet been removed from dbtree (due to multiple parents having
1649  * to be updated).
1650  */
1651 static
1652 hammer2_chain_t *
1653 hammer2_chain_find_deleted(hammer2_chain_t *parent,
1654                           hammer2_key_t key_beg, hammer2_key_t key_end)
1655 {
1656         struct hammer2_chain_find_info info;
1657         hammer2_chain_t *child;
1658
1659         info.best = NULL;
1660         info.key_beg = key_beg;
1661         info.key_end = key_end;
1662         info.key_next = 0;
1663
1664         KKASSERT(parent->core->good == 0x1234);
1665         RB_SCAN(hammer2_chain_tree, &parent->core->dbtree,
1666                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1667                 &info);
1668         if ((child = info.best) != NULL) {
1669                 if (child->delete_xid <= parent->update_xlo)
1670                         child = NULL;
1671         }
1672         return child;
1673 }
1674
1675 static
1676 int
1677 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1678 {
1679         struct hammer2_chain_find_info *info = data;
1680         hammer2_key_t child_beg;
1681         hammer2_key_t child_end;
1682
1683         child_beg = child->bref.key;
1684         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1685
1686         if (child_end < info->key_beg)
1687                 return(-1);
1688         if (child_beg > info->key_end)
1689                 return(1);
1690         return(0);
1691 }
1692
1693 static
1694 int
1695 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1696 {
1697         struct hammer2_chain_find_info *info = data;
1698         hammer2_chain_t *best;
1699         hammer2_key_t child_end;
1700
1701         /*
1702          * WARNING! Do not discard DUPLICATED chains, it is possible that
1703          *          we are catching an insertion half-way done.  If a
1704          *          duplicated chain turns out to be the best choice the
1705          *          caller will re-check its flags after locking it.
1706          *
1707          * WARNING! Layerq is scanned forwards, exact matches should keep
1708          *          the existing info->best.
1709          */
1710         if ((best = info->best) == NULL) {
1711                 /*
1712                  * No previous best.  Assign best
1713                  */
1714                 info->best = child;
1715         } else if (best->bref.key <= info->key_beg &&
1716                    child->bref.key <= info->key_beg) {
1717                 /*
1718                  * If our current best is flush with key_beg and child is
1719                  * also flush with key_beg choose based on delete_xid.
1720                  *
1721                  * key_next will automatically be limited to the smaller of
1722                  * the two end-points.
1723                  */
1724                 if (child->delete_xid > best->delete_xid)
1725                         info->best = child;
1726         } else if (child->bref.key < best->bref.key) {
1727                 /*
1728                  * Child has a nearer key and best is not flush with key_beg.
1729                  * Truncate key_next to the old best key iff it had a better
1730                  * delete_xid.
1731                  */
1732                 info->best = child;
1733                 if (best->delete_xid >= child->delete_xid &&
1734                     (info->key_next > best->bref.key || info->key_next == 0))
1735                         info->key_next = best->bref.key;
1736         } else if (child->bref.key == best->bref.key) {
1737                 /*
1738                  * If our current best is flush with the child then choose
1739                  * based on delete_xid.
1740                  *
1741                  * key_next will automatically be limited to the smaller of
1742                  * the two end-points.
1743                  */
1744                 if (child->delete_xid > best->delete_xid)
1745                         info->best = child;
1746         } else {
1747                 /*
1748                  * Keep the current best but truncate key_next to the child's
1749                  * base iff the child has a higher delete_xid.
1750                  *
1751                  * key_next will also automatically be limited to the smaller
1752                  * of the two end-points (probably not necessary for this case
1753                  * but we do it anyway).
1754                  */
1755                 if (child->delete_xid >= best->delete_xid &&
1756                     (info->key_next > child->bref.key || info->key_next == 0))
1757                         info->key_next = child->bref.key;
1758         }
1759
1760         /*
1761          * Always truncate key_next based on child's end-of-range.
1762          */
1763         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1764         if (child_end && (info->key_next > child_end || info->key_next == 0))
1765                 info->key_next = child_end;
1766
1767         return(0);
1768 }
1769
1770 /*
1771  * Retrieve the specified chain from a media blockref, creating the
1772  * in-memory chain structure which reflects it.  modify_xid will be
1773  * set to the min value which forces any modifications to issue a
1774  * delete-duplicate.
1775  *
1776  * To handle insertion races pass the INSERT_RACE flag along with the
1777  * generation number of the core.  NULL will be returned if the generation
1778  * number changes before we have a chance to insert the chain.  Insert
1779  * races can occur because the parent might be held shared.
1780  *
1781  * Caller must hold the parent locked shared or exclusive since we may
1782  * need the parent's bref array to find our block.
1783  *
1784  * WARNING! chain->pmp is left NULL if the bref represents a PFS mount
1785  *          point.
1786  */
1787 hammer2_chain_t *
1788 hammer2_chain_get(hammer2_chain_t *parent, int generation,
1789                   hammer2_blockref_t *bref)
1790 {
1791         hammer2_mount_t *hmp = parent->hmp;
1792         hammer2_chain_core_t *above = parent->core;
1793         hammer2_chain_t *chain;
1794         int error;
1795
1796         /*
1797          * Allocate a chain structure representing the existing media
1798          * entry.  Resulting chain has one ref and is not locked.
1799          */
1800         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1801                 chain = hammer2_chain_alloc(hmp, NULL, NULL, bref);
1802         else
1803                 chain = hammer2_chain_alloc(hmp, parent->pmp, NULL, bref);
1804         hammer2_chain_core_alloc(NULL, chain, NULL);
1805         /* ref'd chain returned */
1806
1807         /*
1808          * Set modify_xid and update_xlo to the chain's synchronization
1809          * point from the media.
1810          */
1811         chain->modify_xid = HAMMER2_XID_MIN;
1812         chain->update_xlo = HAMMER2_XID_MIN;
1813         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1814
1815         /*
1816          * Link the chain into its parent.  A spinlock is required to safely
1817          * access the RBTREE, and it is possible to collide with another
1818          * hammer2_chain_get() operation because the caller might only hold
1819          * a shared lock on the parent.
1820          */
1821         KKASSERT(parent->refs > 0);
1822         error = hammer2_chain_insert(above, NULL, chain,
1823                                      HAMMER2_CHAIN_INSERT_SPIN |
1824                                      HAMMER2_CHAIN_INSERT_RACE,
1825                                      generation);
1826         if (error) {
1827                 KKASSERT((chain->flags & (HAMMER2_CHAIN_ONRBTREE |
1828                                           HAMMER2_CHAIN_ONDBTREE |
1829                                           HAMMER2_CHAIN_ONDBQ)) == 0);
1830                 kprintf("chain %p get race\n", chain);
1831                 hammer2_chain_drop(chain);
1832                 chain = NULL;
1833         } else {
1834                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1835         }
1836
1837         /*
1838          * Return our new chain referenced but not locked, or NULL if
1839          * a race occurred.
1840          */
1841         return (chain);
1842 }
1843
1844 /*
1845  * Lookup initialization/completion API
1846  */
1847 hammer2_chain_t *
1848 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1849 {
1850         if (flags & HAMMER2_LOOKUP_SHARED) {
1851                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1852                                            HAMMER2_RESOLVE_SHARED);
1853         } else {
1854                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1855         }
1856         return (parent);
1857 }
1858
1859 void
1860 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1861 {
1862         if (parent)
1863                 hammer2_chain_unlock(parent);
1864 }
1865
1866 static
1867 hammer2_chain_t *
1868 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1869 {
1870         hammer2_chain_t *oparent;
1871         hammer2_chain_t *bparent;
1872         hammer2_chain_t *nparent;
1873         hammer2_chain_core_t *above;
1874
1875         oparent = *parentp;
1876         above = oparent->above;
1877
1878         spin_lock(&above->cst.spin);
1879         bparent = TAILQ_FIRST(&above->ownerq);
1880         hammer2_chain_ref(bparent);
1881
1882         /*
1883          * Be careful of order, oparent must be unlocked before nparent
1884          * is locked below to avoid a deadlock.  We might as well delay its
1885          * unlocking until we conveniently no longer have the spinlock (instead
1886          * of cycling the spinlock).
1887          *
1888          * Theoretically our ref on bparent should prevent elements of the
1889          * following chain from going away and prevent above from going away,
1890          * but we still need the spinlock to safely scan the list.
1891          */
1892         for (;;) {
1893                 nparent = bparent;
1894                 while (nparent->flags & HAMMER2_CHAIN_DUPLICATED)
1895                         nparent = TAILQ_NEXT(nparent, core_entry);
1896                 hammer2_chain_ref(nparent);
1897                 spin_unlock(&above->cst.spin);
1898
1899                 if (oparent) {
1900                         hammer2_chain_unlock(oparent);
1901                         oparent = NULL;
1902                 }
1903                 hammer2_chain_lock(nparent, how | HAMMER2_RESOLVE_NOREF);
1904                 hammer2_chain_drop(bparent);
1905
1906                 /*
1907                  * We might have raced a delete-duplicate.
1908                  */
1909                 if ((nparent->flags & HAMMER2_CHAIN_DUPLICATED) == 0)
1910                         break;
1911                 bparent = nparent;
1912                 hammer2_chain_ref(bparent);
1913                 hammer2_chain_unlock(nparent);
1914                 spin_lock(&above->cst.spin);
1915                 /* retry */
1916         }
1917         *parentp = nparent;
1918
1919         return (nparent);
1920 }
1921
1922 /*
1923  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1924  * (*parentp) typically points to an inode but can also point to a related
1925  * indirect block and this function will recurse upwards and find the inode
1926  * again.
1927  *
1928  * (*parentp) must be exclusively locked and referenced and can be an inode
1929  * or an existing indirect block within the inode.
1930  *
1931  * On return (*parentp) will be modified to point at the deepest parent chain
1932  * element encountered during the search, as a helper for an insertion or
1933  * deletion.   The new (*parentp) will be locked and referenced and the old
1934  * will be unlocked and dereferenced (no change if they are both the same).
1935  *
1936  * The matching chain will be returned exclusively locked.  If NOLOCK is
1937  * requested the chain will be returned only referenced.
1938  *
1939  * NULL is returned if no match was found, but (*parentp) will still
1940  * potentially be adjusted.
1941  *
1942  * On return (*key_nextp) will point to an iterative value for key_beg.
1943  * (If NULL is returned (*key_nextp) is set to key_end).
1944  *
1945  * This function will also recurse up the chain if the key is not within the
1946  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1947  * can simply allow (*parentp) to float inside the loop.
1948  *
1949  * NOTE!  chain->data is not always resolved.  By default it will not be
1950  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1951  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1952  *        BREF_TYPE_DATA as the device buffer can alias the logical file
1953  *        buffer).
1954  */
1955 hammer2_chain_t *
1956 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1957                      hammer2_key_t key_beg, hammer2_key_t key_end,
1958                      int *cache_indexp, int flags, int *ddflagp)
1959 {
1960         hammer2_mount_t *hmp;
1961         hammer2_chain_t *parent;
1962         hammer2_chain_t *chain;
1963         hammer2_blockref_t *base;
1964         hammer2_blockref_t *bref;
1965         hammer2_blockref_t bcopy;
1966         hammer2_key_t scan_beg;
1967         hammer2_key_t scan_end;
1968         hammer2_chain_core_t *above;
1969         int count = 0;
1970         int how_always = HAMMER2_RESOLVE_ALWAYS;
1971         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1972         int how;
1973         int generation;
1974         int maxloops = 300000;
1975         int wasdup;
1976
1977         *ddflagp = 0;
1978         if (flags & HAMMER2_LOOKUP_ALWAYS) {
1979                 how_maybe = how_always;
1980                 how = HAMMER2_RESOLVE_ALWAYS;
1981         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1982                 how = HAMMER2_RESOLVE_NEVER;
1983         } else {
1984                 how = HAMMER2_RESOLVE_MAYBE;
1985         }
1986         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1987                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1988                 how_always |= HAMMER2_RESOLVE_SHARED;
1989                 how |= HAMMER2_RESOLVE_SHARED;
1990         }
1991
1992         /*
1993          * Recurse (*parentp) upward if necessary until the parent completely
1994          * encloses the key range or we hit the inode.
1995          *
1996          * This function handles races against the flusher doing a delete-
1997          * duplicate above us and re-homes the parent to the duplicate in
1998          * that case, otherwise we'd wind up recursing down a stale chain.
