drm/i915: Update to Linux 3.9.11
[dragonfly.git] / sys / dev / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <ddb/ddb.h>
28 #include <sys/limits.h>
29
30 #include <drm/drmP.h>
31 #include <drm/drm_edid.h>
32 #include "intel_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include <drm/drm_dp_helper.h>
36 #include <drm/drm_crtc_helper.h>
37
38 #include <linux/err.h>
39
40 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
41 static void intel_increase_pllclock(struct drm_crtc *crtc);
42 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
43
44 typedef struct {
45         /* given values */
46         int n;
47         int m1, m2;
48         int p1, p2;
49         /* derived values */
50         int     dot;
51         int     vco;
52         int     m;
53         int     p;
54 } intel_clock_t;
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 #define INTEL_P2_NUM                  2
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
71                         int, int, intel_clock_t *, intel_clock_t *);
72 };
73
74 /* FDI */
75 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
76
77 int
78 intel_pch_rawclk(struct drm_device *dev)
79 {
80         struct drm_i915_private *dev_priv = dev->dev_private;
81
82         WARN_ON(!HAS_PCH_SPLIT(dev));
83
84         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
85 }
86
87 static bool
88 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                     int target, int refclk, intel_clock_t *match_clock,
90                     intel_clock_t *best_clock);
91 static bool
92 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                         int target, int refclk, intel_clock_t *match_clock,
94                         intel_clock_t *best_clock);
95
96 static bool
97 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                       int target, int refclk, intel_clock_t *match_clock,
99                       intel_clock_t *best_clock);
100 static bool
101 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                            int target, int refclk, intel_clock_t *match_clock,
103                            intel_clock_t *best_clock);
104
105 static bool
106 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
107                         int target, int refclk, intel_clock_t *match_clock,
108                         intel_clock_t *best_clock);
109
110 static inline u32 /* units of 100MHz */
111 intel_fdi_link_freq(struct drm_device *dev)
112 {
113         if (IS_GEN5(dev)) {
114                 struct drm_i915_private *dev_priv = dev->dev_private;
115                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
116         } else
117                 return 27;
118 }
119
120 static const intel_limit_t intel_limits_i8xx_dvo = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 930000, .max = 1400000 },
123         .n = { .min = 3, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 2, .max = 33 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 4, .p2_fast = 2 },
131         .find_pll = intel_find_best_PLL,
132 };
133
134 static const intel_limit_t intel_limits_i8xx_lvds = {
135         .dot = { .min = 25000, .max = 350000 },
136         .vco = { .min = 930000, .max = 1400000 },
137         .n = { .min = 3, .max = 16 },
138         .m = { .min = 96, .max = 140 },
139         .m1 = { .min = 18, .max = 26 },
140         .m2 = { .min = 6, .max = 16 },
141         .p = { .min = 4, .max = 128 },
142         .p1 = { .min = 1, .max = 6 },
143         .p2 = { .dot_limit = 165000,
144                 .p2_slow = 14, .p2_fast = 7 },
145         .find_pll = intel_find_best_PLL,
146 };
147
148 static const intel_limit_t intel_limits_i9xx_sdvo = {
149         .dot = { .min = 20000, .max = 400000 },
150         .vco = { .min = 1400000, .max = 2800000 },
151         .n = { .min = 1, .max = 6 },
152         .m = { .min = 70, .max = 120 },
153         .m1 = { .min = 8, .max = 18 },
154         .m2 = { .min = 3, .max = 7 },
155         .p = { .min = 5, .max = 80 },
156         .p1 = { .min = 1, .max = 8 },
157         .p2 = { .dot_limit = 200000,
158                 .p2_slow = 10, .p2_fast = 5 },
159         .find_pll = intel_find_best_PLL,
160 };
161
162 static const intel_limit_t intel_limits_i9xx_lvds = {
163         .dot = { .min = 20000, .max = 400000 },
164         .vco = { .min = 1400000, .max = 2800000 },
165         .n = { .min = 1, .max = 6 },
166         .m = { .min = 70, .max = 120 },
167         .m1 = { .min = 8, .max = 18 },
168         .m2 = { .min = 3, .max = 7 },
169         .p = { .min = 7, .max = 98 },
170         .p1 = { .min = 1, .max = 8 },
171         .p2 = { .dot_limit = 112000,
172                 .p2_slow = 14, .p2_fast = 7 },
173         .find_pll = intel_find_best_PLL,
174 };
175
176
177 static const intel_limit_t intel_limits_g4x_sdvo = {
178         .dot = { .min = 25000, .max = 270000 },
179         .vco = { .min = 1750000, .max = 3500000},
180         .n = { .min = 1, .max = 4 },
181         .m = { .min = 104, .max = 138 },
182         .m1 = { .min = 17, .max = 23 },
183         .m2 = { .min = 5, .max = 11 },
184         .p = { .min = 10, .max = 30 },
185         .p1 = { .min = 1, .max = 3},
186         .p2 = { .dot_limit = 270000,
187                 .p2_slow = 10,
188                 .p2_fast = 10
189         },
190         .find_pll = intel_g4x_find_best_PLL,
191 };
192
193 static const intel_limit_t intel_limits_g4x_hdmi = {
194         .dot = { .min = 22000, .max = 400000 },
195         .vco = { .min = 1750000, .max = 3500000},
196         .n = { .min = 1, .max = 4 },
197         .m = { .min = 104, .max = 138 },
198         .m1 = { .min = 16, .max = 23 },
199         .m2 = { .min = 5, .max = 11 },
200         .p = { .min = 5, .max = 80 },
201         .p1 = { .min = 1, .max = 8},
202         .p2 = { .dot_limit = 165000,
203                 .p2_slow = 10, .p2_fast = 5 },
204         .find_pll = intel_g4x_find_best_PLL,
205 };
206
207 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
208         .dot = { .min = 20000, .max = 115000 },
209         .vco = { .min = 1750000, .max = 3500000 },
210         .n = { .min = 1, .max = 3 },
211         .m = { .min = 104, .max = 138 },
212         .m1 = { .min = 17, .max = 23 },
213         .m2 = { .min = 5, .max = 11 },
214         .p = { .min = 28, .max = 112 },
215         .p1 = { .min = 2, .max = 8 },
216         .p2 = { .dot_limit = 0,
217                 .p2_slow = 14, .p2_fast = 14
218         },
219         .find_pll = intel_g4x_find_best_PLL,
220 };
221
222 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
223         .dot = { .min = 80000, .max = 224000 },
224         .vco = { .min = 1750000, .max = 3500000 },
225         .n = { .min = 1, .max = 3 },
226         .m = { .min = 104, .max = 138 },
227         .m1 = { .min = 17, .max = 23 },
228         .m2 = { .min = 5, .max = 11 },
229         .p = { .min = 14, .max = 42 },
230         .p1 = { .min = 2, .max = 6 },
231         .p2 = { .dot_limit = 0,
232                 .p2_slow = 7, .p2_fast = 7
233         },
234         .find_pll = intel_g4x_find_best_PLL,
235 };
236
237 static const intel_limit_t intel_limits_g4x_display_port = {
238         .dot = { .min = 161670, .max = 227000 },
239         .vco = { .min = 1750000, .max = 3500000},
240         .n = { .min = 1, .max = 2 },
241         .m = { .min = 97, .max = 108 },
242         .m1 = { .min = 0x10, .max = 0x12 },
243         .m2 = { .min = 0x05, .max = 0x06 },
244         .p = { .min = 10, .max = 20 },
245         .p1 = { .min = 1, .max = 2},
246         .p2 = { .dot_limit = 0,
247                 .p2_slow = 10, .p2_fast = 10 },
248         .find_pll = intel_find_pll_g4x_dp,
249 };
250
251 static const intel_limit_t intel_limits_pineview_sdvo = {
252         .dot = { .min = 20000, .max = 400000},
253         .vco = { .min = 1700000, .max = 3500000 },
254         /* Pineview's Ncounter is a ring counter */
255         .n = { .min = 3, .max = 6 },
256         .m = { .min = 2, .max = 256 },
257         /* Pineview only has one combined m divider, which we treat as m2. */
258         .m1 = { .min = 0, .max = 0 },
259         .m2 = { .min = 0, .max = 254 },
260         .p = { .min = 5, .max = 80 },
261         .p1 = { .min = 1, .max = 8 },
262         .p2 = { .dot_limit = 200000,
263                 .p2_slow = 10, .p2_fast = 5 },
264         .find_pll = intel_find_best_PLL,
265 };
266
267 static const intel_limit_t intel_limits_pineview_lvds = {
268         .dot = { .min = 20000, .max = 400000 },
269         .vco = { .min = 1700000, .max = 3500000 },
270         .n = { .min = 3, .max = 6 },
271         .m = { .min = 2, .max = 256 },
272         .m1 = { .min = 0, .max = 0 },
273         .m2 = { .min = 0, .max = 254 },
274         .p = { .min = 7, .max = 112 },
275         .p1 = { .min = 1, .max = 8 },
276         .p2 = { .dot_limit = 112000,
277                 .p2_slow = 14, .p2_fast = 14 },
278         .find_pll = intel_find_best_PLL,
279 };
280
281 /* Ironlake / Sandybridge
282  *
283  * We calculate clock using (register_value + 2) for N/M1/M2, so here
284  * the range value for them is (actual_value - 2).
285  */
286 static const intel_limit_t intel_limits_ironlake_dac = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 5 },
290         .m = { .min = 79, .max = 127 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 5, .max = 80 },
294         .p1 = { .min = 1, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 10, .p2_fast = 5 },
297         .find_pll = intel_g4x_find_best_PLL,
298 };
299
300 static const intel_limit_t intel_limits_ironlake_single_lvds = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 118 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 28, .max = 112 },
308         .p1 = { .min = 2, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 14, .p2_fast = 14 },
311         .find_pll = intel_g4x_find_best_PLL,
312 };
313
314 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 3 },
318         .m = { .min = 79, .max = 127 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 14, .max = 56 },
322         .p1 = { .min = 2, .max = 8 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 7, .p2_fast = 7 },
325         .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 /* LVDS 100mhz refclk limits. */
329 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 2 },
333         .m = { .min = 79, .max = 126 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 28, .max = 112 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 14, .p2_fast = 14 },
340         .find_pll = intel_g4x_find_best_PLL,
341 };
342
343 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 3 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 14, .max = 42 },
351         .p1 = { .min = 2, .max = 6 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 7, .p2_fast = 7 },
354         .find_pll = intel_g4x_find_best_PLL,
355 };
356
357 static const intel_limit_t intel_limits_ironlake_display_port = {
358         .dot = { .min = 25000, .max = 350000 },
359         .vco = { .min = 1760000, .max = 3510000},
360         .n = { .min = 1, .max = 2 },
361         .m = { .min = 81, .max = 90 },
362         .m1 = { .min = 12, .max = 22 },
363         .m2 = { .min = 5, .max = 9 },
364         .p = { .min = 10, .max = 20 },
365         .p1 = { .min = 1, .max = 2},
366         .p2 = { .dot_limit = 0,
367                 .p2_slow = 10, .p2_fast = 10 },
368         .find_pll = intel_find_pll_ironlake_dp,
369 };
370
371 static const intel_limit_t intel_limits_vlv_dac = {
372         .dot = { .min = 25000, .max = 270000 },
373         .vco = { .min = 4000000, .max = 6000000 },
374         .n = { .min = 1, .max = 7 },
375         .m = { .min = 22, .max = 450 }, /* guess */
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p = { .min = 10, .max = 30 },
379         .p1 = { .min = 2, .max = 3 },
380         .p2 = { .dot_limit = 270000,
381                 .p2_slow = 2, .p2_fast = 20 },
382         .find_pll = intel_vlv_find_best_pll,
383 };
384
385 static const intel_limit_t intel_limits_vlv_hdmi = {
386         .dot = { .min = 20000, .max = 165000 },
387         .vco = { .min = 4000000, .max = 5994000},
388         .n = { .min = 1, .max = 7 },
389         .m = { .min = 60, .max = 300 }, /* guess */
390         .m1 = { .min = 2, .max = 3 },
391         .m2 = { .min = 11, .max = 156 },
392         .p = { .min = 10, .max = 30 },
393         .p1 = { .min = 2, .max = 3 },
394         .p2 = { .dot_limit = 270000,
395                 .p2_slow = 2, .p2_fast = 20 },
396         .find_pll = intel_vlv_find_best_pll,
397 };
398
399 static const intel_limit_t intel_limits_vlv_dp = {
400         .dot = { .min = 25000, .max = 270000 },
401         .vco = { .min = 4000000, .max = 6000000 },
402         .n = { .min = 1, .max = 7 },
403         .m = { .min = 22, .max = 450 },
404         .m1 = { .min = 2, .max = 3 },
405         .m2 = { .min = 11, .max = 156 },
406         .p = { .min = 10, .max = 30 },
407         .p1 = { .min = 2, .max = 3 },
408         .p2 = { .dot_limit = 270000,
409                 .p2_slow = 2, .p2_fast = 20 },
410         .find_pll = intel_vlv_find_best_pll,
411 };
412
413 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
414 {
415         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
416
417         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
418                 DRM_ERROR("DPIO idle wait timed out\n");
419                 return 0;
420         }
421
422         I915_WRITE(DPIO_REG, reg);
423         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
424                    DPIO_BYTE);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO read wait timed out\n");
427                 return 0;
428         }
429
430         return I915_READ(DPIO_DATA);
431 }
432
433 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
434                              u32 val)
435 {
436         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
437
438         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
439                 DRM_ERROR("DPIO idle wait timed out\n");
440                 return;
441         }
442
443         I915_WRITE(DPIO_DATA, val);
444         I915_WRITE(DPIO_REG, reg);
445         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
446                    DPIO_BYTE);
447         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
448                 DRM_ERROR("DPIO write wait timed out\n");
449 }
450
451 static void vlv_init_dpio(struct drm_device *dev)
452 {
453         struct drm_i915_private *dev_priv = dev->dev_private;
454
455         /* Reset the DPIO config */
456         I915_WRITE(DPIO_CTL, 0);
457         POSTING_READ(DPIO_CTL);
458         I915_WRITE(DPIO_CTL, 1);
459         POSTING_READ(DPIO_CTL);
460 }
461
462 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
463                                                 int refclk)
464 {
465         struct drm_device *dev = crtc->dev;
466         const intel_limit_t *limit;
467
468         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
469                 if (intel_is_dual_link_lvds(dev)) {
470                         /* LVDS dual channel */
471                         if (refclk == 100000)
472                                 limit = &intel_limits_ironlake_dual_lvds_100m;
473                         else
474                                 limit = &intel_limits_ironlake_dual_lvds;
475                 } else {
476                         if (refclk == 100000)
477                                 limit = &intel_limits_ironlake_single_lvds_100m;
478                         else
479                                 limit = &intel_limits_ironlake_single_lvds;
480                 }
481         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
482                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
483                 limit = &intel_limits_ironlake_display_port;
484         else
485                 limit = &intel_limits_ironlake_dac;
486
487         return limit;
488 }
489
490 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
491 {
492         struct drm_device *dev = crtc->dev;
493         const intel_limit_t *limit;
494
495         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
496                 if (intel_is_dual_link_lvds(dev))
497                         /* LVDS with dual channel */
498                         limit = &intel_limits_g4x_dual_channel_lvds;
499                 else
500                         /* LVDS with dual channel */
501                         limit = &intel_limits_g4x_single_channel_lvds;
502         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
503                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
504                 limit = &intel_limits_g4x_hdmi;
505         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
506                 limit = &intel_limits_g4x_sdvo;
507         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
508                 limit = &intel_limits_g4x_display_port;
509         } else /* The option is for other outputs */
510                 limit = &intel_limits_i9xx_sdvo;
511
512         return limit;
513 }
514
515 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
516 {
517         struct drm_device *dev = crtc->dev;
518         const intel_limit_t *limit;
519
520         if (HAS_PCH_SPLIT(dev))
521                 limit = intel_ironlake_limit(crtc, refclk);
522         else if (IS_G4X(dev)) {
523                 limit = intel_g4x_limit(crtc);
524         } else if (IS_PINEVIEW(dev)) {
525                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
526                         limit = &intel_limits_pineview_lvds;
527                 else
528                         limit = &intel_limits_pineview_sdvo;
529         } else if (IS_VALLEYVIEW(dev)) {
530                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
531                         limit = &intel_limits_vlv_dac;
532                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
533                         limit = &intel_limits_vlv_hdmi;
534                 else
535                         limit = &intel_limits_vlv_dp;
536         } else if (!IS_GEN2(dev)) {
537                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
538                         limit = &intel_limits_i9xx_lvds;
539                 else
540                         limit = &intel_limits_i9xx_sdvo;
541         } else {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_i8xx_lvds;
544                 else
545                         limit = &intel_limits_i8xx_dvo;
546         }
547         return limit;
548 }
549
550 /* m1 is reserved as 0 in Pineview, n is a ring counter */
551 static void pineview_clock(int refclk, intel_clock_t *clock)
552 {
553         clock->m = clock->m2 + 2;
554         clock->p = clock->p1 * clock->p2;
555         clock->vco = refclk * clock->m / clock->n;
556         clock->dot = clock->vco / clock->p;
557 }
558
559 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
560 {
561         if (IS_PINEVIEW(dev)) {
562                 pineview_clock(refclk, clock);
563                 return;
564         }
565         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
566         clock->p = clock->p1 * clock->p2;
567         clock->vco = refclk * clock->m / (clock->n + 2);
568         clock->dot = clock->vco / clock->p;
569 }
570
571 /**
572  * Returns whether any output on the specified pipe is of the specified type
573  */
574 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
575 {
576         struct drm_device *dev = crtc->dev;
577         struct intel_encoder *encoder;
578
579         for_each_encoder_on_crtc(dev, crtc, encoder)
580                 if (encoder->type == type)
581                         return true;
582
583         return false;
584 }
585
586 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
587 /**
588  * Returns whether the given set of divisors are valid for a given refclk with
589  * the given connectors.
590  */
591
592 static bool intel_PLL_is_valid(struct drm_device *dev,
593                                const intel_limit_t *limit,
594                                const intel_clock_t *clock)
595 {
596         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
597                 INTELPllInvalid("p1 out of range\n");
598         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
599                 INTELPllInvalid("p out of range\n");
600         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
601                 INTELPllInvalid("m2 out of range\n");
602         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
603                 INTELPllInvalid("m1 out of range\n");
604         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
605                 INTELPllInvalid("m1 <= m2\n");
606         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
607                 INTELPllInvalid("m out of range\n");
608         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
609                 INTELPllInvalid("n out of range\n");
610         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611                 INTELPllInvalid("vco out of range\n");
612         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613          * connector, etc., rather than just a single range.
614          */
615         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616                 INTELPllInvalid("dot out of range\n");
617
618         return true;
619 }
620
621 static bool
622 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
623                     int target, int refclk, intel_clock_t *match_clock,
624                     intel_clock_t *best_clock)
625
626 {
627         struct drm_device *dev = crtc->dev;
628         intel_clock_t clock;
629         int err = target;
630
631         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
632                 /*
633                  * For LVDS just rely on its current settings for dual-channel.
634                  * We haven't figured out how to reliably set up different
635                  * single/dual channel state, if we even can.
636                  */
637                 if (intel_is_dual_link_lvds(dev))
638                         clock.p2 = limit->p2.p2_fast;
639                 else
640                         clock.p2 = limit->p2.p2_slow;
641         } else {
642                 if (target < limit->p2.dot_limit)
643                         clock.p2 = limit->p2.p2_slow;
644                 else
645                         clock.p2 = limit->p2.p2_fast;
646         }
647
648         memset(best_clock, 0, sizeof(*best_clock));
649
650         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
651              clock.m1++) {
652                 for (clock.m2 = limit->m2.min;
653                      clock.m2 <= limit->m2.max; clock.m2++) {
654                         /* m1 is always 0 in Pineview */
655                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
656                                 break;
657                         for (clock.n = limit->n.min;
658                              clock.n <= limit->n.max; clock.n++) {
659                                 for (clock.p1 = limit->p1.min;
660                                         clock.p1 <= limit->p1.max; clock.p1++) {
661                                         int this_err;
662
663                                         intel_clock(dev, refclk, &clock);
664                                         if (!intel_PLL_is_valid(dev, limit,
665                                                                 &clock))
666                                                 continue;
667                                         if (match_clock &&
668                                             clock.p != match_clock->p)
669                                                 continue;
670
671                                         this_err = abs(clock.dot - target);
672                                         if (this_err < err) {
673                                                 *best_clock = clock;
674                                                 err = this_err;
675                                         }
676                                 }
677                         }
678                 }
679         }
680
681         return (err != target);
682 }
683
684 static bool
685 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                         int target, int refclk, intel_clock_t *match_clock,
687                         intel_clock_t *best_clock)
688 {
689         struct drm_device *dev = crtc->dev;
690         intel_clock_t clock;
691         int max_n;
692         bool found;
693         /* approximately equals target * 0.00585 */
694         int err_most = (target >> 8) + (target >> 9);
695         found = false;
696
697         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
698                 int lvds_reg;
699
700                 if (HAS_PCH_SPLIT(dev))
701                         lvds_reg = PCH_LVDS;
702                 else
703                         lvds_reg = LVDS;
704                 if (intel_is_dual_link_lvds(dev))
705                         clock.p2 = limit->p2.p2_fast;
706                 else
707                         clock.p2 = limit->p2.p2_slow;
708         } else {
709                 if (target < limit->p2.dot_limit)
710                         clock.p2 = limit->p2.p2_slow;
711                 else
712                         clock.p2 = limit->p2.p2_fast;
713         }
714
715         memset(best_clock, 0, sizeof(*best_clock));
716         max_n = limit->n.max;
717         /* based on hardware requirement, prefer smaller n to precision */
718         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
719                 /* based on hardware requirement, prefere larger m1,m2 */
720                 for (clock.m1 = limit->m1.max;
721                      clock.m1 >= limit->m1.min; clock.m1--) {
722                         for (clock.m2 = limit->m2.max;
723                              clock.m2 >= limit->m2.min; clock.m2--) {
724                                 for (clock.p1 = limit->p1.max;
725                                      clock.p1 >= limit->p1.min; clock.p1--) {
726                                         int this_err;
727
728                                         intel_clock(dev, refclk, &clock);
729                                         if (!intel_PLL_is_valid(dev, limit,
730                                                                 &clock))
731                                                 continue;
732                                         if (match_clock &&
733                                             clock.p != match_clock->p)
734                                                 continue;
735
736                                         this_err = abs(clock.dot - target);
737                                         if (this_err < err_most) {
738                                                 *best_clock = clock;
739                                                 err_most = this_err;
740                                                 max_n = clock.n;
741                                                 found = true;
742                                         }
743                                 }
744                         }
745                 }
746         }
747         return found;
748 }
749
750 static bool
751 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
752                            int target, int refclk, intel_clock_t *match_clock,
753                            intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         intel_clock_t clock;
757
758         if (target < 200000) {
759                 clock.n = 1;
760                 clock.p1 = 2;
761                 clock.p2 = 10;
762                 clock.m1 = 12;
763                 clock.m2 = 9;
764         } else {
765                 clock.n = 2;
766                 clock.p1 = 1;
767                 clock.p2 = 10;
768                 clock.m1 = 14;
769                 clock.m2 = 8;
770         }
771         intel_clock(dev, refclk, &clock);
772         memcpy(best_clock, &clock, sizeof(intel_clock_t));
773         return true;
774 }
775
776 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
777 static bool
778 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
779                       int target, int refclk, intel_clock_t *match_clock,
780                       intel_clock_t *best_clock)
781 {
782         intel_clock_t clock;
783         if (target < 200000) {
784                 clock.p1 = 2;
785                 clock.p2 = 10;
786                 clock.n = 2;
787                 clock.m1 = 23;
788                 clock.m2 = 8;
789         } else {
790                 clock.p1 = 1;
791                 clock.p2 = 10;
792                 clock.n = 1;
793                 clock.m1 = 14;
794                 clock.m2 = 2;
795         }
796         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
797         clock.p = (clock.p1 * clock.p2);
798         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
799         clock.vco = 0;
800         memcpy(best_clock, &clock, sizeof(intel_clock_t));
801         return true;
802 }
803
804 static bool
805 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
806                         int target, int refclk, intel_clock_t *match_clock,
807                         intel_clock_t *best_clock)
808 {
809         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
810         u32 m, n, fastclk;
811         u32 updrate, minupdate, fracbits, p;
812         unsigned long bestppm, ppm, absppm;
813         int dotclk, flag;
814
815         flag = 0;
816         dotclk = target * 1000;
817         bestppm = 1000000;
818         ppm = absppm = 0;
819         fastclk = dotclk / (2*100);
820         updrate = 0;
821         minupdate = 19200;
822         fracbits = 1;
823         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
824         bestm1 = bestm2 = bestp1 = bestp2 = 0;
825
826         /* based on hardware requirement, prefer smaller n to precision */
827         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
828                 updrate = refclk / n;
829                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
830                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
831                                 if (p2 > 10)
832                                         p2 = p2 - 1;
833                                 p = p1 * p2;
834                                 /* based on hardware requirement, prefer bigger m1,m2 values */
835                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
836                                         m2 = (((2*(fastclk * p * n / m1 )) +
837                                                refclk) / (2*refclk));
838                                         m = m1 * m2;
839                                         vco = updrate * m;
840                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
841                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
842                                                 absppm = (ppm > 0) ? ppm : (-ppm);
843                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
844                                                         bestppm = 0;
845                                                         flag = 1;
846                                                 }
847                                                 if (absppm < bestppm - 10) {
848                                                         bestppm = absppm;
849                                                         flag = 1;
850                                                 }
851                                                 if (flag) {
852                                                         bestn = n;
853                                                         bestm1 = m1;
854                                                         bestm2 = m2;
855                                                         bestp1 = p1;
856                                                         bestp2 = p2;
857                                                         flag = 0;
858                                                 }
859                                         }
860                                 }
861                         }
862                 }
863         }
864         best_clock->n = bestn;
865         best_clock->m1 = bestm1;
866         best_clock->m2 = bestm2;
867         best_clock->p1 = bestp1;
868         best_clock->p2 = bestp2;
869
870         return true;
871 }
872
873 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
874                                              enum i915_pipe pipe)
875 {
876         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
878
879         return intel_crtc->cpu_transcoder;
880 }
881
882 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
883 {
884         struct drm_i915_private *dev_priv = dev->dev_private;
885         u32 frame, frame_reg = PIPEFRAME(pipe);
886
887         frame = I915_READ(frame_reg);
888
889         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
890                 DRM_DEBUG_KMS("vblank wait timed out\n");
891 }
892
893 /**
894  * intel_wait_for_vblank - wait for vblank on a given pipe
895  * @dev: drm device
896  * @pipe: pipe to wait for
897  *
898  * Wait for vblank to occur on a given pipe.  Needed for various bits of
899  * mode setting code.
900  */
901 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
902 {
903         struct drm_i915_private *dev_priv = dev->dev_private;
904         int pipestat_reg = PIPESTAT(pipe);
905
906         if (INTEL_INFO(dev)->gen >= 5) {
907                 ironlake_wait_for_vblank(dev, pipe);
908                 return;
909         }
910
911         /* Clear existing vblank status. Note this will clear any other
912          * sticky status fields as well.
913          *
914          * This races with i915_driver_irq_handler() with the result
915          * that either function could miss a vblank event.  Here it is not
916          * fatal, as we will either wait upon the next vblank interrupt or
917          * timeout.  Generally speaking intel_wait_for_vblank() is only
918          * called during modeset at which time the GPU should be idle and
919          * should *not* be performing page flips and thus not waiting on
920          * vblanks...
921          * Currently, the result of us stealing a vblank from the irq
922          * handler is that a single frame will be skipped during swapbuffers.
923          */
924         I915_WRITE(pipestat_reg,
925                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
926
927         /* Wait for vblank interrupt bit to set */
928         if (wait_for(I915_READ(pipestat_reg) &
929                      PIPE_VBLANK_INTERRUPT_STATUS,
930                      50))
931                 DRM_DEBUG_KMS("vblank wait timed out\n");
932 }
933
934 /*
935  * intel_wait_for_pipe_off - wait for pipe to turn off
936  * @dev: drm device
937  * @pipe: pipe to wait for
938  *
939  * After disabling a pipe, we can't wait for vblank in the usual way,
940  * spinning on the vblank interrupt status bit, since we won't actually
941  * see an interrupt when the pipe is disabled.
942  *
943  * On Gen4 and above:
944  *   wait for the pipe register state bit to turn off
945  *
946  * Otherwise:
947  *   wait for the display line value to settle (it usually
948  *   ends up stopping at the start of the next frame).
949  *
950  */
951 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
952 {
953         struct drm_i915_private *dev_priv = dev->dev_private;
954         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
955                                                                       pipe);
956
957         if (INTEL_INFO(dev)->gen >= 4) {
958                 int reg = PIPECONF(cpu_transcoder);
959
960                 /* Wait for the Pipe State to go off */
961                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
962                              100))
963                         WARN(1, "pipe_off wait timed out\n");
964         } else {
965                 u32 last_line, line_mask;
966                 int reg = PIPEDSL(pipe);
967                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
968
969                 if (IS_GEN2(dev))
970                         line_mask = DSL_LINEMASK_GEN2;
971                 else
972                         line_mask = DSL_LINEMASK_GEN3;
973
974                 /* Wait for the display line to settle */
975                 do {
976                         last_line = I915_READ(reg) & line_mask;
977                         mdelay(5);
978                 } while (((I915_READ(reg) & line_mask) != last_line) &&
979                          time_after(timeout, jiffies));
980                 if (time_after(jiffies, timeout))
981                         WARN(1, "pipe_off wait timed out\n");
982         }
983 }
984
985 /*
986  * ibx_digital_port_connected - is the specified port connected?
987  * @dev_priv: i915 private structure
988  * @port: the port to test
989  *
990  * Returns true if @port is connected, false otherwise.