1999          */
2000         parent = *parentp;
2001         hmp = parent->hmp;
2002
2003         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2004                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2005                 scan_beg = parent->bref.key;
2006                 scan_end = scan_beg +
2007                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2008                 if (key_beg >= scan_beg && key_end <= scan_end)
2009                         break;
2010                 parent = hammer2_chain_getparent(parentp, how_maybe);
2011         }
2012
2013 again:
2014         if (--maxloops == 0)
2015                 panic("hammer2_chain_lookup: maxloops");
2016         /*
2017          * Locate the blockref array.  Currently we do a fully associative
2018          * search through the array.
2019          */
2020         switch(parent->bref.type) {
2021         case HAMMER2_BREF_TYPE_INODE:
2022                 /*
2023                  * Special shortcut for embedded data returns the inode
2024                  * itself.  Callers must detect this condition and access
2025                  * the embedded data (the strategy code does this for us).
2026                  *
2027                  * This is only applicable to regular files and softlinks.
2028                  */
2029                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2030                         if (flags & HAMMER2_LOOKUP_NOLOCK)
2031                                 hammer2_chain_ref(parent);
2032                         else
2033                                 hammer2_chain_lock(parent, how_always);
2034                         *key_nextp = key_end + 1;
2035                         *ddflagp = 1;
2036                         return (parent);
2037                 }
2038                 base = &parent->data->ipdata.u.blockset.blockref[0];
2039                 count = HAMMER2_SET_COUNT;
2040                 break;
2041         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2042         case HAMMER2_BREF_TYPE_INDIRECT:
2043                 /*
2044                  * Handle MATCHIND on the parent
2045                  */
2046                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2047                         scan_beg = parent->bref.key;
2048                         scan_end = scan_beg +
2049                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2050                         if (key_beg == scan_beg && key_end == scan_end) {
2051                                 chain = parent;
2052                                 hammer2_chain_lock(chain, how_maybe);
2053                                 *key_nextp = scan_end + 1;
2054                                 goto done;
2055                         }
2056                 }
2057                 /*
2058                  * Optimize indirect blocks in the INITIAL state to avoid
2059                  * I/O.
2060                  */
2061                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2062                         base = NULL;
2063                 } else {
2064                         if (parent->data == NULL)
2065                                 panic("parent->data is NULL");
2066                         base = &parent->data->npdata[0];
2067                 }
2068                 count = parent->bytes / sizeof(hammer2_blockref_t);
2069                 break;
2070         case HAMMER2_BREF_TYPE_VOLUME:
2071                 base = &hmp->voldata.sroot_blockset.blockref[0];
2072                 count = HAMMER2_SET_COUNT;
2073                 break;
2074         case HAMMER2_BREF_TYPE_FREEMAP:
2075                 base = &hmp->voldata.freemap_blockset.blockref[0];
2076                 count = HAMMER2_SET_COUNT;
2077                 break;
2078         default:
2079                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2080                       parent->bref.type);
2081                 base = NULL;    /* safety */
2082                 count = 0;      /* safety */
2083         }
2084
2085         /*
2086          * Merged scan to find next candidate.
2087          *
2088          * hammer2_base_*() functions require the above->live_* fields
2089          * to be synchronized.
2090          *
2091          * We need to hold the spinlock to access the block array and RB tree
2092          * and to interlock chain creation.
2093          */
2094         above = parent->core;
2095         if ((parent->core->flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2096                 hammer2_chain_countbrefs(parent, base, count);
2097
2098         /*
2099          * Combined search
2100          */
2101         spin_lock(&above->cst.spin);
2102         chain = hammer2_combined_find(parent, base, count,
2103                                       cache_indexp, key_nextp,
2104                                       key_beg, key_end,
2105                                       &bref);
2106         generation = above->generation;
2107
2108         /*
2109          * Exhausted parent chain, iterate.
2110          */
2111         if (bref == NULL) {
2112                 spin_unlock(&above->cst.spin);
2113                 if (key_beg == key_end) /* short cut single-key case */
2114                         return (NULL);
2115
2116                 /*
2117                  * Stop if we reached the end of the iteration.
2118                  */
2119                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2120                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2121                         return (NULL);
2122                 }
2123
2124                 /*
2125                  * Calculate next key, stop if we reached the end of the
2126                  * iteration, otherwise go up one level and loop.
2127                  */
2128                 key_beg = parent->bref.key +
2129                           ((hammer2_key_t)1 << parent->bref.keybits);
2130                 if (key_beg == 0 || key_beg > key_end)
2131                         return (NULL);
2132                 parent = hammer2_chain_getparent(parentp, how_maybe);
2133                 goto again;
2134         }
2135
2136         /*
2137          * Selected from blockref or in-memory chain.
2138          */
2139         if (chain == NULL) {
2140                 bcopy = *bref;
2141                 spin_unlock(&above->cst.spin);
2142                 chain = hammer2_chain_get(parent, generation,
2143                                           &bcopy);
2144                 if (chain == NULL) {
2145                         kprintf("retry lookup parent %p keys %016jx:%016jx\n",
2146                                 parent, key_beg, key_end);
2147                         goto again;
2148                 }
2149                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2150                         hammer2_chain_drop(chain);
2151                         goto again;
2152                 }
2153                 wasdup = 0;
2154         } else {
2155                 hammer2_chain_ref(chain);
2156                 wasdup = ((chain->flags & HAMMER2_CHAIN_DUPLICATED) != 0);
2157                 spin_unlock(&above->cst.spin);
2158         }
2159
2160         /*
2161          * chain is referenced but not locked.  We must lock the chain
2162          * to obtain definitive DUPLICATED/DELETED state
2163          */
2164         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2165             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2166                 hammer2_chain_lock(chain, how_maybe | HAMMER2_RESOLVE_NOREF);
2167         } else {
2168                 hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
2169         }
2170
2171         /*
2172          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2173          *
2174          * NOTE: Chain's key range is not relevant as there might be
2175          *       one-offs within the range that are not deleted.
2176          *
2177          * NOTE: Lookups can race delete-duplicate because
2178          *       delete-duplicate does not lock the parent's core
2179          *       (they just use the spinlock on the core).  We must
2180          *       check for races by comparing the DUPLICATED flag before
2181          *       releasing the spinlock with the flag after locking the
2182          *       chain.
2183          */
2184         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2185                 hammer2_chain_unlock(chain);
2186                 if ((chain->flags & HAMMER2_CHAIN_DUPLICATED) == 0 || wasdup) {
2187                         key_beg = *key_nextp;
2188                         if (key_beg == 0 || key_beg > key_end)
2189                                 return(NULL);
2190                 }
2191                 goto again;
2192         }
2193
2194         /*
2195          * If the chain element is an indirect block it becomes the new
2196          * parent and we loop on it.  We must maintain our top-down locks
2197          * to prevent the flusher from interfering (i.e. doing a
2198          * delete-duplicate and leaving us recursing down a deleted chain).
2199          *
2200          * The parent always has to be locked with at least RESOLVE_MAYBE
2201          * so we can access its data.  It might need a fixup if the caller
2202          * passed incompatible flags.  Be careful not to cause a deadlock
2203          * as a data-load requires an exclusive lock.
2204          *
2205          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2206          * range is within the requested key range we return the indirect
2207          * block and do NOT loop.  This is usually only used to acquire
2208          * freemap nodes.
2209          */
2210         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2211             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2212                 hammer2_chain_unlock(parent);
2213                 *parentp = parent = chain;
2214                 goto again;
2215         }
2216 done:
2217         /*
2218          * All done, return the chain
2219          */
2220         return (chain);
2221 }
2222
2223 /*
2224  * After having issued a lookup we can iterate all matching keys.
2225  *
2226  * If chain is non-NULL we continue the iteration from just after it's index.
2227  *
2228  * If chain is NULL we assume the parent was exhausted and continue the
2229  * iteration at the next parent.
2230  *
2231  * parent must be locked on entry and remains locked throughout.  chain's
2232  * lock status must match flags.  Chain is always at least referenced.
2233  *
2234  * WARNING!  The MATCHIND flag does not apply to this function.
2235  */
2236 hammer2_chain_t *
2237 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2238                    hammer2_key_t *key_nextp,
2239                    hammer2_key_t key_beg, hammer2_key_t key_end,
2240                    int *cache_indexp, int flags)
2241 {
2242         hammer2_chain_t *parent;
2243         int how_maybe;
2244         int ddflag;
2245
2246         /*
2247          * Calculate locking flags for upward recursion.
2248          */
2249         how_maybe = HAMMER2_RESOLVE_MAYBE;
2250         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
2251                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2252
2253         parent = *parentp;
2254
2255         /*
2256          * Calculate the next index and recalculate the parent if necessary.
2257          */
2258         if (chain) {
2259                 key_beg = chain->bref.key +
2260                           ((hammer2_key_t)1 << chain->bref.keybits);
2261                 if (flags & HAMMER2_LOOKUP_NOLOCK)
2262                         hammer2_chain_drop(chain);
2263                 else
2264                         hammer2_chain_unlock(chain);
2265
2266                 /*
2267                  * Any scan where the lookup returned degenerate data embedded
2268                  * in the inode has an invalid index and must terminate.
2269                  */
2270                 if (chain == parent)
2271                         return(NULL);
2272                 if (key_beg == 0 || key_beg > key_end)
2273                         return(NULL);
2274                 chain = NULL;
2275         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2276                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2277                 /*
2278                  * We reached the end of the iteration.
2279                  */
2280                 return (NULL);
2281         } else {
2282                 /*
2283                  * Continue iteration with next parent unless the current
2284                  * parent covers the range.
2285                  */
2286                 key_beg = parent->bref.key +
2287                           ((hammer2_key_t)1 << parent->bref.keybits);
2288                 if (key_beg == 0 || key_beg > key_end)
2289                         return (NULL);
2290                 parent = hammer2_chain_getparent(parentp, how_maybe);
2291         }
2292
2293         /*
2294          * And execute
2295          */
2296         return (hammer2_chain_lookup(parentp, key_nextp,
2297                                      key_beg, key_end,
2298                                      cache_indexp, flags, &ddflag));
2299 }
2300
2301 /*
2302  * The raw scan function is similar to lookup/next but does not seek to a key.
2303  * Blockrefs are iterated via first_chain = (parent, NULL) and
2304  * next_chain = (parent, chain).
2305  *
2306  * The passed-in parent must be locked and its data resolved.  The returned
2307  * chain will be locked.  Pass chain == NULL to acquire the first sub-chain
2308  * under parent and then iterate with the passed-in chain (which this
2309  * function will unlock).
2310  */
2311 hammer2_chain_t *
2312 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t *chain,
2313                    int *cache_indexp, int flags)
2314 {
2315         hammer2_mount_t *hmp;
2316         hammer2_blockref_t *base;
2317         hammer2_blockref_t *bref;
2318         hammer2_blockref_t bcopy;
2319         hammer2_chain_core_t *above;
2320         hammer2_key_t key;
2321         hammer2_key_t next_key;
2322         int count = 0;
2323         int how_always = HAMMER2_RESOLVE_ALWAYS;
2324         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2325         int how;
2326         int generation;
2327         int maxloops = 300000;
2328         int wasdup;
2329
2330         hmp = parent->hmp;
2331
2332         /*
2333          * Scan flags borrowed from lookup
2334          */
2335         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2336                 how_maybe = how_always;
2337                 how = HAMMER2_RESOLVE_ALWAYS;
2338         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2339                 how = HAMMER2_RESOLVE_NEVER;
2340         } else {
2341                 how = HAMMER2_RESOLVE_MAYBE;
2342         }
2343         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
2344                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2345                 how_always |= HAMMER2_RESOLVE_SHARED;
2346                 how |= HAMMER2_RESOLVE_SHARED;
2347         }
2348
2349         /*
2350          * Calculate key to locate first/next element, unlocking the previous
2351          * element as we go.  Be careful, the key calculation can overflow.
2352          */
2353         if (chain) {
2354                 key = chain->bref.key +
2355                       ((hammer2_key_t)1 << chain->bref.keybits);
2356                 hammer2_chain_unlock(chain);
2357                 chain = NULL;
2358                 if (key == 0)
2359                         goto done;
2360         } else {
2361                 key = 0;
2362         }
2363
2364 again:
2365         if (--maxloops == 0)
2366                 panic("hammer2_chain_scan: maxloops");
2367         /*
2368          * Locate the blockref array.  Currently we do a fully associative
2369          * search through the array.
2370          */
2371         switch(parent->bref.type) {
2372         case HAMMER2_BREF_TYPE_INODE:
2373                 /*
2374                  * An inode with embedded data has no sub-chains.
2375                  */
2376                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
2377                         goto done;
2378                 base = &parent->data->ipdata.u.blockset.blockref[0];
2379                 count = HAMMER2_SET_COUNT;
2380                 break;
2381         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2382         case HAMMER2_BREF_TYPE_INDIRECT:
2383                 /*
2384                  * Optimize indirect blocks in the INITIAL state to avoid
2385                  * I/O.
2386                  */
2387                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2388                         base = NULL;
2389                 } else {
2390                         if (parent->data == NULL)
2391                                 panic("parent->data is NULL");
2392                         base = &parent->data->npdata[0];
2393                 }
2394                 count = parent->bytes / sizeof(hammer2_blockref_t);
2395                 break;
2396         case HAMMER2_BREF_TYPE_VOLUME:
2397                 base = &hmp->voldata.sroot_blockset.blockref[0];
2398                 count = HAMMER2_SET_COUNT;
2399                 break;
2400         case HAMMER2_BREF_TYPE_FREEMAP:
2401                 base = &hmp->voldata.freemap_blockset.blockref[0];
2402                 count = HAMMER2_SET_COUNT;
2403                 break;
2404         default:
2405                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2406                       parent->bref.type);
2407                 base = NULL;    /* safety */
2408                 count = 0;      /* safety */
2409         }
2410
2411         /*
2412          * Merged scan to find next candidate.
2413          *
2414          * hammer2_base_*() functions require the above->live_* fields
2415          * to be synchronized.
2416          *
2417          * We need to hold the spinlock to access the block array and RB tree
2418          * and to interlock chain creation.
2419          */
2420         if ((parent->core->flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2421                 hammer2_chain_countbrefs(parent, base, count);
2422
2423         above = parent->core;
2424         next_key = 0;
2425         spin_lock(&above->cst.spin);
2426         chain = hammer2_combined_find(parent, base, count,
2427                                       cache_indexp, &next_key,
2428                                       key, HAMMER2_KEY_MAX,
2429                                       &bref);
2430         generation = above->generation;
2431
2432         /*
2433          * Exhausted parent chain, we're done.
2434          */
2435         if (bref == NULL) {
2436                 spin_unlock(&above->cst.spin);
2437                 KKASSERT(chain == NULL);
2438                 goto done;
2439         }
2440
2441         /*
2442          * Selected from blockref or in-memory chain.
2443          */
2444         if (chain == NULL) {
2445                 bcopy = *bref;
2446                 spin_unlock(&above->cst.spin);
2447                 chain = hammer2_chain_get(parent, generation, &bcopy);
2448                 if (chain == NULL) {
2449                         kprintf("retry scan parent %p keys %016jx\n",
2450                                 parent, key);
2451                         goto again;
2452                 }
2453                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2454                         hammer2_chain_drop(chain);
2455                         chain = NULL;
2456                         goto again;
2457                 }
2458                 wasdup = 0;
2459         } else {
2460                 hammer2_chain_ref(chain);
2461                 wasdup = ((chain->flags & HAMMER2_CHAIN_DUPLICATED) != 0);
2462                 spin_unlock(&above->cst.spin);
2463         }
2464
2465         /*
2466          * chain is referenced but not locked.  We must lock the chain
2467          * to obtain definitive DUPLICATED/DELETED state
2468          */
2469         hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
2470
2471         /*
2472          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2473          *
2474          * NOTE: chain's key range is not relevant as there might be
2475          *       one-offs within the range that are not deleted.
2476          *
2477          * NOTE: XXX this could create problems with scans used in
2478          *       situations other than mount-time recovery.
2479          *
2480          * NOTE: Lookups can race delete-duplicate because
2481          *       delete-duplicate does not lock the parent's core
2482          *       (they just use the spinlock on the core).  We must
2483          *       check for races by comparing the DUPLICATED flag before
2484          *       releasing the spinlock with the flag after locking the
2485          *       chain.
2486          */
2487         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2488                 hammer2_chain_unlock(chain);
2489                 chain = NULL;
2490
2491                 if ((chain->flags & HAMMER2_CHAIN_DUPLICATED) == 0 || wasdup) {
2492                         key = next_key;
2493                         if (key == 0)
2494                                 goto done;
2495                 }
2496                 goto again;
2497         }
2498
2499 done:
2500         /*
2501          * All done, return the chain or NULL
2502          */
2503         return (chain);
2504 }
2505
2506 /*
2507  * Create and return a new hammer2 system memory structure of the specified
2508  * key, type and size and insert it under (*parentp).  This is a full
2509  * insertion, based on the supplied key/keybits, and may involve creating
2510  * indirect blocks and moving other chains around via delete/duplicate.
2511  *
2512  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2513  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2514  * FULL.  This typically means that the caller is creating the chain after
2515  * doing a hammer2_chain_lookup().
2516  *
2517  * (*parentp) must be exclusive locked and may be replaced on return
2518  * depending on how much work the function had to do.
2519  *
2520  * (*chainp) usually starts out NULL and returns the newly created chain,
2521  * but if the caller desires the caller may allocate a disconnected chain
2522  * and pass it in instead.  (It is also possible for the caller to use
2523  * chain_duplicate() to create a disconnected chain, manipulate it, then
2524  * pass it into this function to insert it).
2525  *
2526  * This function should NOT be used to insert INDIRECT blocks.  It is
2527  * typically used to create/insert inodes and data blocks.
2528  *
2529  * Caller must pass-in an exclusively locked parent the new chain is to
2530  * be inserted under, and optionally pass-in a disconnected, exclusively
2531  * locked chain to insert (else we create a new chain).  The function will
2532  * adjust (*parentp) as necessary, create or connect the chain, and
2533  * return an exclusively locked chain in *chainp.
2534  */
2535 int
2536 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2537                      hammer2_chain_t **chainp, hammer2_pfsmount_t *pmp,
2538                      hammer2_key_t key, int keybits, int type, size_t bytes)
2539 {
2540         hammer2_mount_t *hmp;
2541         hammer2_chain_t *chain;
2542         hammer2_chain_t *parent = *parentp;
2543         hammer2_chain_core_t *above;
2544         hammer2_blockref_t *base;
2545         hammer2_blockref_t dummy;
2546         int allocated = 0;
2547         int error = 0;
2548         int count;
2549         int maxloops = 300000;
2550
2551         /*
2552          * Topology may be crossing a PFS boundary.
2553          */
2554         above = parent->core;
2555         KKASSERT(ccms_thread_lock_owned(&above->cst));
2556         hmp = parent->hmp;
2557         chain = *chainp;
2558
2559         if (chain == NULL) {
2560                 /*
2561                  * First allocate media space and construct the dummy bref,
2562                  * then allocate the in-memory chain structure.  Set the
2563                  * INITIAL flag for fresh chains which do not have embedded
2564                  * data.
2565                  */
2566                 bzero(&dummy, sizeof(dummy));
2567                 dummy.type = type;
2568                 dummy.key = key;
2569                 dummy.keybits = keybits;
2570                 dummy.data_off = hammer2_getradix(bytes);
2571                 dummy.methods = parent->bref.methods;
2572                 chain = hammer2_chain_alloc(hmp, pmp, trans, &dummy);
2573                 hammer2_chain_core_alloc(trans, chain, NULL);
2574
2575                 /*
2576                  * Lock the chain manually, chain_lock will load the chain
2577                  * which we do NOT want to do.  (note: chain->refs is set
2578                  * to 1 by chain_alloc() for us, but lockcnt is not).
2579                  */
2580                 chain->lockcnt = 1;
2581                 ccms_thread_lock(&chain->core->cst, CCMS_STATE_EXCLUSIVE);
2582                 allocated = 1;
2583
2584                 /*
2585                  * We do NOT set INITIAL here (yet).  INITIAL is only
2586                  * used for indirect blocks.
2587                  *
2588                  * Recalculate bytes to reflect the actual media block
2589                  * allocation.
2590                  */
2591                 bytes = (hammer2_off_t)1 <<
2592                         (int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2593                 chain->bytes = bytes;
2594
2595                 switch(type) {
2596                 case HAMMER2_BREF_TYPE_VOLUME:
2597                 case HAMMER2_BREF_TYPE_FREEMAP:
2598                         panic("hammer2_chain_create: called with volume type");
2599                         break;
2600                 case HAMMER2_BREF_TYPE_INDIRECT:
2601                         panic("hammer2_chain_create: cannot be used to"
2602                               "create indirect block");
2603                         break;
2604                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2605                         panic("hammer2_chain_create: cannot be used to"
2606                               "create freemap root or node");
2607                         break;
2608                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2609                         KKASSERT(bytes == sizeof(chain->data->bmdata));
2610                         /* fall through */
2611                 case HAMMER2_BREF_TYPE_INODE:
2612                 case HAMMER2_BREF_TYPE_DATA:
2613                 default:
2614                         /*
2615                          * leave chain->data NULL, set INITIAL
2616                          */
2617                         KKASSERT(chain->data == NULL);
2618                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2619                         break;
2620                 }
2621         } else {
2622                 /*
2623                  * We are reattaching a chain that has been duplicated and
2624                  * left disconnected under a DIFFERENT parent with potentially
2625                  * different key/keybits.
2626                  *
2627                  * The chain must be modified in the current transaction
2628                  * (the duplication code should have done that for us),
2629                  * and it's modify_xid should be greater than the parent's
2630                  * bref.mirror_tid.  This should cause it to be created under
2631                  * the new parent.
2632                  *
2633                  * If deleted in the same transaction, the create/delete TIDs
2634                  * will be the same and effective the chain will not have
2635                  * existed at all from the point of view of the parent.
2636                  *
2637                  * Do NOT mess with the current state of the INITIAL flag.
2638                  */
2639                 KKASSERT(chain->modify_xid == trans->sync_xid);
2640                 chain->bref.key = key;
2641                 chain->bref.keybits = keybits;
2642                 KKASSERT(chain->above == NULL);
2643         }
2644
2645         /*
2646          * Calculate how many entries we have in the blockref array and
2647          * determine if an indirect block is required.
2648          */
2649 again:
2650         if (--maxloops == 0)
2651                 panic("hammer2_chain_create: maxloops");
2652         above = parent->core;
2653
2654         switch(parent->bref.type) {
2655         case HAMMER2_BREF_TYPE_INODE:
2656                 KKASSERT((parent->data->ipdata.op_flags &
2657                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
2658                 KKASSERT(parent->data != NULL);
2659                 base = &parent->data->ipdata.u.blockset.blockref[0];
2660                 count = HAMMER2_SET_COUNT;
2661                 break;
2662         case HAMMER2_BREF_TYPE_INDIRECT:
2663         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2664                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
2665                         base = NULL;
2666                 else
2667                         base = &parent->data->npdata[0];
2668                 count = parent->bytes / sizeof(hammer2_blockref_t);
2669                 break;
2670         case HAMMER2_BREF_TYPE_VOLUME:
2671                 KKASSERT(parent->data != NULL);
2672                 base = &hmp->voldata.sroot_blockset.blockref[0];
2673                 count = HAMMER2_SET_COUNT;
2674                 break;
2675         case HAMMER2_BREF_TYPE_FREEMAP:
2676                 KKASSERT(parent->data != NULL);
2677                 base = &hmp->voldata.freemap_blockset.blockref[0];
2678                 count = HAMMER2_SET_COUNT;
2679                 break;
2680         default:
2681                 panic("hammer2_chain_create: unrecognized blockref type: %d",
2682                       parent->bref.type);
2683                 base = NULL;
2684                 count = 0;
2685                 break;
2686         }
2687
2688         /*
2689          * Make sure we've counted the brefs
2690          */
2691         if ((parent->core->flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2692                 hammer2_chain_countbrefs(parent, base, count);
2693
2694         KKASSERT(above->live_count >= 0 && above->live_count <= count);
2695
2696         /*
2697          * If no free blockref could be found we must create an indirect
2698          * block and move a number of blockrefs into it.  With the parent
2699          * locked we can safely lock each child in order to delete+duplicate
2700          * it without causing a deadlock.
2701          *
2702          * This may return the new indirect block or the old parent depending
2703          * on where the key falls.  NULL is returned on error.
2704          */
2705         if (above->live_count == count) {
2706                 hammer2_chain_t *nparent;
2707
2708                 nparent = hammer2_chain_create_indirect(trans, parent,
2709                                                         key, keybits,
2710                                                         type, &error);
2711                 if (nparent == NULL) {
2712                         if (allocated)
2713                                 hammer2_chain_drop(chain);
2714                         chain = NULL;
2715                         goto done;
2716                 }
2717                 if (parent != nparent) {
2718                         hammer2_chain_unlock(parent);
2719                         parent = *parentp = nparent;
2720                 }
2721                 goto again;
2722         }
2723
2724         /*
2725          * Link the chain into its parent.