991  */
992 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
993                                 struct intel_digital_port *port)
994 {
995         u32 bit;
996
997         if (HAS_PCH_IBX(dev_priv->dev)) {
998                 switch(port->port) {
999                 case PORT_B:
1000                         bit = SDE_PORTB_HOTPLUG;
1001                         break;
1002                 case PORT_C:
1003                         bit = SDE_PORTC_HOTPLUG;
1004                         break;
1005                 case PORT_D:
1006                         bit = SDE_PORTD_HOTPLUG;
1007                         break;
1008                 default:
1009                         return true;
1010                 }
1011         } else {
1012                 switch(port->port) {
1013                 case PORT_B:
1014                         bit = SDE_PORTB_HOTPLUG_CPT;
1015                         break;
1016                 case PORT_C:
1017                         bit = SDE_PORTC_HOTPLUG_CPT;
1018                         break;
1019                 case PORT_D:
1020                         bit = SDE_PORTD_HOTPLUG_CPT;
1021                         break;
1022                 default:
1023                         return true;
1024                 }
1025         }
1026
1027         return I915_READ(SDEISR) & bit;
1028 }
1029
1030 static const char *state_string(bool enabled)
1031 {
1032         return enabled ? "on" : "off";
1033 }
1034
1035 /* Only for pre-ILK configs */
1036 static void assert_pll(struct drm_i915_private *dev_priv,
1037                        enum i915_pipe pipe, bool state)
1038 {
1039         int reg;
1040         u32 val;
1041         bool cur_state;
1042
1043         reg = DPLL(pipe);
1044         val = I915_READ(reg);
1045         cur_state = !!(val & DPLL_VCO_ENABLE);
1046         WARN(cur_state != state,
1047              "PLL state assertion failure (expected %s, current %s)\n",
1048              state_string(state), state_string(cur_state));
1049 }
1050 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1051 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1052
1053 /* For ILK+ */
1054 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1055                            struct intel_pch_pll *pll,
1056                            struct intel_crtc *crtc,
1057                            bool state)
1058 {
1059         u32 val;
1060         bool cur_state;
1061
1062         if (HAS_PCH_LPT(dev_priv->dev)) {
1063                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1064                 return;
1065         }
1066
1067         if (WARN (!pll,
1068                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1069                 return;
1070
1071         val = I915_READ(pll->pll_reg);
1072         cur_state = !!(val & DPLL_VCO_ENABLE);
1073         WARN(cur_state != state,
1074              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1075              pll->pll_reg, state_string(state), state_string(cur_state), val);
1076
1077         /* Make sure the selected PLL is correctly attached to the transcoder */
1078         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1079                 u32 pch_dpll;
1080
1081                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1082                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1083                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1084                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1085                           cur_state, crtc->pipe, pch_dpll)) {
1086                         cur_state = !!(val >> (4*crtc->pipe + 3));
1087                         WARN(cur_state != state,
1088                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1089                              pll->pll_reg == _PCH_DPLL_B,
1090                              state_string(state),
1091                              crtc->pipe,
1092                              val);
1093                 }
1094         }
1095 }
1096 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1097 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1098
1099 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1100                           enum i915_pipe pipe, bool state)
1101 {
1102         int reg;
1103         u32 val;
1104         bool cur_state;
1105         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1106                                                                       pipe);
1107
1108         if (HAS_DDI(dev_priv->dev)) {
1109                 /* DDI does not have a specific FDI_TX register */
1110                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1111                 val = I915_READ(reg);
1112                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1113         } else {
1114                 reg = FDI_TX_CTL(pipe);
1115                 val = I915_READ(reg);
1116                 cur_state = !!(val & FDI_TX_ENABLE);
1117         }
1118         WARN(cur_state != state,
1119              "FDI TX state assertion failure (expected %s, current %s)\n",
1120              state_string(state), state_string(cur_state));
1121 }
1122 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1123 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1124
1125 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1126                           enum i915_pipe pipe, bool state)
1127 {
1128         int reg;
1129         u32 val;
1130         bool cur_state;
1131
1132         reg = FDI_RX_CTL(pipe);
1133         val = I915_READ(reg);
1134         cur_state = !!(val & FDI_RX_ENABLE);
1135         WARN(cur_state != state,
1136              "FDI RX state assertion failure (expected %s, current %s)\n",
1137              state_string(state), state_string(cur_state));
1138 }
1139 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1140 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1141
1142 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1143                                       enum i915_pipe pipe)
1144 {
1145         int reg;
1146         u32 val;
1147
1148         /* ILK FDI PLL is always enabled */
1149         if (dev_priv->info->gen == 5)
1150                 return;
1151
1152         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1153         if (HAS_DDI(dev_priv->dev))
1154                 return;
1155
1156         reg = FDI_TX_CTL(pipe);
1157         val = I915_READ(reg);
1158         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1159 }
1160
1161 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1162                                       enum i915_pipe pipe)
1163 {
1164         int reg;
1165         u32 val;
1166
1167         reg = FDI_RX_CTL(pipe);
1168         val = I915_READ(reg);
1169         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1170 }
1171
1172 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1173                                   enum i915_pipe pipe)
1174 {
1175         int pp_reg, lvds_reg;
1176         u32 val;
1177         enum i915_pipe panel_pipe = PIPE_A;
1178         bool locked = true;
1179
1180         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1181                 pp_reg = PCH_PP_CONTROL;
1182                 lvds_reg = PCH_LVDS;
1183         } else {
1184                 pp_reg = PP_CONTROL;
1185                 lvds_reg = LVDS;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1194                 panel_pipe = PIPE_B;
1195
1196         WARN(panel_pipe == pipe && locked,
1197              "panel assertion failure, pipe %c regs locked\n",
1198              pipe_name(pipe));
1199 }
1200
1201 void assert_pipe(struct drm_i915_private *dev_priv,
1202                  enum i915_pipe pipe, bool state)
1203 {
1204         int reg;
1205         u32 val;
1206         bool cur_state;
1207         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1208                                                                       pipe);
1209
1210         /* if we need the pipe A quirk it must be always on */
1211         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1212                 state = true;
1213
1214         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1215             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1216                 cur_state = false;
1217         } else {
1218                 reg = PIPECONF(cpu_transcoder);
1219                 val = I915_READ(reg);
1220                 cur_state = !!(val & PIPECONF_ENABLE);
1221         }
1222
1223         WARN(cur_state != state,
1224              "pipe %c assertion failure (expected %s, current %s)\n",
1225              pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229                          enum plane plane, bool state)
1230 {
1231         int reg;
1232         u32 val;
1233         bool cur_state;
1234
1235         reg = DSPCNTR(plane);
1236         val = I915_READ(reg);
1237         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238         WARN(cur_state != state,
1239              "plane %c assertion failure (expected %s, current %s)\n",
1240              plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247                                    enum i915_pipe pipe)
1248 {
1249         int reg, i;
1250         u32 val;
1251         int cur_pipe;
1252
1253         /* Planes are fixed to pipes on ILK+ */
1254         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255                 reg = DSPCNTR(pipe);
1256                 val = I915_READ(reg);
1257                 WARN((val & DISPLAY_PLANE_ENABLE),
1258                      "plane %c assertion failure, should be disabled but not\n",
1259                      plane_name(pipe));
1260                 return;
1261         }
1262
1263         /* Need to check both planes against the pipe */
1264         for (i = 0; i < 2; i++) {
1265                 reg = DSPCNTR(i);
1266                 val = I915_READ(reg);
1267                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268                         DISPPLANE_SEL_PIPE_SHIFT;
1269                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271                      plane_name(i), pipe_name(pipe));
1272         }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277         u32 val;
1278         bool enabled;
1279
1280         if (HAS_PCH_LPT(dev_priv->dev)) {
1281                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282                 return;
1283         }
1284
1285         val = I915_READ(PCH_DREF_CONTROL);
1286         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287                             DREF_SUPERSPREAD_SOURCE_MASK));
1288         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292                                        enum i915_pipe pipe)
1293 {
1294         int reg;
1295         u32 val;
1296         bool enabled;
1297
1298         reg = TRANSCONF(pipe);
1299         val = I915_READ(reg);
1300         enabled = !!(val & TRANS_ENABLE);
1301         WARN(enabled,
1302              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303              pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307                             enum i915_pipe pipe, u32 port_sel, u32 val)
1308 {
1309         if ((val & DP_PORT_EN) == 0)
1310                 return false;
1311
1312         if (HAS_PCH_CPT(dev_priv->dev)) {
1313                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else {
1318                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319                         return false;
1320         }
1321         return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325                               enum i915_pipe pipe, u32 val)
1326 {
1327         if ((val & PORT_ENABLE) == 0)
1328                 return false;
1329
1330         if (HAS_PCH_CPT(dev_priv->dev)) {
1331                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332                         return false;
1333         } else {
1334                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum i915_pipe pipe, u32 val)
1342 {
1343         if ((val & LVDS_PORT_EN) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum i915_pipe pipe, u32 val)
1358 {
1359         if ((val & ADPA_DAC_ENABLE) == 0)
1360                 return false;
1361         if (HAS_PCH_CPT(dev_priv->dev)) {
1362                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363                         return false;
1364         } else {
1365                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366                         return false;
1367         }
1368         return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372                                    enum i915_pipe pipe, int reg, u32 port_sel)
1373 {
1374         u32 val = I915_READ(reg);
1375         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377              reg, pipe_name(pipe));
1378
1379         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380              && (val & DP_PIPEB_SELECT),
1381              "IBX PCH dp port still using transcoder B\n");
1382 }
1383
1384 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385                                      enum i915_pipe pipe, int reg)
1386 {
1387         u32 val = I915_READ(reg);
1388         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1389              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1390              reg, pipe_name(pipe));
1391
1392         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393              && (val & SDVO_PIPE_B_SELECT),
1394              "IBX PCH hdmi port still using transcoder B\n");
1395 }
1396
1397 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398                                       enum i915_pipe pipe)
1399 {
1400         int reg;
1401         u32 val;
1402
1403         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1406
1407         reg = PCH_ADPA;
1408         val = I915_READ(reg);
1409         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1410              "PCH VGA enabled on transcoder %c, should be disabled\n",
1411              pipe_name(pipe));
1412
1413         reg = PCH_LVDS;
1414         val = I915_READ(reg);
1415         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1416              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1417              pipe_name(pipe));
1418
1419         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422 }
1423
1424 /**
1425  * intel_enable_pll - enable a PLL
1426  * @dev_priv: i915 private structure
1427  * @pipe: pipe PLL to enable
1428  *
1429  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1430  * make sure the PLL reg is writable first though, since the panel write
1431  * protect mechanism may be enabled.
1432  *
1433  * Note!  This is for pre-ILK only.
1434  *
1435  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1436  */
1437 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1438 {
1439         int reg;
1440         u32 val;
1441
1442         /* No really, not for ILK+ */
1443         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1444
1445         /* PLL is protected by panel, make sure we can write it */
1446         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447                 assert_panel_unlocked(dev_priv, pipe);
1448
1449         reg = DPLL(pipe);
1450         val = I915_READ(reg);
1451         val |= DPLL_VCO_ENABLE;
1452
1453         /* We do this three times for luck */
1454         I915_WRITE(reg, val);
1455         POSTING_READ(reg);
1456         udelay(150); /* wait for warmup */
1457         I915_WRITE(reg, val);
1458         POSTING_READ(reg);
1459         udelay(150); /* wait for warmup */
1460         I915_WRITE(reg, val);
1461         POSTING_READ(reg);
1462         udelay(150); /* wait for warmup */
1463 }
1464
1465 /**
1466  * intel_disable_pll - disable a PLL
1467  * @dev_priv: i915 private structure
1468  * @pipe: pipe PLL to disable
1469  *
1470  * Disable the PLL for @pipe, making sure the pipe is off first.
1471  *
1472  * Note!  This is for pre-ILK only.
1473  */
1474 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1475 {
1476         int reg;
1477         u32 val;
1478
1479         /* Don't disable pipe A or pipe A PLLs if needed */
1480         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481                 return;
1482
1483         /* Make sure the pipe isn't still relying on us */
1484         assert_pipe_disabled(dev_priv, pipe);
1485
1486         reg = DPLL(pipe);
1487         val = I915_READ(reg);
1488         val &= ~DPLL_VCO_ENABLE;
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491 }
1492
1493 /* SBI access */
1494 static void
1495 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1496                 enum intel_sbi_destination destination)
1497 {
1498         u32 tmp;
1499
1500         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1501
1502         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1503                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1504                 return;
1505         }
1506
1507         I915_WRITE(SBI_ADDR, (reg << 16));
1508         I915_WRITE(SBI_DATA, value);
1509
1510         if (destination == SBI_ICLK)
1511                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1512         else
1513                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1514         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1515
1516         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1517                                 100)) {
1518                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1519                 return;
1520         }
1521 }
1522
1523 static u32
1524 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1525                enum intel_sbi_destination destination)
1526 {
1527         u32 value = 0;
1528
1529         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1530
1531         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1532                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1533                 return 0;
1534         }
1535
1536         I915_WRITE(SBI_ADDR, (reg << 16));
1537
1538         if (destination == SBI_ICLK)
1539                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1540         else
1541                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1542         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1543
1544         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1545                                 100)) {
1546                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1547                 return 0;
1548         }
1549
1550         return I915_READ(SBI_DATA);
1551 }
1552
1553 /**
1554  * ironlake_enable_pch_pll - enable PCH PLL
1555  * @dev_priv: i915 private structure
1556  * @pipe: pipe PLL to enable
1557  *
1558  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1559  * drives the transcoder clock.
1560  */
1561 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1562 {
1563         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1564         struct intel_pch_pll *pll;
1565         int reg;
1566         u32 val;
1567
1568         /* PCH PLLs only available on ILK, SNB and IVB */
1569         BUG_ON(dev_priv->info->gen < 5);
1570         pll = intel_crtc->pch_pll;
1571         if (pll == NULL)
1572                 return;
1573
1574         if (WARN_ON(pll->refcount == 0))
1575                 return;
1576
1577         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1578                       pll->pll_reg, pll->active, pll->on,
1579                       intel_crtc->base.base.id);
1580
1581         /* PCH refclock must be enabled first */
1582         assert_pch_refclk_enabled(dev_priv);
1583
1584         if (pll->active++ && pll->on) {
1585                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1586                 return;
1587         }
1588
1589         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1590
1591         reg = pll->pll_reg;
1592         val = I915_READ(reg);
1593         val |= DPLL_VCO_ENABLE;
1594         I915_WRITE(reg, val);
1595         POSTING_READ(reg);
1596         udelay(200);
1597
1598         pll->on = true;
1599 }
1600
1601 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1602 {
1603         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1604         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1605         int reg;
1606         u32 val;
1607
1608         /* PCH only available on ILK+ */
1609         BUG_ON(dev_priv->info->gen < 5);
1610         if (pll == NULL)
1611                return;
1612
1613         if (WARN_ON(pll->refcount == 0))
1614                 return;
1615
1616         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1617                       pll->pll_reg, pll->active, pll->on,
1618                       intel_crtc->base.base.id);
1619
1620         if (WARN_ON(pll->active == 0)) {
1621                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1622                 return;
1623         }
1624
1625         if (--pll->active) {
1626                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1627                 return;
1628         }
1629
1630         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1631
1632         /* Make sure transcoder isn't still depending on us */
1633         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1634
1635         reg = pll->pll_reg;
1636         val = I915_READ(reg);
1637         val &= ~DPLL_VCO_ENABLE;
1638         I915_WRITE(reg, val);
1639         POSTING_READ(reg);
1640         udelay(200);
1641
1642         pll->on = false;
1643 }
1644
1645 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1646                                            enum i915_pipe pipe)
1647 {
1648         struct drm_device *dev = dev_priv->dev;
1649         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1650         uint32_t reg, val, pipeconf_val;
1651
1652         /* PCH only available on ILK+ */
1653         BUG_ON(dev_priv->info->gen < 5);
1654
1655         /* Make sure PCH DPLL is enabled */
1656         assert_pch_pll_enabled(dev_priv,
1657                                to_intel_crtc(crtc)->pch_pll,
1658                                to_intel_crtc(crtc));
1659
1660         /* FDI must be feeding us bits for PCH ports */
1661         assert_fdi_tx_enabled(dev_priv, pipe);
1662         assert_fdi_rx_enabled(dev_priv, pipe);
1663
1664         if (HAS_PCH_CPT(dev)) {
1665                 /* Workaround: Set the timing override bit before enabling the
1666                  * pch transcoder. */
1667                 reg = TRANS_CHICKEN2(pipe);
1668                 val = I915_READ(reg);
1669                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1670                 I915_WRITE(reg, val);
1671         }
1672
1673         reg = TRANSCONF(pipe);
1674         val = I915_READ(reg);
1675         pipeconf_val = I915_READ(PIPECONF(pipe));
1676
1677         if (HAS_PCH_IBX(dev_priv->dev)) {
1678                 /*
1679                  * make the BPC in transcoder be consistent with
1680                  * that in pipeconf reg.
1681                  */
1682                 val &= ~PIPECONF_BPC_MASK;
1683                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1684         }
1685
1686         val &= ~TRANS_INTERLACE_MASK;
1687         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1688                 if (HAS_PCH_IBX(dev_priv->dev) &&
1689                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1690                         val |= TRANS_LEGACY_INTERLACED_ILK;
1691                 else
1692                         val |= TRANS_INTERLACED;
1693         else
1694                 val |= TRANS_PROGRESSIVE;
1695
1696         I915_WRITE(reg, val | TRANS_ENABLE);
1697         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1698                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1699 }
1700
1701 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1702                                       enum transcoder cpu_transcoder)
1703 {
1704         u32 val, pipeconf_val;
1705
1706         /* PCH only available on ILK+ */
1707         BUG_ON(dev_priv->info->gen < 5);
1708
1709         /* FDI must be feeding us bits for PCH ports */
1710         assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1711         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1712
1713         /* Workaround: set timing override bit. */
1714         val = I915_READ(_TRANSA_CHICKEN2);
1715         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1716         I915_WRITE(_TRANSA_CHICKEN2, val);
1717
1718         val = TRANS_ENABLE;
1719         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1720
1721         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1722             PIPECONF_INTERLACED_ILK)
1723                 val |= TRANS_INTERLACED;
1724         else
1725                 val |= TRANS_PROGRESSIVE;
1726
1727         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1728         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1729                 DRM_ERROR("Failed to enable PCH transcoder\n");
1730 }
1731
1732 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1733                                             enum i915_pipe pipe)
1734 {
1735         struct drm_device *dev = dev_priv->dev;
1736         uint32_t reg, val;
1737
1738         /* FDI relies on the transcoder */
1739         assert_fdi_tx_disabled(dev_priv, pipe);
1740         assert_fdi_rx_disabled(dev_priv, pipe);
1741
1742         /* Ports must be off as well */
1743         assert_pch_ports_disabled(dev_priv, pipe);
1744
1745         reg = TRANSCONF(pipe);
1746         val = I915_READ(reg);
1747         val &= ~TRANS_ENABLE;
1748         I915_WRITE(reg, val);
1749         /* wait for PCH transcoder off, transcoder state */
1750         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1751                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1752
1753         if (!HAS_PCH_IBX(dev)) {
1754                 /* Workaround: Clear the timing override chicken bit again. */
1755                 reg = TRANS_CHICKEN2(pipe);
1756                 val = I915_READ(reg);
1757                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1758                 I915_WRITE(reg, val);
1759         }
1760 }
1761
1762 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1763 {
1764         u32 val;
1765
1766         val = I915_READ(_TRANSACONF);
1767         val &= ~TRANS_ENABLE;
1768         I915_WRITE(_TRANSACONF, val);
1769         /* wait for PCH transcoder off, transcoder state */
1770         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1771                 DRM_ERROR("Failed to disable PCH transcoder\n");
1772
1773         /* Workaround: clear timing override bit. */
1774         val = I915_READ(_TRANSA_CHICKEN2);
1775         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776         I915_WRITE(_TRANSA_CHICKEN2, val);
1777 }
1778
1779 /**
1780  * intel_enable_pipe - enable a pipe, asserting requirements
1781  * @dev_priv: i915 private structure
1782  * @pipe: pipe to enable
1783  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1784  *
1785  * Enable @pipe, making sure that various hardware specific requirements
1786  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1787  *
1788  * @pipe should be %PIPE_A or %PIPE_B.
1789  *
1790  * Will wait until the pipe is actually running (i.e. first vblank) before
1791  * returning.
1792  */
1793 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
1794                               bool pch_port)
1795 {
1796         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1797                                                                       pipe);
1798         enum i915_pipe pch_transcoder;
1799         int reg;
1800         u32 val;
1801
1802         if (HAS_PCH_LPT(dev_priv->dev))
1803                 pch_transcoder = TRANSCODER_A;
1804         else
1805                 pch_transcoder = pipe;
1806
1807         /*
1808          * A pipe without a PLL won't actually be able to drive bits from
1809          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1810          * need the check.
1811          */
1812         if (!HAS_PCH_SPLIT(dev_priv->dev))
1813                 assert_pll_enabled(dev_priv, pipe);
1814         else {
1815                 if (pch_port) {
1816                         /* if driving the PCH, we need FDI enabled */
1817                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1818                         assert_fdi_tx_pll_enabled(dev_priv,
1819                                                   (enum i915_pipe) cpu_transcoder);
1820                 }
1821                 /* FIXME: assert CPU port conditions for SNB+ */
1822         }
1823
1824         reg = PIPECONF(cpu_transcoder);
1825         val = I915_READ(reg);
1826         if (val & PIPECONF_ENABLE)
1827                 return;
1828
1829         I915_WRITE(reg, val | PIPECONF_ENABLE);
1830         intel_wait_for_vblank(dev_priv->dev, pipe);
1831 }
1832
1833 /**
1834  * intel_disable_pipe - disable a pipe, asserting requirements
1835  * @dev_priv: i915 private structure
1836  * @pipe: pipe to disable
1837  *
1838  * Disable @pipe, making sure that various hardware specific requirements
1839  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1840  *
1841  * @pipe should be %PIPE_A or %PIPE_B.
1842  *
1843  * Will wait until the pipe has shut down before returning.
1844  */
1845 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1846                                enum i915_pipe pipe)
1847 {
1848         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1849                                                                       pipe);
1850         int reg;
1851         u32 val;
1852
1853         /*
1854          * Make sure planes won't keep trying to pump pixels to us,
1855          * or we might hang the display.
1856          */
1857         assert_planes_disabled(dev_priv, pipe);
1858
1859         /* Don't disable pipe A or pipe A PLLs if needed */
1860         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1861                 return;
1862
1863         reg = PIPECONF(cpu_transcoder);
1864         val = I915_READ(reg);
1865         if ((val & PIPECONF_ENABLE) == 0)
1866                 return;
1867
1868         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1869         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1870 }
1871
1872 /*
1873  * Plane regs are double buffered, going from enabled->disabled needs a
1874  * trigger in order to latch.  The display address reg provides this.
1875  */
1876 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1877                                       enum plane plane)
1878 {
1879         if (dev_priv->info->gen >= 4)
1880                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1881         else
1882                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1883 }
1884
1885 /**
1886  * intel_enable_plane - enable a display plane on a given pipe
1887  * @dev_priv: i915 private structure
1888  * @plane: plane to enable
1889  * @pipe: pipe being fed
1890  *
1891  * Enable @plane on @pipe, making sure that @pipe is running first.
1892  */
1893 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1894                                enum plane plane, enum i915_pipe pipe)
1895 {
1896         int reg;
1897         u32 val;
1898
1899         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1900         assert_pipe_enabled(dev_priv, pipe);
1901
1902         reg = DSPCNTR(plane);
1903         val = I915_READ(reg);
1904         if (val & DISPLAY_PLANE_ENABLE)
1905                 return;
1906
1907         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1908         intel_flush_display_plane(dev_priv, plane);
1909         intel_wait_for_vblank(dev_priv->dev, pipe);
1910 }
1911
1912 /**
1913  * intel_disable_plane - disable a display plane
1914  * @dev_priv: i915 private structure
1915  * @plane: plane to disable
1916  * @pipe: pipe consuming the data
1917  *
1918  * Disable @plane; should be an independent operation.
1919  */
1920 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1921                                 enum plane plane, enum i915_pipe pipe)
1922 {
1923         int reg;
1924         u32 val;
1925
1926         reg = DSPCNTR(plane);
1927         val = I915_READ(reg);
1928         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1929                 return;
1930
1931         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1932         intel_flush_display_plane(dev_priv, plane);
1933         intel_wait_for_vblank(dev_priv->dev, pipe);
1934 }
1935
1936 int
1937 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1938                            struct drm_i915_gem_object *obj,
1939                            struct intel_ring_buffer *pipelined)
1940 {
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         u32 alignment;
1943         int ret;
1944
1945         switch (obj->tiling_mode) {
1946         case I915_TILING_NONE:
1947                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1948                         alignment = 128 * 1024;
1949                 else if (INTEL_INFO(dev)->gen >= 4)
1950                         alignment = 4 * 1024;
1951                 else
1952                         alignment = 64 * 1024;
1953                 break;
1954         case I915_TILING_X:
1955                 /* pin() will align the object as required by fence */
1956                 alignment = 0;
1957                 break;
1958         case I915_TILING_Y:
1959                 /* FIXME: Is this true? */
1960                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1961                 return -EINVAL;
1962         default:
1963                 BUG();
1964         }
1965
1966         dev_priv->mm.interruptible = false;
1967         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1968         if (ret)
1969                 goto err_interruptible;
1970
1971         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1972          * fence, whereas 965+ only requires a fence if using
1973          * framebuffer compression.  For simplicity, we always install
1974          * a fence as the cost is not that onerous.
1975          */
1976         ret = i915_gem_object_get_fence(obj);
1977         if (ret)
1978                 goto err_unpin;
1979
1980         i915_gem_object_pin_fence(obj);
1981
1982         dev_priv->mm.interruptible = true;
1983         return 0;
1984
1985 err_unpin:
1986         i915_gem_object_unpin(obj);
1987 err_interruptible:
1988         dev_priv->mm.interruptible = true;
1989         return ret;
1990 }
1991
1992 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1993 {
1994         i915_gem_object_unpin_fence(obj);
1995         i915_gem_object_unpin(obj);
1996 }
1997
1998 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1999  * is assumed to be a power-of-two. */
2000 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2001                                              unsigned int tiling_mode,
2002                                              unsigned int cpp,
2003                                              unsigned int pitch)
2004 {
2005         if (tiling_mode != I915_TILING_NONE) {
2006                 unsigned int tile_rows, tiles;
2007
2008                 tile_rows = *y / 8;
2009                 *y %= 8;
2010
2011                 tiles = *x / (512/cpp);
2012                 *x %= 512/cpp;
2013
2014                 return tile_rows * pitch * 8 + tiles * 4096;
2015         } else {
2016                 unsigned int offset;
2017
2018                 offset = *y * pitch + *x * cpp;
2019                 *y = 0;
2020                 *x = (offset & 4095) / cpp;
2021                 return offset & -4096;
2022         }
2023 }
2024
2025 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2026                              int x, int y)
2027 {
2028         struct drm_device *dev = crtc->dev;
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2031         struct intel_framebuffer *intel_fb;
2032         struct drm_i915_gem_object *obj;
2033         int plane = intel_crtc->plane;
2034         unsigned long linear_offset;
2035         u32 dspcntr;
2036         u32 reg;
2037
2038         switch (plane) {
2039         case 0:
2040         case 1:
2041                 break;
2042         default:
2043                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2044                 return -EINVAL;
2045         }
2046
2047         intel_fb = to_intel_framebuffer(fb);
2048         obj = intel_fb->obj;
2049
2050         reg = DSPCNTR(plane);
2051         dspcntr = I915_READ(reg);
2052         /* Mask out pixel format bits in case we change it */
2053         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2054         switch (fb->pixel_format) {
2055         case DRM_FORMAT_C8:
2056                 dspcntr |= DISPPLANE_8BPP;
2057                 break;
2058         case DRM_FORMAT_XRGB1555:
2059         case DRM_FORMAT_ARGB1555:
2060                 dspcntr |= DISPPLANE_BGRX555;
2061                 break;
2062         case DRM_FORMAT_RGB565:
2063                 dspcntr |= DISPPLANE_BGRX565;
2064                 break;
2065         case DRM_FORMAT_XRGB8888:
2066         case DRM_FORMAT_ARGB8888:
2067                 dspcntr |= DISPPLANE_BGRX888;
2068                 break;
2069         case DRM_FORMAT_XBGR8888:
2070         case DRM_FORMAT_ABGR8888:
2071                 dspcntr |= DISPPLANE_RGBX888;
2072                 break;
2073         case DRM_FORMAT_XRGB2101010:
2074         case DRM_FORMAT_ARGB2101010:
2075                 dspcntr |= DISPPLANE_BGRX101010;
2076                 break;
2077         case DRM_FORMAT_XBGR2101010:
2078         case DRM_FORMAT_ABGR2101010:
2079                 dspcntr |= DISPPLANE_RGBX101010;
2080                 break;
2081         default:
2082                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2083                 return -EINVAL;
2084         }
2085
2086         if (INTEL_INFO(dev)->gen >= 4) {
2087                 if (obj->tiling_mode != I915_TILING_NONE)
2088                         dspcntr |= DISPPLANE_TILED;
2089                 else
2090                         dspcntr &= ~DISPPLANE_TILED;
2091         }
2092
2093         I915_WRITE(reg, dspcntr);
2094
2095         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2096
2097         if (INTEL_INFO(dev)->gen >= 4) {
2098                 intel_crtc->dspaddr_offset =
2099                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2100                                                        fb->bits_per_pixel / 8,
2101                                                        fb->pitches[0]);
2102                 linear_offset -= intel_crtc->dspaddr_offset;
2103         } else {
2104                 intel_crtc->dspaddr_offset = linear_offset;
2105         }
2106
2107         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2108                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2109         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2110         if (INTEL_INFO(dev)->gen >= 4) {
2111                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2112                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2113                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2114                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2115         } else
2116                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2117         POSTING_READ(reg);
2118
2119         return 0;
2120 }
2121
2122 static int ironlake_update_plane(struct drm_crtc *crtc,
2123                                  struct drm_framebuffer *fb, int x, int y)
2124 {
2125         struct drm_device *dev = crtc->dev;
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2128         struct intel_framebuffer *intel_fb;
2129         struct drm_i915_gem_object *obj;
2130         int plane = intel_crtc->plane;
2131         unsigned long linear_offset;
2132         u32 dspcntr;
2133         u32 reg;
2134
2135         switch (plane) {
2136         case 0:
2137         case 1:
2138         case 2:
2139                 break;
2140         default:
2141                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2142                 return -EINVAL;
2143         }
2144
2145         intel_fb = to_intel_framebuffer(fb);
2146         obj = intel_fb->obj;
2147
2148         reg = DSPCNTR(plane);
2149         dspcntr = I915_READ(reg);
2150         /* Mask out pixel format bits in case we change it */
2151         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2152         switch (fb->pixel_format) {
2153         case DRM_FORMAT_C8:
2154                 dspcntr |= DISPPLANE_8BPP;
2155                 break;
2156         case DRM_FORMAT_RGB565:
2157                 dspcntr |= DISPPLANE_BGRX565;
2158                 break;
2159         case DRM_FORMAT_XRGB8888:
2160         case DRM_FORMAT_ARGB8888:
2161                 dspcntr |= DISPPLANE_BGRX888;
2162                 break;
2163         case DRM_FORMAT_XBGR8888:
2164         case DRM_FORMAT_ABGR8888:
2165                 dspcntr |= DISPPLANE_RGBX888;
2166                 break;
2167         case DRM_FORMAT_XRGB2101010:
2168         case DRM_FORMAT_ARGB2101010:
2169                 dspcntr |= DISPPLANE_BGRX101010;
2170                 break;
2171         case DRM_FORMAT_XBGR2101010:
2172         case DRM_FORMAT_ABGR2101010:
2173                 dspcntr |= DISPPLANE_RGBX101010;
2174                 break;
2175         default:
2176                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2177                 return -EINVAL;
2178         }
2179
2180         if (obj->tiling_mode != I915_TILING_NONE)
2181                 dspcntr |= DISPPLANE_TILED;
2182         else
2183                 dspcntr &= ~DISPPLANE_TILED;
2184
2185         /* must disable */
2186         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2187
2188         I915_WRITE(reg, dspcntr);
2189
2190         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2191         intel_crtc->dspaddr_offset =
2192                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2193                                                fb->bits_per_pixel / 8,
2194                                                fb->pitches[0]);
2195         linear_offset -= intel_crtc->dspaddr_offset;
2196
2197         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2198                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2199         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2200         I915_MODIFY_DISPBASE(DSPSURF(plane),
2201                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2202         if (IS_HASWELL(dev)) {
2203                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2204         } else {
2205                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2206                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2207         }
2208         POSTING_READ(reg);
2209
2210         return 0;
2211 }
2212
2213 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2214 static int
2215 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2216                            int x, int y, enum mode_set_atomic state)
2217 {
2218         struct drm_device *dev = crtc->dev;
2219         struct drm_i915_private *dev_priv = dev->dev_private;
2220
2221         if (dev_priv->display.disable_fbc)
2222                 dev_priv->display.disable_fbc(dev);
2223         intel_increase_pllclock(crtc);
2224
2225         return dev_priv->display.update_plane(crtc, fb, x, y);
2226 }
2227
2228 static int
2229 intel_finish_fb(struct drm_framebuffer *old_fb)
2230 {
2231         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2232         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2233         bool was_interruptible = dev_priv->mm.interruptible;
2234         int ret;
2235
2236         /* Big Hammer, we also need to ensure that any pending
2237          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2238          * current scanout is retired before unpinning the old
2239          * framebuffer.
2240          *
2241          * This should only fail upon a hung GPU, in which case we
2242          * can safely continue.