2726          */
2727         if (chain->above != NULL)
2728                 panic("hammer2: hammer2_chain_create: chain already connected");
2729         KKASSERT(chain->above == NULL);
2730         hammer2_chain_insert(above, NULL, chain,
2731                              HAMMER2_CHAIN_INSERT_SPIN |
2732                              HAMMER2_CHAIN_INSERT_LIVE,
2733                              0);
2734
2735         if (allocated) {
2736                 /*
2737                  * Mark the newly created chain modified.  This will cause
2738                  * FLUSH_CREATE to be set.
2739                  *
2740                  * Device buffers are not instantiated for DATA elements
2741                  * as these are handled by logical buffers.
2742                  *
2743                  * Indirect and freemap node indirect blocks are handled
2744                  * by hammer2_chain_create_indirect() and not by this
2745                  * function.
2746                  *
2747                  * Data for all other bref types is expected to be
2748                  * instantiated (INODE, LEAF).
2749                  */
2750                 switch(chain->bref.type) {
2751                 case HAMMER2_BREF_TYPE_DATA:
2752                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2753                 case HAMMER2_BREF_TYPE_INODE:
2754                         hammer2_chain_modify(trans, &chain,
2755                                              HAMMER2_MODIFY_OPTDATA |
2756                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2757                         break;
2758                 default:
2759                         /*
2760                          * Remaining types are not supported by this function.
2761                          * In particular, INDIRECT and LEAF_NODE types are
2762                          * handled by create_indirect().
2763                          */
2764                         panic("hammer2_chain_create: bad type: %d",
2765                               chain->bref.type);
2766                         /* NOT REACHED */
2767                         break;
2768                 }
2769         } else {
2770                 /*
2771                  * When reconnecting a chain we must set FLUSH_CREATE and
2772                  * setsubmod so the flush recognizes that it must update
2773                  * the bref in the parent.
2774                  */
2775                 if ((chain->flags & HAMMER2_CHAIN_FLUSH_CREATE) == 0) {
2776                         hammer2_chain_ref(chain);
2777                         atomic_set_int(&chain->flags,
2778                                        HAMMER2_CHAIN_FLUSH_CREATE);
2779                 }
2780         }
2781         hammer2_chain_setsubmod(trans, chain);
2782
2783 done:
2784         *chainp = chain;
2785
2786         return (error);
2787 }
2788
2789 /*
2790  * Replace (*chainp) with a duplicate in-memory chain structure which shares
2791  * the same core and media state as the orignal.  The original *chainp is
2792  * unlocked and the replacement will be returned locked.  The duplicated
2793  * chain is inserted under (*parentp).
2794  *
2795  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2796  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2797  * FULL.  This typically means that the caller is creating the chain after
2798  * doing a hammer2_chain_lookup().
2799  *
2800  * A non-NULL bref is typically passed when key and keybits must be overridden.
2801  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2802  * from a passed-in bref and uses the old chain's bref for everything else.
2803  *
2804  * The old chain must be in a DELETED state unless snapshot is non-zero.
2805  *
2806  * The new chain will be live (i.e. not deleted), and modified.
2807  *
2808  * If (parent) is non-NULL then the new duplicated chain is inserted under
2809  * the parent.
2810  *
2811  * If (parent) is NULL then the newly duplicated chain is not inserted
2812  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2813  * passing into hammer2_chain_create() after this function returns).
2814  *
2815  * WARNING! This function cannot take snapshots all by itself.  The caller
2816  *          needs to do other massaging for snapshots.
2817  *
2818  * WARNING! This function calls create which means it can insert indirect
2819  *          blocks.  Callers may have to refactor locked chains held across
2820  *          the call (other than the ones passed into the call).
2821  */
2822 void
2823 hammer2_chain_duplicate(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2824                         hammer2_chain_t **chainp, hammer2_blockref_t *bref,
2825                         int snapshot, int duplicate_reason)
2826 {
2827         hammer2_mount_t *hmp;
2828         hammer2_chain_t *parent;
2829         hammer2_chain_t *ochain;
2830         hammer2_chain_t *nchain;
2831         hammer2_chain_core_t *above;
2832         size_t bytes;
2833
2834         /*
2835          * We want nchain to be our go-to live chain, but ochain may be in
2836          * a MODIFIED state within the current flush synchronization segment.
2837          * Force any further modifications of ochain to do another COW
2838          * operation even if modify_xid indicates that one is not needed.
2839          *
2840          * We don't want to set FORCECOW on nchain simply as an optimization,
2841          * as many duplication calls simply move chains into ichains and
2842          * then delete the original.
2843          *
2844          * WARNING!  We should never resolve DATA to device buffers
2845          *           (XXX allow it if the caller did?), and since
2846          *           we currently do not have the logical buffer cache
2847          *           buffer in-hand to fix its cached physical offset
2848          *           we also force the modify code to not COW it. XXX
2849          */
2850         ochain = *chainp;
2851         hmp = ochain->hmp;
2852         KKASSERT(snapshot == 1 || (ochain->flags & HAMMER2_CHAIN_DELETED));
2853
2854         /*
2855          * Now create a duplicate of the chain structure, associating
2856          * it with the same core, making it the same size, pointing it
2857          * to the same bref (the same media block).
2858          *
2859          * Give nchain the same modify_xid that we previously ensured was
2860          * sufficiently advanced to trigger a block table insertion on flush.
2861          *
2862          * nchain copies ochain's data and must inherit ochain->update_xlo.
2863          *
2864          * NOTE: bref.mirror_tid duplicated by virtue of bref copy in
2865          *       hammer2_chain_alloc()
2866          */
2867         if (bref == NULL)
2868                 bref = &ochain->bref;
2869         if (snapshot) {
2870                 nchain = hammer2_chain_alloc(hmp, NULL, trans, bref);
2871                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SNAPSHOT);
2872         } else {
2873                 nchain = hammer2_chain_alloc(hmp, ochain->pmp, trans, bref);
2874         }
2875         hammer2_chain_core_alloc(trans, nchain, ochain);
2876         bytes = (hammer2_off_t)1 <<
2877                 (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2878         nchain->bytes = bytes;
2879         nchain->modify_xid = ochain->modify_xid;
2880         nchain->update_xlo = ochain->update_xlo;
2881         nchain->inode_reason = ochain->inode_reason + 0x100000;
2882         atomic_set_int(&nchain->flags,
2883                        ochain->flags & (HAMMER2_CHAIN_INITIAL |
2884                                         HAMMER2_CHAIN_FORCECOW |
2885                                         HAMMER2_CHAIN_UNLINKED |
2886                                         HAMMER2_CHAIN_PFSROOT |
2887                                         HAMMER2_CHAIN_PFSBOUNDARY));
2888         if (ochain->modify_xid == trans->sync_xid)
2889                 atomic_set_int(&ochain->flags, HAMMER2_CHAIN_FORCECOW);
2890
2891         /*
2892          * Switch from ochain to nchain
2893          */
2894         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER |
2895                                    HAMMER2_RESOLVE_NOREF);
2896         /* nchain has 1 ref */
2897         hammer2_chain_unlock(ochain);
2898
2899         /*
2900          * Place nchain in the modified state, instantiate media data
2901          * if necessary.  Because modify_xid is already completely
2902          * synchronized this should not result in a delete-duplicate.
2903          *
2904          * We want nchain at the target to look like a new insertion.
2905          * Forcing the modification to be INPLACE accomplishes this
2906          * because we get the same nchain with an updated modify_xid.
2907          */
2908         if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2909                 hammer2_chain_modify(trans, &nchain,
2910                                      HAMMER2_MODIFY_OPTDATA |
2911                                      HAMMER2_MODIFY_NOREALLOC |
2912                                      HAMMER2_MODIFY_INPLACE);
2913         } else if (nchain->flags & HAMMER2_CHAIN_INITIAL) {
2914                 hammer2_chain_modify(trans, &nchain,
2915                                      HAMMER2_MODIFY_OPTDATA |
2916                                      HAMMER2_MODIFY_INPLACE);
2917         } else {
2918                 hammer2_chain_modify(trans, &nchain,
2919                                      HAMMER2_MODIFY_INPLACE);
2920         }
2921
2922         /*
2923          * If parent is not NULL the duplicated chain will be entered under
2924          * the parent and the FLUSH_CREATE bit set to tell flush to update
2925          * the blockref.
2926          *
2927          * Having both chains locked is extremely important for atomicy.
2928          */
2929         if (parentp && (parent = *parentp) != NULL) {
2930                 above = parent->core;
2931                 KKASSERT(ccms_thread_lock_owned(&above->cst));
2932                 KKASSERT((nchain->flags & HAMMER2_CHAIN_DELETED) == 0);
2933                 KKASSERT(parent->refs > 0);
2934
2935                 hammer2_chain_create(trans, parentp, &nchain, nchain->pmp,
2936                                      nchain->bref.key, nchain->bref.keybits,
2937                                      nchain->bref.type, nchain->bytes);
2938                 parent = NULL;
2939
2940                 KKASSERT(nchain->flags & HAMMER2_CHAIN_FLUSH_CREATE);
2941                 hammer2_chain_setsubmod(trans, nchain);
2942         }
2943
2944         *chainp = nchain;
2945 }
2946
2947 /*
2948  * Helper function for deleting chains.
2949  *
2950  * The chain is removed from the live view (the RBTREE).
2951  *
2952  * If appropriate, the chain is added to the shadow topology and FLUSH_DELETE
2953  * is set for flusher visbility.  The caller is responsible for calling
2954  * setsubmod on chain, so we do not adjust update_xhi here.
2955  */
2956 static void
2957 _hammer2_chain_delete_helper(hammer2_trans_t *trans,
2958                              hammer2_chain_core_t *above,
2959                              hammer2_chain_t *chain)
2960 {
2961         hammer2_mount_t *hmp;
2962         hammer2_chain_t *xchain;
2963
2964         KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2965         KKASSERT(trans->sync_xid >= chain->modify_xid);
2966         KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
2967                                   HAMMER2_CHAIN_ONDBQ |
2968                                   HAMMER2_CHAIN_ONDBTREE |
2969                                   HAMMER2_CHAIN_FLUSH_DELETE)) == 0);
2970
2971         /*
2972          * Flag as deleted, reduce live_count and bump the above core's
2973          * generation.
2974          */
2975         chain->delete_xid = trans->sync_xid;
2976         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2977         atomic_add_int(&above->live_count, -1);
2978         ++above->generation;
2979         hmp = chain->hmp;
2980
2981         /*
2982          * Remove from live tree
2983          */
2984         RB_REMOVE(hammer2_chain_tree, &above->rbtree, chain);
2985         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2986
2987         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2988                 /*
2989                  * If the chain was originally bmapped we must place on the
2990                  * deleted tree and set FLUSH_DELETE (+ref) to prevent
2991                  * destruction of the chain until the flush can reconcile
2992                  * the parent's block table.
2993                  *
2994                  * NOTE! DBTREE is only representitive of the live view,
2995                  *       the flush must check both DBTREE and DBQ.
2996                  */
2997                 xchain = RB_INSERT(hammer2_chain_tree, &above->dbtree, chain);
2998                 KKASSERT(xchain == NULL);
2999                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONDBTREE);
3000
3001                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_FLUSH_DELETE);
3002                 hammer2_chain_ref(chain);
3003         } else {
3004                 /*
3005                  * If the chain no longer (and never had) an actual blockmap
3006                  * entry we must place it on the dbq list and set FLUSH_DELETE
3007                  * (+ref) to prevent destruction of the chain until the flush
3008                  * can reconcile the parent's block table.
3009                  *
3010                  * NOTE! DBTREE is only representitive of the live view,
3011                  *       the flush must check both DBTREE and DBQ.
3012                  */
3013                 TAILQ_INSERT_TAIL(&above->dbq, chain, db_entry);
3014                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONDBQ);
3015
3016                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_FLUSH_DELETE);
3017                 hammer2_chain_ref(chain);
3018         }
3019 }
3020
3021 /*
3022  * Special in-place delete-duplicate sequence which does not require a
3023  * locked parent.  (*chainp) is marked DELETED and atomically replaced
3024  * with a duplicate.  Atomicy is at the very-fine spin-lock level in
3025  * order to ensure that lookups do not race us.
3026  *
3027  * The flush code will sometimes call this function with a deleted chain.
3028  * In this situation the old chain's memory is reallocated without
3029  * duplicating it.
3030  *
3031  * The new chain will be marked modified for the current transaction.
3032  */
3033 void
3034 hammer2_chain_delete_duplicate(hammer2_trans_t *trans, hammer2_chain_t **chainp,
3035                                int flags)
3036 {
3037         hammer2_mount_t *hmp;
3038         hammer2_chain_t *ochain;
3039         hammer2_chain_t *nchain;
3040         hammer2_chain_core_t *above;
3041         size_t bytes;
3042         uint32_t oflags;
3043
3044         if (hammer2_debug & 0x20000)
3045                 Debugger("dd");
3046
3047         /*
3048          * Note that we do not have to call setsubmod on ochain, calling it
3049          * on nchain is sufficient.