2243          */
2244         dev_priv->mm.interruptible = false;
2245         ret = i915_gem_object_finish_gpu(obj);
2246         dev_priv->mm.interruptible = was_interruptible;
2247
2248         return ret;
2249 }
2250
2251 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2252 {
2253         struct drm_device *dev = crtc->dev;
2254 #if 0
2255         struct drm_i915_master_private *master_priv;
2256 #else
2257         drm_i915_private_t *dev_priv = dev->dev_private;
2258 #endif
2259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2260
2261 #if 0
2262         if (!dev->primary->master)
2263                 return;
2264
2265         master_priv = dev->primary->master->driver_priv;
2266         if (!master_priv->sarea_priv)
2267                 return;
2268 #else
2269         if (!dev_priv->sarea_priv)
2270                 return;
2271 #endif
2272
2273         switch (intel_crtc->pipe) {
2274         case 0:
2275 #if 0
2276                 master_priv->sarea_priv->pipeA_x = x;
2277                 master_priv->sarea_priv->pipeA_y = y;
2278 #else
2279                 dev_priv->sarea_priv->planeA_x = x;
2280                 dev_priv->sarea_priv->planeA_y = y;
2281 #endif
2282                 break;
2283         case 1:
2284 #if 0
2285                 master_priv->sarea_priv->pipeB_x = x;
2286                 master_priv->sarea_priv->pipeB_y = y;
2287 #else
2288                 dev_priv->sarea_priv->planeB_x = x;
2289                 dev_priv->sarea_priv->planeB_y = y;
2290 #endif
2291                 break;
2292         default:
2293                 break;
2294         }
2295 }
2296
2297 static int
2298 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2299                     struct drm_framebuffer *fb)
2300 {
2301         struct drm_device *dev = crtc->dev;
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2304         struct drm_framebuffer *old_fb;
2305         int ret;
2306
2307         /* no fb bound */
2308         if (!fb) {
2309                 DRM_ERROR("No FB bound\n");
2310                 return 0;
2311         }
2312
2313         if(intel_crtc->plane > dev_priv->num_pipe) {
2314                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2315                                 intel_crtc->plane,
2316                                 dev_priv->num_pipe);
2317                 return -EINVAL;
2318         }
2319
2320         mutex_lock(&dev->struct_mutex);
2321         ret = intel_pin_and_fence_fb_obj(dev,
2322                                          to_intel_framebuffer(fb)->obj,
2323                                          NULL);
2324         if (ret != 0) {
2325                 mutex_unlock(&dev->struct_mutex);
2326                 DRM_ERROR("pin & fence failed\n");
2327                 return ret;
2328         }
2329
2330         if (crtc->fb)
2331                 intel_finish_fb(crtc->fb);
2332
2333         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2334         if (ret) {
2335                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2336                 mutex_unlock(&dev->struct_mutex);
2337                 DRM_ERROR("failed to update base address\n");
2338                 return ret;
2339         }
2340
2341         old_fb = crtc->fb;
2342         crtc->fb = fb;
2343         crtc->x = x;
2344         crtc->y = y;
2345
2346         if (old_fb) {
2347                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2348                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2349         }
2350
2351         intel_update_fbc(dev);
2352         mutex_unlock(&dev->struct_mutex);
2353
2354         intel_crtc_update_sarea_pos(crtc, x, y);
2355
2356         return 0;
2357 }
2358
2359 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2360 {
2361         struct drm_device *dev = crtc->dev;
2362         struct drm_i915_private *dev_priv = dev->dev_private;
2363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2364         int pipe = intel_crtc->pipe;
2365         u32 reg, temp;
2366
2367         /* enable normal train */
2368         reg = FDI_TX_CTL(pipe);
2369         temp = I915_READ(reg);
2370         if (IS_IVYBRIDGE(dev)) {
2371                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2372                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2373         } else {
2374                 temp &= ~FDI_LINK_TRAIN_NONE;
2375                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2376         }
2377         I915_WRITE(reg, temp);
2378
2379         reg = FDI_RX_CTL(pipe);
2380         temp = I915_READ(reg);
2381         if (HAS_PCH_CPT(dev)) {
2382                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2383                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2384         } else {
2385                 temp &= ~FDI_LINK_TRAIN_NONE;
2386                 temp |= FDI_LINK_TRAIN_NONE;
2387         }
2388         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2389
2390         /* wait one idle pattern time */
2391         POSTING_READ(reg);
2392         udelay(1000);
2393
2394         /* IVB wants error correction enabled */
2395         if (IS_IVYBRIDGE(dev))
2396                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2397                            FDI_FE_ERRC_ENABLE);
2398 }
2399
2400 static void ivb_modeset_global_resources(struct drm_device *dev)
2401 {
2402         struct drm_i915_private *dev_priv = dev->dev_private;
2403         struct intel_crtc *pipe_B_crtc =
2404                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2405         struct intel_crtc *pipe_C_crtc =
2406                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2407         uint32_t temp;
2408
2409         /* When everything is off disable fdi C so that we could enable fdi B
2410          * with all lanes. XXX: This misses the case where a pipe is not using
2411          * any pch resources and so doesn't need any fdi lanes. */
2412         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2413                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2414                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2415
2416                 temp = I915_READ(SOUTH_CHICKEN1);
2417                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2418                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2419                 I915_WRITE(SOUTH_CHICKEN1, temp);
2420         }
2421 }
2422
2423 /* The FDI link training functions for ILK/Ibexpeak. */
2424 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2425 {
2426         struct drm_device *dev = crtc->dev;
2427         struct drm_i915_private *dev_priv = dev->dev_private;
2428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2429         int pipe = intel_crtc->pipe;
2430         int plane = intel_crtc->plane;
2431         u32 reg, temp, tries;
2432
2433         /* FDI needs bits from pipe & plane first */
2434         assert_pipe_enabled(dev_priv, pipe);
2435         assert_plane_enabled(dev_priv, plane);
2436
2437         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2438            for train result */
2439         reg = FDI_RX_IMR(pipe);
2440         temp = I915_READ(reg);
2441         temp &= ~FDI_RX_SYMBOL_LOCK;
2442         temp &= ~FDI_RX_BIT_LOCK;
2443         I915_WRITE(reg, temp);
2444         I915_READ(reg);
2445         udelay(150);
2446
2447         /* enable CPU FDI TX and PCH FDI RX */
2448         reg = FDI_TX_CTL(pipe);
2449         temp = I915_READ(reg);
2450         temp &= ~(7 << 19);
2451         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2452         temp &= ~FDI_LINK_TRAIN_NONE;
2453         temp |= FDI_LINK_TRAIN_PATTERN_1;
2454         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2455
2456         reg = FDI_RX_CTL(pipe);
2457         temp = I915_READ(reg);
2458         temp &= ~FDI_LINK_TRAIN_NONE;
2459         temp |= FDI_LINK_TRAIN_PATTERN_1;
2460         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2461
2462         POSTING_READ(reg);
2463         udelay(150);
2464
2465         /* Ironlake workaround, enable clock pointer after FDI enable*/
2466         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2467         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2468                    FDI_RX_PHASE_SYNC_POINTER_EN);
2469
2470         reg = FDI_RX_IIR(pipe);
2471         for (tries = 0; tries < 5; tries++) {
2472                 temp = I915_READ(reg);
2473                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2474
2475                 if ((temp & FDI_RX_BIT_LOCK)) {
2476                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2477                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2478                         break;
2479                 }
2480         }
2481         if (tries == 5)
2482                 DRM_ERROR("FDI train 1 fail!\n");
2483
2484         /* Train 2 */
2485         reg = FDI_TX_CTL(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~FDI_LINK_TRAIN_NONE;
2488         temp |= FDI_LINK_TRAIN_PATTERN_2;
2489         I915_WRITE(reg, temp);
2490
2491         reg = FDI_RX_CTL(pipe);
2492         temp = I915_READ(reg);
2493         temp &= ~FDI_LINK_TRAIN_NONE;
2494         temp |= FDI_LINK_TRAIN_PATTERN_2;
2495         I915_WRITE(reg, temp);
2496
2497         POSTING_READ(reg);
2498         udelay(150);
2499
2500         reg = FDI_RX_IIR(pipe);
2501         for (tries = 0; tries < 5; tries++) {
2502                 temp = I915_READ(reg);
2503                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2504
2505                 if (temp & FDI_RX_SYMBOL_LOCK) {
2506                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2507                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2508                         break;
2509                 }
2510         }
2511         if (tries == 5)
2512                 DRM_ERROR("FDI train 2 fail!\n");
2513
2514         DRM_DEBUG_KMS("FDI train done\n");
2515
2516 }
2517
2518 static const int snb_b_fdi_train_param[] = {
2519         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2520         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2521         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2522         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2523 };
2524
2525 /* The FDI link training functions for SNB/Cougarpoint. */
2526 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2527 {
2528         struct drm_device *dev = crtc->dev;
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2531         int pipe = intel_crtc->pipe;
2532         u32 reg, temp, i, retry;
2533
2534         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2535            for train result */
2536         reg = FDI_RX_IMR(pipe);
2537         temp = I915_READ(reg);
2538         temp &= ~FDI_RX_SYMBOL_LOCK;
2539         temp &= ~FDI_RX_BIT_LOCK;
2540         I915_WRITE(reg, temp);
2541
2542         POSTING_READ(reg);
2543         udelay(150);
2544
2545         /* enable CPU FDI TX and PCH FDI RX */
2546         reg = FDI_TX_CTL(pipe);
2547         temp = I915_READ(reg);
2548         temp &= ~(7 << 19);
2549         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2550         temp &= ~FDI_LINK_TRAIN_NONE;
2551         temp |= FDI_LINK_TRAIN_PATTERN_1;
2552         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2553         /* SNB-B */
2554         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2555         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2556
2557         I915_WRITE(FDI_RX_MISC(pipe),
2558                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2559
2560         reg = FDI_RX_CTL(pipe);
2561         temp = I915_READ(reg);
2562         if (HAS_PCH_CPT(dev)) {
2563                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2564                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2565         } else {
2566                 temp &= ~FDI_LINK_TRAIN_NONE;
2567                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2568         }
2569         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2570
2571         POSTING_READ(reg);
2572         udelay(150);
2573
2574         for (i = 0; i < 4; i++) {
2575                 reg = FDI_TX_CTL(pipe);
2576                 temp = I915_READ(reg);
2577                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2578                 temp |= snb_b_fdi_train_param[i];
2579                 I915_WRITE(reg, temp);
2580
2581                 POSTING_READ(reg);
2582                 udelay(500);
2583
2584                 for (retry = 0; retry < 5; retry++) {
2585                         reg = FDI_RX_IIR(pipe);
2586                         temp = I915_READ(reg);
2587                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2588                         if (temp & FDI_RX_BIT_LOCK) {
2589                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2590                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2591                                 break;
2592                         }
2593                         udelay(50);
2594                 }
2595                 if (retry < 5)
2596                         break;
2597         }
2598         if (i == 4)
2599                 DRM_ERROR("FDI train 1 fail!\n");
2600
2601         /* Train 2 */
2602         reg = FDI_TX_CTL(pipe);
2603         temp = I915_READ(reg);
2604         temp &= ~FDI_LINK_TRAIN_NONE;
2605         temp |= FDI_LINK_TRAIN_PATTERN_2;
2606         if (IS_GEN6(dev)) {
2607                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2608                 /* SNB-B */
2609                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2610         }
2611         I915_WRITE(reg, temp);
2612
2613         reg = FDI_RX_CTL(pipe);
2614         temp = I915_READ(reg);
2615         if (HAS_PCH_CPT(dev)) {
2616                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2617                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2618         } else {
2619                 temp &= ~FDI_LINK_TRAIN_NONE;
2620                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2621         }
2622         I915_WRITE(reg, temp);
2623
2624         POSTING_READ(reg);
2625         udelay(150);
2626
2627         for (i = 0; i < 4; i++) {
2628                 reg = FDI_TX_CTL(pipe);
2629                 temp = I915_READ(reg);
2630                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2631                 temp |= snb_b_fdi_train_param[i];
2632                 I915_WRITE(reg, temp);
2633
2634                 POSTING_READ(reg);
2635                 udelay(500);
2636
2637                 for (retry = 0; retry < 5; retry++) {
2638                         reg = FDI_RX_IIR(pipe);
2639                         temp = I915_READ(reg);
2640                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2641                         if (temp & FDI_RX_SYMBOL_LOCK) {
2642                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2643                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2644                                 break;
2645                         }
2646                         udelay(50);
2647                 }
2648                 if (retry < 5)
2649                         break;
2650         }
2651         if (i == 4)
2652                 DRM_ERROR("FDI train 2 fail!\n");
2653
2654         DRM_DEBUG_KMS("FDI train done.\n");
2655 }
2656
2657 /* Manual link training for Ivy Bridge A0 parts */
2658 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2659 {
2660         struct drm_device *dev = crtc->dev;
2661         struct drm_i915_private *dev_priv = dev->dev_private;
2662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2663         int pipe = intel_crtc->pipe;
2664         u32 reg, temp, i;
2665
2666         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2667            for train result */
2668         reg = FDI_RX_IMR(pipe);
2669         temp = I915_READ(reg);
2670         temp &= ~FDI_RX_SYMBOL_LOCK;
2671         temp &= ~FDI_RX_BIT_LOCK;
2672         I915_WRITE(reg, temp);
2673
2674         POSTING_READ(reg);
2675         udelay(150);
2676
2677         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2678                       I915_READ(FDI_RX_IIR(pipe)));
2679
2680         /* enable CPU FDI TX and PCH FDI RX */
2681         reg = FDI_TX_CTL(pipe);
2682         temp = I915_READ(reg);
2683         temp &= ~(7 << 19);
2684         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2685         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2686         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2687         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2688         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2689         temp |= FDI_COMPOSITE_SYNC;
2690         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2691
2692         I915_WRITE(FDI_RX_MISC(pipe),
2693                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2694
2695         reg = FDI_RX_CTL(pipe);
2696         temp = I915_READ(reg);
2697         temp &= ~FDI_LINK_TRAIN_AUTO;
2698         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2699         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2700         temp |= FDI_COMPOSITE_SYNC;
2701         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2702
2703         POSTING_READ(reg);
2704         udelay(150);
2705
2706         for (i = 0; i < 4; i++) {
2707                 reg = FDI_TX_CTL(pipe);
2708                 temp = I915_READ(reg);
2709                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2710                 temp |= snb_b_fdi_train_param[i];
2711                 I915_WRITE(reg, temp);
2712
2713                 POSTING_READ(reg);
2714                 udelay(500);
2715
2716                 reg = FDI_RX_IIR(pipe);
2717                 temp = I915_READ(reg);
2718                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2719
2720                 if (temp & FDI_RX_BIT_LOCK ||
2721                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2722                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2723                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2724                         break;
2725                 }
2726         }
2727         if (i == 4)
2728                 DRM_ERROR("FDI train 1 fail!\n");
2729
2730         /* Train 2 */
2731         reg = FDI_TX_CTL(pipe);
2732         temp = I915_READ(reg);
2733         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2734         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2735         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2737         I915_WRITE(reg, temp);
2738
2739         reg = FDI_RX_CTL(pipe);
2740         temp = I915_READ(reg);
2741         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2742         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2743         I915_WRITE(reg, temp);
2744
2745         POSTING_READ(reg);
2746         udelay(150);
2747
2748         for (i = 0; i < 4; i++) {
2749                 reg = FDI_TX_CTL(pipe);
2750                 temp = I915_READ(reg);
2751                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2752                 temp |= snb_b_fdi_train_param[i];
2753                 I915_WRITE(reg, temp);
2754
2755                 POSTING_READ(reg);
2756                 udelay(500);
2757
2758                 reg = FDI_RX_IIR(pipe);
2759                 temp = I915_READ(reg);
2760                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2761
2762                 if (temp & FDI_RX_SYMBOL_LOCK) {
2763                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2764                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2765                         break;
2766                 }
2767         }
2768         if (i == 4)
2769                 DRM_ERROR("FDI train 2 fail!\n");
2770
2771         DRM_DEBUG_KMS("FDI train done.\n");
2772 }
2773
2774 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2775 {
2776         struct drm_device *dev = intel_crtc->base.dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         int pipe = intel_crtc->pipe;
2779         u32 reg, temp;
2780
2781
2782         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2783         reg = FDI_RX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         temp &= ~((0x7 << 19) | (0x7 << 16));
2786         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2787         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2788         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2789
2790         POSTING_READ(reg);
2791         udelay(200);
2792
2793         /* Switch from Rawclk to PCDclk */
2794         temp = I915_READ(reg);
2795         I915_WRITE(reg, temp | FDI_PCDCLK);
2796
2797         POSTING_READ(reg);
2798         udelay(200);
2799
2800         /* Enable CPU FDI TX PLL, always on for Ironlake */
2801         reg = FDI_TX_CTL(pipe);
2802         temp = I915_READ(reg);
2803         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2804                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2805
2806                 POSTING_READ(reg);
2807                 udelay(100);
2808         }
2809 }
2810
2811 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2812 {
2813         struct drm_device *dev = intel_crtc->base.dev;
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         int pipe = intel_crtc->pipe;
2816         u32 reg, temp;
2817
2818         /* Switch from PCDclk to Rawclk */
2819         reg = FDI_RX_CTL(pipe);
2820         temp = I915_READ(reg);
2821         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2822
2823         /* Disable CPU FDI TX PLL */
2824         reg = FDI_TX_CTL(pipe);
2825         temp = I915_READ(reg);
2826         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2827
2828         POSTING_READ(reg);
2829         udelay(100);
2830
2831         reg = FDI_RX_CTL(pipe);
2832         temp = I915_READ(reg);
2833         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2834
2835         /* Wait for the clocks to turn off. */
2836         POSTING_READ(reg);
2837         udelay(100);
2838 }
2839
2840 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2841 {
2842         struct drm_device *dev = crtc->dev;
2843         struct drm_i915_private *dev_priv = dev->dev_private;
2844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2845         int pipe = intel_crtc->pipe;
2846         u32 reg, temp;
2847
2848         /* disable CPU FDI tx and PCH FDI rx */
2849         reg = FDI_TX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2852         POSTING_READ(reg);
2853
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         temp &= ~(0x7 << 16);
2857         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2858         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2859
2860         POSTING_READ(reg);
2861         udelay(100);
2862
2863         /* Ironlake workaround, disable clock pointer after downing FDI */
2864         if (HAS_PCH_IBX(dev)) {
2865                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2866         }
2867
2868         /* still set train pattern 1 */
2869         reg = FDI_TX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         temp &= ~FDI_LINK_TRAIN_NONE;
2872         temp |= FDI_LINK_TRAIN_PATTERN_1;
2873         I915_WRITE(reg, temp);
2874
2875         reg = FDI_RX_CTL(pipe);
2876         temp = I915_READ(reg);
2877         if (HAS_PCH_CPT(dev)) {
2878                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2879                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2880         } else {
2881                 temp &= ~FDI_LINK_TRAIN_NONE;
2882                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2883         }
2884         /* BPC in FDI rx is consistent with that in PIPECONF */
2885         temp &= ~(0x07 << 16);
2886         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2887         I915_WRITE(reg, temp);
2888
2889         POSTING_READ(reg);
2890         udelay(100);
2891 }
2892
2893 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2894 {
2895         struct drm_device *dev = crtc->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2898         bool pending;
2899
2900         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2901             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2902                 return false;
2903
2904         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2905         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2906         lockmgr(&dev->event_lock, LK_RELEASE);
2907
2908         return pending;
2909 }
2910
2911 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2912 {
2913         struct drm_device *dev = crtc->dev;
2914         struct drm_i915_private *dev_priv = dev->dev_private;
2915
2916         if (crtc->fb == NULL)
2917                 return;
2918
2919         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2920
2921         wait_event(dev_priv->pending_flip_queue,
2922                    !intel_crtc_has_pending_flip(crtc));
2923
2924         mutex_lock(&dev->struct_mutex);
2925         intel_finish_fb(crtc->fb);
2926         mutex_unlock(&dev->struct_mutex);
2927 }
2928
2929 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2930 {
2931         struct drm_device *dev = crtc->dev;
2932         struct intel_encoder *intel_encoder;
2933
2934         /*
2935          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2936          * must be driven by its own crtc; no sharing is possible.
2937          */
2938         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2939                 switch (intel_encoder->type) {
2940                 case INTEL_OUTPUT_EDP:
2941                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2942                                 return false;
2943                         continue;
2944                 }
2945         }
2946
2947         return true;
2948 }
2949
2950 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2951 {
2952         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2953 }
2954
2955 /* Program iCLKIP clock to the desired frequency */
2956 static void lpt_program_iclkip(struct drm_crtc *crtc)
2957 {
2958         struct drm_device *dev = crtc->dev;
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2961         u32 temp;
2962
2963         mutex_lock(&dev_priv->dpio_lock);
2964
2965         /* It is necessary to ungate the pixclk gate prior to programming
2966          * the divisors, and gate it back when it is done.
2967          */
2968         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2969
2970         /* Disable SSCCTL */
2971         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2972                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2973                                 SBI_SSCCTL_DISABLE,
2974                         SBI_ICLK);
2975
2976         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2977         if (crtc->mode.clock == 20000) {
2978                 auxdiv = 1;
2979                 divsel = 0x41;
2980                 phaseinc = 0x20;
2981         } else {
2982                 /* The iCLK virtual clock root frequency is in MHz,
2983                  * but the crtc->mode.clock in in KHz. To get the divisors,
2984                  * it is necessary to divide one by another, so we
2985                  * convert the virtual clock precision to KHz here for higher
2986                  * precision.
2987                  */
2988                 u32 iclk_virtual_root_freq = 172800 * 1000;
2989                 u32 iclk_pi_range = 64;
2990                 u32 desired_divisor, msb_divisor_value, pi_value;
2991
2992                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2993                 msb_divisor_value = desired_divisor / iclk_pi_range;
2994                 pi_value = desired_divisor % iclk_pi_range;
2995
2996                 auxdiv = 0;
2997                 divsel = msb_divisor_value - 2;
2998                 phaseinc = pi_value;
2999         }
3000
3001         /* This should not happen with any sane values */
3002         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3003                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3004         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3005                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3006
3007         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3008                         crtc->mode.clock,
3009                         auxdiv,
3010                         divsel,
3011                         phasedir,
3012                         phaseinc);
3013
3014         /* Program SSCDIVINTPHASE6 */
3015         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3016         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3017         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3018         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3019         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3020         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3021         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3022         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3023
3024         /* Program SSCAUXDIV */
3025         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3026         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3027         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3028         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3029
3030         /* Enable modulator and associated divider */
3031         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3032         temp &= ~SBI_SSCCTL_DISABLE;
3033         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3034
3035         /* Wait for initialization time */
3036         udelay(24);
3037
3038         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3039
3040         mutex_unlock(&dev_priv->dpio_lock);
3041 }
3042
3043 /*
3044  * Enable PCH resources required for PCH ports:
3045  *   - PCH PLLs
3046  *   - FDI training & RX/TX
3047  *   - update transcoder timings
3048  *   - DP transcoding bits
3049  *   - transcoder
3050  */
3051 static void ironlake_pch_enable(struct drm_crtc *crtc)
3052 {
3053         struct drm_device *dev = crtc->dev;
3054         struct drm_i915_private *dev_priv = dev->dev_private;
3055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3056         int pipe = intel_crtc->pipe;
3057         u32 reg, temp;
3058
3059         assert_transcoder_disabled(dev_priv, pipe);
3060
3061         /* Write the TU size bits before fdi link training, so that error
3062          * detection works. */
3063         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3064                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3065
3066         /* For PCH output, training FDI link */
3067         dev_priv->display.fdi_link_train(crtc);
3068
3069         /* XXX: pch pll's can be enabled any time before we enable the PCH
3070          * transcoder, and we actually should do this to not upset any PCH
3071          * transcoder that already use the clock when we share it.
3072          *
3073          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3074          * unconditionally resets the pll - we need that to have the right LVDS
3075          * enable sequence. */
3076         ironlake_enable_pch_pll(intel_crtc);
3077
3078         if (HAS_PCH_CPT(dev)) {
3079                 u32 sel;
3080
3081                 temp = I915_READ(PCH_DPLL_SEL);
3082                 switch (pipe) {
3083                 default:
3084                 case 0:
3085                         temp |= TRANSA_DPLL_ENABLE;
3086                         sel = TRANSA_DPLLB_SEL;
3087                         break;
3088                 case 1:
3089                         temp |= TRANSB_DPLL_ENABLE;
3090                         sel = TRANSB_DPLLB_SEL;
3091                         break;
3092                 case 2:
3093                         temp |= TRANSC_DPLL_ENABLE;
3094                         sel = TRANSC_DPLLB_SEL;
3095                         break;
3096                 }
3097                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3098                         temp |= sel;
3099                 else
3100                         temp &= ~sel;
3101                 I915_WRITE(PCH_DPLL_SEL, temp);
3102         }
3103
3104         /* set transcoder timing, panel must allow it */
3105         assert_panel_unlocked(dev_priv, pipe);
3106         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3107         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3108         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3109
3110         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3111         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3112         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3113         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3114
3115         intel_fdi_normal_train(crtc);
3116
3117         /* For PCH DP, enable TRANS_DP_CTL */
3118         if (HAS_PCH_CPT(dev) &&
3119             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3120              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3121                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3122                 reg = TRANS_DP_CTL(pipe);
3123                 temp = I915_READ(reg);
3124                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3125                           TRANS_DP_SYNC_MASK |
3126                           TRANS_DP_BPC_MASK);
3127                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3128                          TRANS_DP_ENH_FRAMING);
3129                 temp |= bpc << 9; /* same format but at 11:9 */
3130
3131                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3132                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3133                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3134                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3135
3136                 switch (intel_trans_dp_port_sel(crtc)) {
3137                 case PCH_DP_B:
3138                         temp |= TRANS_DP_PORT_SEL_B;
3139                         break;
3140                 case PCH_DP_C:
3141                         temp |= TRANS_DP_PORT_SEL_C;
3142                         break;
3143                 case PCH_DP_D:
3144                         temp |= TRANS_DP_PORT_SEL_D;
3145                         break;
3146                 default:
3147                         BUG();
3148                 }
3149
3150                 I915_WRITE(reg, temp);
3151         }
3152
3153         ironlake_enable_pch_transcoder(dev_priv, pipe);
3154 }
3155
3156 static void lpt_pch_enable(struct drm_crtc *crtc)
3157 {
3158         struct drm_device *dev = crtc->dev;
3159         struct drm_i915_private *dev_priv = dev->dev_private;
3160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3161         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3162
3163         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3164
3165         lpt_program_iclkip(crtc);
3166
3167         /* Set transcoder timing. */
3168         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3169         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3170         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3171
3172         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3173         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3174         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3175         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3176
3177         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3178 }
3179
3180 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3181 {
3182         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3183
3184         if (pll == NULL)
3185                 return;
3186
3187         if (pll->refcount == 0) {
3188                 WARN(1, "bad PCH PLL refcount\n");
3189                 return;
3190         }
3191
3192         --pll->refcount;
3193         intel_crtc->pch_pll = NULL;
3194 }
3195
3196 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3197 {
3198         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3199         struct intel_pch_pll *pll;
3200         int i;
3201
3202         pll = intel_crtc->pch_pll;
3203         if (pll) {
3204                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3205                               intel_crtc->base.base.id, pll->pll_reg);
3206                 goto prepare;
3207         }
3208
3209         if (HAS_PCH_IBX(dev_priv->dev)) {
3210                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3211                 i = intel_crtc->pipe;
3212                 pll = &dev_priv->pch_plls[i];
3213
3214                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3215                               intel_crtc->base.base.id, pll->pll_reg);
3216
3217                 goto found;
3218         }
3219
3220         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3221                 pll = &dev_priv->pch_plls[i];
3222
3223                 /* Only want to check enabled timings first */
3224                 if (pll->refcount == 0)
3225                         continue;
3226
3227                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3228                     fp == I915_READ(pll->fp0_reg)) {
3229                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3230                                       intel_crtc->base.base.id,
3231                                       pll->pll_reg, pll->refcount, pll->active);
3232
3233                         goto found;
3234                 }
3235         }
3236
3237         /* Ok no matching timings, maybe there's a free one? */
3238         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3239                 pll = &dev_priv->pch_plls[i];
3240                 if (pll->refcount == 0) {
3241                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3242                                       intel_crtc->base.base.id, pll->pll_reg);
3243                         goto found;
3244                 }
3245         }
3246
3247         return NULL;
3248
3249 found:
3250         intel_crtc->pch_pll = pll;
3251         pll->refcount++;
3252         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3253 prepare: /* separate function? */
3254         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3255
3256         /* Wait for the clocks to stabilize before rewriting the regs */
3257         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3258         POSTING_READ(pll->pll_reg);
3259         udelay(150);
3260
3261         I915_WRITE(pll->fp0_reg, fp);
3262         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3263         pll->on = false;
3264         return pll;
3265 }
3266
3267 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3268 {
3269         struct drm_i915_private *dev_priv = dev->dev_private;
3270         int dslreg = PIPEDSL(pipe);
3271         u32 temp;
3272
3273         temp = I915_READ(dslreg);
3274         udelay(500);
3275         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3276                 if (wait_for(I915_READ(dslreg) != temp, 5))
3277                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3278         }
3279 }
3280
3281 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3282 {
3283         struct drm_device *dev = crtc->dev;
3284         struct drm_i915_private *dev_priv = dev->dev_private;
3285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3286         struct intel_encoder *encoder;
3287         int pipe = intel_crtc->pipe;
3288         int plane = intel_crtc->plane;
3289         u32 temp;
3290         bool is_pch_port;
3291
3292         WARN_ON(!crtc->enabled);
3293
3294         if (intel_crtc->active)
3295                 return;
3296
3297         intel_crtc->active = true;
3298         intel_update_watermarks(dev);
3299
3300         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3301                 temp = I915_READ(PCH_LVDS);
3302                 if ((temp & LVDS_PORT_EN) == 0)
3303                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3304         }
3305
3306         is_pch_port = ironlake_crtc_driving_pch(crtc);
3307
3308         if (is_pch_port) {
3309                 /* Note: FDI PLL enabling _must_ be done before we enable the
3310                  * cpu pipes, hence this is separate from all the other fdi/pch
3311                  * enabling. */
3312                 ironlake_fdi_pll_enable(intel_crtc);
3313         } else {
3314                 assert_fdi_tx_disabled(dev_priv, pipe);
3315                 assert_fdi_rx_disabled(dev_priv, pipe);
3316         }
3317
3318         for_each_encoder_on_crtc(dev, crtc, encoder)
3319                 if (encoder->pre_enable)
3320                         encoder->pre_enable(encoder);
3321
3322         /* Enable panel fitting for LVDS */
3323         if (dev_priv->pch_pf_size &&
3324             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3325              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3326                 /* Force use of hard-coded filter coefficients
3327                  * as some pre-programmed values are broken,
3328                  * e.g. x201.
3329                  */
3330                 if (IS_IVYBRIDGE(dev))
3331                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3332                                                  PF_PIPE_SEL_IVB(pipe));
3333                 else
3334                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3335                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3336                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3337         }
3338
3339         /*
3340          * On ILK+ LUT must be loaded before the pipe is running but with
3341          * clocks enabled
3342          */
3343         intel_crtc_load_lut(crtc);
3344
3345         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3346         intel_enable_plane(dev_priv, plane, pipe);
3347
3348         if (is_pch_port)
3349                 ironlake_pch_enable(crtc);
3350
3351         mutex_lock(&dev->struct_mutex);
3352         intel_update_fbc(dev);
3353         mutex_unlock(&dev->struct_mutex);
3354
3355         intel_crtc_update_cursor(crtc, true);
3356
3357         for_each_encoder_on_crtc(dev, crtc, encoder)
3358                 encoder->enable(encoder);
3359
3360         if (HAS_PCH_CPT(dev))
3361                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3362
3363         /*
3364          * There seems to be a race in PCH platform hw (at least on some
3365          * outputs) where an enabled pipe still completes any pageflip right
3366          * away (as if the pipe is off) instead of waiting for vblank. As soon
3367          * as the first vblank happend, everything works as expected. Hence just
3368          * wait for one vblank before returning to avoid strange things
3369          * happening.
3370          */
3371         intel_wait_for_vblank(dev, intel_crtc->pipe);
3372 }
3373
3374 static void haswell_crtc_enable(struct drm_crtc *crtc)
3375 {
3376         struct drm_device *dev = crtc->dev;
3377         struct drm_i915_private *dev_priv = dev->dev_private;
3378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3379         struct intel_encoder *encoder;
3380         int pipe = intel_crtc->pipe;
3381         int plane = intel_crtc->plane;
3382         bool is_pch_port;
3383
3384         WARN_ON(!crtc->enabled);
3385
3386         if (intel_crtc->active)
3387                 return;
3388
3389         intel_crtc->active = true;
3390         intel_update_watermarks(dev);
3391
3392         is_pch_port = haswell_crtc_driving_pch(crtc);
3393
3394         if (is_pch_port)
3395                 dev_priv->display.fdi_link_train(crtc);
3396
3397         for_each_encoder_on_crtc(dev, crtc, encoder)
3398                 if (encoder->pre_enable)
3399                         encoder->pre_enable(encoder);
3400
3401         intel_ddi_enable_pipe_clock(intel_crtc);
3402
3403         /* Enable panel fitting for eDP */
3404         if (dev_priv->pch_pf_size &&
3405             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3406                 /* Force use of hard-coded filter coefficients
3407                  * as some pre-programmed values are broken,
3408                  * e.g. x201.
3409                  */
3410                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3411                                          PF_PIPE_SEL_IVB(pipe));
3412                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3413                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3414         }
3415
3416         /*
3417          * On ILK+ LUT must be loaded before the pipe is running but with
3418          * clocks enabled
3419          */
3420         intel_crtc_load_lut(crtc);
3421
3422         intel_ddi_set_pipe_settings(crtc);
3423         intel_ddi_enable_pipe_func(crtc);
3424
3425         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3426         intel_enable_plane(dev_priv, plane, pipe);
3427
3428         if (is_pch_port)
3429                 lpt_pch_enable(crtc);
3430
3431         mutex_lock(&dev->struct_mutex);
3432         intel_update_fbc(dev);
3433         mutex_unlock(&dev->struct_mutex);
3434
3435         intel_crtc_update_cursor(crtc, true);
3436
3437         for_each_encoder_on_crtc(dev, crtc, encoder)
3438                 encoder->enable(encoder);
3439
3440         /*
3441          * There seems to be a race in PCH platform hw (at least on some
3442          * outputs) where an enabled pipe still completes any pageflip right
3443          * away (as if the pipe is off) instead of waiting for vblank. As soon
3444          * as the first vblank happend, everything works as expected. Hence just
3445          * wait for one vblank before returning to avoid strange things
3446          * happening.
3447          */
3448         intel_wait_for_vblank(dev, intel_crtc->pipe);
3449 }
3450
3451 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3452 {
3453         struct drm_device *dev = crtc->dev;
3454         struct drm_i915_private *dev_priv = dev->dev_private;
3455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3456         struct intel_encoder *encoder;
3457         int pipe = intel_crtc->pipe;
3458         int plane = intel_crtc->plane;
3459         u32 reg, temp;
3460
3461
3462         if (!intel_crtc->active)
3463                 return;
3464
3465         for_each_encoder_on_crtc(dev, crtc, encoder)
3466                 encoder->disable(encoder);
3467
3468         intel_crtc_wait_for_pending_flips(crtc);
3469         drm_vblank_off(dev, pipe);
3470         intel_crtc_update_cursor(crtc, false);
3471
3472         intel_disable_plane(dev_priv, plane, pipe);
3473
3474         if (dev_priv->cfb_plane == plane)
3475                 intel_disable_fbc(dev);
3476
3477         intel_disable_pipe(dev_priv, pipe);
3478
3479         /* Disable PF */
3480         I915_WRITE(PF_CTL(pipe), 0);
3481         I915_WRITE(PF_WIN_SZ(pipe), 0);
3482
3483         for_each_encoder_on_crtc(dev, crtc, encoder)
3484                 if (encoder->post_disable)
3485                         encoder->post_disable(encoder);
3486
3487         ironlake_fdi_disable(crtc);
3488
3489         ironlake_disable_pch_transcoder(dev_priv, pipe);
3490
3491         if (HAS_PCH_CPT(dev)) {
3492                 /* disable TRANS_DP_CTL */
3493                 reg = TRANS_DP_CTL(pipe);
3494                 temp = I915_READ(reg);
3495                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3496                 temp |= TRANS_DP_PORT_SEL_NONE;
3497                 I915_WRITE(reg, temp);
3498
3499                 /* disable DPLL_SEL */
3500                 temp = I915_READ(PCH_DPLL_SEL);
3501                 switch (pipe) {
3502                 case 0:
3503                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3504                         break;
3505                 case 1:
3506                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3507                         break;
3508                 case 2:
3509                         /* C shares PLL A or B */
3510                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3511                         break;
3512                 default:
3513                         BUG(); /* wtf */
3514                 }
3515                 I915_WRITE(PCH_DPLL_SEL, temp);
3516         }
3517
3518         /* disable PCH DPLL */
3519         intel_disable_pch_pll(intel_crtc);
3520
3521         ironlake_fdi_pll_disable(intel_crtc);
3522
3523         intel_crtc->active = false;
3524         intel_update_watermarks(dev);
3525
3526         mutex_lock(&dev->struct_mutex);
3527         intel_update_fbc(dev);
3528         mutex_unlock(&dev->struct_mutex);
3529 }
3530
3531 static void haswell_crtc_disable(struct drm_crtc *crtc)
3532 {
3533         struct drm_device *dev = crtc->dev;
3534         struct drm_i915_private *dev_priv = dev->dev_private;
3535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3536         struct intel_encoder *encoder;
3537         int pipe = intel_crtc->pipe;
3538         int plane = intel_crtc->plane;
3539         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3540         bool is_pch_port;
3541
3542         if (!intel_crtc->active)
3543                 return;
3544
3545         is_pch_port = haswell_crtc_driving_pch(crtc);
3546
3547         for_each_encoder_on_crtc(dev, crtc, encoder)
3548                 encoder->disable(encoder);
3549
3550         intel_crtc_wait_for_pending_flips(crtc);
3551         drm_vblank_off(dev, pipe);
3552         intel_crtc_update_cursor(crtc, false);
3553
3554         intel_disable_plane(dev_priv, plane, pipe);
3555
3556         if (dev_priv->cfb_plane == plane)
3557                 intel_disable_fbc(dev);
3558
3559         intel_disable_pipe(dev_priv, pipe);
3560
3561         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3562
3563         /* Disable PF */
3564         I915_WRITE(PF_CTL(pipe), 0);
3565         I915_WRITE(PF_WIN_SZ(pipe), 0);
3566
3567         intel_ddi_disable_pipe_clock(intel_crtc);
3568
3569         for_each_encoder_on_crtc(dev, crtc, encoder)
3570                 if (encoder->post_disable)
3571                         encoder->post_disable(encoder);
3572
3573         if (is_pch_port) {
3574                 lpt_disable_pch_transcoder(dev_priv);
3575                 intel_ddi_fdi_disable(crtc);
3576         }
3577
3578         intel_crtc->active = false;
3579         intel_update_watermarks(dev);
3580
3581         mutex_lock(&dev->struct_mutex);
3582         intel_update_fbc(dev);
3583         mutex_unlock(&dev->struct_mutex);
3584 }
3585
3586 static void ironlake_crtc_off(struct drm_crtc *crtc)
3587 {
3588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3589         intel_put_pch_pll(intel_crtc);
3590 }
3591
3592 static void haswell_crtc_off(struct drm_crtc *crtc)
3593 {
3594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3595
3596         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3597          * start using it. */
3598         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3599
3600         intel_ddi_put_crtc_pll(crtc);
3601 }
3602
3603 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3604 {
3605         if (!enable && intel_crtc->overlay) {
3606                 struct drm_device *dev = intel_crtc->base.dev;
3607                 struct drm_i915_private *dev_priv = dev->dev_private;
3608
3609                 mutex_lock(&dev->struct_mutex);
3610                 dev_priv->mm.interruptible = false;
3611                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3612                 dev_priv->mm.interruptible = true;
3613                 mutex_unlock(&dev->struct_mutex);
3614         }
3615
3616         /* Let userspace switch the overlay on again. In most cases userspace
3617          * has to recompute where to put it anyway.
3618          */
3619 }
3620
3621 /**
3622  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3623  * cursor plane briefly if not already running after enabling the display
3624  * plane.
3625  * This workaround avoids occasional blank screens when self refresh is
3626  * enabled.
3627  */
3628 static void
3629 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
3630 {
3631         u32 cntl = I915_READ(CURCNTR(pipe));
3632
3633         if ((cntl & CURSOR_MODE) == 0) {
3634                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3635
3636                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3637                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3638                 intel_wait_for_vblank(dev_priv->dev, pipe);
3639                 I915_WRITE(CURCNTR(pipe), cntl);
3640                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3641                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3642         }
3643 }
3644
3645 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3646 {
3647         struct drm_device *dev = crtc->dev;
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650         struct intel_encoder *encoder;
3651         int pipe = intel_crtc->pipe;
3652         int plane = intel_crtc->plane;
3653
3654         WARN_ON(!crtc->enabled);
3655
3656         if (intel_crtc->active)
3657                 return;
3658
3659         intel_crtc->active = true;
3660         intel_update_watermarks(dev);
3661
3662         intel_enable_pll(dev_priv, pipe);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 if (encoder->pre_enable)
3666                         encoder->pre_enable(encoder);
3667
3668         intel_enable_pipe(dev_priv, pipe, false);
3669         intel_enable_plane(dev_priv, plane, pipe);
3670         if (IS_G4X(dev))
3671                 g4x_fixup_plane(dev_priv, pipe);
3672
3673         intel_crtc_load_lut(crtc);
3674         intel_update_fbc(dev);
3675
3676         /* Give the overlay scaler a chance to enable if it's on this pipe */
3677         intel_crtc_dpms_overlay(intel_crtc, true);
3678         intel_crtc_update_cursor(crtc, true);
3679
3680         for_each_encoder_on_crtc(dev, crtc, encoder)
3681                 encoder->enable(encoder);
3682 }
3683
3684 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3685 {
3686         struct drm_device *dev = crtc->dev;
3687         struct drm_i915_private *dev_priv = dev->dev_private;
3688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3689         struct intel_encoder *encoder;
3690         int pipe = intel_crtc->pipe;
3691         int plane = intel_crtc->plane;
3692         u32 pctl;
3693
3694
3695         if (!intel_crtc->active)
3696                 return;
3697
3698         for_each_encoder_on_crtc(dev, crtc, encoder)
3699                 encoder->disable(encoder);
3700
3701         /* Give the overlay scaler a chance to disable if it's on this pipe */
3702         intel_crtc_wait_for_pending_flips(crtc);
3703         drm_vblank_off(dev, pipe);
3704         intel_crtc_dpms_overlay(intel_crtc, false);
3705         intel_crtc_update_cursor(crtc, false);
3706
3707         if (dev_priv->cfb_plane == plane)
3708                 intel_disable_fbc(dev);
3709
3710         intel_disable_plane(dev_priv, plane, pipe);
3711         intel_disable_pipe(dev_priv, pipe);
3712
3713         /* Disable pannel fitter if it is on this pipe. */
3714         pctl = I915_READ(PFIT_CONTROL);
3715         if ((pctl & PFIT_ENABLE) &&
3716             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3717                 I915_WRITE(PFIT_CONTROL, 0);
3718
3719         intel_disable_pll(dev_priv, pipe);
3720
3721         intel_crtc->active = false;
3722         intel_update_fbc(dev);
3723         intel_update_watermarks(dev);
3724 }
3725
3726 static void i9xx_crtc_off(struct drm_crtc *crtc)
3727 {
3728 }
3729
3730 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3731                                     bool enabled)
3732 {
3733         struct drm_device *dev = crtc->dev;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735 #if 0
3736         struct drm_i915_master_private *master_priv;
3737 #endif
3738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3739         int pipe = intel_crtc->pipe;
3740
3741 #if 0
3742         if (!dev->primary->master)
3743                 return;
3744
3745         master_priv = dev->primary->master->driver_priv;
3746         if (!master_priv->sarea_priv)
3747                 return;
3748 #else
3749         if (!dev_priv->sarea_priv)
3750                 return;
3751 #endif
3752
3753         switch (pipe) {
3754         case 0:
3755 #if 0
3756                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3757                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3758 #else
3759                 dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
3760                 dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
3761 #endif
3762                 break;
3763         case 1:
3764 #if 0
3765                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3766                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3767 #else
3768                 dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
3769                 dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
3770 #endif
3771                 break;
3772         default:
3773                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3774                 break;
3775         }
3776 }
3777
3778 /**
3779  * Sets the power management mode of the pipe and plane.
3780  */
3781 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3782 {
3783         struct drm_device *dev = crtc->dev;
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         struct intel_encoder *intel_encoder;
3786         bool enable = false;
3787
3788         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3789                 enable |= intel_encoder->connectors_active;
3790
3791         if (enable)
3792                 dev_priv->display.crtc_enable(crtc);
3793         else
3794                 dev_priv->display.crtc_disable(crtc);
3795
3796         intel_crtc_update_sarea(crtc, enable);
3797 }
3798
3799 static void intel_crtc_noop(struct drm_crtc *crtc)
3800 {
3801 }
3802
3803 static void intel_crtc_disable(struct drm_crtc *crtc)
3804 {
3805         struct drm_device *dev = crtc->dev;
3806         struct drm_connector *connector;
3807         struct drm_i915_private *dev_priv = dev->dev_private;
3808         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3809
3810         /* crtc should still be enabled when we disable it. */
3811         WARN_ON(!crtc->enabled);
3812
3813         intel_crtc->eld_vld = false;
3814         dev_priv->display.crtc_disable(crtc);
3815         intel_crtc_update_sarea(crtc, false);
3816         dev_priv->display.off(crtc);
3817
3818         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3819         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3820
3821         if (crtc->fb) {
3822                 mutex_lock(&dev->struct_mutex);
3823                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3824                 mutex_unlock(&dev->struct_mutex);
3825                 crtc->fb = NULL;
3826         }
3827
3828         /* Update computed state. */
3829         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3830                 if (!connector->encoder || !connector->encoder->crtc)
3831                         continue;
3832
3833                 if (connector->encoder->crtc != crtc)
3834                         continue;
3835
3836                 connector->dpms = DRM_MODE_DPMS_OFF;
3837                 to_intel_encoder(connector->encoder)->connectors_active = false;
3838         }
3839 }
3840
3841 void intel_modeset_disable(struct drm_device *dev)
3842 {
3843         struct drm_crtc *crtc;
3844
3845         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3846                 if (crtc->enabled)
3847                         intel_crtc_disable(crtc);
3848         }
3849 }
3850
3851 void intel_encoder_noop(struct drm_encoder *encoder)
3852 {
3853 }
3854
3855 void intel_encoder_destroy(struct drm_encoder *encoder)
3856 {
3857         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3858
3859         drm_encoder_cleanup(encoder);
3860         drm_free(intel_encoder, M_DRM);
3861 }
3862
3863 /* Simple dpms helper for encodres with just one connector, no cloning and only
3864  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3865  * state of the entire output pipe. */
3866 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3867 {
3868         if (mode == DRM_MODE_DPMS_ON) {
3869                 encoder->connectors_active = true;
3870
3871                 intel_crtc_update_dpms(encoder->base.crtc);
3872         } else {
3873                 encoder->connectors_active = false;
3874
3875                 intel_crtc_update_dpms(encoder->base.crtc);
3876         }
3877 }
3878
3879 /* Cross check the actual hw state with our own modeset state tracking (and it's
3880  * internal consistency). */
3881 static void intel_connector_check_state(struct intel_connector *connector)
3882 {
3883         if (connector->get_hw_state(connector)) {
3884                 struct intel_encoder *encoder = connector->encoder;
3885                 struct drm_crtc *crtc;
3886                 bool encoder_enabled;
3887                 enum i915_pipe pipe;
3888
3889                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3890                               connector->base.base.id,
3891                               drm_get_connector_name(&connector->base));
3892
3893                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3894                      "wrong connector dpms state\n");
3895                 WARN(connector->base.encoder != &encoder->base,
3896                      "active connector not linked to encoder\n");
3897                 WARN(!encoder->connectors_active,
3898                      "encoder->connectors_active not set\n");
3899
3900                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3901                 WARN(!encoder_enabled, "encoder not enabled\n");
3902                 if (WARN_ON(!encoder->base.crtc))
3903                         return;
3904
3905                 crtc = encoder->base.crtc;
3906
3907                 WARN(!crtc->enabled, "crtc not enabled\n");
3908                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3909                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3910                      "encoder active on the wrong pipe\n");
3911         }
3912 }
3913
3914 /* Even simpler default implementation, if there's really no special case to
3915  * consider. */
3916 void intel_connector_dpms(struct drm_connector *connector, int mode)
3917 {
3918         struct intel_encoder *encoder = intel_attached_encoder(connector);
3919
3920         /* All the simple cases only support two dpms states. */
3921         if (mode != DRM_MODE_DPMS_ON)
3922                 mode = DRM_MODE_DPMS_OFF;
3923
3924         if (mode == connector->dpms)
3925                 return;
3926
3927         connector->dpms = mode;
3928
3929         /* Only need to change hw state when actually enabled */
3930         if (encoder->base.crtc)
3931                 intel_encoder_dpms(encoder, mode);
3932         else
3933                 WARN_ON(encoder->connectors_active != false);
3934
3935         intel_modeset_check_state(connector->dev);
3936 }
3937
3938 /* Simple connector->get_hw_state implementation for encoders that support only
3939  * one connector and no cloning and hence the encoder state determines the state
3940  * of the connector. */
3941 bool intel_connector_get_hw_state(struct intel_connector *connector)
3942 {
3943         enum i915_pipe pipe = 0;
3944         struct intel_encoder *encoder = connector->encoder;
3945
3946         return encoder->get_hw_state(encoder, &pipe);
3947 }
3948
3949 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3950                                   const struct drm_display_mode *mode,
3951                                   struct drm_display_mode *adjusted_mode)
3952 {
3953         struct drm_device *dev = crtc->dev;
3954
3955         if (HAS_PCH_SPLIT(dev)) {
3956                 /* FDI link clock is fixed at 2.7G */
3957                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3958                         return false;
3959         }
3960
3961         /* All interlaced capable intel hw wants timings in frames. Note though
3962          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3963          * timings, so we need to be careful not to clobber these.*/
3964         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3965                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3966
3967         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3968          * with a hsync front porch of 0.
3969          */
3970         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3971                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3972                 return false;
3973
3974         return true;
3975 }
3976
3977 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3978 {
3979         return 400000; /* FIXME */
3980 }
3981
3982 static int i945_get_display_clock_speed(struct drm_device *dev)
3983 {
3984         return 400000;
3985 }
3986
3987 static int i915_get_display_clock_speed(struct drm_device *dev)
3988 {
3989         return 333000;
3990 }
3991
3992 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3993 {
3994         return 200000;
3995 }
3996
3997 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3998 {
3999         u16 gcfgc = 0;
4000
4001         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4002
4003         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4004                 return 133000;
4005         else {
4006                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4007                 case GC_DISPLAY_CLOCK_333_MHZ:
4008                         return 333000;
4009                 default:
4010                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4011                         return 190000;
4012                 }
4013         }
4014 }
4015
4016 static int i865_get_display_clock_speed(struct drm_device *dev)
4017 {
4018         return 266000;
4019 }
4020
4021 static int i855_get_display_clock_speed(struct drm_device *dev)
4022 {
4023         u16 hpllcc = 0;
4024         /* Assume that the hardware is in the high speed state.  This
4025          * should be the default.
4026          */
4027         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4028         case GC_CLOCK_133_200:
4029         case GC_CLOCK_100_200:
4030                 return 200000;
4031         case GC_CLOCK_166_250:
4032                 return 250000;
4033         case GC_CLOCK_100_133:
4034                 return 133000;
4035         }
4036
4037         /* Shouldn't happen */
4038         return 0;
4039 }
4040
4041 static int i830_get_display_clock_speed(struct drm_device *dev)
4042 {
4043         return 133000;
4044 }
4045
4046 static void
4047 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4048 {
4049         while (*num > 0xffffff || *den > 0xffffff) {
4050                 *num >>= 1;
4051                 *den >>= 1;
4052         }
4053 }
4054
4055 void
4056 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4057                        int pixel_clock, int link_clock,
4058                        struct intel_link_m_n *m_n)
4059 {
4060         m_n->tu = 64;
4061         m_n->gmch_m = bits_per_pixel * pixel_clock;
4062         m_n->gmch_n = link_clock * nlanes * 8;
4063         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4064         m_n->link_m = pixel_clock;
4065         m_n->link_n = link_clock;
4066         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4067 }
4068
4069 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4070 {
4071         if (i915_panel_use_ssc >= 0)
4072                 return i915_panel_use_ssc != 0;
4073         return dev_priv->lvds_use_ssc
4074                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4075 }
4076
4077 /**
4078  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4079  * @crtc: CRTC structure
4080  * @mode: requested mode
4081  *
4082  * A pipe may be connected to one or more outputs.  Based on the depth of the
4083  * attached framebuffer, choose a good color depth to use on the pipe.
4084  *
4085  * If possible, match the pipe depth to the fb depth.  In some cases, this
4086  * isn't ideal, because the connected output supports a lesser or restricted
4087  * set of depths.  Resolve that here:
4088  *    LVDS typically supports only 6bpc, so clamp down in that case
4089  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4090  *    Displays may support a restricted set as well, check EDID and clamp as
4091  *      appropriate.
4092  *    DP may want to dither down to 6bpc to fit larger modes
4093  *
4094  * RETURNS:
4095  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4096  * true if they don't match).
4097  */
4098 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4099                                          struct drm_framebuffer *fb,
4100                                          unsigned int *pipe_bpp,
4101                                          struct drm_display_mode *mode)
4102 {
4103         struct drm_device *dev = crtc->dev;
4104         struct drm_i915_private *dev_priv = dev->dev_private;
4105         struct drm_connector *connector;
4106         struct intel_encoder *intel_encoder;
4107         unsigned int display_bpc = UINT_MAX, bpc;
4108
4109         /* Walk the encoders & connectors on this crtc, get min bpc */
4110         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4111
4112                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4113                         unsigned int lvds_bpc;
4114
4115                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4116                             LVDS_A3_POWER_UP)
4117                                 lvds_bpc = 8;
4118                         else
4119                                 lvds_bpc = 6;
4120
4121                         if (lvds_bpc < display_bpc) {
4122                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4123                                 display_bpc = lvds_bpc;
4124                         }
4125                         continue;
4126                 }
4127
4128                 /* Not one of the known troublemakers, check the EDID */
4129                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4130                                     head) {
4131                         if (connector->encoder != &intel_encoder->base)
4132                                 continue;
4133
4134                         /* Don't use an invalid EDID bpc value */
4135                         if (connector->display_info.bpc &&
4136                             connector->display_info.bpc < display_bpc) {
4137                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4138                                 display_bpc = connector->display_info.bpc;
4139                         }
4140                 }
4141
4142                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4143                         /* Use VBT settings if we have an eDP panel */
4144                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4145
4146                         if (edp_bpc && edp_bpc < display_bpc) {
4147                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4148                                 display_bpc = edp_bpc;
4149                         }
4150                         continue;
4151                 }
4152
4153                 /*
4154                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4155                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4156                  */
4157                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4158                         if (display_bpc > 8 && display_bpc < 12) {
4159                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4160                                 display_bpc = 12;
4161                         } else {
4162                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4163                                 display_bpc = 8;
4164                         }
4165                 }
4166         }
4167
4168         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4169                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4170                 display_bpc = 6;
4171         }
4172
4173         /*
4174          * We could just drive the pipe at the highest bpc all the time and
4175          * enable dithering as needed, but that costs bandwidth.  So choose
4176          * the minimum value that expresses the full color range of the fb but
4177          * also stays within the max display bpc discovered above.
4178          */
4179
4180         switch (fb->depth) {
4181         case 8:
4182                 bpc = 8; /* since we go through a colormap */
4183                 break;
4184         case 15:
4185         case 16:
4186                 bpc = 6; /* min is 18bpp */
4187                 break;
4188         case 24:
4189                 bpc = 8;
4190                 break;
4191         case 30:
4192                 bpc = 10;
4193                 break;
4194         case 48:
4195                 bpc = 12;
4196                 break;
4197         default:
4198                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4199                 bpc = min((unsigned int)8, display_bpc);
4200                 break;
4201         }
4202
4203         display_bpc = min(display_bpc, bpc);
4204
4205         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4206                       bpc, display_bpc);
4207
4208         *pipe_bpp = display_bpc * 3;
4209
4210         return display_bpc != bpc;
4211 }
4212
4213 static int vlv_get_refclk(struct drm_crtc *crtc)
4214 {
4215         struct drm_device *dev = crtc->dev;
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         int refclk = 27000; /* for DP & HDMI */
4218
4219         return 100000; /* only one validated so far */
4220
4221         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4222                 refclk = 96000;
4223         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4224                 if (intel_panel_use_ssc(dev_priv))
4225                         refclk = 100000;
4226                 else
4227                         refclk = 96000;
4228         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4229                 refclk = 100000;
4230         }
4231
4232         return refclk;
4233 }
4234
4235 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4236 {
4237         struct drm_device *dev = crtc->dev;
4238         struct drm_i915_private *dev_priv = dev->dev_private;
4239         int refclk;
4240
4241         if (IS_VALLEYVIEW(dev)) {
4242                 refclk = vlv_get_refclk(crtc);
4243         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4244             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4245                 refclk = dev_priv->lvds_ssc_freq * 1000;
4246                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4247                               refclk / 1000);
4248         } else if (!IS_GEN2(dev)) {
4249                 refclk = 96000;
4250         } else {
4251                 refclk = 48000;
4252         }
4253
4254         return refclk;
4255 }
4256
4257 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4258                                       intel_clock_t *clock)
4259 {
4260         /* SDVO TV has fixed PLL values depend on its clock range,
4261            this mirrors vbios setting. */
4262         if (adjusted_mode->clock >= 100000
4263             && adjusted_mode->clock < 140500) {
4264                 clock->p1 = 2;
4265                 clock->p2 = 10;
4266                 clock->n = 3;
4267                 clock->m1 = 16;
4268                 clock->m2 = 8;
4269         } else if (adjusted_mode->clock >= 140500
4270                    && adjusted_mode->clock <= 200000) {
4271                 clock->p1 = 1;
4272                 clock->p2 = 10;
4273                 clock->n = 6;
4274                 clock->m1 = 12;
4275                 clock->m2 = 8;
4276         }
4277 }
4278
4279 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4280                                      intel_clock_t *clock,
4281                                      intel_clock_t *reduced_clock)
4282 {
4283         struct drm_device *dev = crtc->dev;
4284         struct drm_i915_private *dev_priv = dev->dev_private;
4285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286         int pipe = intel_crtc->pipe;
4287         u32 fp, fp2 = 0;
4288
4289         if (IS_PINEVIEW(dev)) {
4290                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4291                 if (reduced_clock)
4292                         fp2 = (1 << reduced_clock->n) << 16 |
4293                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4294         } else {
4295                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4296                 if (reduced_clock)
4297                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4298                                 reduced_clock->m2;
4299         }
4300
4301         I915_WRITE(FP0(pipe), fp);
4302
4303         intel_crtc->lowfreq_avail = false;
4304         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4305             reduced_clock && i915_powersave) {
4306                 I915_WRITE(FP1(pipe), fp2);
4307                 intel_crtc->lowfreq_avail = true;
4308         } else {
4309                 I915_WRITE(FP1(pipe), fp);
4310         }
4311 }
4312
4313 static void vlv_update_pll(struct drm_crtc *crtc,
4314                            struct drm_display_mode *mode,
4315                            struct drm_display_mode *adjusted_mode,
4316                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4317                            int num_connectors)
4318 {
4319         struct drm_device *dev = crtc->dev;
4320         struct drm_i915_private *dev_priv = dev->dev_private;
4321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322         int pipe = intel_crtc->pipe;
4323         u32 dpll, mdiv, pdiv;
4324         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4325         bool is_sdvo;
4326         u32 temp;
4327
4328         lockmgr(&dev_priv->dpio_lock, LK_EXCLUSIVE);
4329
4330         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4331                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4332
4333         dpll = DPLL_VGA_MODE_DIS;
4334         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4335         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4336         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4337
4338         I915_WRITE(DPLL(pipe), dpll);
4339         POSTING_READ(DPLL(pipe));
4340
4341         bestn = clock->n;
4342         bestm1 = clock->m1;
4343         bestm2 = clock->m2;
4344         bestp1 = clock->p1;
4345         bestp2 = clock->p2;
4346
4347         /*
4348          * In Valleyview PLL and program lane counter registers are exposed
4349          * through DPIO interface
4350          */
4351         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4352         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4353         mdiv |= ((bestn << DPIO_N_SHIFT));
4354         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4355         mdiv |= (1 << DPIO_K_SHIFT);
4356         mdiv |= DPIO_ENABLE_CALIBRATION;
4357         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4358
4359         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4360
4361         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4362                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4363                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4364                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4365         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4366
4367         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4368
4369         dpll |= DPLL_VCO_ENABLE;
4370         I915_WRITE(DPLL(pipe), dpll);
4371         POSTING_READ(DPLL(pipe));
4372         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4373                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4374
4375         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4376
4377         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4378                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4379
4380         I915_WRITE(DPLL(pipe), dpll);
4381
4382         /* Wait for the clocks to stabilize. */
4383         POSTING_READ(DPLL(pipe));
4384         udelay(150);
4385
4386         temp = 0;
4387         if (is_sdvo) {
4388                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4389                 if (temp > 1)
4390                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4391                 else
4392                         temp = 0;
4393         }
4394         I915_WRITE(DPLL_MD(pipe), temp);
4395         POSTING_READ(DPLL_MD(pipe));
4396
4397         /* Now program lane control registers */
4398         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4399                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4400         {
4401                 temp = 0x1000C4;
4402                 if(pipe == 1)
4403                         temp |= (1 << 21);
4404                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4405         }
4406         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4407         {
4408                 temp = 0x1000C4;
4409                 if(pipe == 1)
4410                         temp |= (1 << 21);
4411                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4412         }
4413
4414         lockmgr(&dev_priv->dpio_lock, LK_RELEASE);
4415 }
4416
4417 static void i9xx_update_pll(struct drm_crtc *crtc,
4418                             struct drm_display_mode *mode,
4419                             struct drm_display_mode *adjusted_mode,
4420                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4421                             int num_connectors)
4422 {
4423         struct drm_device *dev = crtc->dev;
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4426         struct intel_encoder *encoder;
4427         int pipe = intel_crtc->pipe;
4428         u32 dpll;
4429         bool is_sdvo;
4430
4431         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4432
4433         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4434                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4435
4436         dpll = DPLL_VGA_MODE_DIS;
4437
4438         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4439                 dpll |= DPLLB_MODE_LVDS;
4440         else
4441                 dpll |= DPLLB_MODE_DAC_SERIAL;
4442         if (is_sdvo) {
4443                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4444                 if (pixel_multiplier > 1) {
4445                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4446                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4447                 }
4448                 dpll |= DPLL_DVO_HIGH_SPEED;
4449         }
4450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4451                 dpll |= DPLL_DVO_HIGH_SPEED;
4452
4453         /* compute bitmask from p1 value */
4454         if (IS_PINEVIEW(dev))
4455                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4456         else {
4457                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4458                 if (IS_G4X(dev) && reduced_clock)
4459                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4460         }
4461         switch (clock->p2) {
4462         case 5:
4463                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4464                 break;
4465         case 7:
4466                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4467                 break;
4468         case 10:
4469                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4470                 break;
4471         case 14:
4472                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4473                 break;
4474         }
4475         if (INTEL_INFO(dev)->gen >= 4)
4476                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4477
4478         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4479                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4480         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4481                 /* XXX: just matching BIOS for now */
4482                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4483                 dpll |= 3;
4484         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4485                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4486                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4487         else
4488                 dpll |= PLL_REF_INPUT_DREFCLK;
4489
4490         dpll |= DPLL_VCO_ENABLE;
4491         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4492         POSTING_READ(DPLL(pipe));
4493         udelay(150);
4494
4495         for_each_encoder_on_crtc(dev, crtc, encoder)
4496                 if (encoder->pre_pll_enable)
4497                         encoder->pre_pll_enable(encoder);
4498
4499         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4500                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4501
4502         I915_WRITE(DPLL(pipe), dpll);
4503
4504         /* Wait for the clocks to stabilize. */
4505         POSTING_READ(DPLL(pipe));
4506         udelay(150);
4507
4508         if (INTEL_INFO(dev)->gen >= 4) {
4509                 u32 temp = 0;
4510                 if (is_sdvo) {
4511                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4512                         if (temp > 1)
4513                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4514                         else
4515                                 temp = 0;
4516                 }
4517                 I915_WRITE(DPLL_MD(pipe), temp);
4518         } else {
4519                 /* The pixel multiplier can only be updated once the
4520                  * DPLL is enabled and the clocks are stable.
4521                  *
4522                  * So write it again.
4523                  */
4524                 I915_WRITE(DPLL(pipe), dpll);
4525         }
4526 }
4527
4528 static void i8xx_update_pll(struct drm_crtc *crtc,
4529                             struct drm_display_mode *adjusted_mode,
4530                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4531                             int num_connectors)
4532 {
4533         struct drm_device *dev = crtc->dev;
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4536         struct intel_encoder *encoder;
4537         int pipe = intel_crtc->pipe;
4538         u32 dpll;
4539
4540         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4541
4542         dpll = DPLL_VGA_MODE_DIS;
4543
4544         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4545                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4546         } else {
4547                 if (clock->p1 == 2)
4548                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4549                 else
4550                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4551                 if (clock->p2 == 4)
4552                         dpll |= PLL_P2_DIVIDE_BY_4;
4553         }
4554
4555         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4556                 /* XXX: just matching BIOS for now */
4557                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4558                 dpll |= 3;
4559         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4560                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4561                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4562         else
4563                 dpll |= PLL_REF_INPUT_DREFCLK;
4564
4565         dpll |= DPLL_VCO_ENABLE;
4566         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4567         POSTING_READ(DPLL(pipe));
4568         udelay(150);
4569
4570         for_each_encoder_on_crtc(dev, crtc, encoder)
4571                 if (encoder->pre_pll_enable)
4572                         encoder->pre_pll_enable(encoder);
4573
4574         I915_WRITE(DPLL(pipe), dpll);
4575
4576         /* Wait for the clocks to stabilize. */
4577         POSTING_READ(DPLL(pipe));
4578         udelay(150);
4579
4580         /* The pixel multiplier can only be updated once the
4581          * DPLL is enabled and the clocks are stable.