3050          */
3051         ochain = *chainp;
3052         oflags = ochain->flags;         /* flags prior to core_alloc mods */
3053         hmp = ochain->hmp;
3054
3055         if (ochain->bref.type == HAMMER2_BREF_TYPE_INODE) {
3056                 KKASSERT(ochain->data);
3057         }
3058
3059         /*
3060          * First create a duplicate of the chain structure.
3061          * (nchain is allocated with one ref).
3062          *
3063          * In the case where nchain inherits ochains core, nchain is
3064          * effectively locked due to ochain being locked (and sharing the
3065          * core), until we can give nchain its own official ock.
3066          *
3067          * WARNING! Flusher concurrency can create two cases.  The first is
3068          *          that the flusher might be working on a chain that has
3069          *          been deleted in the live view but is live in the flusher's
3070          *          view.  In the second case the flusher may be duplicating
3071          *          a forward-transacted chain.  In both situations nchain
3072          *          must be marked deleted.
3073          *
3074          * WARNING! hammer2_chain_core_alloc() also acts on these issues.
3075          */
3076         nchain = hammer2_chain_alloc(hmp, ochain->pmp, trans, &ochain->bref);
3077         if ((ochain->flags & HAMMER2_CHAIN_DELETED) ||
3078             (ochain->modify_xid > trans->sync_xid)) {
3079                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_DELETED);
3080         }
3081         if (flags & HAMMER2_DELDUP_RECORE)
3082                 hammer2_chain_core_alloc(trans, nchain, NULL);
3083         else
3084                 hammer2_chain_core_alloc(trans, nchain, ochain);
3085         above = ochain->above;
3086
3087         bytes = (hammer2_off_t)1 <<
3088                 (int)(ochain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3089         nchain->bytes = bytes;
3090
3091         /*
3092          * nchain inherits ochain's live state including its modification
3093          * state.  This function disposes of the original.  Because we are
3094          * doing this in-place under the same parent the block array
3095          * inserted/deleted state does not change.
3096          *
3097          * nchain copies ochain's data and must inherit ochain->update_xlo.
3098          *
3099          * If ochain was previously marked FORCECOW we also flag nchain
3100          * FORCECOW (used during hardlink splits).  FORCECOW forces a
3101          * reallocation of the block when we modify the chain a little later,
3102          * it does not force another delete-duplicate.
3103          *
3104          * NOTE: bref.mirror_tid duplicated by virtue of bref copy in
3105          *       hammer2_chain_alloc()
3106          */
3107         nchain->data_count += ochain->data_count;
3108         nchain->inode_count += ochain->inode_count;
3109         atomic_set_int(&nchain->flags,
3110                        ochain->flags & (HAMMER2_CHAIN_INITIAL |
3111                                         HAMMER2_CHAIN_FORCECOW |
3112                                         HAMMER2_CHAIN_UNLINKED |
3113                                         HAMMER2_CHAIN_PFSROOT |
3114                                         HAMMER2_CHAIN_PFSBOUNDARY));
3115         if (ochain->modify_xid == trans->sync_xid)
3116                 atomic_set_int(&ochain->flags, HAMMER2_CHAIN_FORCECOW);
3117         nchain->inode_reason = ochain->inode_reason + 0x1000;
3118         nchain->update_xlo = ochain->update_xlo;
3119
3120         /*
3121          * Lock nchain so both chains are now locked (extremely important
3122          * for atomicy).  The shared core allows us to unlock ochain without
3123          * actually unlocking ochain.
3124          */
3125         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER);
3126         /* extra ref still present from original allocation */
3127
3128         KKASSERT(ochain->flags & (HAMMER2_CHAIN_ONRBTREE |
3129                                   HAMMER2_CHAIN_ONDBTREE |
3130                                   HAMMER2_CHAIN_ONDBQ));
3131         spin_lock(&above->cst.spin);
3132
3133         nchain->modify_xid = ochain->modify_xid;
3134         nchain->delete_xid = HAMMER2_XID_MAX;
3135
3136         if ((nchain->flags & HAMMER2_CHAIN_DELETED) &&
3137             (oflags & HAMMER2_CHAIN_DUPLICATED)) {
3138                 /*
3139                  * Special case, used by the flush code when a chain which
3140                  * has been delete-duplicated is visible (effectively 'live')
3141                  * in the flush code.
3142                  *
3143                  * In this situations nchain will be marked deleted and
3144                  * insert before ochain.  nchain must inherit certain features
3145                  * of ochain.
3146                  */
3147                 KKASSERT(trans->flags & HAMMER2_TRANS_ISFLUSH);
3148                 KKASSERT(ochain->modify_xid < trans->sync_xid);
3149                 KKASSERT(ochain->delete_xid > trans->sync_xid);
3150                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_FLUSH_TEMPORARY);
3151                 hammer2_chain_insert(above, ochain, nchain, 0, 0);
3152
3153                 if ((ochain->flags & HAMMER2_CHAIN_DELETED) &&
3154                     ochain->modify_xid < trans->sync_xid) {
3155                         nchain->delete_xid = ochain->delete_xid;
3156                         ochain->delete_xid = trans->sync_xid;
3157                 } else if (ochain->modify_xid > trans->sync_xid) {
3158                         nchain->delete_xid = ochain->modify_xid;
3159                 }
3160         } else if (nchain->flags & HAMMER2_CHAIN_DELETED) {
3161                 /*
3162                  * ochain is 'live' with respect to not having been D-D'd,
3163                  * but is flagged DELETED.  Sometimes updates to deleted
3164                  * chains must be allowed due to references which still exist
3165                  * on those chains, or due to a flush trying to retire a
3166                  * logical buffer cache buffer.
3167                  *
3168                  * In this situation the D-D operates normally, except
3169                  * ochain has already been deleted and nchain is also
3170                  * marked deleted.
3171                  */
3172                 hammer2_chain_insert(above, ochain, nchain, 0, 0);
3173                 nchain->delete_xid = trans->sync_xid;
3174         } else {
3175                 /*
3176                  * Normal case, delete-duplicate deletes ochain and nchain
3177                  * is the new live chain.
3178                  */
3179                 _hammer2_chain_delete_helper(trans, above, ochain);
3180                 hammer2_chain_insert(above, ochain, nchain,
3181                                      HAMMER2_CHAIN_INSERT_LIVE, 0);
3182         }
3183         spin_unlock(&above->cst.spin);
3184
3185         /*
3186          * ochain must be unlocked because ochain and nchain might share
3187          * a buffer cache buffer, so we need to release it so nchain can
3188          * potentially obtain it.
3189          */
3190         hammer2_chain_setsubmod(trans, ochain);
3191         hammer2_chain_unlock(ochain);
3192
3193         /*
3194          * Finishing fixing up nchain.  A new block will be allocated if
3195          * crossing a synchronization point (meta-data only).
3196          *
3197          * Calling hammer2_chain_modify() will update modify_xid to
3198          * (typically) trans->sync_xid.
3199          */
3200         if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
3201                 hammer2_chain_modify(trans, &nchain,
3202                                      HAMMER2_MODIFY_OPTDATA |
3203                                      HAMMER2_MODIFY_NOREALLOC |
3204                                      HAMMER2_MODIFY_INPLACE);
3205         } else if (nchain->flags & HAMMER2_CHAIN_INITIAL) {
3206                 hammer2_chain_modify(trans, &nchain,
3207                                      HAMMER2_MODIFY_OPTDATA |
3208                                      HAMMER2_MODIFY_INPLACE);
3209         } else {
3210                 hammer2_chain_modify(trans, &nchain,
3211                                      HAMMER2_MODIFY_INPLACE);
3212         }
3213         hammer2_chain_drop(nchain);
3214
3215         /*
3216          * Unconditionally set FLUSH_CREATE to force the parent blockrefs to
3217          * update as the chain_modify() above won't necessarily do it.
3218          */
3219         if ((nchain->flags & HAMMER2_CHAIN_FLUSH_CREATE) == 0) {
3220                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_FLUSH_CREATE);
3221                 hammer2_chain_ref(nchain);
3222         }
3223
3224         /*
3225          * If nchain is in a DELETED state we must set FLUSH_DELETE
3226          */
3227         if (nchain->flags & HAMMER2_CHAIN_DELETED)
3228                 KKASSERT((nchain->flags & HAMMER2_CHAIN_FLUSH_DELETE) == 0);
3229 #if 1
3230         if ((nchain->flags & HAMMER2_CHAIN_FLUSH_DELETE) == 0 &&
3231             (nchain->flags & HAMMER2_CHAIN_DELETED)) {
3232                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_FLUSH_DELETE);
3233                 hammer2_chain_ref(nchain);
3234         }
3235 #endif
3236         hammer2_chain_setsubmod(trans, nchain);
3237         *chainp = nchain;
3238 }
3239
3240 /*
3241  * Create an indirect block that covers one or more of the elements in the
3242  * current parent.  Either returns the existing parent with no locking or
3243  * ref changes or returns the new indirect block locked and referenced
3244  * and leaving the original parent lock/ref intact as well.
3245  *
3246  * If an error occurs, NULL is returned and *errorp is set to the error.
3247  *
3248  * The returned chain depends on where the specified key falls.
3249  *
3250  * The key/keybits for the indirect mode only needs to follow three rules:
3251  *
3252  * (1) That all elements underneath it fit within its key space and
3253  *
3254  * (2) That all elements outside it are outside its key space.
3255  *
3256  * (3) When creating the new indirect block any elements in the current
3257  *     parent that fit within the new indirect block's keyspace must be
3258  *     moved into the new indirect block.
3259  *
3260  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3261  *     keyspace the the current parent, but lookup/iteration rules will
3262  *     ensure (and must ensure) that rule (2) for all parents leading up
3263  *     to the nearest inode or the root volume header is adhered to.  This
3264  *     is accomplished by always recursing through matching keyspaces in
3265  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3266  *
3267  * The current implementation calculates the current worst-case keyspace by
3268  * iterating the current parent and then divides it into two halves, choosing
3269  * whichever half has the most elements (not necessarily the half containing
3270  * the requested key).
3271  *
3272  * We can also opt to use the half with the least number of elements.  This
3273  * causes lower-numbered keys (aka logical file offsets) to recurse through
3274  * fewer indirect blocks and higher-numbered keys to recurse through more.
3275  * This also has the risk of not moving enough elements to the new indirect
3276  * block and being forced to create several indirect blocks before the element
3277  * can be inserted.
3278  *
3279  * Must be called with an exclusively locked parent.
3280  */
3281 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3282                                 hammer2_key_t *keyp, int keybits,
3283                                 hammer2_blockref_t *base, int count);
3284 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
3285                                 hammer2_key_t *keyp, int keybits,
3286                                 hammer2_blockref_t *base, int count);
3287 static
3288 hammer2_chain_t *
3289 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
3290                               hammer2_key_t create_key, int create_bits,
3291                               int for_type, int *errorp)
3292 {
3293         hammer2_mount_t *hmp;
3294         hammer2_chain_core_t *above;
3295         hammer2_chain_core_t *icore;
3296         hammer2_blockref_t *base;
3297         hammer2_blockref_t *bref;
3298         hammer2_blockref_t bcopy;
3299         hammer2_chain_t *chain;
3300         hammer2_chain_t *ichain;
3301         hammer2_chain_t dummy;
3302         hammer2_key_t key = create_key;
3303         hammer2_key_t key_beg;
3304         hammer2_key_t key_end;
3305         hammer2_key_t key_next;
3306         int keybits = create_bits;
3307         int count;
3308         int nbytes;
3309         int cache_index;
3310         int loops;
3311         int reason;
3312         int generation;
3313         int maxloops = 300000;
3314         int retry_same;
3315         int wasdup;
3316
3317         /*
3318          * Calculate the base blockref pointer or NULL if the chain
3319          * is known to be empty.  We need to calculate the array count
3320          * for RB lookups either way.