4582          *
4583          * So write it again.
4584          */
4585         I915_WRITE(DPLL(pipe), dpll);
4586 }
4587
4588 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4589                                    struct drm_display_mode *mode,
4590                                    struct drm_display_mode *adjusted_mode)
4591 {
4592         struct drm_device *dev = intel_crtc->base.dev;
4593         struct drm_i915_private *dev_priv = dev->dev_private;
4594         enum i915_pipe pipe = intel_crtc->pipe;
4595         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4596         uint32_t vsyncshift;
4597
4598         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4599                 /* the chip adds 2 halflines automatically */
4600                 adjusted_mode->crtc_vtotal -= 1;
4601                 adjusted_mode->crtc_vblank_end -= 1;
4602                 vsyncshift = adjusted_mode->crtc_hsync_start
4603                              - adjusted_mode->crtc_htotal / 2;
4604         } else {
4605                 vsyncshift = 0;
4606         }
4607
4608         if (INTEL_INFO(dev)->gen > 3)
4609                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4610
4611         I915_WRITE(HTOTAL(cpu_transcoder),
4612                    (adjusted_mode->crtc_hdisplay - 1) |
4613                    ((adjusted_mode->crtc_htotal - 1) << 16));
4614         I915_WRITE(HBLANK(cpu_transcoder),
4615                    (adjusted_mode->crtc_hblank_start - 1) |
4616                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4617         I915_WRITE(HSYNC(cpu_transcoder),
4618                    (adjusted_mode->crtc_hsync_start - 1) |
4619                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4620
4621         I915_WRITE(VTOTAL(cpu_transcoder),
4622                    (adjusted_mode->crtc_vdisplay - 1) |
4623                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4624         I915_WRITE(VBLANK(cpu_transcoder),
4625                    (adjusted_mode->crtc_vblank_start - 1) |
4626                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4627         I915_WRITE(VSYNC(cpu_transcoder),
4628                    (adjusted_mode->crtc_vsync_start - 1) |
4629                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4630
4631         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4632          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4633          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4634          * bits. */
4635         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4636             (pipe == PIPE_B || pipe == PIPE_C))
4637                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4638
4639         /* pipesrc controls the size that is scaled from, which should
4640          * always be the user's requested size.
4641          */
4642         I915_WRITE(PIPESRC(pipe),
4643                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4644 }
4645
4646 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4647                               struct drm_display_mode *mode,
4648                               struct drm_display_mode *adjusted_mode,
4649                               int x, int y,
4650                               struct drm_framebuffer *fb)
4651 {
4652         struct drm_device *dev = crtc->dev;
4653         struct drm_i915_private *dev_priv = dev->dev_private;
4654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4655         int pipe = intel_crtc->pipe;
4656         int plane = intel_crtc->plane;
4657         int refclk, num_connectors = 0;
4658         intel_clock_t clock, reduced_clock;
4659         u32 dspcntr, pipeconf;
4660         bool ok, has_reduced_clock = false, is_sdvo = false;
4661         bool is_lvds = false, is_tv = false, is_dp = false;
4662         struct intel_encoder *encoder;
4663         const intel_limit_t *limit;
4664         int ret;
4665
4666         for_each_encoder_on_crtc(dev, crtc, encoder) {
4667                 switch (encoder->type) {
4668                 case INTEL_OUTPUT_LVDS:
4669                         is_lvds = true;
4670                         break;
4671                 case INTEL_OUTPUT_SDVO:
4672                 case INTEL_OUTPUT_HDMI:
4673                         is_sdvo = true;
4674                         if (encoder->needs_tv_clock)
4675                                 is_tv = true;
4676                         break;
4677                 case INTEL_OUTPUT_TVOUT:
4678                         is_tv = true;
4679                         break;
4680                 case INTEL_OUTPUT_DISPLAYPORT:
4681                         is_dp = true;
4682                         break;
4683                 }
4684
4685                 num_connectors++;
4686         }
4687
4688         refclk = i9xx_get_refclk(crtc, num_connectors);
4689
4690         /*
4691          * Returns a set of divisors for the desired target clock with the given
4692          * refclk, or FALSE.  The returned values represent the clock equation:
4693          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4694          */
4695         limit = intel_limit(crtc, refclk);
4696         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4697                              &clock);
4698         if (!ok) {
4699                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4700                 return -EINVAL;
4701         }
4702
4703         /* Ensure that the cursor is valid for the new mode before changing... */
4704         intel_crtc_update_cursor(crtc, true);
4705
4706         if (is_lvds && dev_priv->lvds_downclock_avail) {
4707                 /*
4708                  * Ensure we match the reduced clock's P to the target clock.
4709                  * If the clocks don't match, we can't switch the display clock
4710                  * by using the FP0/FP1. In such case we will disable the LVDS
4711                  * downclock feature.
4712                 */
4713                 has_reduced_clock = limit->find_pll(limit, crtc,
4714                                                     dev_priv->lvds_downclock,
4715                                                     refclk,
4716                                                     &clock,
4717                                                     &reduced_clock);
4718         }
4719
4720         if (is_sdvo && is_tv)
4721                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4722
4723         if (IS_GEN2(dev))
4724                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4725                                 has_reduced_clock ? &reduced_clock : NULL,
4726                                 num_connectors);
4727         else if (IS_VALLEYVIEW(dev))
4728                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4729                                 has_reduced_clock ? &reduced_clock : NULL,
4730                                 num_connectors);
4731         else
4732                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4733                                 has_reduced_clock ? &reduced_clock : NULL,
4734                                 num_connectors);
4735
4736         /* setup pipeconf */
4737         pipeconf = I915_READ(PIPECONF(pipe));
4738
4739         /* Set up the display plane register */
4740         dspcntr = DISPPLANE_GAMMA_ENABLE;
4741
4742         if (pipe == 0)
4743                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4744         else
4745                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4746
4747         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4748                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4749                  * core speed.
4750                  *
4751                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4752                  * pipe == 0 check?
4753                  */
4754                 if (mode->clock >
4755                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4756                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4757                 else
4758                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4759         }
4760
4761         /* default to 8bpc */
4762         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4763         if (is_dp) {
4764                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4765                         pipeconf |= PIPECONF_6BPC |
4766                                     PIPECONF_DITHER_EN |
4767                                     PIPECONF_DITHER_TYPE_SP;
4768                 }
4769         }
4770
4771         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4772                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4773                         pipeconf |= PIPECONF_6BPC |
4774                                         PIPECONF_ENABLE |
4775                                         I965_PIPECONF_ACTIVE;
4776                 }
4777         }
4778
4779         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4780         drm_mode_debug_printmodeline(mode);
4781
4782         if (HAS_PIPE_CXSR(dev)) {
4783                 if (intel_crtc->lowfreq_avail) {
4784                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4785                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4786                 } else {
4787                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4788                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4789                 }
4790         }
4791
4792         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4793         if (!IS_GEN2(dev) &&
4794             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4795                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4796         else
4797                 pipeconf |= PIPECONF_PROGRESSIVE;
4798
4799         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4800
4801         /* pipesrc and dspsize control the size that is scaled from,
4802          * which should always be the user's requested size.
4803          */
4804         I915_WRITE(DSPSIZE(plane),
4805                    ((mode->vdisplay - 1) << 16) |
4806                    (mode->hdisplay - 1));
4807         I915_WRITE(DSPPOS(plane), 0);
4808
4809         I915_WRITE(PIPECONF(pipe), pipeconf);
4810         POSTING_READ(PIPECONF(pipe));
4811         intel_enable_pipe(dev_priv, pipe, false);
4812
4813         intel_wait_for_vblank(dev, pipe);
4814
4815         I915_WRITE(DSPCNTR(plane), dspcntr);
4816         POSTING_READ(DSPCNTR(plane));
4817
4818         ret = intel_pipe_set_base(crtc, x, y, fb);
4819
4820         intel_update_watermarks(dev);
4821
4822         return ret;
4823 }
4824
4825 static void ironlake_init_pch_refclk(struct drm_device *dev)
4826 {
4827         struct drm_i915_private *dev_priv = dev->dev_private;
4828         struct drm_mode_config *mode_config = &dev->mode_config;
4829         struct intel_encoder *encoder;
4830         u32 temp;
4831         bool has_lvds = false;
4832         bool has_cpu_edp = false;
4833         bool has_pch_edp = false;
4834         bool has_panel = false;
4835         bool has_ck505 = false;
4836         bool can_ssc = false;
4837
4838         /* We need to take the global config into account */
4839         list_for_each_entry(encoder, &mode_config->encoder_list,
4840                             base.head) {
4841                 switch (encoder->type) {
4842                 case INTEL_OUTPUT_LVDS:
4843                         has_panel = true;
4844                         has_lvds = true;
4845                         break;
4846                 case INTEL_OUTPUT_EDP:
4847                         has_panel = true;
4848                         if (intel_encoder_is_pch_edp(&encoder->base))
4849                                 has_pch_edp = true;
4850                         else
4851                                 has_cpu_edp = true;
4852                         break;
4853                 }
4854         }
4855
4856         if (HAS_PCH_IBX(dev)) {
4857                 has_ck505 = dev_priv->display_clock_mode;
4858                 can_ssc = has_ck505;
4859         } else {
4860                 has_ck505 = false;
4861                 can_ssc = true;
4862         }
4863
4864         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4865                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4866                       has_ck505);
4867
4868         /* Ironlake: try to setup display ref clock before DPLL
4869          * enabling. This is only under driver's control after
4870          * PCH B stepping, previous chipset stepping should be
4871          * ignoring this setting.
4872          */
4873         temp = I915_READ(PCH_DREF_CONTROL);
4874         /* Always enable nonspread source */
4875         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4876
4877         if (has_ck505)
4878                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4879         else
4880                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4881
4882         if (has_panel) {
4883                 temp &= ~DREF_SSC_SOURCE_MASK;
4884                 temp |= DREF_SSC_SOURCE_ENABLE;
4885
4886                 /* SSC must be turned on before enabling the CPU output  */
4887                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4888                         DRM_DEBUG_KMS("Using SSC on panel\n");
4889                         temp |= DREF_SSC1_ENABLE;
4890                 } else
4891                         temp &= ~DREF_SSC1_ENABLE;
4892
4893                 /* Get SSC going before enabling the outputs */
4894                 I915_WRITE(PCH_DREF_CONTROL, temp);
4895                 POSTING_READ(PCH_DREF_CONTROL);
4896                 udelay(200);
4897
4898                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4899
4900                 /* Enable CPU source on CPU attached eDP */
4901                 if (has_cpu_edp) {
4902                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4903                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4904                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4905                         }
4906                         else
4907                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4908                 } else
4909                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4910
4911                 I915_WRITE(PCH_DREF_CONTROL, temp);
4912                 POSTING_READ(PCH_DREF_CONTROL);
4913                 udelay(200);
4914         } else {
4915                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4916
4917                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4918
4919                 /* Turn off CPU output */
4920                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4921
4922                 I915_WRITE(PCH_DREF_CONTROL, temp);
4923                 POSTING_READ(PCH_DREF_CONTROL);
4924                 udelay(200);
4925
4926                 /* Turn off the SSC source */
4927                 temp &= ~DREF_SSC_SOURCE_MASK;
4928                 temp |= DREF_SSC_SOURCE_DISABLE;
4929
4930                 /* Turn off SSC1 */
4931                 temp &= ~ DREF_SSC1_ENABLE;
4932
4933                 I915_WRITE(PCH_DREF_CONTROL, temp);
4934                 POSTING_READ(PCH_DREF_CONTROL);
4935                 udelay(200);
4936         }
4937 }
4938
4939 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4940 static void lpt_init_pch_refclk(struct drm_device *dev)
4941 {
4942         struct drm_i915_private *dev_priv = dev->dev_private;
4943         struct drm_mode_config *mode_config = &dev->mode_config;
4944         struct intel_encoder *encoder;
4945         bool has_vga = false;
4946         bool is_sdv = false;
4947         u32 tmp;
4948
4949         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4950                 switch (encoder->type) {
4951                 case INTEL_OUTPUT_ANALOG:
4952                         has_vga = true;
4953                         break;
4954                 }
4955         }
4956
4957         if (!has_vga)
4958                 return;
4959
4960         mutex_lock(&dev_priv->dpio_lock);
4961
4962         /* XXX: Rip out SDV support once Haswell ships for real. */
4963         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4964                 is_sdv = true;
4965
4966         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4967         tmp &= ~SBI_SSCCTL_DISABLE;
4968         tmp |= SBI_SSCCTL_PATHALT;
4969         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4970
4971         udelay(24);
4972
4973         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4974         tmp &= ~SBI_SSCCTL_PATHALT;
4975         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4976
4977         if (!is_sdv) {
4978                 tmp = I915_READ(SOUTH_CHICKEN2);
4979                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4980                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4981
4982                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4983                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4984                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4985
4986                 tmp = I915_READ(SOUTH_CHICKEN2);
4987                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4988                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4989
4990                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4991                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4992                                        100))
4993                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4994         }
4995
4996         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4997         tmp &= ~(0xFF << 24);
4998         tmp |= (0x12 << 24);
4999         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5000
5001         if (!is_sdv) {
5002                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
5003                 tmp &= ~(0x3 << 6);
5004                 tmp |= (1 << 6) | (1 << 0);
5005                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
5006         }
5007
5008         if (is_sdv) {
5009                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5010                 tmp |= 0x7FFF;
5011                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5012         }
5013
5014         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5015         tmp |= (1 << 11);
5016         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5017
5018         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5019         tmp |= (1 << 11);
5020         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5021
5022         if (is_sdv) {
5023                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5024                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5025                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5026
5027                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5028                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5029                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5030
5031                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5032                 tmp |= (0x3F << 8);
5033                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5034
5035                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5036                 tmp |= (0x3F << 8);
5037                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5038         }
5039
5040         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5041         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5042         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5043
5044         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5045         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5046         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5047
5048         if (!is_sdv) {
5049                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5050                 tmp &= ~(7 << 13);
5051                 tmp |= (5 << 13);
5052                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5053
5054                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5055                 tmp &= ~(7 << 13);
5056                 tmp |= (5 << 13);
5057                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5058         }
5059
5060         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5061         tmp &= ~0xFF;
5062         tmp |= 0x1C;
5063         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5064
5065         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5066         tmp &= ~0xFF;
5067         tmp |= 0x1C;
5068         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5069
5070         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5071         tmp &= ~(0xFF << 16);
5072         tmp |= (0x1C << 16);
5073         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5074
5075         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5076         tmp &= ~(0xFF << 16);
5077         tmp |= (0x1C << 16);
5078         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5079
5080         if (!is_sdv) {
5081                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5082                 tmp |= (1 << 27);
5083                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5084
5085                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5086                 tmp |= (1 << 27);
5087                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5088
5089                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5090                 tmp &= ~(0xF << 28);
5091                 tmp |= (4 << 28);
5092                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5093
5094                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5095                 tmp &= ~(0xF << 28);
5096                 tmp |= (4 << 28);
5097                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5098         }
5099
5100         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5101         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5102         tmp |= SBI_DBUFF0_ENABLE;
5103         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5104
5105         mutex_unlock(&dev_priv->dpio_lock);
5106 }
5107
5108 /*
5109  * Initialize reference clocks when the driver loads
5110  */
5111 void intel_init_pch_refclk(struct drm_device *dev)
5112 {
5113         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5114                 ironlake_init_pch_refclk(dev);
5115         else if (HAS_PCH_LPT(dev))
5116                 lpt_init_pch_refclk(dev);
5117 }
5118
5119 static int ironlake_get_refclk(struct drm_crtc *crtc)
5120 {
5121         struct drm_device *dev = crtc->dev;
5122         struct drm_i915_private *dev_priv = dev->dev_private;
5123         struct intel_encoder *encoder;
5124         struct intel_encoder *edp_encoder = NULL;
5125         int num_connectors = 0;
5126         bool is_lvds = false;
5127
5128         for_each_encoder_on_crtc(dev, crtc, encoder) {
5129                 switch (encoder->type) {
5130                 case INTEL_OUTPUT_LVDS:
5131                         is_lvds = true;
5132                         break;
5133                 case INTEL_OUTPUT_EDP:
5134                         edp_encoder = encoder;
5135                         break;
5136                 }
5137                 num_connectors++;
5138         }
5139
5140         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5141                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5142                               dev_priv->lvds_ssc_freq);
5143                 return dev_priv->lvds_ssc_freq * 1000;
5144         }
5145
5146         return 120000;
5147 }
5148
5149 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5150                                   struct drm_display_mode *adjusted_mode,
5151                                   bool dither)
5152 {
5153         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5155         int pipe = intel_crtc->pipe;
5156         uint32_t val;
5157
5158         val = I915_READ(PIPECONF(pipe));
5159
5160         val &= ~PIPECONF_BPC_MASK;
5161         switch (intel_crtc->bpp) {
5162         case 18:
5163                 val |= PIPECONF_6BPC;
5164                 break;
5165         case 24:
5166                 val |= PIPECONF_8BPC;
5167                 break;
5168         case 30:
5169                 val |= PIPECONF_10BPC;
5170                 break;
5171         case 36:
5172                 val |= PIPECONF_12BPC;
5173                 break;
5174         default:
5175                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5176                 BUG();
5177         }
5178
5179         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5180         if (dither)
5181                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5182
5183         val &= ~PIPECONF_INTERLACE_MASK;
5184         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5185                 val |= PIPECONF_INTERLACED_ILK;
5186         else
5187                 val |= PIPECONF_PROGRESSIVE;
5188
5189         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5190                 val |= PIPECONF_COLOR_RANGE_SELECT;
5191         else
5192                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5193
5194         I915_WRITE(PIPECONF(pipe), val);
5195         POSTING_READ(PIPECONF(pipe));
5196 }
5197
5198 /*
5199  * Set up the pipe CSC unit.
5200  *
5201  * Currently only full range RGB to limited range RGB conversion
5202  * is supported, but eventually this should handle various
5203  * RGB<->YCbCr scenarios as well.
5204  */
5205 static void intel_set_pipe_csc(struct drm_crtc *crtc,
5206                                const struct drm_display_mode *adjusted_mode)
5207 {
5208         struct drm_device *dev = crtc->dev;
5209         struct drm_i915_private *dev_priv = dev->dev_private;
5210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5211         int pipe = intel_crtc->pipe;
5212         uint16_t coeff = 0x7800; /* 1.0 */
5213
5214         /*
5215          * TODO: Check what kind of values actually come out of the pipe
5216          * with these coeff/postoff values and adjust to get the best
5217          * accuracy. Perhaps we even need to take the bpc value into
5218          * consideration.
5219          */
5220
5221         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5222                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5223
5224         /*
5225          * GY/GU and RY/RU should be the other way around according
5226          * to BSpec, but reality doesn't agree. Just set them up in
5227          * a way that results in the correct picture.
5228          */
5229         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5230         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5231
5232         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5233         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5234
5235         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5236         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5237
5238         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5239         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5240         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5241
5242         if (INTEL_INFO(dev)->gen > 6) {
5243                 uint16_t postoff = 0;
5244
5245                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5246                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5247
5248                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5249                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5250                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5251
5252                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5253         } else {
5254                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5255
5256                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5257                         mode |= CSC_BLACK_SCREEN_OFFSET;
5258
5259                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5260         }
5261 }
5262
5263 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5264                                  struct drm_display_mode *adjusted_mode,
5265                                  bool dither)
5266 {
5267         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5269         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5270         uint32_t val;
5271
5272         val = I915_READ(PIPECONF(cpu_transcoder));
5273
5274         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5275         if (dither)
5276                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5277
5278         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5279         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5280                 val |= PIPECONF_INTERLACED_ILK;
5281         else
5282                 val |= PIPECONF_PROGRESSIVE;
5283
5284         I915_WRITE(PIPECONF(cpu_transcoder), val);
5285         POSTING_READ(PIPECONF(cpu_transcoder));
5286 }
5287
5288 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5289                                     struct drm_display_mode *adjusted_mode,
5290                                     intel_clock_t *clock,
5291                                     bool *has_reduced_clock,
5292                                     intel_clock_t *reduced_clock)
5293 {
5294         struct drm_device *dev = crtc->dev;
5295         struct drm_i915_private *dev_priv = dev->dev_private;
5296         struct intel_encoder *intel_encoder;
5297         int refclk;
5298         const intel_limit_t *limit;
5299         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5300
5301         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5302                 switch (intel_encoder->type) {
5303                 case INTEL_OUTPUT_LVDS:
5304                         is_lvds = true;
5305                         break;
5306                 case INTEL_OUTPUT_SDVO:
5307                 case INTEL_OUTPUT_HDMI:
5308                         is_sdvo = true;
5309                         if (intel_encoder->needs_tv_clock)
5310                                 is_tv = true;
5311                         break;
5312                 case INTEL_OUTPUT_TVOUT:
5313                         is_tv = true;
5314                         break;
5315                 }
5316         }
5317
5318         refclk = ironlake_get_refclk(crtc);
5319
5320         /*
5321          * Returns a set of divisors for the desired target clock with the given
5322          * refclk, or FALSE.  The returned values represent the clock equation:
5323          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5324          */
5325         limit = intel_limit(crtc, refclk);
5326         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5327                               clock);
5328         if (!ret)
5329                 return false;
5330
5331         if (is_lvds && dev_priv->lvds_downclock_avail) {
5332                 /*
5333                  * Ensure we match the reduced clock's P to the target clock.
5334                  * If the clocks don't match, we can't switch the display clock
5335                  * by using the FP0/FP1. In such case we will disable the LVDS
5336                  * downclock feature.
5337                 */
5338                 *has_reduced_clock = limit->find_pll(limit, crtc,
5339                                                      dev_priv->lvds_downclock,
5340                                                      refclk,
5341                                                      clock,
5342                                                      reduced_clock);
5343         }
5344
5345         if (is_sdvo && is_tv)
5346                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5347
5348         return true;
5349 }
5350
5351 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5352 {
5353         struct drm_i915_private *dev_priv = dev->dev_private;
5354         uint32_t temp;
5355
5356         temp = I915_READ(SOUTH_CHICKEN1);
5357         if (temp & FDI_BC_BIFURCATION_SELECT)
5358                 return;
5359
5360         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5361         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5362
5363         temp |= FDI_BC_BIFURCATION_SELECT;
5364         DRM_DEBUG_KMS("enabling fdi C rx\n");
5365         I915_WRITE(SOUTH_CHICKEN1, temp);
5366         POSTING_READ(SOUTH_CHICKEN1);
5367 }
5368
5369 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5370 {
5371         struct drm_device *dev = intel_crtc->base.dev;
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_crtc *pipe_B_crtc =
5374                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5375
5376         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5377                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5378         if (intel_crtc->fdi_lanes > 4) {
5379                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5380                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5381                 /* Clamp lanes to avoid programming the hw with bogus values. */
5382                 intel_crtc->fdi_lanes = 4;
5383
5384                 return false;
5385         }
5386
5387         if (dev_priv->num_pipe == 2)
5388                 return true;
5389
5390         switch (intel_crtc->pipe) {
5391         case PIPE_A:
5392                 return true;
5393         case PIPE_B:
5394                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5395                     intel_crtc->fdi_lanes > 2) {
5396                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5397                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5398                         /* Clamp lanes to avoid programming the hw with bogus values. */
5399                         intel_crtc->fdi_lanes = 2;
5400
5401                         return false;
5402                 }
5403
5404                 if (intel_crtc->fdi_lanes > 2)
5405                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5406                 else
5407                         cpt_enable_fdi_bc_bifurcation(dev);
5408
5409                 return true;
5410         case PIPE_C:
5411                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5412                         if (intel_crtc->fdi_lanes > 2) {
5413                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5414                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5415                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5416                                 intel_crtc->fdi_lanes = 2;
5417
5418                                 return false;
5419                         }
5420                 } else {
5421                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5422                         return false;
5423                 }
5424
5425                 cpt_enable_fdi_bc_bifurcation(dev);
5426
5427                 return true;
5428         default:
5429                 BUG();
5430         }
5431 }
5432
5433 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5434 {
5435         /*
5436          * Account for spread spectrum to avoid
5437          * oversubscribing the link. Max center spread
5438          * is 2.5%; use 5% for safety's sake.
5439          */
5440         u32 bps = target_clock * bpp * 21 / 20;
5441         return bps / (link_bw * 8) + 1;
5442 }
5443
5444 static void ironlake_set_m_n(struct drm_crtc *crtc,
5445                              struct drm_display_mode *mode,
5446                              struct drm_display_mode *adjusted_mode)
5447 {
5448         struct drm_device *dev = crtc->dev;
5449         struct drm_i915_private *dev_priv = dev->dev_private;
5450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5451         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5452         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5453         struct intel_link_m_n m_n = {0};
5454         int target_clock, pixel_multiplier, lane, link_bw;
5455         bool is_dp = false, is_cpu_edp = false;
5456
5457         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5458                 switch (intel_encoder->type) {
5459                 case INTEL_OUTPUT_DISPLAYPORT:
5460                         is_dp = true;
5461                         break;
5462                 case INTEL_OUTPUT_EDP:
5463                         is_dp = true;
5464                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5465                                 is_cpu_edp = true;
5466                         edp_encoder = intel_encoder;
5467                         break;
5468                 }
5469         }
5470
5471         /* FDI link */
5472         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5473         lane = 0;
5474         /* CPU eDP doesn't require FDI link, so just set DP M/N
5475            according to current link config */
5476         if (is_cpu_edp) {
5477                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5478         } else {
5479                 /* FDI is a binary signal running at ~2.7GHz, encoding
5480                  * each output octet as 10 bits. The actual frequency
5481                  * is stored as a divider into a 100MHz clock, and the
5482                  * mode pixel clock is stored in units of 1KHz.
5483                  * Hence the bw of each lane in terms of the mode signal
5484                  * is:
5485                  */
5486                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5487         }
5488
5489         /* [e]DP over FDI requires target mode clock instead of link clock. */
5490         if (edp_encoder)
5491                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5492         else if (is_dp)
5493                 target_clock = mode->clock;
5494         else
5495                 target_clock = adjusted_mode->clock;
5496
5497         if (!lane)
5498                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5499                                                    intel_crtc->bpp);
5500
5501         intel_crtc->fdi_lanes = lane;
5502
5503         if (pixel_multiplier > 1)
5504                 link_bw *= pixel_multiplier;
5505         intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
5506
5507         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5508         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5509         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5510         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5511 }
5512
5513 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5514                                       struct drm_display_mode *adjusted_mode,
5515                                       intel_clock_t *clock, u32 fp)
5516 {
5517         struct drm_crtc *crtc = &intel_crtc->base;
5518         struct drm_device *dev = crtc->dev;
5519         struct drm_i915_private *dev_priv = dev->dev_private;
5520         struct intel_encoder *intel_encoder;
5521         uint32_t dpll;
5522         int factor, pixel_multiplier, num_connectors = 0;
5523         bool is_lvds = false, is_sdvo = false, is_tv = false;
5524         bool is_dp = false, is_cpu_edp = false;
5525
5526         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5527                 switch (intel_encoder->type) {
5528                 case INTEL_OUTPUT_LVDS:
5529                         is_lvds = true;
5530                         break;
5531                 case INTEL_OUTPUT_SDVO:
5532                 case INTEL_OUTPUT_HDMI:
5533                         is_sdvo = true;
5534                         if (intel_encoder->needs_tv_clock)
5535                                 is_tv = true;
5536                         break;
5537                 case INTEL_OUTPUT_TVOUT:
5538                         is_tv = true;
5539                         break;
5540                 case INTEL_OUTPUT_DISPLAYPORT:
5541                         is_dp = true;
5542                         break;
5543                 case INTEL_OUTPUT_EDP:
5544                         is_dp = true;
5545                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5546                                 is_cpu_edp = true;
5547                         break;
5548                 }
5549
5550                 num_connectors++;
5551         }
5552
5553         /* Enable autotuning of the PLL clock (if permissible) */
5554         factor = 21;
5555         if (is_lvds) {
5556                 if ((intel_panel_use_ssc(dev_priv) &&
5557                      dev_priv->lvds_ssc_freq == 100) ||
5558                     intel_is_dual_link_lvds(dev))
5559                         factor = 25;
5560         } else if (is_sdvo && is_tv)
5561                 factor = 20;
5562
5563         if (clock->m < factor * clock->n)
5564                 fp |= FP_CB_TUNE;
5565
5566         dpll = 0;
5567
5568         if (is_lvds)
5569                 dpll |= DPLLB_MODE_LVDS;
5570         else
5571                 dpll |= DPLLB_MODE_DAC_SERIAL;
5572         if (is_sdvo) {
5573                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5574                 if (pixel_multiplier > 1) {
5575                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5576                 }
5577                 dpll |= DPLL_DVO_HIGH_SPEED;
5578         }
5579         if (is_dp && !is_cpu_edp)
5580                 dpll |= DPLL_DVO_HIGH_SPEED;
5581
5582         /* compute bitmask from p1 value */
5583         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5584         /* also FPA1 */
5585         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5586
5587         switch (clock->p2) {
5588         case 5:
5589                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5590                 break;
5591         case 7:
5592                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5593                 break;
5594         case 10:
5595                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5596                 break;
5597         case 14:
5598                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5599                 break;
5600         }
5601
5602         if (is_sdvo && is_tv)
5603                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5604         else if (is_tv)
5605                 /* XXX: just matching BIOS for now */
5606                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5607                 dpll |= 3;
5608         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5609                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5610         else
5611                 dpll |= PLL_REF_INPUT_DREFCLK;
5612
5613         return dpll;
5614 }
5615
5616 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5617                                   struct drm_display_mode *mode,
5618                                   struct drm_display_mode *adjusted_mode,
5619                                   int x, int y,
5620                                   struct drm_framebuffer *fb)
5621 {
5622         struct drm_device *dev = crtc->dev;
5623         struct drm_i915_private *dev_priv = dev->dev_private;
5624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5625         int pipe = intel_crtc->pipe;
5626         int plane = intel_crtc->plane;
5627         int num_connectors = 0;
5628         intel_clock_t clock, reduced_clock;
5629         u32 dpll, fp = 0, fp2 = 0;
5630         bool ok, has_reduced_clock = false;
5631         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5632         struct intel_encoder *encoder;
5633         int ret;
5634         bool dither, fdi_config_ok;
5635
5636         for_each_encoder_on_crtc(dev, crtc, encoder) {
5637                 switch (encoder->type) {
5638                 case INTEL_OUTPUT_LVDS:
5639                         is_lvds = true;
5640                         break;
5641                 case INTEL_OUTPUT_DISPLAYPORT:
5642                         is_dp = true;
5643                         break;
5644                 case INTEL_OUTPUT_EDP:
5645                         is_dp = true;
5646                         if (!intel_encoder_is_pch_edp(&encoder->base))
5647                                 is_cpu_edp = true;
5648                         break;
5649                 }
5650
5651                 num_connectors++;
5652         }
5653
5654         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5655              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5656
5657         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5658                                      &has_reduced_clock, &reduced_clock);
5659         if (!ok) {
5660                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5661                 return -EINVAL;
5662         }
5663
5664         /* Ensure that the cursor is valid for the new mode before changing... */
5665         intel_crtc_update_cursor(crtc, true);
5666
5667         /* determine panel color depth */
5668         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5669                                               adjusted_mode);
5670         if (is_lvds && dev_priv->lvds_dither)
5671                 dither = true;
5672
5673         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5674         if (has_reduced_clock)
5675                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5676                         reduced_clock.m2;
5677
5678         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5679
5680         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5681         drm_mode_debug_printmodeline(mode);
5682
5683         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5684         if (!is_cpu_edp) {
5685                 struct intel_pch_pll *pll;
5686
5687                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5688                 if (pll == NULL) {
5689                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5690                                          pipe);
5691                         return -EINVAL;
5692                 }
5693         } else
5694                 intel_put_pch_pll(intel_crtc);
5695
5696         if (is_dp && !is_cpu_edp)
5697                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5698
5699         for_each_encoder_on_crtc(dev, crtc, encoder)
5700                 if (encoder->pre_pll_enable)
5701                         encoder->pre_pll_enable(encoder);
5702
5703         if (intel_crtc->pch_pll) {
5704                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5705
5706                 /* Wait for the clocks to stabilize. */
5707                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5708                 udelay(150);
5709
5710                 /* The pixel multiplier can only be updated once the
5711                  * DPLL is enabled and the clocks are stable.
5712                  *
5713                  * So write it again.
5714                  */
5715                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5716         }
5717
5718         intel_crtc->lowfreq_avail = false;
5719         if (intel_crtc->pch_pll) {
5720                 if (is_lvds && has_reduced_clock && i915_powersave) {
5721                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5722                         intel_crtc->lowfreq_avail = true;
5723                 } else {
5724                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5725                 }
5726         }
5727
5728         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5729
5730         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5731          * ironlake_check_fdi_lanes. */
5732
5733         ironlake_set_m_n(crtc, mode, adjusted_mode);
5734
5735         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5736
5737         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5738
5739         intel_wait_for_vblank(dev, pipe);
5740
5741         /* Set up the display plane register */
5742         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5743         POSTING_READ(DSPCNTR(plane));
5744
5745         ret = intel_pipe_set_base(crtc, x, y, fb);
5746
5747         intel_update_watermarks(dev);
5748
5749         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5750
5751         return fdi_config_ok ? ret : -EINVAL;
5752 }
5753
5754 static void haswell_modeset_global_resources(struct drm_device *dev)
5755 {
5756         struct drm_i915_private *dev_priv = dev->dev_private;
5757         bool enable = false;
5758         struct intel_crtc *crtc;
5759         struct intel_encoder *encoder;
5760
5761         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5762                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5763                         enable = true;
5764                 /* XXX: Should check for edp transcoder here, but thanks to init
5765                  * sequence that's not yet available. Just in case desktop eDP
5766                  * on PORT D is possible on haswell, too. */
5767         }
5768
5769         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5770                             base.head) {
5771                 if (encoder->type != INTEL_OUTPUT_EDP &&
5772                     encoder->connectors_active)
5773                         enable = true;
5774         }
5775
5776         /* Even the eDP panel fitter is outside the always-on well. */
5777         if (dev_priv->pch_pf_size)
5778                 enable = true;
5779
5780         intel_set_power_well(dev, enable);
5781 }
5782
5783 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5784                                  struct drm_display_mode *mode,
5785                                  struct drm_display_mode *adjusted_mode,
5786                                  int x, int y,
5787                                  struct drm_framebuffer *fb)
5788 {
5789         struct drm_device *dev = crtc->dev;
5790         struct drm_i915_private *dev_priv = dev->dev_private;
5791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5792         int pipe = intel_crtc->pipe;
5793         int plane = intel_crtc->plane;
5794         int num_connectors = 0;
5795         bool is_dp = false, is_cpu_edp = false;
5796         struct intel_encoder *encoder;
5797         int ret;
5798         bool dither;
5799
5800         for_each_encoder_on_crtc(dev, crtc, encoder) {
5801                 switch (encoder->type) {
5802                 case INTEL_OUTPUT_DISPLAYPORT:
5803                         is_dp = true;
5804                         break;
5805                 case INTEL_OUTPUT_EDP:
5806                         is_dp = true;
5807                         if (!intel_encoder_is_pch_edp(&encoder->base))
5808                                 is_cpu_edp = true;
5809                         break;
5810                 }
5811
5812                 num_connectors++;
5813         }
5814
5815         if (is_cpu_edp)
5816                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5817         else
5818                 intel_crtc->cpu_transcoder = pipe;
5819
5820         /* We are not sure yet this won't happen. */
5821         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5822              INTEL_PCH_TYPE(dev));
5823
5824         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5825              num_connectors, pipe_name(pipe));
5826
5827         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5828                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5829
5830         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5831
5832         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5833                 return -EINVAL;
5834
5835         /* Ensure that the cursor is valid for the new mode before changing... */
5836         intel_crtc_update_cursor(crtc, true);
5837
5838         /* determine panel color depth */
5839         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5840                                               adjusted_mode);
5841
5842         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5843         drm_mode_debug_printmodeline(mode);
5844
5845         if (is_dp && !is_cpu_edp)
5846                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5847
5848         intel_crtc->lowfreq_avail = false;
5849
5850         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5851
5852         if (!is_dp || is_cpu_edp)
5853                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5854
5855         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5856
5857         intel_set_pipe_csc(crtc, adjusted_mode);
5858
5859         /* Set up the display plane register */
5860         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5861         POSTING_READ(DSPCNTR(plane));
5862
5863         ret = intel_pipe_set_base(crtc, x, y, fb);
5864
5865         intel_update_watermarks(dev);
5866
5867         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5868
5869         return ret;
5870 }
5871
5872 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5873                                struct drm_display_mode *mode,
5874                                struct drm_display_mode *adjusted_mode,
5875                                int x, int y,
5876                                struct drm_framebuffer *fb)
5877 {
5878         struct drm_device *dev = crtc->dev;
5879         struct drm_i915_private *dev_priv = dev->dev_private;
5880         struct drm_encoder_helper_funcs *encoder_funcs;
5881         struct intel_encoder *encoder;
5882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5883         int pipe = intel_crtc->pipe;
5884         int ret;
5885
5886         drm_vblank_pre_modeset(dev, pipe);
5887
5888         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5889                                               x, y, fb);
5890         drm_vblank_post_modeset(dev, pipe);
5891
5892         if (ret != 0)
5893                 return ret;
5894
5895         for_each_encoder_on_crtc(dev, crtc, encoder) {
5896                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5897                         encoder->base.base.id,
5898                         drm_get_encoder_name(&encoder->base),
5899                         mode->base.id, mode->name);
5900                 encoder_funcs = encoder->base.helper_private;
5901                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5902         }
5903
5904         return 0;
5905 }
5906
5907 static bool intel_eld_uptodate(struct drm_connector *connector,
5908                                int reg_eldv, uint32_t bits_eldv,
5909                                int reg_elda, uint32_t bits_elda,
5910                                int reg_edid)
5911 {
5912         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5913         uint8_t *eld = connector->eld;
5914         uint32_t i;
5915
5916         i = I915_READ(reg_eldv);
5917         i &= bits_eldv;
5918
5919         if (!eld[0])
5920                 return !i;
5921
5922         if (!i)
5923                 return false;
5924
5925         i = I915_READ(reg_elda);
5926         i &= ~bits_elda;
5927         I915_WRITE(reg_elda, i);
5928
5929         for (i = 0; i < eld[2]; i++)
5930                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5931                         return false;
5932
5933         return true;
5934 }
5935
5936 static void g4x_write_eld(struct drm_connector *connector,
5937                           struct drm_crtc *crtc)
5938 {
5939         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5940         uint8_t *eld = connector->eld;
5941         uint32_t eldv;
5942         uint32_t len;
5943         uint32_t i;
5944
5945         i = I915_READ(G4X_AUD_VID_DID);
5946
5947         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5948                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5949         else
5950                 eldv = G4X_ELDV_DEVCTG;
5951
5952         if (intel_eld_uptodate(connector,
5953                                G4X_AUD_CNTL_ST, eldv,
5954                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5955                                G4X_HDMIW_HDMIEDID))
5956                 return;
5957
5958         i = I915_READ(G4X_AUD_CNTL_ST);
5959         i &= ~(eldv | G4X_ELD_ADDR);
5960         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5961         I915_WRITE(G4X_AUD_CNTL_ST, i);
5962
5963         if (!eld[0])
5964                 return;
5965
5966         len = min_t(uint8_t, eld[2], len);
5967         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5968         for (i = 0; i < len; i++)
5969                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5970
5971         i = I915_READ(G4X_AUD_CNTL_ST);
5972         i |= eldv;
5973         I915_WRITE(G4X_AUD_CNTL_ST, i);
5974 }
5975
5976 static void haswell_write_eld(struct drm_connector *connector,
5977                                      struct drm_crtc *crtc)
5978 {
5979         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5980         uint8_t *eld = connector->eld;
5981         struct drm_device *dev = crtc->dev;
5982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5983         uint32_t eldv;
5984         uint32_t i;
5985         int len;
5986         int pipe = to_intel_crtc(crtc)->pipe;
5987         int tmp;
5988
5989         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5990         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5991         int aud_config = HSW_AUD_CFG(pipe);
5992         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5993
5994
5995         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5996
5997         /* Audio output enable */
5998         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5999         tmp = I915_READ(aud_cntrl_st2);
6000         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6001         I915_WRITE(aud_cntrl_st2, tmp);
6002
6003         /* Wait for 1 vertical blank */
6004         intel_wait_for_vblank(dev, pipe);
6005
6006         /* Set ELD valid state */
6007         tmp = I915_READ(aud_cntrl_st2);
6008         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6009         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6010         I915_WRITE(aud_cntrl_st2, tmp);
6011         tmp = I915_READ(aud_cntrl_st2);
6012         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6013
6014         /* Enable HDMI mode */
6015         tmp = I915_READ(aud_config);
6016         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6017         /* clear N_programing_enable and N_value_index */
6018         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6019         I915_WRITE(aud_config, tmp);
6020
6021         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6022
6023         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6024         intel_crtc->eld_vld = true;
6025
6026         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6027                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6028                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6029                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6030         } else
6031                 I915_WRITE(aud_config, 0);
6032
6033         if (intel_eld_uptodate(connector,
6034                                aud_cntrl_st2, eldv,
6035                                aud_cntl_st, IBX_ELD_ADDRESS,
6036                                hdmiw_hdmiedid))
6037                 return;
6038
6039         i = I915_READ(aud_cntrl_st2);
6040         i &= ~eldv;
6041         I915_WRITE(aud_cntrl_st2, i);
6042
6043         if (!eld[0])
6044                 return;
6045
6046         i = I915_READ(aud_cntl_st);
6047         i &= ~IBX_ELD_ADDRESS;
6048         I915_WRITE(aud_cntl_st, i);
6049         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6050         DRM_DEBUG_DRIVER("port num:%d\n", i);
6051
6052         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6053         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6054         for (i = 0; i < len; i++)
6055                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6056
6057         i = I915_READ(aud_cntrl_st2);
6058         i |= eldv;
6059         I915_WRITE(aud_cntrl_st2, i);
6060
6061 }
6062
6063 static void ironlake_write_eld(struct drm_connector *connector,
6064                                      struct drm_crtc *crtc)
6065 {
6066         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6067         uint8_t *eld = connector->eld;
6068         uint32_t eldv;
6069         uint32_t i;
6070         int len;
6071         int hdmiw_hdmiedid;
6072         int aud_config;
6073         int aud_cntl_st;
6074         int aud_cntrl_st2;
6075         int pipe = to_intel_crtc(crtc)->pipe;
6076
6077         if (HAS_PCH_IBX(connector->dev)) {
6078                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6079                 aud_config = IBX_AUD_CFG(pipe);
6080                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6081                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6082         } else {
6083                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6084                 aud_config = CPT_AUD_CFG(pipe);
6085                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6086                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6087         }
6088
6089         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6090
6091         i = I915_READ(aud_cntl_st);
6092         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6093         if (!i) {
6094                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6095                 /* operate blindly on all ports */
6096                 eldv = IBX_ELD_VALIDB;
6097                 eldv |= IBX_ELD_VALIDB << 4;
6098                 eldv |= IBX_ELD_VALIDB << 8;
6099         } else {
6100                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6101                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6102         }
6103
6104         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6105                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6106                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6107                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6108         } else
6109                 I915_WRITE(aud_config, 0);
6110
6111         if (intel_eld_uptodate(connector,
6112                                aud_cntrl_st2, eldv,
6113                                aud_cntl_st, IBX_ELD_ADDRESS,
6114                                hdmiw_hdmiedid))
6115                 return;
6116
6117         i = I915_READ(aud_cntrl_st2);
6118         i &= ~eldv;
6119         I915_WRITE(aud_cntrl_st2, i);
6120
6121         if (!eld[0])
6122                 return;
6123
6124         i = I915_READ(aud_cntl_st);
6125         i &= ~IBX_ELD_ADDRESS;
6126         I915_WRITE(aud_cntl_st, i);
6127
6128         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6129         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6130         for (i = 0; i < len; i++)
6131                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6132
6133         i = I915_READ(aud_cntrl_st2);
6134         i |= eldv;
6135         I915_WRITE(aud_cntrl_st2, i);
6136 }
6137
6138 void intel_write_eld(struct drm_encoder *encoder,
6139                      struct drm_display_mode *mode)
6140 {
6141         struct drm_crtc *crtc = encoder->crtc;
6142         struct drm_connector *connector;
6143         struct drm_device *dev = encoder->dev;
6144         struct drm_i915_private *dev_priv = dev->dev_private;
6145
6146         connector = drm_select_eld(encoder, mode);
6147         if (!connector)
6148                 return;
6149
6150         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6151                          connector->base.id,
6152                          drm_get_connector_name(connector),
6153                          connector->encoder->base.id,
6154                          drm_get_encoder_name(connector->encoder));
6155
6156         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6157
6158         if (dev_priv->display.write_eld)
6159                 dev_priv->display.write_eld(connector, crtc);
6160 }
6161
6162 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6163 void intel_crtc_load_lut(struct drm_crtc *crtc)
6164 {
6165         struct drm_device *dev = crtc->dev;
6166         struct drm_i915_private *dev_priv = dev->dev_private;
6167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6168         int palreg = PALETTE(intel_crtc->pipe);
6169         int i;
6170
6171         /* The clocks have to be on to load the palette. */
6172         if (!crtc->enabled || !intel_crtc->active)
6173                 return;
6174
6175         /* use legacy palette for Ironlake */
6176         if (HAS_PCH_SPLIT(dev))
6177                 palreg = LGC_PALETTE(intel_crtc->pipe);
6178
6179         for (i = 0; i < 256; i++) {
6180                 I915_WRITE(palreg + 4 * i,
6181                            (intel_crtc->lut_r[i] << 16) |
6182                            (intel_crtc->lut_g[i] << 8) |
6183                            intel_crtc->lut_b[i]);
6184         }
6185 }
6186
6187 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6188 {
6189         struct drm_device *dev = crtc->dev;
6190         struct drm_i915_private *dev_priv = dev->dev_private;
6191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6192         bool visible = base != 0;
6193         u32 cntl;
6194
6195         if (intel_crtc->cursor_visible == visible)
6196                 return;
6197
6198         cntl = I915_READ(_CURACNTR);
6199         if (visible) {
6200                 /* On these chipsets we can only modify the base whilst
6201                  * the cursor is disabled.
6202                  */
6203                 I915_WRITE(_CURABASE, base);
6204
6205                 cntl &= ~(CURSOR_FORMAT_MASK);
6206                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6207                 cntl |= CURSOR_ENABLE |
6208                         CURSOR_GAMMA_ENABLE |
6209                         CURSOR_FORMAT_ARGB;
6210         } else
6211                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6212         I915_WRITE(_CURACNTR, cntl);
6213
6214         intel_crtc->cursor_visible = visible;
6215 }
6216
6217 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6218 {
6219         struct drm_device *dev = crtc->dev;
6220         struct drm_i915_private *dev_priv = dev->dev_private;
6221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6222         int pipe = intel_crtc->pipe;
6223         bool visible = base != 0;
6224
6225         if (intel_crtc->cursor_visible != visible) {
6226                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6227                 if (base) {
6228                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6229                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6230                         cntl |= pipe << 28; /* Connect to correct pipe */
6231                 } else {
6232                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6233                         cntl |= CURSOR_MODE_DISABLE;
6234                 }
6235                 I915_WRITE(CURCNTR(pipe), cntl);
6236
6237                 intel_crtc->cursor_visible = visible;
6238         }
6239         /* and commit changes on next vblank */
6240         I915_WRITE(CURBASE(pipe), base);
6241 }
6242
6243 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6244 {
6245         struct drm_device *dev = crtc->dev;
6246         struct drm_i915_private *dev_priv = dev->dev_private;
6247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6248         int pipe = intel_crtc->pipe;
6249         bool visible = base != 0;
6250
6251         if (intel_crtc->cursor_visible != visible) {
6252                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6253                 if (base) {
6254                         cntl &= ~CURSOR_MODE;
6255                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6256                 } else {
6257                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6258                         cntl |= CURSOR_MODE_DISABLE;
6259                 }
6260                 if (IS_HASWELL(dev))
6261                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6262                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6263
6264                 intel_crtc->cursor_visible = visible;
6265         }
6266         /* and commit changes on next vblank */
6267         I915_WRITE(CURBASE_IVB(pipe), base);
6268 }
6269
6270 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6271 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6272                                      bool on)
6273 {
6274         struct drm_device *dev = crtc->dev;
6275         struct drm_i915_private *dev_priv = dev->dev_private;
6276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6277         int pipe = intel_crtc->pipe;
6278         int x = intel_crtc->cursor_x;
6279         int y = intel_crtc->cursor_y;
6280         u32 base, pos;
6281         bool visible;
6282
6283         pos = 0;
6284
6285         if (on && crtc->enabled && crtc->fb) {
6286                 base = intel_crtc->cursor_addr;
6287                 if (x > (int) crtc->fb->width)
6288                         base = 0;
6289
6290                 if (y > (int) crtc->fb->height)
6291                         base = 0;
6292         } else
6293                 base = 0;
6294
6295         if (x < 0) {
6296                 if (x + intel_crtc->cursor_width < 0)
6297                         base = 0;
6298
6299                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6300                 x = -x;
6301         }
6302         pos |= x << CURSOR_X_SHIFT;
6303
6304         if (y < 0) {
6305                 if (y + intel_crtc->cursor_height < 0)
6306                         base = 0;
6307
6308                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6309                 y = -y;
6310         }
6311         pos |= y << CURSOR_Y_SHIFT;
6312
6313         visible = base != 0;
6314         if (!visible && !intel_crtc->cursor_visible)
6315                 return;
6316
6317         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6318                 I915_WRITE(CURPOS_IVB(pipe), pos);
6319                 ivb_update_cursor(crtc, base);
6320         } else {
6321                 I915_WRITE(CURPOS(pipe), pos);
6322                 if (IS_845G(dev) || IS_I865G(dev))
6323                         i845_update_cursor(crtc, base);
6324                 else
6325                         i9xx_update_cursor(crtc, base);
6326         }
6327 }
6328
6329 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6330                                  struct drm_file *file,
6331                                  uint32_t handle,
6332                                  uint32_t width, uint32_t height)
6333 {
6334         struct drm_device *dev = crtc->dev;
6335         struct drm_i915_private *dev_priv = dev->dev_private;
6336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6337         struct drm_i915_gem_object *obj;
6338         uint32_t addr;
6339         int ret;
6340
6341         /* if we want to turn off the cursor ignore width and height */
6342         if (!handle) {
6343                 DRM_DEBUG_KMS("cursor off\n");
6344                 addr = 0;
6345                 obj = NULL;
6346                 mutex_lock(&dev->struct_mutex);
6347                 goto finish;
6348         }
6349
6350         /* Currently we only support 64x64 cursors */
6351         if (width != 64 || height != 64) {
6352                 DRM_ERROR("we currently only support 64x64 cursors\n");
6353                 return -EINVAL;
6354         }
6355
6356         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6357         if (&obj->base == NULL)
6358                 return -ENOENT;
6359
6360         if (obj->base.size < width * height * 4) {
6361                 DRM_ERROR("buffer is to small\n");
6362                 ret = -ENOMEM;
6363                 goto fail;
6364         }
6365
6366         /* we only need to pin inside GTT if cursor is non-phy */
6367         mutex_lock(&dev->struct_mutex);
6368         if (!dev_priv->info->cursor_needs_physical) {
6369                 if (obj->tiling_mode) {
6370                         DRM_ERROR("cursor cannot be tiled\n");
6371                         ret = -EINVAL;
6372                         goto fail_locked;
6373                 }
6374
6375                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6376                 if (ret) {
6377                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6378                         goto fail_locked;
6379                 }
6380
6381                 ret = i915_gem_object_put_fence(obj);
6382                 if (ret) {
6383                         DRM_ERROR("failed to release fence for cursor");
6384                         goto fail_unpin;
6385                 }
6386
6387                 addr = obj->gtt_offset;
6388         } else {
6389                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6390                 ret = i915_gem_attach_phys_object(dev, obj,
6391                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6392                                                   align);
6393                 if (ret) {
6394                         DRM_ERROR("failed to attach phys object\n");
6395                         goto fail_locked;
6396                 }
6397                 addr = obj->phys_obj->handle->busaddr;
6398         }
6399
6400         if (IS_GEN2(dev))
6401                 I915_WRITE(CURSIZE, (height << 12) | width);
6402
6403  finish:
6404         if (intel_crtc->cursor_bo) {
6405                 if (dev_priv->info->cursor_needs_physical) {
6406                         if (intel_crtc->cursor_bo != obj)
6407                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6408                 } else
6409                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6410                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6411         }
6412
6413         mutex_unlock(&dev->struct_mutex);
6414
6415         intel_crtc->cursor_addr = addr;
6416         intel_crtc->cursor_bo = obj;
6417         intel_crtc->cursor_width = width;
6418         intel_crtc->cursor_height = height;
6419
6420         intel_crtc_update_cursor(crtc, true);
6421
6422         return 0;
6423 fail_unpin:
6424         i915_gem_object_unpin(obj);
6425 fail_locked:
6426         mutex_unlock(&dev->struct_mutex);
6427 fail:
6428         drm_gem_object_unreference_unlocked(&obj->base);
6429         return ret;
6430 }
6431
6432 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6433 {
6434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6435
6436         intel_crtc->cursor_x = x;
6437         intel_crtc->cursor_y = y;
6438
6439         intel_crtc_update_cursor(crtc, true);
6440
6441         return 0;
6442 }
6443
6444 /** Sets the color ramps on behalf of RandR */
6445 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6446                                  u16 blue, int regno)
6447 {
6448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6449
6450         intel_crtc->lut_r[regno] = red >> 8;
6451         intel_crtc->lut_g[regno] = green >> 8;
6452         intel_crtc->lut_b[regno] = blue >> 8;
6453 }
6454
6455 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6456                              u16 *blue, int regno)
6457 {
6458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6459
6460         *red = intel_crtc->lut_r[regno] << 8;
6461         *green = intel_crtc->lut_g[regno] << 8;
6462         *blue = intel_crtc->lut_b[regno] << 8;
6463 }
6464
6465 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6466                                  u16 *blue, uint32_t start, uint32_t size)
6467 {
6468         int end = (start + size > 256) ? 256 : start + size, i;
6469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6470
6471         for (i = start; i < end; i++) {
6472                 intel_crtc->lut_r[i] = red[i] >> 8;
6473                 intel_crtc->lut_g[i] = green[i] >> 8;
6474                 intel_crtc->lut_b[i] = blue[i] >> 8;
6475         }
6476
6477         intel_crtc_load_lut(crtc);
6478 }
6479
6480 /**
6481  * Get a pipe with a simple mode set on it for doing load-based monitor
6482  * detection.
6483  *
6484  * It will be up to the load-detect code to adjust the pipe as appropriate for
6485  * its requirements.  The pipe will be connected to no other encoders.
6486  *
6487  * Currently this code will only succeed if there is a pipe with no encoders
6488  * configured for it.  In the future, it could choose to temporarily disable
6489  * some outputs to free up a pipe for its use.
6490  *
6491  * \return crtc, or NULL if no pipes are available.
6492  */
6493
6494 /* VESA 640x480x72Hz mode to set on the pipe */
6495 static struct drm_display_mode load_detect_mode = {
6496         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6497                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6498 };
6499
6500 static struct drm_framebuffer *
6501 intel_framebuffer_create(struct drm_device *dev,
6502                          struct drm_mode_fb_cmd2 *mode_cmd,
6503                          struct drm_i915_gem_object *obj)
6504 {
6505         struct intel_framebuffer *intel_fb;
6506         int ret;
6507
6508         intel_fb = kmalloc(sizeof(*intel_fb), M_DRM, M_WAITOK | M_ZERO);
6509         if (!intel_fb) {
6510                 drm_gem_object_unreference_unlocked(&obj->base);
6511                 return ERR_PTR(-ENOMEM);
6512         }
6513
6514         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6515         if (ret) {
6516                 drm_gem_object_unreference_unlocked(&obj->base);
6517                 kfree(intel_fb, M_DRM);
6518                 return ERR_PTR(ret);
6519         }
6520
6521         return &intel_fb->base;
6522 }
6523
6524 static u32
6525 intel_framebuffer_pitch_for_width(int width, int bpp)
6526 {
6527         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6528         return ALIGN(pitch, 64);
6529 }
6530
6531 static u32
6532 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6533 {
6534         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6535         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6536 }
6537
6538 static struct drm_framebuffer *
6539 intel_framebuffer_create_for_mode(struct drm_device *dev,
6540                                   struct drm_display_mode *mode,
6541                                   int depth, int bpp)
6542 {
6543         struct drm_i915_gem_object *obj;
6544         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6545
6546         obj = i915_gem_alloc_object(dev,
6547                                     intel_framebuffer_size_for_mode(mode, bpp));
6548         if (obj == NULL)
6549                 return ERR_PTR(-ENOMEM);
6550
6551         mode_cmd.width = mode->hdisplay;
6552         mode_cmd.height = mode->vdisplay;
6553         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6554                                                                 bpp);
6555         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6556
6557         return intel_framebuffer_create(dev, &mode_cmd, obj);
6558 }
6559
6560 static struct drm_framebuffer *
6561 mode_fits_in_fbdev(struct drm_device *dev,
6562                    struct drm_display_mode *mode)
6563 {
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565         struct drm_i915_gem_object *obj;
6566         struct drm_framebuffer *fb;
6567
6568         if (dev_priv->fbdev == NULL)
6569                 return NULL;
6570
6571         obj = dev_priv->fbdev->ifb.obj;
6572         if (obj == NULL)
6573                 return NULL;
6574
6575         fb = &dev_priv->fbdev->ifb.base;
6576         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6577                                                                fb->bits_per_pixel))
6578                 return NULL;
6579
6580         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6581                 return NULL;
6582
6583         return fb;
6584 }
6585
6586 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6587                                 struct drm_display_mode *mode,
6588                                 struct intel_load_detect_pipe *old)
6589 {
6590         struct intel_crtc *intel_crtc;
6591         struct intel_encoder *intel_encoder =
6592                 intel_attached_encoder(connector);
6593         struct drm_crtc *possible_crtc;
6594         struct drm_encoder *encoder = &intel_encoder->base;
6595         struct drm_crtc *crtc = NULL;
6596         struct drm_device *dev = encoder->dev;
6597         struct drm_framebuffer *fb;
6598         int i = -1;
6599
6600         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6601                       connector->base.id, drm_get_connector_name(connector),
6602                       encoder->base.id, drm_get_encoder_name(encoder));
6603
6604         /*
6605          * Algorithm gets a little messy:
6606          *
6607          *   - if the connector already has an assigned crtc, use it (but make
6608          *     sure it's on first)
6609          *
6610          *   - try to find the first unused crtc that can drive this connector,
6611          *     and use that if we find one
6612          */
6613
6614         /* See if we already have a CRTC for this connector */
6615         if (encoder->crtc) {
6616                 crtc = encoder->crtc;
6617
6618                 mutex_lock(&crtc->mutex);
6619
6620                 old->dpms_mode = connector->dpms;
6621                 old->load_detect_temp = false;
6622
6623                 /* Make sure the crtc and connector are running */
6624                 if (connector->dpms != DRM_MODE_DPMS_ON)
6625                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6626
6627                 return true;
6628         }
6629
6630         /* Find an unused one (if possible) */
6631         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6632                 i++;
6633                 if (!(encoder->possible_crtcs & (1 << i)))
6634                         continue;
6635                 if (!possible_crtc->enabled) {
6636                         crtc = possible_crtc;
6637                         break;
6638                 }
6639         }
6640
6641         /*
6642          * If we didn't find an unused CRTC, don't use any.
6643          */
6644         if (!crtc) {
6645                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6646                 return false;
6647         }
6648
6649         mutex_lock(&crtc->mutex);
6650         intel_encoder->new_crtc = to_intel_crtc(crtc);
6651         to_intel_connector(connector)->new_encoder = intel_encoder;
6652
6653         intel_crtc = to_intel_crtc(crtc);
6654         old->dpms_mode = connector->dpms;
6655         old->load_detect_temp = true;
6656         old->release_fb = NULL;
6657
6658         if (!mode)
6659                 mode = &load_detect_mode;
6660
6661         /* We need a framebuffer large enough to accommodate all accesses
6662          * that the plane may generate whilst we perform load detection.
6663          * We can not rely on the fbcon either being present (we get called
6664          * during its initialisation to detect all boot displays, or it may
6665          * not even exist) or that it is large enough to satisfy the
6666          * requested mode.
6667          */
6668         fb = mode_fits_in_fbdev(dev, mode);
6669         if (fb == NULL) {
6670                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6671                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6672                 old->release_fb = fb;
6673         } else
6674                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6675         if (IS_ERR(fb)) {
6676                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6677                 mutex_unlock(&crtc->mutex);
6678                 return false;
6679         }
6680
6681         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6682                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6683                 if (old->release_fb)
6684                         old->release_fb->funcs->destroy(old->release_fb);
6685                 mutex_unlock(&crtc->mutex);
6686                 return false;
6687         }
6688
6689         /* let the connector get through one full cycle before testing */
6690         intel_wait_for_vblank(dev, intel_crtc->pipe);
6691         return true;
6692 }
6693
6694 void intel_release_load_detect_pipe(struct drm_connector *connector,
6695                                     struct intel_load_detect_pipe *old)
6696 {
6697         struct intel_encoder *intel_encoder =
6698                 intel_attached_encoder(connector);
6699         struct drm_encoder *encoder = &intel_encoder->base;
6700         struct drm_crtc *crtc = encoder->crtc;
6701
6702         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6703                       connector->base.id, drm_get_connector_name(connector),
6704                       encoder->base.id, drm_get_encoder_name(encoder));
6705
6706         if (old->load_detect_temp) {
6707                 to_intel_connector(connector)->new_encoder = NULL;
6708                 intel_encoder->new_crtc = NULL;
6709                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6710
6711                 if (old->release_fb) {
6712                         drm_framebuffer_unregister_private(old->release_fb);
6713                         drm_framebuffer_unreference(old->release_fb);
6714                 }
6715
6716                 mutex_unlock(&crtc->mutex);
6717                 return;
6718         }
6719
6720         /* Switch crtc and encoder back off if necessary */
6721         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6722                 connector->funcs->dpms(connector, old->dpms_mode);
6723
6724         mutex_unlock(&crtc->mutex);
6725 }
6726
6727 /* Returns the clock of the currently programmed mode of the given pipe. */
6728 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6729 {
6730         struct drm_i915_private *dev_priv = dev->dev_private;
6731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6732         int pipe = intel_crtc->pipe;
6733         u32 dpll = I915_READ(DPLL(pipe));
6734         u32 fp;
6735         intel_clock_t clock;
6736
6737         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6738                 fp = I915_READ(FP0(pipe));
6739         else
6740                 fp = I915_READ(FP1(pipe));
6741
6742         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6743         if (IS_PINEVIEW(dev)) {
6744                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6745                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6746         } else {
6747                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6748                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6749         }
6750
6751         if (!IS_GEN2(dev)) {
6752                 if (IS_PINEVIEW(dev))
6753                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6754                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6755                 else
6756                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6757                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6758
6759                 switch (dpll & DPLL_MODE_MASK) {
6760                 case DPLLB_MODE_DAC_SERIAL:
6761                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6762                                 5 : 10;
6763                         break;
6764                 case DPLLB_MODE_LVDS:
6765                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6766                                 7 : 14;
6767                         break;
6768                 default:
6769                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6770                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6771                         return 0;
6772                 }
6773
6774                 /* XXX: Handle the 100Mhz refclk */
6775                 intel_clock(dev, 96000, &clock);
6776         } else {
6777                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6778
6779                 if (is_lvds) {
6780                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6781                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6782                         clock.p2 = 14;
6783
6784                         if ((dpll & PLL_REF_INPUT_MASK) ==
6785                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6786                                 /* XXX: might not be 66MHz */
6787                                 intel_clock(dev, 66000, &clock);
6788                         } else
6789                                 intel_clock(dev, 48000, &clock);
6790                 } else {
6791                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6792                                 clock.p1 = 2;
6793                         else {
6794                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6795                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6796                         }
6797                         if (dpll & PLL_P2_DIVIDE_BY_4)
6798                                 clock.p2 = 4;
6799                         else
6800                                 clock.p2 = 2;
6801
6802                         intel_clock(dev, 48000, &clock);
6803                 }
6804         }
6805
6806         /* XXX: It would be nice to validate the clocks, but we can't reuse
6807          * i830PllIsValid() because it relies on the xf86_config connector
6808          * configuration being accurate, which it isn't necessarily.