3321          */
3322         hmp = parent->hmp;
3323         *errorp = 0;
3324         KKASSERT(ccms_thread_lock_owned(&parent->core->cst));
3325         above = parent->core;
3326
3327         /*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
3328         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3329                 base = NULL;
3330
3331                 switch(parent->bref.type) {
3332                 case HAMMER2_BREF_TYPE_INODE:
3333                         count = HAMMER2_SET_COUNT;
3334                         break;
3335                 case HAMMER2_BREF_TYPE_INDIRECT:
3336                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3337                         count = parent->bytes / sizeof(hammer2_blockref_t);
3338                         break;
3339                 case HAMMER2_BREF_TYPE_VOLUME:
3340                         count = HAMMER2_SET_COUNT;
3341                         break;
3342                 case HAMMER2_BREF_TYPE_FREEMAP:
3343                         count = HAMMER2_SET_COUNT;
3344                         break;
3345                 default:
3346                         panic("hammer2_chain_create_indirect: "
3347                               "unrecognized blockref type: %d",
3348                               parent->bref.type);
3349                         count = 0;
3350                         break;
3351                 }
3352         } else {
3353                 switch(parent->bref.type) {
3354                 case HAMMER2_BREF_TYPE_INODE:
3355                         base = &parent->data->ipdata.u.blockset.blockref[0];
3356                         count = HAMMER2_SET_COUNT;
3357                         break;
3358                 case HAMMER2_BREF_TYPE_INDIRECT:
3359                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3360                         base = &parent->data->npdata[0];
3361                         count = parent->bytes / sizeof(hammer2_blockref_t);
3362                         break;
3363                 case HAMMER2_BREF_TYPE_VOLUME:
3364                         base = &hmp->voldata.sroot_blockset.blockref[0];
3365                         count = HAMMER2_SET_COUNT;
3366                         break;
3367                 case HAMMER2_BREF_TYPE_FREEMAP:
3368                         base = &hmp->voldata.freemap_blockset.blockref[0];
3369                         count = HAMMER2_SET_COUNT;
3370                         break;
3371                 default:
3372                         panic("hammer2_chain_create_indirect: "
3373                               "unrecognized blockref type: %d",
3374                               parent->bref.type);
3375                         count = 0;
3376                         break;
3377                 }
3378         }
3379
3380         /*
3381          * dummy used in later chain allocation (no longer used for lookups).
3382          */
3383         bzero(&dummy, sizeof(dummy));
3384         dummy.delete_xid = HAMMER2_XID_MAX;
3385
3386         /*
3387          * When creating an indirect block for a freemap node or leaf
3388          * the key/keybits must be fitted to static radix levels because
3389          * particular radix levels use particular reserved blocks in the
3390          * related zone.
3391          *
3392          * This routine calculates the key/radix of the indirect block
3393          * we need to create, and whether it is on the high-side or the
3394          * low-side.
3395          */
3396         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3397             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3398                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3399                                                        base, count);
3400         } else {
3401                 keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
3402                                                       base, count);
3403         }
3404
3405         /*
3406          * Normalize the key for the radix being represented, keeping the
3407          * high bits and throwing away the low bits.
3408          */
3409         key &= ~(((hammer2_key_t)1 << keybits) - 1);
3410
3411         /*
3412          * How big should our new indirect block be?  It has to be at least
3413          * as large as its parent.
3414          */
3415         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
3416                 nbytes = HAMMER2_IND_BYTES_MIN;
3417         else
3418                 nbytes = HAMMER2_IND_BYTES_MAX;
3419         if (nbytes < count * sizeof(hammer2_blockref_t))
3420                 nbytes = count * sizeof(hammer2_blockref_t);
3421
3422         /*
3423          * Ok, create our new indirect block
3424          */
3425         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3426             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3427                 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3428         } else {
3429                 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3430         }
3431         dummy.bref.key = key;
3432         dummy.bref.keybits = keybits;
3433         dummy.bref.data_off = hammer2_getradix(nbytes);
3434         dummy.bref.methods = parent->bref.methods;
3435
3436         ichain = hammer2_chain_alloc(hmp, parent->pmp, trans, &dummy.bref);
3437         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3438         hammer2_chain_core_alloc(trans, ichain, NULL);
3439         icore = ichain->core;
3440         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3441         hammer2_chain_drop(ichain);     /* excess ref from alloc */
3442
3443         /*
3444          * We have to mark it modified to allocate its block, but use
3445          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
3446          * it won't be acted upon by the flush code.
3447          */
3448         hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);
3449
3450         /*
3451          * Iterate the original parent and move the matching brefs into
3452          * the new indirect block.
3453          *
3454          * XXX handle flushes.
3455          */
3456         key_beg = 0;
3457         key_end = HAMMER2_KEY_MAX;
3458         cache_index = 0;
3459         spin_lock(&above->cst.spin);
3460         loops = 0;
3461         reason = 0;
3462         retry_same = 0;
3463
3464         for (;;) {
3465                 if (++loops > 100000) {
3466                     spin_unlock(&above->cst.spin);
3467                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
3468                           reason, parent, base, count, key_next);
3469                 }
3470
3471                 /*
3472                  * NOTE: spinlock stays intact, returned chain (if not NULL)
3473                  *       is not referenced or locked which means that we
3474                  *       cannot safely check its flagged / deletion status
3475                  *       until we lock it.
3476                  */
3477                 chain = hammer2_combined_find(parent, base, count,
3478                                               &cache_index, &key_next,
3479                                               key_beg, key_end,
3480                                               &bref);
3481                 generation = above->generation;
3482                 if (bref == NULL)
3483                         break;
3484                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3485
3486                 /*
3487                  * Skip keys that are not within the key/radix of the new
3488                  * indirect block.  They stay in the parent.
3489                  */
3490                 if ((~(((hammer2_key_t)1 << keybits) - 1) &
3491                     (key ^ bref->key)) != 0) {
3492                         goto next_key_spinlocked;
3493                 }
3494
3495                 /*
3496                  * Load the new indirect block by acquiring the related
3497                  * chains (potentially from media as it might not be
3498                  * in-memory).  Then move it to the new parent (ichain)
3499                  * via DELETE-DUPLICATE.
3500                  *
3501                  * chain is referenced but not locked.  We must lock the
3502                  * chain to obtain definitive DUPLICATED/DELETED state
3503                  */
3504                 if (chain) {
3505                         /*
3506                          * Use chain already present in the RBTREE
3507                          */
3508                         hammer2_chain_ref(chain);
3509                         wasdup = ((chain->flags &
3510                                    HAMMER2_CHAIN_DUPLICATED) != 0);
3511                         spin_unlock(&above->cst.spin);
3512                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
3513                                                   HAMMER2_RESOLVE_NOREF);
3514                 } else {
3515                         /*
3516                          * Get chain for blockref element.  _get returns NULL
3517                          * on insertion race.
3518                          */
3519                         bcopy = *bref;
3520                         spin_unlock(&above->cst.spin);
3521                         chain = hammer2_chain_get(parent, generation, &bcopy);
3522                         if (chain == NULL) {
3523                                 reason = 1;
3524                                 spin_lock(&above->cst.spin);
3525                                 continue;
3526                         }
3527                         if (bcmp(&bcopy, bref, sizeof(bcopy))) {
3528                                 reason = 2;
3529                                 hammer2_chain_drop(chain);
3530                                 spin_lock(&above->cst.spin);
3531                                 continue;
3532                         }
3533                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
3534                                                   HAMMER2_RESOLVE_NOREF);
3535                         wasdup = 0;
3536                 }
3537
3538                 /*
3539                  * This is always live so if the chain has been delete-
3540                  * duplicated we raced someone and we have to retry.
3541                  *
3542                  * NOTE: Lookups can race delete-duplicate because
3543                  *       delete-duplicate does not lock the parent's core
3544                  *       (they just use the spinlock on the core).  We must
3545                  *       check for races by comparing the DUPLICATED flag before
3546                  *       releasing the spinlock with the flag after locking the
3547                  *       chain.
3548                  *
3549                  *       (note reversed logic for this one)
3550                  */
3551                 if (chain->flags & HAMMER2_CHAIN_DELETED) {
3552                         hammer2_chain_unlock(chain);
3553                         if ((chain->flags & HAMMER2_CHAIN_DUPLICATED) &&
3554                             wasdup == 0) {
3555                                 retry_same = 1;
3556                         }
3557                         goto next_key;
3558                 }
3559
3560                 /*
3561                  * Shift the chain to the indirect block.
3562                  *
3563                  * WARNING! Can cause held-over chains to require a refactor.
3564                  *          Fortunately we have none (our locked chains are
3565                  *          passed into and modified by the call).
3566                  */
3567                 hammer2_chain_delete(trans, chain, 0);
3568                 hammer2_chain_duplicate(trans, &ichain, &chain, NULL, 0, 1);
3569                 hammer2_chain_unlock(chain);
3570                 KKASSERT(parent->refs > 0);
3571                 chain = NULL;
3572 next_key:
3573                 spin_lock(&above->cst.spin);
3574 next_key_spinlocked:
3575                 if (--maxloops == 0)
3576                         panic("hammer2_chain_create_indirect: maxloops");
3577                 reason = 4;
3578                 if (retry_same == 0) {
3579                         if (key_next == 0 || key_next > key_end)
3580                                 break;
3581                         key_beg = key_next;
3582                 }
3583                 /* loop */
3584         }
3585         spin_unlock(&above->cst.spin);
3586
3587         /*
3588          * Insert the new indirect block into the parent now that we've
3589          * cleared out some entries in the parent.  We calculated a good
3590          * insertion index in the loop above (ichain->index).
3591          *
3592          * We don't have to set FLUSH_CREATE here because we mark ichain
3593          * modified down below (so the normal modified -> flush -> set-moved
3594          * sequence applies).
3595          *
3596          * The insertion shouldn't race as this is a completely new block
3597          * and the parent is locked.
3598          */
3599         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3600         hammer2_chain_insert(above, NULL, ichain,
3601                              HAMMER2_CHAIN_INSERT_SPIN |
3602                              HAMMER2_CHAIN_INSERT_LIVE,
3603                              0);
3604
3605         /*
3606          * Mark the new indirect block modified after insertion, which
3607          * will propagate up through parent all the way to the root and
3608          * also allocate the physical block in ichain for our caller,
3609          * and assign ichain->data to a pre-zero'd space (because there
3610          * is not prior data to copy into it).
3611          */
3612         /*hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);*/
3613         hammer2_chain_setsubmod(trans, ichain);
3614
3615         /*
3616          * Figure out what to return.
3617          */
3618         if (~(((hammer2_key_t)1 << keybits) - 1) &
3619                    (create_key ^ key)) {
3620                 /*
3621                  * Key being created is outside the key range,
3622                  * return the original parent.
3623                  */
3624                 hammer2_chain_unlock(ichain);
3625         } else {
3626                 /*
3627                  * Otherwise its in the range, return the new parent.
3628                  * (leave both the new and old parent locked).
3629                  */
3630                 parent = ichain;
3631         }
3632
3633         return(parent);
3634 }
3635
3636 /*
3637  * Calculate the keybits and highside/lowside of the freemap node the
3638  * caller is creating.
3639  *
3640  * This routine will specify the next higher-level freemap key/radix
3641  * representing the lowest-ordered set.  By doing so, eventually all
3642  * low-ordered sets will be moved one level down.
3643  *
3644  * We have to be careful here because the freemap reserves a limited
3645  * number of blocks for a limited number of levels.  So we can't just
3646  * push indiscriminately.
3647  */
3648 int
3649 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3650                              int keybits, hammer2_blockref_t *base, int count)
3651 {
3652         hammer2_chain_core_t *above;
3653         hammer2_chain_t *chain;
3654         hammer2_blockref_t *bref;
3655         hammer2_key_t key;
3656         hammer2_key_t key_beg;
3657         hammer2_key_t key_end;
3658         hammer2_key_t key_next;
3659         int cache_index;
3660         int locount;
3661         int hicount;
3662         int maxloops = 300000;
3663
3664         key = *keyp;
3665         above = parent->core;
3666         locount = 0;
3667         hicount = 0;
3668         keybits = 64;
3669
3670         /*
3671          * Calculate the range of keys in the array being careful to skip
3672          * slots which are overridden with a deletion.
3673          */
3674         key_beg = 0;
3675         key_end = HAMMER2_KEY_MAX;
3676         cache_index = 0;
3677         spin_lock(&above->cst.spin);
3678
3679         for (;;) {
3680                 if (--maxloops == 0) {
3681                         panic("indkey_freemap shit %p %p:%d\n",
3682                               parent, base, count);
3683                 }
3684                 chain = hammer2_combined_find(parent, base, count,
3685                                               &cache_index, &key_next,
3686                                               key_beg, key_end,
3687                                               &bref);
3688
3689                 /*
3690                  * Exhausted search
3691                  */
3692                 if (bref == NULL)
3693                         break;
3694
3695                 /*
3696                  * NOTE: No need to check DUPLICATED here because we do
3697                  *       not release the spinlock.
3698                  */
3699                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3700                         if (key_next == 0 || key_next > key_end)
3701                                 break;
3702                         key_beg = key_next;
3703                         continue;
3704                 }
3705
3706                 /*
3707                  * Use the full live (not deleted) element for the scan
3708                  * iteration.  HAMMER2 does not allow partial replacements.
3709                  *
3710                  * XXX should be built into hammer2_combined_find().