6809          */
6810
6811         return clock.dot;
6812 }
6813
6814 /** Returns the currently programmed mode of the given pipe. */
6815 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6816                                              struct drm_crtc *crtc)
6817 {
6818         struct drm_i915_private *dev_priv = dev->dev_private;
6819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6820         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6821         struct drm_display_mode *mode;
6822         int htot = I915_READ(HTOTAL(cpu_transcoder));
6823         int hsync = I915_READ(HSYNC(cpu_transcoder));
6824         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6825         int vsync = I915_READ(VSYNC(cpu_transcoder));
6826
6827         mode = kmalloc(sizeof(*mode), M_DRM, M_WAITOK | M_ZERO);
6828         if (!mode)
6829                 return NULL;
6830
6831         mode->clock = intel_crtc_clock_get(dev, crtc);
6832         mode->hdisplay = (htot & 0xffff) + 1;
6833         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6834         mode->hsync_start = (hsync & 0xffff) + 1;
6835         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6836         mode->vdisplay = (vtot & 0xffff) + 1;
6837         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6838         mode->vsync_start = (vsync & 0xffff) + 1;
6839         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6840
6841         drm_mode_set_name(mode);
6842
6843         return mode;
6844 }
6845
6846 static void intel_increase_pllclock(struct drm_crtc *crtc)
6847 {
6848         struct drm_device *dev = crtc->dev;
6849         drm_i915_private_t *dev_priv = dev->dev_private;
6850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6851         int pipe = intel_crtc->pipe;
6852         int dpll_reg = DPLL(pipe);
6853         int dpll;
6854
6855         if (HAS_PCH_SPLIT(dev))
6856                 return;
6857
6858         if (!dev_priv->lvds_downclock_avail)
6859                 return;
6860
6861         dpll = I915_READ(dpll_reg);
6862         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6863                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6864
6865                 assert_panel_unlocked(dev_priv, pipe);
6866
6867                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6868                 I915_WRITE(dpll_reg, dpll);
6869                 intel_wait_for_vblank(dev, pipe);
6870
6871                 dpll = I915_READ(dpll_reg);
6872                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6873                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6874         }
6875 }
6876
6877 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6878 {
6879         struct drm_device *dev = crtc->dev;
6880         drm_i915_private_t *dev_priv = dev->dev_private;
6881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6882
6883         if (HAS_PCH_SPLIT(dev))
6884                 return;
6885
6886         if (!dev_priv->lvds_downclock_avail)
6887                 return;
6888
6889         /*
6890          * Since this is called by a timer, we should never get here in
6891          * the manual case.
6892          */
6893         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6894                 int pipe = intel_crtc->pipe;
6895                 int dpll_reg = DPLL(pipe);
6896                 int dpll;
6897
6898                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6899
6900                 assert_panel_unlocked(dev_priv, pipe);
6901
6902                 dpll = I915_READ(dpll_reg);
6903                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6904                 I915_WRITE(dpll_reg, dpll);
6905                 intel_wait_for_vblank(dev, pipe);
6906                 dpll = I915_READ(dpll_reg);
6907                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6908                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6909         }
6910 }
6911
6912 void intel_mark_busy(struct drm_device *dev)
6913 {
6914         i915_update_gfx_val(dev->dev_private);
6915 }
6916
6917 void intel_mark_idle(struct drm_device *dev)
6918 {
6919         struct drm_crtc *crtc;
6920
6921         if (!i915_powersave)
6922                 return;
6923
6924         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6925                 if (!crtc->fb)
6926                         continue;
6927
6928                 intel_decrease_pllclock(crtc);
6929         }
6930 }
6931
6932 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6933 {
6934         struct drm_device *dev = obj->base.dev;
6935         struct drm_crtc *crtc;
6936
6937         if (!i915_powersave)
6938                 return;
6939
6940         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6941                 if (!crtc->fb)
6942                         continue;
6943
6944                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6945                         intel_increase_pllclock(crtc);
6946         }
6947 }
6948
6949 static void intel_crtc_destroy(struct drm_crtc *crtc)
6950 {
6951         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6952         struct drm_device *dev = crtc->dev;
6953         struct intel_unpin_work *work;
6954
6955         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
6956         work = intel_crtc->unpin_work;
6957         intel_crtc->unpin_work = NULL;
6958         lockmgr(&dev->event_lock, LK_RELEASE);
6959
6960         if (work) {
6961                 cancel_work_sync(&work->work);
6962                 kfree(work, M_DRM);
6963         }
6964
6965         drm_crtc_cleanup(crtc);
6966
6967         drm_free(intel_crtc, M_DRM);
6968 }
6969
6970 static void intel_unpin_work_fn(struct work_struct *__work)
6971 {
6972         struct intel_unpin_work *work =
6973                 container_of(__work, struct intel_unpin_work, work);
6974         struct drm_device *dev = work->crtc->dev;
6975
6976         mutex_lock(&dev->struct_mutex);
6977         intel_unpin_fb_obj(work->old_fb_obj);
6978         drm_gem_object_unreference(&work->pending_flip_obj->base);
6979         drm_gem_object_unreference(&work->old_fb_obj->base);
6980
6981         intel_update_fbc(dev);
6982         mutex_unlock(&dev->struct_mutex);
6983
6984         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6985         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6986
6987         drm_free(work, M_DRM);
6988 }
6989
6990 static void do_intel_finish_page_flip(struct drm_device *dev,
6991                                       struct drm_crtc *crtc)
6992 {
6993         drm_i915_private_t *dev_priv = dev->dev_private;
6994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6995         struct intel_unpin_work *work;
6996         struct drm_i915_gem_object *obj;
6997
6998         /* Ignore early vblank irqs */
6999         if (intel_crtc == NULL)
7000                 return;
7001
7002         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7003         work = intel_crtc->unpin_work;
7004
7005         /* Ensure we don't miss a work->pending update ... */
7006         cpu_lfence();
7007
7008         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7009                 lockmgr(&dev->event_lock, LK_RELEASE);
7010                 return;
7011         }
7012
7013         /* and that the unpin work is consistent wrt ->pending. */
7014         cpu_lfence();
7015
7016         intel_crtc->unpin_work = NULL;
7017
7018         if (work->event)
7019                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7020
7021         drm_vblank_put(dev, intel_crtc->pipe);
7022
7023         lockmgr(&dev->event_lock, LK_RELEASE);
7024
7025         obj = work->old_fb_obj;
7026
7027         wake_up_all(&dev_priv->pending_flip_queue);
7028
7029         queue_work(dev_priv->wq, &work->work);
7030 }
7031
7032 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7033 {
7034         drm_i915_private_t *dev_priv = dev->dev_private;
7035         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7036
7037         do_intel_finish_page_flip(dev, crtc);
7038 }
7039
7040 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7041 {
7042         drm_i915_private_t *dev_priv = dev->dev_private;
7043         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7044
7045         do_intel_finish_page_flip(dev, crtc);
7046 }
7047
7048 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7049 {
7050         drm_i915_private_t *dev_priv = dev->dev_private;
7051         struct intel_crtc *intel_crtc =
7052                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7053
7054         /* NB: An MMIO update of the plane base pointer will also
7055          * generate a page-flip completion irq, i.e. every modeset
7056          * is also accompanied by a spurious intel_prepare_page_flip().
7057          */
7058         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7059         if (intel_crtc->unpin_work)
7060                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7061         lockmgr(&dev->event_lock, LK_RELEASE);
7062 }
7063
7064 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7065 {
7066         /* Ensure that the work item is consistent when activating it ... */
7067         cpu_sfence();
7068         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7069         /* and that it is marked active as soon as the irq could fire. */
7070         cpu_sfence();
7071 }
7072
7073 static int intel_gen2_queue_flip(struct drm_device *dev,
7074                                  struct drm_crtc *crtc,
7075                                  struct drm_framebuffer *fb,
7076                                  struct drm_i915_gem_object *obj)
7077 {
7078         struct drm_i915_private *dev_priv = dev->dev_private;
7079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7080         u32 flip_mask;
7081         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7082         int ret;
7083
7084         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7085         if (ret)
7086                 goto err;
7087
7088         ret = intel_ring_begin(ring, 6);
7089         if (ret)
7090                 goto err_unpin;
7091
7092         /* Can't queue multiple flips, so wait for the previous
7093          * one to finish before executing the next.
7094          */
7095         if (intel_crtc->plane)
7096                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7097         else
7098                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7099         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7100         intel_ring_emit(ring, MI_NOOP);
7101         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7102                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7103         intel_ring_emit(ring, fb->pitches[0]);
7104         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7105         intel_ring_emit(ring, 0); /* aux display base address, unused */
7106
7107         intel_mark_page_flip_active(intel_crtc);
7108         intel_ring_advance(ring);
7109         return 0;
7110
7111 err_unpin:
7112         intel_unpin_fb_obj(obj);
7113 err:
7114         return ret;
7115 }
7116
7117 static int intel_gen3_queue_flip(struct drm_device *dev,
7118                                  struct drm_crtc *crtc,
7119                                  struct drm_framebuffer *fb,
7120                                  struct drm_i915_gem_object *obj)
7121 {
7122         struct drm_i915_private *dev_priv = dev->dev_private;
7123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7124         u32 flip_mask;
7125         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7126         int ret;
7127
7128         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7129         if (ret)
7130                 goto err;
7131
7132         ret = intel_ring_begin(ring, 6);
7133         if (ret)
7134                 goto err_unpin;
7135
7136         if (intel_crtc->plane)
7137                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7138         else
7139                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7140         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7141         intel_ring_emit(ring, MI_NOOP);
7142         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7143                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7144         intel_ring_emit(ring, fb->pitches[0]);
7145         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7146         intel_ring_emit(ring, MI_NOOP);
7147
7148         intel_mark_page_flip_active(intel_crtc);
7149         intel_ring_advance(ring);
7150         return 0;
7151
7152 err_unpin:
7153         intel_unpin_fb_obj(obj);
7154 err:
7155         return ret;
7156 }
7157
7158 static int intel_gen4_queue_flip(struct drm_device *dev,
7159                                  struct drm_crtc *crtc,
7160                                  struct drm_framebuffer *fb,
7161                                  struct drm_i915_gem_object *obj)
7162 {
7163         struct drm_i915_private *dev_priv = dev->dev_private;
7164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7165         uint32_t pf, pipesrc;
7166         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7167         int ret;
7168
7169         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7170         if (ret)
7171                 goto err;
7172
7173         ret = intel_ring_begin(ring, 4);
7174         if (ret)
7175                 goto err_unpin;
7176
7177         /* i965+ uses the linear or tiled offsets from the
7178          * Display Registers (which do not change across a page-flip)
7179          * so we need only reprogram the base address.
7180          */
7181         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7182                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7183         intel_ring_emit(ring, fb->pitches[0]);
7184         intel_ring_emit(ring,
7185                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7186                         obj->tiling_mode);
7187
7188         /* XXX Enabling the panel-fitter across page-flip is so far
7189          * untested on non-native modes, so ignore it for now.
7190          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7191          */
7192         pf = 0;
7193         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7194         intel_ring_emit(ring, pf | pipesrc);
7195
7196         intel_mark_page_flip_active(intel_crtc);
7197         intel_ring_advance(ring);
7198         return 0;
7199
7200 err_unpin:
7201         intel_unpin_fb_obj(obj);
7202 err:
7203         return ret;
7204 }
7205
7206 static int intel_gen6_queue_flip(struct drm_device *dev,
7207                                  struct drm_crtc *crtc,
7208                                  struct drm_framebuffer *fb,
7209                                  struct drm_i915_gem_object *obj)
7210 {
7211         struct drm_i915_private *dev_priv = dev->dev_private;
7212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7213         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7214         uint32_t pf, pipesrc;
7215         int ret;
7216
7217         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7218         if (ret)
7219                 goto err;
7220
7221         ret = intel_ring_begin(ring, 4);
7222         if (ret)
7223                 goto err_unpin;
7224
7225         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7226                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7227         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7228         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7229
7230         /* Contrary to the suggestions in the documentation,
7231          * "Enable Panel Fitter" does not seem to be required when page
7232          * flipping with a non-native mode, and worse causes a normal
7233          * modeset to fail.
7234          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7235          */
7236         pf = 0;
7237         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7238         intel_ring_emit(ring, pf | pipesrc);
7239
7240         intel_mark_page_flip_active(intel_crtc);
7241         intel_ring_advance(ring);
7242         return 0;
7243
7244 err_unpin:
7245         intel_unpin_fb_obj(obj);
7246 err:
7247         return ret;
7248 }
7249
7250 /*
7251  * On gen7 we currently use the blit ring because (in early silicon at least)
7252  * the render ring doesn't give us interrpts for page flip completion, which
7253  * means clients will hang after the first flip is queued.  Fortunately the
7254  * blit ring generates interrupts properly, so use it instead.
7255  */
7256 static int intel_gen7_queue_flip(struct drm_device *dev,
7257                                  struct drm_crtc *crtc,
7258                                  struct drm_framebuffer *fb,
7259                                  struct drm_i915_gem_object *obj)
7260 {
7261         struct drm_i915_private *dev_priv = dev->dev_private;
7262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7263         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7264         uint32_t plane_bit = 0;
7265         int ret;
7266
7267         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7268         if (ret)
7269                 goto err;
7270
7271         switch(intel_crtc->plane) {
7272         case PLANE_A:
7273                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7274                 break;
7275         case PLANE_B:
7276                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7277                 break;
7278         case PLANE_C:
7279                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7280                 break;
7281         default:
7282                 WARN_ONCE(1, "unknown plane in flip command\n");
7283                 ret = -ENODEV;
7284                 goto err_unpin;
7285         }
7286
7287         ret = intel_ring_begin(ring, 4);
7288         if (ret)
7289                 goto err_unpin;
7290
7291         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7292         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7293         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7294         intel_ring_emit(ring, (MI_NOOP));
7295
7296         intel_mark_page_flip_active(intel_crtc);
7297         intel_ring_advance(ring);
7298         return 0;
7299
7300 err_unpin:
7301         intel_unpin_fb_obj(obj);
7302 err:
7303         return ret;
7304 }
7305
7306 static int intel_default_queue_flip(struct drm_device *dev,
7307                                     struct drm_crtc *crtc,
7308                                     struct drm_framebuffer *fb,
7309                                     struct drm_i915_gem_object *obj)
7310 {
7311         return -ENODEV;
7312 }
7313
7314 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7315                                 struct drm_framebuffer *fb,
7316                                 struct drm_pending_vblank_event *event)
7317 {
7318         struct drm_device *dev = crtc->dev;
7319         struct drm_i915_private *dev_priv = dev->dev_private;
7320         struct drm_framebuffer *old_fb = crtc->fb;
7321         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7323         struct intel_unpin_work *work;
7324         int ret;
7325
7326         /* Can't change pixel format via MI display flips. */
7327         if (fb->pixel_format != crtc->fb->pixel_format)
7328                 return -EINVAL;
7329
7330         /*
7331          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7332          * Note that pitch changes could also affect these register.
7333          */
7334         if (INTEL_INFO(dev)->gen > 3 &&
7335             (fb->offsets[0] != crtc->fb->offsets[0] ||
7336              fb->pitches[0] != crtc->fb->pitches[0]))
7337                 return -EINVAL;
7338
7339         work = kmalloc(sizeof *work, M_DRM, M_WAITOK | M_ZERO);
7340         if (work == NULL)
7341                 return -ENOMEM;
7342
7343         work->event = event;
7344         work->crtc = crtc;
7345         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7346         INIT_WORK(&work->work, intel_unpin_work_fn);
7347
7348         ret = drm_vblank_get(dev, intel_crtc->pipe);
7349         if (ret)
7350                 goto free_work;
7351
7352         /* We borrow the event spin lock for protecting unpin_work */
7353         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7354         if (intel_crtc->unpin_work) {
7355                 lockmgr(&dev->event_lock, LK_RELEASE);
7356                 drm_free(work, M_DRM);
7357                 drm_vblank_put(dev, intel_crtc->pipe);
7358
7359                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7360                 return -EBUSY;
7361         }
7362         intel_crtc->unpin_work = work;
7363         lockmgr(&dev->event_lock, LK_RELEASE);
7364
7365         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7366                 flush_workqueue(dev_priv->wq);
7367
7368         ret = i915_mutex_lock_interruptible(dev);
7369         if (ret)
7370                 goto cleanup;
7371
7372         /* Reference the objects for the scheduled work. */
7373         drm_gem_object_reference(&work->old_fb_obj->base);
7374         drm_gem_object_reference(&obj->base);
7375
7376         crtc->fb = fb;
7377
7378         work->pending_flip_obj = obj;
7379
7380         work->enable_stall_check = true;
7381
7382         atomic_inc(&intel_crtc->unpin_work_count);
7383         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7384
7385         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7386         if (ret)
7387                 goto cleanup_pending;
7388
7389         intel_disable_fbc(dev);
7390         intel_mark_fb_busy(obj);
7391         mutex_unlock(&dev->struct_mutex);
7392
7393         return 0;
7394
7395 cleanup_pending:
7396         atomic_dec(&intel_crtc->unpin_work_count);
7397         crtc->fb = old_fb;
7398         drm_gem_object_unreference(&work->old_fb_obj->base);
7399         drm_gem_object_unreference(&obj->base);
7400         mutex_unlock(&dev->struct_mutex);
7401
7402 cleanup:
7403         lockmgr(&dev->event_lock, LK_EXCLUSIVE);
7404         intel_crtc->unpin_work = NULL;
7405         lockmgr(&dev->event_lock, LK_RELEASE);
7406
7407         drm_vblank_put(dev, intel_crtc->pipe);
7408 free_work:
7409         drm_free(work, M_DRM);
7410
7411         return ret;
7412 }
7413
7414 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7415         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7416         .load_lut = intel_crtc_load_lut,
7417         .disable = intel_crtc_noop,
7418 };
7419
7420 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7421 {
7422         struct intel_encoder *other_encoder;
7423         struct drm_crtc *crtc = &encoder->new_crtc->base;
7424
7425         if (WARN_ON(!crtc))
7426                 return false;
7427
7428         list_for_each_entry(other_encoder,
7429                             &crtc->dev->mode_config.encoder_list,
7430                             base.head) {
7431
7432                 if (&other_encoder->new_crtc->base != crtc ||
7433                     encoder == other_encoder)
7434                         continue;
7435                 else
7436                         return true;
7437         }
7438
7439         return false;
7440 }
7441
7442 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7443                                   struct drm_crtc *crtc)
7444 {
7445         struct drm_device *dev;
7446         struct drm_crtc *tmp;
7447         int crtc_mask = 1;
7448
7449         WARN(!crtc, "checking null crtc?\n");
7450         /* profmakx: this is to prevent the kernel from panicing */
7451         if(!crtc) {
7452                 return false;
7453         }
7454
7455         dev = crtc->dev;
7456
7457         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7458                 if (tmp == crtc)
7459                         break;
7460                 crtc_mask <<= 1;
7461         }
7462
7463         if (encoder->possible_crtcs & crtc_mask)
7464                 return true;
7465         return false;
7466 }
7467
7468 /**
7469  * intel_modeset_update_staged_output_state
7470  *
7471  * Updates the staged output configuration state, e.g. after we've read out the
7472  * current hw state.
7473  */
7474 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7475 {
7476         struct intel_encoder *encoder;
7477         struct intel_connector *connector;
7478
7479         list_for_each_entry(connector, &dev->mode_config.connector_list,
7480                             base.head) {
7481                 connector->new_encoder =
7482                         to_intel_encoder(connector->base.encoder);
7483         }
7484
7485         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7486                             base.head) {
7487                 encoder->new_crtc =
7488                         to_intel_crtc(encoder->base.crtc);
7489         }
7490 }
7491
7492 /**
7493  * intel_modeset_commit_output_state
7494  *
7495  * This function copies the stage display pipe configuration to the real one.
7496  */
7497 static void intel_modeset_commit_output_state(struct drm_device *dev)
7498 {
7499         struct intel_encoder *encoder;
7500         struct intel_connector *connector;
7501
7502         list_for_each_entry(connector, &dev->mode_config.connector_list,
7503                             base.head) {
7504                 connector->base.encoder = &connector->new_encoder->base;
7505         }
7506
7507         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7508                             base.head) {
7509                 encoder->base.crtc = &encoder->new_crtc->base;
7510         }
7511 }
7512
7513 static struct drm_display_mode *
7514 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7515                             struct drm_display_mode *mode)
7516 {
7517         struct drm_device *dev = crtc->dev;
7518         struct drm_display_mode *adjusted_mode;
7519         struct drm_encoder_helper_funcs *encoder_funcs;
7520         struct intel_encoder *encoder;
7521
7522         adjusted_mode = drm_mode_duplicate(dev, mode);
7523         if (!adjusted_mode)
7524                 return ERR_PTR(-ENOMEM);
7525
7526         /* Pass our mode to the connectors and the CRTC to give them a chance to
7527          * adjust it according to limitations or connector properties, and also
7528          * a chance to reject the mode entirely.
7529          */
7530         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7531                             base.head) {
7532
7533                 if (&encoder->new_crtc->base != crtc)
7534                         continue;
7535                 encoder_funcs = encoder->base.helper_private;
7536                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7537                                                 adjusted_mode))) {
7538                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7539                         goto fail;
7540                 }
7541         }
7542
7543         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7544                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7545                 goto fail;
7546         }
7547         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7548
7549         return adjusted_mode;
7550 fail:
7551         drm_mode_destroy(dev, adjusted_mode);
7552         return ERR_PTR(-EINVAL);
7553 }
7554
7555 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7556  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7557 static void
7558 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7559                              unsigned *prepare_pipes, unsigned *disable_pipes)
7560 {
7561         struct intel_crtc *intel_crtc;
7562         struct drm_device *dev = crtc->dev;
7563         struct intel_encoder *encoder;
7564         struct intel_connector *connector;
7565         struct drm_crtc *tmp_crtc;
7566
7567         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7568
7569         /* Check which crtcs have changed outputs connected to them, these need
7570          * to be part of the prepare_pipes mask. We don't (yet) support global
7571          * modeset across multiple crtcs, so modeset_pipes will only have one
7572          * bit set at most. */
7573         list_for_each_entry(connector, &dev->mode_config.connector_list,
7574                             base.head) {
7575                 if (connector->base.encoder == &connector->new_encoder->base)
7576                         continue;
7577
7578                 if (connector->base.encoder) {
7579                         tmp_crtc = connector->base.encoder->crtc;
7580
7581                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7582                 }
7583
7584                 if (connector->new_encoder)
7585                         *prepare_pipes |=
7586                                 1 << connector->new_encoder->new_crtc->pipe;
7587         }
7588
7589         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7590                             base.head) {
7591                 if (encoder->base.crtc == &encoder->new_crtc->base)
7592                         continue;
7593
7594                 if (encoder->base.crtc) {
7595                         tmp_crtc = encoder->base.crtc;
7596
7597                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7598                 }
7599
7600                 if (encoder->new_crtc)
7601                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7602         }
7603
7604         /* Check for any pipes that will be fully disabled ... */
7605         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7606                             base.head) {
7607                 bool used = false;
7608
7609                 /* Don't try to disable disabled crtcs. */
7610                 if (!intel_crtc->base.enabled)
7611                         continue;
7612
7613                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7614                                     base.head) {
7615                         if (encoder->new_crtc == intel_crtc)
7616                                 used = true;
7617                 }
7618
7619                 if (!used)
7620                         *disable_pipes |= 1 << intel_crtc->pipe;
7621         }
7622
7623
7624         /* set_mode is also used to update properties on life display pipes. */
7625         intel_crtc = to_intel_crtc(crtc);
7626         if (crtc->enabled)
7627                 *prepare_pipes |= 1 << intel_crtc->pipe;
7628
7629         /*
7630          * For simplicity do a full modeset on any pipe where the output routing
7631          * changed. We could be more clever, but that would require us to be
7632          * more careful with calling the relevant encoder->mode_set functions.
7633          */
7634         if (*prepare_pipes)
7635                 *modeset_pipes = *prepare_pipes;
7636
7637         /* ... and mask these out. */
7638         *modeset_pipes &= ~(*disable_pipes);
7639         *prepare_pipes &= ~(*disable_pipes);
7640
7641         /*
7642          * HACK: We don't (yet) fully support global modesets. intel_set_config
7643          * obies this rule, but the modeset restore mode of
7644          * intel_modeset_setup_hw_state does not.
7645          */
7646         *modeset_pipes &= 1 << intel_crtc->pipe;
7647         *prepare_pipes &= 1 << intel_crtc->pipe;
7648 }
7649
7650 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7651 {
7652         struct drm_encoder *encoder;
7653         struct drm_device *dev = crtc->dev;
7654
7655         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7656                 if (encoder->crtc == crtc)
7657                         return true;
7658
7659         return false;
7660 }
7661
7662 static void
7663 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7664 {
7665         struct intel_encoder *intel_encoder;
7666         struct intel_crtc *intel_crtc;
7667         struct drm_connector *connector;
7668
7669         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7670                             base.head) {
7671                 if (!intel_encoder->base.crtc)
7672                         continue;
7673
7674                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7675
7676                 if (prepare_pipes & (1 << intel_crtc->pipe))
7677                         intel_encoder->connectors_active = false;
7678         }
7679
7680         intel_modeset_commit_output_state(dev);
7681
7682         /* Update computed state. */
7683         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7684                             base.head) {
7685                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7686         }
7687
7688         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7689                 if (!connector->encoder || !connector->encoder->crtc)
7690                         continue;
7691
7692                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7693
7694                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7695                         struct drm_property *dpms_property =
7696                                 dev->mode_config.dpms_property;
7697
7698                         connector->dpms = DRM_MODE_DPMS_ON;
7699                         drm_object_property_set_value(&connector->base,
7700                                                          dpms_property,
7701                                                          DRM_MODE_DPMS_ON);
7702
7703                         intel_encoder = to_intel_encoder(connector->encoder);
7704                         intel_encoder->connectors_active = true;
7705                 }
7706         }
7707
7708 }
7709
7710 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7711         list_for_each_entry((intel_crtc), \
7712                             &(dev)->mode_config.crtc_list, \
7713                             base.head) \
7714                 if (mask & (1 <<(intel_crtc)->pipe)) \
7715
7716 void
7717 intel_modeset_check_state(struct drm_device *dev)
7718 {
7719         struct intel_crtc *crtc;
7720         struct intel_encoder *encoder;
7721         struct intel_connector *connector;
7722
7723         list_for_each_entry(connector, &dev->mode_config.connector_list,
7724                             base.head) {
7725                 /* This also checks the encoder/connector hw state with the
7726                  * ->get_hw_state callbacks. */
7727                 intel_connector_check_state(connector);
7728
7729                 WARN(&connector->new_encoder->base != connector->base.encoder,
7730                      "connector's staged encoder doesn't match current encoder\n");
7731         }
7732
7733         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7734                             base.head) {
7735                 bool enabled = false;
7736                 bool active = false;
7737                 enum i915_pipe pipe, tracked_pipe;
7738
7739                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7740                               encoder->base.base.id,
7741                               drm_get_encoder_name(&encoder->base));
7742
7743                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7744                      "encoder's stage crtc doesn't match current crtc\n");
7745                 WARN(encoder->connectors_active && !encoder->base.crtc,
7746                      "encoder's active_connectors set, but no crtc\n");
7747
7748                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7749                                     base.head) {
7750                         if (connector->base.encoder != &encoder->base)
7751                                 continue;
7752                         enabled = true;
7753                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7754                                 active = true;
7755                 }
7756                 WARN(!!encoder->base.crtc != enabled,
7757                      "encoder's enabled state mismatch "
7758                      "(expected %i, found %i)\n",
7759                      !!encoder->base.crtc, enabled);
7760                 WARN(active && !encoder->base.crtc,
7761                      "active encoder with no crtc\n");
7762
7763                 WARN(encoder->connectors_active != active,
7764                      "encoder's computed active state doesn't match tracked active state "
7765                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7766
7767                 active = encoder->get_hw_state(encoder, &pipe);
7768                 WARN(active != encoder->connectors_active,
7769                      "encoder's hw state doesn't match sw tracking "
7770                      "(expected %i, found %i)\n",
7771                      encoder->connectors_active, active);
7772
7773                 if (!encoder->base.crtc)
7774                         continue;
7775
7776                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7777                 WARN(active && pipe != tracked_pipe,
7778                      "active encoder's pipe doesn't match"
7779                      "(expected %i, found %i)\n",
7780                      tracked_pipe, pipe);
7781
7782         }
7783
7784         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7785                             base.head) {
7786                 bool enabled = false;
7787                 bool active = false;
7788
7789                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7790                               crtc->base.base.id);
7791
7792                 WARN(crtc->active && !crtc->base.enabled,
7793                      "active crtc, but not enabled in sw tracking\n");
7794
7795                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7796                                     base.head) {
7797                         if (encoder->base.crtc != &crtc->base)
7798                                 continue;
7799                         enabled = true;
7800                         if (encoder->connectors_active)
7801                                 active = true;
7802                 }
7803                 WARN(active != crtc->active,
7804                      "crtc's computed active state doesn't match tracked active state "
7805                      "(expected %i, found %i)\n", active, crtc->active);
7806                 WARN(enabled != crtc->base.enabled,
7807                      "crtc's computed enabled state doesn't match tracked enabled state "
7808                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7809
7810                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7811         }
7812 }
7813
7814 static int __intel_set_mode(struct drm_crtc *crtc,
7815                             struct drm_display_mode *mode,
7816                             int x, int y, struct drm_framebuffer *fb)
7817 {
7818         struct drm_device *dev = crtc->dev;
7819         drm_i915_private_t *dev_priv = dev->dev_private;
7820         struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
7821         struct intel_crtc *intel_crtc;
7822         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7823         int ret = 0;
7824
7825         saved_mode = kmalloc(2 * sizeof(*saved_mode), M_DRM, M_WAITOK);
7826         if (!saved_mode)
7827                 return -ENOMEM;
7828         saved_hwmode = saved_mode + 1;
7829
7830         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7831                                      &prepare_pipes, &disable_pipes);
7832
7833         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7834                       modeset_pipes, prepare_pipes, disable_pipes);
7835
7836         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7837                 intel_crtc_disable(&intel_crtc->base);
7838
7839         *saved_hwmode = crtc->hwmode;
7840         *saved_mode = crtc->mode;
7841
7842         /* Hack: Because we don't (yet) support global modeset on multiple
7843          * crtcs, we don't keep track of the new mode for more than one crtc.
7844          * Hence simply check whether any bit is set in modeset_pipes in all the
7845          * pieces of code that are not yet converted to deal with mutliple crtcs
7846          * changing their mode at the same time. */
7847         adjusted_mode = NULL;
7848         if (modeset_pipes) {
7849                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7850                 if (IS_ERR(adjusted_mode)) {
7851                         ret = PTR_ERR(adjusted_mode);
7852                         goto out;
7853                 }
7854         }
7855
7856         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7857                 if (intel_crtc->base.enabled)
7858                         dev_priv->display.crtc_disable(&intel_crtc->base);
7859         }
7860
7861         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7862          * to set it here already despite that we pass it down the callchain.
7863          */
7864         if (modeset_pipes)
7865                 crtc->mode = *mode;
7866
7867         /* Only after disabling all output pipelines that will be changed can we
7868          * update the the output configuration. */
7869         intel_modeset_update_state(dev, prepare_pipes);
7870
7871         if (dev_priv->display.modeset_global_resources)
7872                 dev_priv->display.modeset_global_resources(dev);
7873
7874         /* Set up the DPLL and any encoders state that needs to adjust or depend
7875          * on the DPLL.
7876          */
7877         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7878                 ret = intel_crtc_mode_set(&intel_crtc->base,
7879                                           mode, adjusted_mode,
7880                                           x, y, fb);
7881                 if (ret)
7882                         goto done;
7883         }
7884
7885         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7886         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7887                 dev_priv->display.crtc_enable(&intel_crtc->base);
7888
7889         if (modeset_pipes) {
7890                 /* Store real post-adjustment hardware mode. */
7891                 crtc->hwmode = *adjusted_mode;
7892
7893                 /* Calculate and store various constants which
7894                  * are later needed by vblank and swap-completion
7895                  * timestamping. They are derived from true hwmode.