3711                  */
3712                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3713
3714                 if (keybits > bref->keybits) {
3715                         key = bref->key;
3716                         keybits = bref->keybits;
3717                 } else if (keybits == bref->keybits && bref->key < key) {
3718                         key = bref->key;
3719                 }
3720                 if (key_next == 0)
3721                         break;
3722                 key_beg = key_next;
3723         }
3724         spin_unlock(&above->cst.spin);
3725
3726         /*
3727          * Return the keybits for a higher-level FREEMAP_NODE covering
3728          * this node.
3729          */
3730         switch(keybits) {
3731         case HAMMER2_FREEMAP_LEVEL0_RADIX:
3732                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3733                 break;
3734         case HAMMER2_FREEMAP_LEVEL1_RADIX:
3735                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3736                 break;
3737         case HAMMER2_FREEMAP_LEVEL2_RADIX:
3738                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3739                 break;
3740         case HAMMER2_FREEMAP_LEVEL3_RADIX:
3741                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3742                 break;
3743         case HAMMER2_FREEMAP_LEVEL4_RADIX:
3744                 panic("hammer2_chain_indkey_freemap: level too high");
3745                 break;
3746         default:
3747                 panic("hammer2_chain_indkey_freemap: bad radix");
3748                 break;
3749         }
3750         *keyp = key;
3751
3752         return (keybits);
3753 }
3754
3755 /*
3756  * Calculate the keybits and highside/lowside of the indirect block the
3757  * caller is creating.
3758  */
3759 static int
3760 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3761                             int keybits, hammer2_blockref_t *base, int count)
3762 {
3763         hammer2_chain_core_t *above;
3764         hammer2_blockref_t *bref;
3765         hammer2_chain_t *chain;
3766         hammer2_key_t key_beg;
3767         hammer2_key_t key_end;
3768         hammer2_key_t key_next;
3769         hammer2_key_t key;
3770         int nkeybits;
3771         int locount;
3772         int hicount;
3773         int cache_index;
3774         int maxloops = 300000;
3775
3776         key = *keyp;
3777         above = parent->core;
3778         locount = 0;
3779         hicount = 0;
3780
3781         /*
3782          * Calculate the range of keys in the array being careful to skip
3783          * slots which are overridden with a deletion.  Once the scan
3784          * completes we will cut the key range in half and shift half the
3785          * range into the new indirect block.
3786          */
3787         key_beg = 0;
3788         key_end = HAMMER2_KEY_MAX;
3789         cache_index = 0;
3790         spin_lock(&above->cst.spin);
3791
3792         for (;;) {
3793                 if (--maxloops == 0) {
3794                         panic("indkey_freemap shit %p %p:%d\n",
3795                               parent, base, count);
3796                 }
3797                 chain = hammer2_combined_find(parent, base, count,
3798                                               &cache_index, &key_next,
3799                                               key_beg, key_end,
3800                                               &bref);
3801
3802                 /*
3803                  * Exhausted search
3804                  */
3805                 if (bref == NULL)
3806                         break;
3807
3808                 /*
3809                  * NOTE: No need to check DUPLICATED here because we do
3810                  *       not release the spinlock.
3811                  */
3812                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3813                         if (key_next == 0 || key_next > key_end)
3814                                 break;
3815                         key_beg = key_next;
3816                         continue;
3817                 }
3818
3819                 /*
3820                  * Use the full live (not deleted) element for the scan
3821                  * iteration.  HAMMER2 does not allow partial replacements.
3822                  *
3823                  * XXX should be built into hammer2_combined_find().
3824                  */
3825                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3826
3827                 /*
3828                  * Expand our calculated key range (key, keybits) to fit
3829                  * the scanned key.  nkeybits represents the full range
3830                  * that we will later cut in half (two halves @ nkeybits - 1).
3831                  */
3832                 nkeybits = keybits;
3833                 if (nkeybits < bref->keybits) {
3834                         if (bref->keybits > 64) {
3835                                 kprintf("bad bref chain %p bref %p\n",
3836                                         chain, bref);
3837                                 Debugger("fubar");
3838                         }
3839                         nkeybits = bref->keybits;
3840                 }
3841                 while (nkeybits < 64 &&
3842                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
3843                         (key ^ bref->key)) != 0) {
3844                         ++nkeybits;
3845                 }
3846
3847                 /*
3848                  * If the new key range is larger we have to determine
3849                  * which side of the new key range the existing keys fall
3850                  * under by checking the high bit, then collapsing the
3851                  * locount into the hicount or vise-versa.
3852                  */
3853                 if (keybits != nkeybits) {
3854                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3855                                 hicount += locount;
3856                                 locount = 0;
3857                         } else {
3858                                 locount += hicount;
3859                                 hicount = 0;
3860                         }
3861                         keybits = nkeybits;
3862                 }
3863
3864                 /*
3865                  * The newly scanned key will be in the lower half or the
3866                  * upper half of the (new) key range.
3867                  */
3868                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3869                         ++hicount;
3870                 else
3871                         ++locount;
3872
3873                 if (key_next == 0)
3874                         break;
3875                 key_beg = key_next;
3876         }
3877         spin_unlock(&above->cst.spin);
3878         bref = NULL;    /* now invalid (safety) */
3879
3880         /*
3881          * Adjust keybits to represent half of the full range calculated
3882          * above (radix 63 max)
3883          */
3884         --keybits;
3885
3886         /*
3887          * Select whichever half contains the most elements.  Theoretically
3888          * we can select either side as long as it contains at least one
3889          * element (in order to ensure that a free slot is present to hold
3890          * the indirect block).
3891          */
3892         if (hammer2_indirect_optimize) {
3893                 /*
3894                  * Insert node for least number of keys, this will arrange
3895                  * the first few blocks of a large file or the first few
3896                  * inodes in a directory with fewer indirect blocks when
3897                  * created linearly.
3898                  */
3899                 if (hicount < locount && hicount != 0)
3900                         key |= (hammer2_key_t)1 << keybits;
3901                 else
3902                         key &= ~(hammer2_key_t)1 << keybits;
3903         } else {
3904                 /*
3905                  * Insert node for most number of keys, best for heavily
3906                  * fragmented files.
3907                  */
3908                 if (hicount > locount)
3909                         key |= (hammer2_key_t)1 << keybits;
3910                 else
3911                         key &= ~(hammer2_key_t)1 << keybits;
3912         }
3913         *keyp = key;
3914
3915         return (keybits);
3916 }
3917
3918 /*
3919  * Sets CHAIN_DELETED and CHAIN_FLUSH_DELETE in the chain being deleted and
3920  * set chain->delete_xid.  The chain is not actually marked possibly-free
3921  * in the freemap until the deletion is completely flushed out (because
3922  * a flush which doesn't cover the entire deletion is flushing the deleted
3923  * chain as if it were live).
3924  *
3925  * This function does NOT generate a modification to the parent.  It
3926  * would be nearly impossible to figure out which parent to modify anyway.
3927  * Such modifications are handled top-down by the flush code and are
3928  * properly merged using the flush synchronization point.
3929  *
3930  * The find/get code will properly overload the RBTREE check on top of
3931  * the bref check to detect deleted entries.
3932  *
3933  * This function is NOT recursive.  Any entity already pushed into the
3934  * chain (such as an inode) may still need visibility into its contents,
3935  * as well as the ability to read and modify the contents.  For example,
3936  * for an unlinked file which is still open.
3937  *
3938  * NOTE: Deletions normally do not occur in the middle of a duplication
3939  *       chain but we use a trick for hardlink migration that refactors
3940  *       the originating inode without deleting it, so we make no assumptions
3941  *       here.
3942  */
3943 void
3944 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *chain, int flags)
3945 {
3946         KKASSERT(ccms_thread_lock_owned(&chain->core->cst));
3947
3948         /*
3949          * Nothing to do if already marked.
3950          */
3951         if (chain->flags & HAMMER2_CHAIN_DELETED)
3952                 return;
3953
3954         /*
3955          * The setting of DELETED causes finds, lookups, and _next iterations
3956          * to no longer recognize the chain.  RB_SCAN()s will still have
3957          * visibility (needed for flush serialization points).
3958          *
3959          * We need the spinlock on the core whos RBTREE contains chain
3960          * to protect against races.
3961          */
3962         spin_lock(&chain->above->cst.spin);
3963         _hammer2_chain_delete_helper(trans, chain->above, chain);
3964         spin_unlock(&chain->above->cst.spin);
3965
3966         hammer2_chain_setsubmod(trans, chain);
3967 }
3968
3969 /*
3970  * Returns the index of the nearest element in the blockref array >= elm.
3971  * Returns (count) if no element could be found.  If delete_filter is non-zero
3972  * the scan filters out any blockrefs which match deleted chains on dbtree.
3973  *
3974  * Sets *key_nextp to the next key for loop purposes but does not modify
3975  * it if the next key would be higher than the current value of *key_nextp.
3976  * Note that *key_nexp can overflow to 0, which should be tested by the
3977  * caller.
3978  *
3979  * (*cache_indexp) is a heuristic and can be any value without effecting
3980  * the result.
3981  *
3982  * The spin lock on the related chain must be held.
3983  */
3984 int
3985 hammer2_base_find(hammer2_chain_t *parent,
3986                   hammer2_blockref_t *base, int count,
3987                   int *cache_indexp, hammer2_key_t *key_nextp,
3988                   hammer2_key_t key_beg, hammer2_key_t key_end,
3989                   int delete_filter)
3990 {
3991         hammer2_chain_core_t *core = parent->core;
3992         hammer2_blockref_t *scan;
3993         hammer2_key_t scan_end;
3994         int i;
3995         int limit;
3996
3997         /*
3998          * Require the live chain's already have their core's counted
3999          * so we can optimize operations.
4000          */
4001         KKASSERT((parent->flags & HAMMER2_CHAIN_DUPLICATED) ||
4002                  core->flags & HAMMER2_CORE_COUNTEDBREFS);
4003
4004         /*
4005          * Degenerate case
4006          */
4007         if (count == 0 || base == NULL)
4008                 return(count);
4009
4010         /*
4011          * Sequential optimization using *cache_indexp.  This is the most
4012          * likely scenario.
4013          *
4014          * We can avoid trailing empty entries on live chains, otherwise
4015          * we might have to check the whole block array.
4016          */
4017         i = *cache_indexp;
4018         cpu_ccfence();
4019         if (parent->flags & HAMMER2_CHAIN_DUPLICATED)
4020                 limit = count;
4021         else
4022                 limit = core->live_zero;
4023         if (i >= limit)
4024                 i = limit - 1;
4025         if (i < 0)
4026                 i = 0;
4027         KKASSERT(i < count);
4028
4029         /*
4030          * Search backwards
4031          */
4032         scan = &base[i];
4033         while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
4034                 --scan;
4035                 --i;
4036         }
4037         *cache_indexp = i;
4038
4039         /*
4040          * Search forwards, stop when we find a scan element which
4041          * encloses the key or until we know that there are no further
4042          * elements.
4043          */
4044         while (i < count) {
4045                 if (scan->type != 0) {
4046                         scan_end = scan->key +
4047                                    ((hammer2_key_t)1 << scan->keybits) - 1;
4048                         if (scan->key > key_beg || scan_end >= key_beg) {
4049                                 /*
4050                                  * Check to see if the entry is covered by
4051                                  * a deleted chain and ignore the entry if
4052                                  * it is and delete_filter != 0.
4053                                  */
4054                                 if (delete_filter == 0)
4055                                         break;
4056                                 if (hammer2_chain_find_deleted(
4057                                         parent, scan->key, scan_end) == NULL) {
4058                                         break;
4059                                 }
4060                         }
4061                 }
4062                 if (i >= limit)
4063                         return (count);
4064                 ++scan;
4065                 ++i;
4066         }
4067         if (i != count) {
4068                 *cache_indexp = i;
4069                 if (i >= limit) {
4070                         i = count;
4071                 } else {
4072                         scan_end = scan->key +
4073                                    ((hammer2_key_t)1 << scan->keybits);
4074                         if (scan_end && (*key_nextp > scan_end ||
4075                                          *key_nextp == 0)) {
4076                                 *key_nextp = scan_end;
4077                         }
4078                 }
4079         }
4080         return (i);
4081 }
4082
4083 /*
4084  * Do a combined search and return the next match either from the blockref
4085  * array or from the in-memory chain.  Sets *bresp to the returned bref in
4086  * both cases, or sets it to NULL if the search exhausted.  Only returns
4087  * a non-NULL chain if the search matched from the in-memory chain.
4088  *
4089  * When no in-memory chain has been found and a non-NULL bref is returned
4090  * in *bresp.
4091  *
4092  * Must be called with above's spinlock held.  Spinlock remains held
4093  * through the operation.
4094  *
4095  * The returned chain is not locked or referenced.  Use the returned bref
4096  * to determine if the search exhausted or not.  Iterate if the base find
4097  * is chosen but matches a deleted chain.
4098  */
4099 static hammer2_chain_t *
4100 hammer2_combined_find(hammer2_chain_t *parent,
4101                       hammer2_blockref_t *base, int count,
4102                       int *cache_indexp, hammer2_key_t *key_nextp,
4103                       hammer2_key_t key_beg, hammer2_key_t key_end,
4104                       hammer2_blockref_t **bresp)
4105 {
4106         hammer2_blockref_t *bref;
4107         hammer2_chain_t *chain;
4108         int i;
4109
4110         /*
4111          * Lookup in block array and in rbtree.
4112          */
4113         *key_nextp = key_end + 1;
4114         i = hammer2_base_find(parent, base, count, cache_indexp,
4115                               key_nextp, key_beg, key_end, 1);
4116         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
4117
4118         /*
4119          * Neither matched
4120          */
4121         if (i == count && chain == NULL) {
4122                 *bresp = NULL;
4123                 return(NULL);
4124         }
4125
4126         /*
4127          * Only chain matched.
4128          */
4129         if (i == count) {
4130                 bref = &chain->bref;
4131                 goto found;
4132         }
4133
4134         /*
4135          * Only blockref matched.
4136          */
4137         if (chain == NULL) {
4138                 bref = &base[i];
4139                 goto found;
4140         }
4141
4142         /*
4143          * Both in-memory and blockref matched, select the nearer element.
4144          *
4145          * If both are flush with the left-hand side or both are the
4146          * same distance away, select the chain.  In this situation the
4147          * chain must have been loaded from the matching blockmap.
4148          */
4149         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
4150             chain->bref.key == base[i].key) {
4151                 KKASSERT(chain->bref.key == base[i].key);
4152                 if ((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
4153                         kprintf("chain not bmapped %p.%d %08x\n",
4154                                 chain, chain->bref.type, chain->flags);
4155                         kprintf("in chain mod/del %08x %08x\n",
4156                                 chain->modify_xid, chain->delete_xid);
4157                         kprintf("and updlo/hi %08x %08x\n",
4158                                 chain->update_xlo, chain->update_xhi);
4159                 }
4160                 KKASSERT(chain->flags & HAMMER2_CHAIN_BMAPPED);
4161                 bref = &chain->bref;
4162                 goto found;
4163         }
4164
4165         /*
4166          * Select the nearer key
4167          */
4168         if (chain->bref.key < base[i].key) {
4169                 bref = &chain->bref;
4170         } else {
4171                 bref = &base[i];
4172                 chain = NULL;
4173         }
4174
4175         /*
4176          * If the bref is out of bounds we've exhausted our search.
4177          */
4178 found:
4179         if (bref->key > key_end) {
4180                 *bresp = NULL;
4181                 chain = NULL;
4182         } else {
4183                 *bresp = bref;
4184         }
4185         return(chain);
4186 }
4187
4188 /*
4189  * Locate the specified block array element and delete it.  The element
4190  * must exist.
4191  *
4192  * The spin lock on the related chain must be held.
4193  *
4194  * NOTE: live_count was adjusted when the chain was deleted, so it does not
4195  *       need to be adjusted when we commit the media change.
4196  */
4197 void
4198 hammer2_base_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
4199                     hammer2_blockref_t *base, int count,
4200                     int *cache_indexp, hammer2_chain_t *child)
4201 {
4202         hammer2_blockref_t *elm = &child->bref;
4203         hammer2_chain_core_t *core = parent->core;
4204         hammer2_key_t key_next;
4205         int i;
4206
4207         /*
4208          * Delete element.  Expect the element to exist.
4209          *
4210          * XXX see caller, flush code not yet sophisticated enough to prevent
4211          *     re-flushed in some cases.
4212          */
4213         key_next = 0; /* max range */
4214         i = hammer2_base_find(parent, base, count, cache_indexp,
4215                               &key_next, elm->key, elm->key, 0);
4216         if (i == count || base[i].type == 0 ||
4217             base[i].key != elm->key || base[i].keybits != elm->keybits) {
4218                 spin_unlock(&core->cst.spin);
4219                 panic("delete base %p element not found at %d/%d elm %p\n"
4220                       "child ino_reason=%08x\n",
4221                       base, i, count, elm,
4222                       child->inode_reason);
4223                 return;
4224         }
4225         bzero(&base[i], sizeof(*base));
4226
4227         /*
4228          * We can only optimize core->live_zero for live chains.
4229          */
4230         if ((parent->flags & HAMMER2_CHAIN_DUPLICATED) == 0) {
4231                 if (core->live_zero == i + 1) {
4232                         while (--i >= 0 && base[i].type == 0)
4233                                 ;
4234                         core->live_zero = i + 1;
4235                 }
4236         }
4237 }
4238
4239 /*
4240  * Insert the specified element.  The block array must not already have the
4241  * element and must have space available for the insertion.
4242  *
4243  * The spin lock on the related chain must be held.
4244  *
4245  * NOTE: live_count was adjusted when the chain was deleted, so it does not
4246  *       need to be adjusted when we commit the media change.
4247  */
4248 void
4249 hammer2_base_insert(hammer2_trans_t *trans __unused, hammer2_chain_t *parent,
4250                     hammer2_blockref_t *base, int count,
4251                     int *cache_indexp, hammer2_chain_t *child)
4252 {
4253         hammer2_blockref_t *elm = &child->bref;
4254         hammer2_chain_core_t *core = parent->core;
4255         hammer2_key_t key_next;
4256         hammer2_key_t xkey;
4257         int i;
4258         int j;
4259         int k;
4260         int l;
4261         int u = 1;
4262
4263         /*
4264          * Insert new element.  Expect the element to not already exist
4265          * unless we are replacing it.
4266          *
4267          * XXX see caller, flush code not yet sophisticated enough to prevent
4268          *     re-flushed in some cases.
4269          */
4270         key_next = 0; /* max range */
4271         i = hammer2_base_find(parent, base, count, cache_indexp,
4272                               &key_next, elm->key, elm->key, 0);
4273
4274         /*
4275          * Shortcut fill optimization, typical ordered insertion(s) may not
4276          * require a search.
4277          */
4278         KKASSERT(i >= 0 && i <= count);
4279
4280         /*
4281          * We can only optimize core->live_zero for live chains.
4282          */
4283         if (i == count && core->live_zero < count) {
4284                 if ((parent->flags & HAMMER2_CHAIN_DUPLICATED) == 0) {
4285                         i = core->live_zero++;
4286                         base[i] = *elm;
4287                         return;
4288                 }
4289         }
4290
4291         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
4292         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
4293                 if (child->flags & HAMMER2_CHAIN_FLUSH_TEMPORARY) {
4294                         kprintf("child %p special replace\n", child);
4295                         base[i] = *elm;
4296                         return;
4297                 } else {
4298                         spin_unlock(&core->cst.spin);
4299                         panic("insert base %p overlapping "
4300                               "elements at %d elm %p\n",
4301                               base, i, elm);
4302                 }
4303         }
4304
4305         /*
4306          * Try to find an empty slot before or after.
4307          */
4308         j = i;
4309         k = i;
4310         while (j > 0 || k < count) {
4311                 --j;
4312                 if (j >= 0 && base[j].type == 0) {
4313                         if (j == i - 1) {
4314                                 base[j] = *elm;
4315                         } else {
4316                                 bcopy(&base[j+1], &base[j],
4317                                       (i - j - 1) * sizeof(*base));
4318                                 base[i - 1] = *elm;
4319                         }
4320                         goto validate;
4321                 }
4322                 ++k;
4323                 if (k < count && base[k].type == 0) {
4324                         bcopy(&base[i], &base[i+1],
4325                               (k - i) * sizeof(hammer2_blockref_t));
4326                         base[i] = *elm;
4327
4328                         /*
4329                          * We can only update core->live_zero for live
4330                          * chains.
4331                          */
4332                         if ((parent->flags & HAMMER2_CHAIN_DUPLICATED) == 0) {
4333                                 if (core->live_zero <= k)
4334                                         core->live_zero = k + 1;
4335                         }
4336                         u = 2;
4337                         goto validate;
4338                 }
4339         }
4340         panic("hammer2_base_insert: no room!");
4341
4342         /*
4343          * Debugging
4344          */
4345 validate:
4346         key_next = 0;
4347         for (l = 0; l < count; ++l) {
4348                 if (base[l].type) {
4349                         key_next = base[l].key +
4350                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
4351                         break;
4352                 }
4353         }
4354         while (++l < count) {
4355                 if (base[l].type) {
4356                         if (base[l].key <= key_next)
4357                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
4358                         key_next = base[l].key +
4359                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
4360
4361                 }
4362         }
4363
4364 }
4365
4366 #if 0
4367
4368 /*
4369  * Sort the blockref array for the chain.  Used by the flush code to
4370  * sort the blockref[] array.
4371  *
4372  * The chain must be exclusively locked AND spin-locked.
4373  */
4374 typedef hammer2_blockref_t *hammer2_blockref_p;
4375
4376 static
4377 int
4378 hammer2_base_sort_callback(const void *v1, const void *v2)
4379 {
4380         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
4381         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
4382
4383         /*
4384          * Make sure empty elements are placed at the end of the array
4385          */
4386         if (bref1->type == 0) {
4387                 if (bref2->type == 0)
4388                         return(0);
4389                 return(1);
4390         } else if (bref2->type == 0) {
4391                 return(-1);
4392         }
4393
4394         /*
4395          * Sort by key
4396          */
4397         if (bref1->key < bref2->key)
4398                 return(-1);
4399         if (bref1->key > bref2->key)
4400                 return(1);
4401         return(0);
4402 }
4403
4404 void
4405 hammer2_base_sort(hammer2_chain_t *chain)
4406 {
4407         hammer2_blockref_t *base;
4408         int count;
4409
4410         switch(chain->bref.type) {
4411         case HAMMER2_BREF_TYPE_INODE:
4412                 /*
4413                  * Special shortcut for embedded data returns the inode
4414                  * itself.  Callers must detect this condition and access
4415                  * the embedded data (the strategy code does this for us).
4416                  *
4417                  * This is only applicable to regular files and softlinks.
4418                  */
4419                 if (chain->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
4420                         return;
4421                 base = &chain->data->ipdata.u.blockset.blockref[0];
4422                 count = HAMMER2_SET_COUNT;
4423                 break;
4424         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4425         case HAMMER2_BREF_TYPE_INDIRECT:
4426                 /*
4427                  * Optimize indirect blocks in the INITIAL state to avoid
4428                  * I/O.
4429                  */
4430                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4431                 base = &chain->data->npdata[0];
4432                 count = chain->bytes / sizeof(hammer2_blockref_t);
4433                 break;
4434         case HAMMER2_BREF_TYPE_VOLUME:
4435                 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
4436                 count = HAMMER2_SET_COUNT;
4437                 break;
4438         case HAMMER2_BREF_TYPE_FREEMAP:
4439                 base = &chain->hmp->voldata.freemap_blockset.blockref[0];
4440                 count = HAMMER2_SET_COUNT;
4441                 break;
4442         default:
4443                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
4444                       chain->bref.type);
4445                 base = NULL;    /* safety */
4446                 count = 0;      /* safety */
4447         }
4448         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
4449 }
4450
4451 #endif
4452
4453 /*
4454  * Chain memory management
4455  */
4456 void
4457 hammer2_chain_wait(hammer2_chain_t *chain)
4458 {
4459         tsleep(chain, 0, "chnflw", 1);
4460 }
4461
4462 /*
4463  * chain may have been moved around by the create.
4464  */
4465 void
4466 hammer2_chain_refactor(hammer2_chain_t **chainp)
4467 {
4468         hammer2_chain_t *chain = *chainp;
4469         hammer2_chain_core_t *core;
4470
4471         core = chain->core;
4472         while (chain->flags & HAMMER2_CHAIN_DUPLICATED) {
4473                 spin_lock(&core->cst.spin);
4474                 chain = TAILQ_NEXT(chain, core_entry);
4475                 while (chain->flags & HAMMER2_CHAIN_DUPLICATED)
4476                         chain = TAILQ_NEXT(chain, core_entry);
4477                 hammer2_chain_ref(chain);
4478                 spin_unlock(&core->cst.spin);
4479                 KKASSERT(chain->core == core);
4480
4481                 hammer2_chain_unlock(*chainp);
4482                 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS |
4483                                           HAMMER2_RESOLVE_NOREF); /* eat ref */
4484                 *chainp = chain;
4485         }
4486 }