7896                  */
7897                 drm_calc_timestamping_constants(crtc);
7898         }
7899
7900         /* FIXME: add subpixel order */
7901 done:
7902         drm_mode_destroy(dev, adjusted_mode);
7903         if (ret && crtc->enabled) {
7904                 crtc->hwmode = *saved_hwmode;
7905                 crtc->mode = *saved_mode;
7906         }
7907
7908 out:
7909         kfree(saved_mode, M_DRM);
7910         return ret;
7911 }
7912
7913 int intel_set_mode(struct drm_crtc *crtc,
7914                      struct drm_display_mode *mode,
7915                      int x, int y, struct drm_framebuffer *fb)
7916 {
7917         int ret;
7918
7919         ret = __intel_set_mode(crtc, mode, x, y, fb);
7920
7921         if (ret == 0)
7922                 intel_modeset_check_state(crtc->dev);
7923
7924         return ret;
7925 }
7926
7927 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7928 {
7929         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7930 }
7931
7932 #undef for_each_intel_crtc_masked
7933
7934 static void intel_set_config_free(struct intel_set_config *config)
7935 {
7936         if (!config)
7937                 return;
7938
7939         drm_free(config->save_connector_encoders, M_DRM);
7940         drm_free(config->save_encoder_crtcs, M_DRM);
7941         drm_free(config, M_DRM);
7942 }
7943
7944 static int intel_set_config_save_state(struct drm_device *dev,
7945                                        struct intel_set_config *config)
7946 {
7947         struct drm_encoder *encoder;
7948         struct drm_connector *connector;
7949         int count;
7950
7951         config->save_encoder_crtcs =
7952                 kmalloc(dev->mode_config.num_encoder *
7953                         sizeof(struct drm_crtc *), M_DRM, M_WAITOK | M_ZERO );
7954         if (!config->save_encoder_crtcs)
7955                 return -ENOMEM;
7956
7957         config->save_connector_encoders =
7958                 kmalloc(dev->mode_config.num_connector *
7959                         sizeof(struct drm_encoder *), M_DRM, M_WAITOK | M_ZERO );
7960         if (!config->save_connector_encoders)
7961                 return -ENOMEM;
7962
7963         /* Copy data. Note that driver private data is not affected.
7964          * Should anything bad happen only the expected state is
7965          * restored, not the drivers personal bookkeeping.
7966          */
7967         count = 0;
7968         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7969                 config->save_encoder_crtcs[count++] = encoder->crtc;
7970         }
7971
7972         count = 0;
7973         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7974                 config->save_connector_encoders[count++] = connector->encoder;
7975         }
7976
7977         return 0;
7978 }
7979
7980 static void intel_set_config_restore_state(struct drm_device *dev,
7981                                            struct intel_set_config *config)
7982 {
7983         struct intel_encoder *encoder;
7984         struct intel_connector *connector;
7985         int count;
7986
7987         count = 0;
7988         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7989                 encoder->new_crtc =
7990                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7991         }
7992
7993         count = 0;
7994         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7995                 connector->new_encoder =
7996                         to_intel_encoder(config->save_connector_encoders[count++]);
7997         }
7998 }
7999
8000 static bool
8001 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8002                       int num_connectors)
8003 {
8004         int i;
8005
8006         for (i = 0; i < num_connectors; i++)
8007                 if (connectors[i].encoder &&
8008                     connectors[i].encoder->crtc == crtc &&
8009                     connectors[i].dpms != DRM_MODE_DPMS_ON)
8010                         return true;
8011
8012         return false;
8013 }
8014
8015 static void
8016 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8017                                       struct intel_set_config *config)
8018 {
8019
8020         /* We should be able to check here if the fb has the same properties
8021          * and then just flip_or_move it */
8022         if (set->connectors != NULL &&
8023             is_crtc_connector_off(set->crtc, *set->connectors,
8024                                   set->num_connectors)) {
8025                         config->mode_changed = true;
8026         } else if (set->crtc->fb != set->fb) {
8027                 /* If we have no fb then treat it as a full mode set */
8028                 if (set->crtc->fb == NULL) {
8029                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8030                         config->mode_changed = true;
8031                 } else if (set->fb == NULL) {
8032                         config->mode_changed = true;
8033                 } else if (set->fb->depth != set->crtc->fb->depth) {
8034                         config->mode_changed = true;
8035                 } else if (set->fb->bits_per_pixel !=
8036                            set->crtc->fb->bits_per_pixel) {
8037                         config->mode_changed = true;
8038                 } else {
8039                         config->fb_changed = true;
8040                 }
8041         }
8042
8043         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8044                 config->fb_changed = true;
8045
8046         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8047                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8048                 drm_mode_debug_printmodeline(&set->crtc->mode);
8049                 drm_mode_debug_printmodeline(set->mode);
8050                 config->mode_changed = true;
8051         }
8052 }
8053
8054 static int
8055 intel_modeset_stage_output_state(struct drm_device *dev,
8056                                  struct drm_mode_set *set,
8057                                  struct intel_set_config *config)
8058 {
8059         struct drm_crtc *new_crtc;
8060         struct intel_connector *connector;
8061         struct intel_encoder *encoder;
8062         int count, ro;
8063
8064         /* The upper layers ensure that we either disable a crtc or have a list
8065          * of connectors. For paranoia, double-check this. */
8066         WARN_ON(!set->fb && (set->num_connectors != 0));
8067         WARN_ON(set->fb && (set->num_connectors == 0));
8068
8069         count = 0;
8070         list_for_each_entry(connector, &dev->mode_config.connector_list,
8071                             base.head) {
8072                 /* Otherwise traverse passed in connector list and get encoders
8073                  * for them. */
8074                 for (ro = 0; ro < set->num_connectors; ro++) {
8075                         if (set->connectors[ro] == &connector->base) {
8076                                 connector->new_encoder = connector->encoder;
8077                                 break;
8078                         }
8079                 }
8080
8081                 /* If we disable the crtc, disable all its connectors. Also, if
8082                  * the connector is on the changing crtc but not on the new
8083                  * connector list, disable it. */
8084                 if ((!set->fb || ro == set->num_connectors) &&
8085                     connector->base.encoder &&
8086                     connector->base.encoder->crtc == set->crtc) {
8087                         connector->new_encoder = NULL;
8088
8089                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8090                                 connector->base.base.id,
8091                                 drm_get_connector_name(&connector->base));
8092                 }
8093
8094
8095                 if (&connector->new_encoder->base != connector->base.encoder) {
8096                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8097                         config->mode_changed = true;
8098                 }
8099         }
8100         /* connector->new_encoder is now updated for all connectors. */
8101
8102         /* Update crtc of enabled connectors. */
8103         count = 0;
8104         list_for_each_entry(connector, &dev->mode_config.connector_list,
8105                             base.head) {
8106                 if (!connector->new_encoder)
8107                         continue;
8108
8109                 new_crtc = connector->new_encoder->base.crtc;
8110
8111                 for (ro = 0; ro < set->num_connectors; ro++) {
8112                         if (set->connectors[ro] == &connector->base)
8113                                 new_crtc = set->crtc;
8114                 }
8115
8116                 /* Make sure the new CRTC will work with the encoder */
8117                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8118                                            new_crtc)) {
8119                         return -EINVAL;
8120                 }
8121                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8122
8123                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8124                         connector->base.base.id,
8125                         drm_get_connector_name(&connector->base),
8126                         new_crtc->base.id);
8127         }
8128
8129         /* Check for any encoders that needs to be disabled. */
8130         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8131                             base.head) {
8132                 list_for_each_entry(connector,
8133                                     &dev->mode_config.connector_list,
8134                                     base.head) {
8135                         if (connector->new_encoder == encoder) {
8136                                 WARN_ON(!connector->new_encoder->new_crtc);
8137
8138                                 goto next_encoder;
8139                         }
8140                 }
8141                 encoder->new_crtc = NULL;
8142 next_encoder:
8143                 /* Only now check for crtc changes so we don't miss encoders
8144                  * that will be disabled. */
8145                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8146                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8147                         config->mode_changed = true;
8148                 }
8149         }
8150         /* Now we've also updated encoder->new_crtc for all encoders. */
8151
8152         return 0;
8153 }
8154
8155 static int intel_crtc_set_config(struct drm_mode_set *set)
8156 {
8157         struct drm_device *dev;
8158         struct drm_mode_set save_set;
8159         struct intel_set_config *config;
8160         int ret;
8161
8162         BUG_ON(!set);
8163         BUG_ON(!set->crtc);
8164         BUG_ON(!set->crtc->helper_private);
8165
8166         /* Enforce sane interface api - has been abused by the fb helper. */
8167         BUG_ON(!set->mode && set->fb);
8168         BUG_ON(set->fb && set->num_connectors == 0);
8169
8170         if (set->fb) {
8171                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8172                                 set->crtc->base.id, set->fb->base.id,
8173                                 (int)set->num_connectors, set->x, set->y);
8174         } else {
8175                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8176         }
8177
8178         dev = set->crtc->dev;
8179
8180         ret = -ENOMEM;
8181         config = kmalloc(sizeof(*config), M_DRM, M_WAITOK | M_ZERO);
8182         if (!config)
8183                 goto out_config;
8184
8185         ret = intel_set_config_save_state(dev, config);
8186         if (ret)
8187                 goto out_config;
8188
8189         save_set.crtc = set->crtc;
8190         save_set.mode = &set->crtc->mode;
8191         save_set.x = set->crtc->x;
8192         save_set.y = set->crtc->y;
8193         save_set.fb = set->crtc->fb;
8194
8195         /* Compute whether we need a full modeset, only an fb base update or no
8196          * change at all. In the future we might also check whether only the
8197          * mode changed, e.g. for LVDS where we only change the panel fitter in
8198          * such cases. */
8199         intel_set_config_compute_mode_changes(set, config);
8200
8201         ret = intel_modeset_stage_output_state(dev, set, config);
8202         if (ret)
8203                 goto fail;
8204
8205         if (config->mode_changed) {
8206                 if (set->mode) {
8207                         DRM_DEBUG_KMS("attempting to set mode from"
8208                                         " userspace\n");
8209                         drm_mode_debug_printmodeline(set->mode);
8210                 }
8211
8212                 ret = intel_set_mode(set->crtc, set->mode,
8213                                      set->x, set->y, set->fb);
8214                 if (ret) {
8215                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8216                                   set->crtc->base.id, ret);
8217                         goto fail;
8218                 }
8219         } else if (config->fb_changed) {
8220                 ret = intel_pipe_set_base(set->crtc,
8221                                           set->x, set->y, set->fb);
8222         }
8223
8224         intel_set_config_free(config);
8225
8226         return 0;
8227
8228 fail:
8229         intel_set_config_restore_state(dev, config);
8230
8231         /* Try to restore the config */
8232         if (config->mode_changed &&
8233             intel_set_mode(save_set.crtc, save_set.mode,
8234                            save_set.x, save_set.y, save_set.fb))
8235                 DRM_ERROR("failed to restore config after modeset failure\n");
8236
8237 out_config:
8238         intel_set_config_free(config);
8239         return ret;
8240 }
8241
8242 static const struct drm_crtc_funcs intel_crtc_funcs = {
8243         .cursor_set = intel_crtc_cursor_set,
8244         .cursor_move = intel_crtc_cursor_move,
8245         .gamma_set = intel_crtc_gamma_set,
8246         .set_config = intel_crtc_set_config,
8247         .destroy = intel_crtc_destroy,
8248         .page_flip = intel_crtc_page_flip,
8249 };
8250
8251 static void intel_cpu_pll_init(struct drm_device *dev)
8252 {
8253         if (HAS_DDI(dev))
8254                 intel_ddi_pll_init(dev);
8255 }
8256
8257 static void intel_pch_pll_init(struct drm_device *dev)
8258 {
8259         drm_i915_private_t *dev_priv = dev->dev_private;
8260         int i;
8261
8262         if (dev_priv->num_pch_pll == 0) {
8263                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8264                 return;
8265         }
8266
8267         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8268                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8269                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8270                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8271         }
8272 }
8273
8274 static void intel_crtc_init(struct drm_device *dev, int pipe)
8275 {
8276         drm_i915_private_t *dev_priv = dev->dev_private;
8277         struct intel_crtc *intel_crtc;
8278         int i;
8279
8280         intel_crtc = kmalloc(sizeof(struct intel_crtc) +
8281             (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
8282             M_DRM, M_WAITOK | M_ZERO);
8283         if (intel_crtc == NULL)
8284                 return;
8285
8286         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8287
8288         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8289         for (i = 0; i < 256; i++) {
8290                 intel_crtc->lut_r[i] = i;
8291                 intel_crtc->lut_g[i] = i;
8292                 intel_crtc->lut_b[i] = i;
8293         }
8294
8295         /* Swap pipes & planes for FBC on pre-965 */
8296         intel_crtc->pipe = pipe;
8297         intel_crtc->plane = pipe;
8298         intel_crtc->cpu_transcoder = pipe;
8299         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8300                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8301                 intel_crtc->plane = !pipe;
8302         }
8303
8304         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8305                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8306         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8307         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8308
8309         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8310
8311         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8312 }
8313
8314 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8315                                 struct drm_file *file)
8316 {
8317         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8318         struct drm_mode_object *drmmode_obj;
8319         struct intel_crtc *crtc;
8320
8321         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8322                 return -ENODEV;
8323
8324         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8325                         DRM_MODE_OBJECT_CRTC);
8326
8327         if (!drmmode_obj) {
8328                 DRM_ERROR("no such CRTC id\n");
8329                 return -EINVAL;
8330         }
8331
8332         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8333         pipe_from_crtc_id->pipe = crtc->pipe;
8334
8335         return 0;
8336 }
8337
8338 static int intel_encoder_clones(struct intel_encoder *encoder)
8339 {
8340         struct drm_device *dev = encoder->base.dev;
8341         struct intel_encoder *source_encoder;
8342         int index_mask = 0;
8343         int entry = 0;
8344
8345         list_for_each_entry(source_encoder,
8346                             &dev->mode_config.encoder_list, base.head) {
8347
8348                 if (encoder == source_encoder)
8349                         index_mask |= (1 << entry);
8350
8351                 /* Intel hw has only one MUX where enocoders could be cloned. */
8352                 if (encoder->cloneable && source_encoder->cloneable)
8353                         index_mask |= (1 << entry);
8354
8355                 entry++;
8356         }
8357
8358         return index_mask;
8359 }
8360
8361 static bool has_edp_a(struct drm_device *dev)
8362 {
8363         struct drm_i915_private *dev_priv = dev->dev_private;
8364
8365         if (!IS_MOBILE(dev))
8366                 return false;
8367
8368         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8369                 return false;
8370
8371         if (IS_GEN5(dev) &&
8372             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8373                 return false;
8374
8375         return true;
8376 }
8377
8378 static void intel_setup_outputs(struct drm_device *dev)
8379 {
8380         struct drm_i915_private *dev_priv = dev->dev_private;
8381         struct intel_encoder *encoder;
8382         bool dpd_is_edp = false;
8383         bool has_lvds;
8384
8385         has_lvds = intel_lvds_init(dev);
8386         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8387                 /* disable the panel fitter on everything but LVDS */
8388                 I915_WRITE(PFIT_CONTROL, 0);
8389         }
8390
8391         if (!IS_ULT(dev))
8392                 intel_crt_init(dev);
8393
8394         if (HAS_DDI(dev)) {
8395                 int found;
8396
8397                 /* Haswell uses DDI functions to detect digital outputs */
8398                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8399                 /* DDI A only supports eDP */
8400                 if (found)
8401                         intel_ddi_init(dev, PORT_A);
8402
8403                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8404                  * register */
8405                 found = I915_READ(SFUSE_STRAP);
8406
8407                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8408                         intel_ddi_init(dev, PORT_B);
8409                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8410                         intel_ddi_init(dev, PORT_C);
8411                 if (found & SFUSE_STRAP_DDID_DETECTED)
8412                         intel_ddi_init(dev, PORT_D);
8413         } else if (HAS_PCH_SPLIT(dev)) {
8414                 int found;
8415                 dpd_is_edp = intel_dpd_is_edp(dev);
8416
8417                 if (has_edp_a(dev))
8418                         intel_dp_init(dev, DP_A, PORT_A);
8419
8420                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8421                         /* PCH SDVOB multiplex with HDMIB */
8422                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8423                         if (!found)
8424                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8425                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8426                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8427                 }
8428
8429                 if (I915_READ(HDMIC) & PORT_DETECTED)
8430                         intel_hdmi_init(dev, HDMIC, PORT_C);
8431
8432                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8433                         intel_hdmi_init(dev, HDMID, PORT_D);
8434
8435                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8436                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8437
8438                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8439                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8440         } else if (IS_VALLEYVIEW(dev)) {
8441                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8442                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8443                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8444
8445                 if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) {
8446                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B);
8447                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8448                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8449                 }
8450
8451                 if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED)
8452                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C);
8453
8454         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8455                 bool found = false;
8456
8457                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8458                         DRM_DEBUG_KMS("probing SDVOB\n");
8459                         found = intel_sdvo_init(dev, SDVOB, true);
8460                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8461                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8462                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8463                         }
8464
8465                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8466                                 DRM_DEBUG_KMS("probing DP_B\n");
8467                                 intel_dp_init(dev, DP_B, PORT_B);
8468                         }
8469                 }
8470
8471                 /* Before G4X SDVOC doesn't have its own detect register */
8472
8473                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8474                         DRM_DEBUG_KMS("probing SDVOC\n");
8475                         found = intel_sdvo_init(dev, SDVOC, false);
8476                 }
8477
8478                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8479
8480                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8481                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8482                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8483                         }
8484                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8485                                 DRM_DEBUG_KMS("probing DP_C\n");
8486                                 intel_dp_init(dev, DP_C, PORT_C);
8487                         }
8488                 }
8489
8490                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8491                     (I915_READ(DP_D) & DP_DETECTED)) {
8492                         DRM_DEBUG_KMS("probing DP_D\n");
8493                         intel_dp_init(dev, DP_D, PORT_D);
8494                 }
8495         } else if (IS_GEN2(dev)) {
8496 #if 0
8497                 intel_dvo_init(dev);
8498 #endif
8499         }
8500
8501         if (SUPPORTS_TV(dev))
8502                 intel_tv_init(dev);
8503
8504         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8505                 encoder->base.possible_crtcs = encoder->crtc_mask;
8506                 encoder->base.possible_clones =
8507                         intel_encoder_clones(encoder);
8508         }
8509
8510         intel_init_pch_refclk(dev);
8511
8512         drm_helper_move_panel_connectors_to_head(dev);
8513 }
8514
8515 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8516 {
8517         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8518
8519         drm_framebuffer_cleanup(fb);
8520         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8521
8522         drm_free(intel_fb, M_DRM);
8523 }
8524
8525 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8526                                                 struct drm_file *file,
8527                                                 unsigned int *handle)
8528 {
8529         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8530         struct drm_i915_gem_object *obj = intel_fb->obj;
8531
8532         return drm_gem_handle_create(file, &obj->base, handle);
8533 }
8534
8535 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8536         .destroy = intel_user_framebuffer_destroy,
8537         .create_handle = intel_user_framebuffer_create_handle,
8538 };
8539
8540 int intel_framebuffer_init(struct drm_device *dev,
8541                            struct intel_framebuffer *intel_fb,
8542                            struct drm_mode_fb_cmd2 *mode_cmd,
8543                            struct drm_i915_gem_object *obj)
8544 {
8545         int ret;
8546
8547         if (obj->tiling_mode == I915_TILING_Y) {
8548                 DRM_DEBUG("hardware does not support tiling Y\n");
8549                 return -EINVAL;
8550         }
8551
8552         if (mode_cmd->pitches[0] & 63) {
8553                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8554                           mode_cmd->pitches[0]);
8555                 return -EINVAL;
8556         }
8557
8558         /* FIXME <= Gen4 stride limits are bit unclear */
8559         if (mode_cmd->pitches[0] > 32768) {
8560                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8561                           mode_cmd->pitches[0]);
8562                 return -EINVAL;
8563         }
8564
8565         if (obj->tiling_mode != I915_TILING_NONE &&
8566             mode_cmd->pitches[0] != obj->stride) {
8567                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8568                           mode_cmd->pitches[0], obj->stride);
8569                 return -EINVAL;
8570         }
8571
8572         /* Reject formats not supported by any plane early. */
8573         switch (mode_cmd->pixel_format) {
8574         case DRM_FORMAT_C8:
8575         case DRM_FORMAT_RGB565:
8576         case DRM_FORMAT_XRGB8888:
8577         case DRM_FORMAT_ARGB8888:
8578                 break;
8579         case DRM_FORMAT_XRGB1555:
8580         case DRM_FORMAT_ARGB1555:
8581                 if (INTEL_INFO(dev)->gen > 3) {
8582                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8583                         return -EINVAL;
8584                 }
8585                 break;
8586         case DRM_FORMAT_XBGR8888:
8587         case DRM_FORMAT_ABGR8888:
8588         case DRM_FORMAT_XRGB2101010:
8589         case DRM_FORMAT_ARGB2101010:
8590         case DRM_FORMAT_XBGR2101010:
8591         case DRM_FORMAT_ABGR2101010:
8592                 if (INTEL_INFO(dev)->gen < 4) {
8593                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8594                         return -EINVAL;
8595                 }
8596                 break;
8597         case DRM_FORMAT_YUYV:
8598         case DRM_FORMAT_UYVY:
8599         case DRM_FORMAT_YVYU:
8600         case DRM_FORMAT_VYUY:
8601                 if (INTEL_INFO(dev)->gen < 5) {
8602                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8603                         return -EINVAL;
8604                 }
8605                 break;
8606         default:
8607                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8608                 return -EINVAL;
8609         }
8610
8611         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8612         if (mode_cmd->offsets[0] != 0)
8613                 return -EINVAL;
8614
8615         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8616         intel_fb->obj = obj;
8617
8618         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8619         if (ret) {
8620                 DRM_ERROR("framebuffer init failed %d\n", ret);
8621                 return ret;
8622         }
8623
8624         return 0;
8625 }
8626
8627 static struct drm_framebuffer *
8628 intel_user_framebuffer_create(struct drm_device *dev,
8629                               struct drm_file *filp,
8630                               struct drm_mode_fb_cmd2 *mode_cmd)
8631 {
8632         struct drm_i915_gem_object *obj;
8633
8634         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8635                                                 mode_cmd->handles[0]));
8636         if (&obj->base == NULL)
8637                 return ERR_PTR(-ENOENT);
8638
8639         return intel_framebuffer_create(dev, mode_cmd, obj);
8640 }
8641
8642 static const struct drm_mode_config_funcs intel_mode_funcs = {
8643         .fb_create = intel_user_framebuffer_create,
8644         .output_poll_changed = intel_fb_output_poll_changed,
8645 };
8646
8647 /* Set up chip specific display functions */
8648 static void intel_init_display(struct drm_device *dev)
8649 {
8650         struct drm_i915_private *dev_priv = dev->dev_private;
8651
8652         /* We always want a DPMS function */
8653         if (HAS_DDI(dev)) {
8654                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8655                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8656                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8657                 dev_priv->display.off = haswell_crtc_off;
8658                 dev_priv->display.update_plane = ironlake_update_plane;
8659         } else if (HAS_PCH_SPLIT(dev)) {
8660                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8661                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8662                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8663                 dev_priv->display.off = ironlake_crtc_off;
8664                 dev_priv->display.update_plane = ironlake_update_plane;
8665         } else {
8666                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8667                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8668                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8669                 dev_priv->display.off = i9xx_crtc_off;
8670                 dev_priv->display.update_plane = i9xx_update_plane;
8671         }
8672
8673         /* Returns the core display clock speed */
8674         if (IS_VALLEYVIEW(dev))
8675                 dev_priv->display.get_display_clock_speed =
8676                         valleyview_get_display_clock_speed;
8677         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8678                 dev_priv->display.get_display_clock_speed =
8679                         i945_get_display_clock_speed;
8680         else if (IS_I915G(dev))
8681                 dev_priv->display.get_display_clock_speed =
8682                         i915_get_display_clock_speed;
8683         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8684                 dev_priv->display.get_display_clock_speed =
8685                         i9xx_misc_get_display_clock_speed;
8686         else if (IS_I915GM(dev))
8687                 dev_priv->display.get_display_clock_speed =
8688                         i915gm_get_display_clock_speed;
8689         else if (IS_I865G(dev))
8690                 dev_priv->display.get_display_clock_speed =
8691                         i865_get_display_clock_speed;
8692         else if (IS_I85X(dev))
8693                 dev_priv->display.get_display_clock_speed =
8694                         i855_get_display_clock_speed;
8695         else /* 852, 830 */
8696                 dev_priv->display.get_display_clock_speed =
8697                         i830_get_display_clock_speed;
8698
8699         if (HAS_PCH_SPLIT(dev)) {
8700                 if (IS_GEN5(dev)) {
8701                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8702                         dev_priv->display.write_eld = ironlake_write_eld;
8703                 } else if (IS_GEN6(dev)) {
8704                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8705                         dev_priv->display.write_eld = ironlake_write_eld;
8706                 } else if (IS_IVYBRIDGE(dev)) {
8707                         /* FIXME: detect B0+ stepping and use auto training */
8708                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8709                         dev_priv->display.write_eld = ironlake_write_eld;
8710                         dev_priv->display.modeset_global_resources =
8711                                 ivb_modeset_global_resources;
8712                 } else if (IS_HASWELL(dev)) {
8713                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8714                         dev_priv->display.write_eld = haswell_write_eld;
8715                         dev_priv->display.modeset_global_resources =
8716                                 haswell_modeset_global_resources;
8717                 }
8718         } else if (IS_G4X(dev)) {
8719                 dev_priv->display.write_eld = g4x_write_eld;
8720         }
8721
8722         /* Default just returns -ENODEV to indicate unsupported */
8723         dev_priv->display.queue_flip = intel_default_queue_flip;
8724
8725         switch (INTEL_INFO(dev)->gen) {
8726         case 2:
8727                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8728                 break;
8729
8730         case 3:
8731                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8732                 break;
8733
8734         case 4:
8735         case 5:
8736                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8737                 break;
8738
8739         case 6:
8740                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8741                 break;
8742         case 7:
8743                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8744                 break;
8745         }
8746 }
8747
8748 /*
8749  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8750  * resume, or other times.  This quirk makes sure that's the case for
8751  * affected systems.
8752  */
8753 static void quirk_pipea_force(struct drm_device *dev)
8754 {
8755         struct drm_i915_private *dev_priv = dev->dev_private;
8756
8757         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8758         DRM_INFO("applying pipe a force quirk\n");
8759 }
8760
8761 /*
8762  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8763  */
8764 static void quirk_ssc_force_disable(struct drm_device *dev)
8765 {
8766         struct drm_i915_private *dev_priv = dev->dev_private;
8767         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8768         DRM_INFO("applying lvds SSC disable quirk\n");
8769 }
8770
8771 /*
8772  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8773  * brightness value
8774  */
8775 static void quirk_invert_brightness(struct drm_device *dev)
8776 {
8777         struct drm_i915_private *dev_priv = dev->dev_private;
8778         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8779         DRM_INFO("applying inverted panel brightness quirk\n");
8780 }
8781
8782 struct intel_quirk {
8783         int device;
8784         int subsystem_vendor;
8785         int subsystem_device;
8786         void (*hook)(struct drm_device *dev);
8787 };
8788
8789 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8790 struct intel_dmi_quirk {
8791         void (*hook)(struct drm_device *dev);
8792         const struct dmi_system_id (*dmi_id_list)[];
8793 };
8794
8795 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8796 {
8797         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8798         return 1;
8799 }
8800
8801 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8802         {
8803                 .dmi_id_list = &(const struct dmi_system_id[]) {
8804                         {
8805                                 .callback = intel_dmi_reverse_brightness,
8806                                 .ident = "NCR Corporation",
8807                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8808                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8809                                 },
8810                         },
8811                         { }  /* terminating entry */
8812                 },
8813                 .hook = quirk_invert_brightness,
8814         },
8815 };
8816
8817 static struct intel_quirk intel_quirks[] = {
8818         /* HP Mini needs pipe A force quirk (LP: #322104) */
8819         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8820
8821         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8822         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8823
8824         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8825         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8826
8827         /* 830/845 need to leave pipe A & dpll A up */
8828         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8829         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8830
8831         /* Lenovo U160 cannot use SSC on LVDS */
8832         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8833
8834         /* Sony Vaio Y cannot use SSC on LVDS */
8835         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8836
8837         /* Acer Aspire 5734Z must invert backlight brightness */
8838         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8839
8840         /* Acer/eMachines G725 */
8841         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8842
8843         /* Acer/eMachines e725 */
8844         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8845
8846         /* Acer/Packard Bell NCL20 */
8847         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8848
8849         /* Acer Aspire 4736Z */
8850         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8851 };
8852
8853 static void intel_init_quirks(struct drm_device *dev)
8854 {
8855         device_t d;
8856         int i;
8857
8858         d = dev->dev;
8859         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8860                 struct intel_quirk *q = &intel_quirks[i];
8861                 if (pci_get_device(d) == q->device &&
8862                     (pci_get_subvendor(d) == q->subsystem_vendor ||
8863                      q->subsystem_vendor == PCI_ANY_ID) &&
8864                     (pci_get_subdevice(d) == q->subsystem_device ||
8865                      q->subsystem_device == PCI_ANY_ID))
8866                         q->hook(dev);
8867         }
8868         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8869                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8870                         intel_dmi_quirks[i].hook(dev);
8871         }
8872 }
8873
8874 /* Disable the VGA plane that we never use */
8875 static void i915_disable_vga(struct drm_device *dev)
8876 {
8877         struct drm_i915_private *dev_priv = dev->dev_private;
8878         u8 sr1;
8879         u32 vga_reg = i915_vgacntrl_reg(dev);
8880
8881 #if 0
8882         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8883 #endif
8884         outb(VGA_SR_INDEX, 1);
8885         sr1 = inb(VGA_SR_DATA);
8886         outb(VGA_SR_DATA, sr1 | 1 << 5);
8887 #if 0
8888         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8889 #endif
8890         udelay(300);
8891
8892         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8893         POSTING_READ(vga_reg);
8894 }
8895
8896 void intel_modeset_init_hw(struct drm_device *dev)
8897 {
8898         intel_init_power_well(dev);
8899
8900         intel_prepare_ddi(dev);
8901
8902         intel_init_clock_gating(dev);
8903
8904         mutex_lock(&dev->struct_mutex);
8905         intel_enable_gt_powersave(dev);
8906         mutex_unlock(&dev->struct_mutex);
8907 }
8908
8909 void intel_modeset_init(struct drm_device *dev)
8910 {
8911         struct drm_i915_private *dev_priv = dev->dev_private;
8912         int i, ret;
8913
8914         drm_mode_config_init(dev);
8915
8916         dev->mode_config.min_width = 0;
8917         dev->mode_config.min_height = 0;
8918
8919         dev->mode_config.preferred_depth = 24;
8920         dev->mode_config.prefer_shadow = 1;
8921
8922         dev->mode_config.funcs = &intel_mode_funcs;
8923
8924         intel_init_quirks(dev);
8925
8926         intel_init_pm(dev);
8927
8928         intel_init_display(dev);
8929
8930         if (IS_GEN2(dev)) {
8931                 dev->mode_config.max_width = 2048;
8932                 dev->mode_config.max_height = 2048;
8933         } else if (IS_GEN3(dev)) {
8934                 dev->mode_config.max_width = 4096;
8935                 dev->mode_config.max_height = 4096;
8936         } else {
8937                 dev->mode_config.max_width = 8192;
8938                 dev->mode_config.max_height = 8192;
8939         }
8940         dev->mode_config.fb_base = dev->agp->base;
8941
8942         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8943                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8944
8945         for (i = 0; i < dev_priv->num_pipe; i++) {
8946                 intel_crtc_init(dev, i);
8947                 ret = intel_plane_init(dev, i);
8948                 if (ret)
8949                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8950         }
8951
8952         intel_cpu_pll_init(dev);
8953         intel_pch_pll_init(dev);
8954
8955         /* Just disable it once at startup */
8956         i915_disable_vga(dev);
8957         intel_setup_outputs(dev);
8958
8959         /* Just in case the BIOS is doing something questionable. */
8960         intel_disable_fbc(dev);
8961 }
8962
8963 static void
8964 intel_connector_break_all_links(struct intel_connector *connector)
8965 {
8966         connector->base.dpms = DRM_MODE_DPMS_OFF;
8967         connector->base.encoder = NULL;
8968         connector->encoder->connectors_active = false;
8969         connector->encoder->base.crtc = NULL;
8970 }
8971
8972 static void intel_enable_pipe_a(struct drm_device *dev)
8973 {
8974         struct intel_connector *connector;
8975         struct drm_connector *crt = NULL;
8976         struct intel_load_detect_pipe load_detect_temp;
8977
8978         /* We can't just switch on the pipe A, we need to set things up with a
8979          * proper mode and output configuration. As a gross hack, enable pipe A
8980          * by enabling the load detect pipe once. */
8981         list_for_each_entry(connector,
8982                             &dev->mode_config.connector_list,
8983                             base.head) {
8984                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8985                         crt = &connector->base;
8986                         break;
8987                 }
8988         }
8989
8990         if (!crt)
8991                 return;
8992
8993         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8994                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8995
8996
8997 }
8998
8999 static bool
9000 intel_check_plane_mapping(struct intel_crtc *crtc)
9001 {
9002         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
9003         u32 reg, val;
9004
9005         if (dev_priv->num_pipe == 1)
9006                 return true;
9007
9008         reg = DSPCNTR(!crtc->plane);
9009         val = I915_READ(reg);
9010
9011         if ((val & DISPLAY_PLANE_ENABLE) &&
9012             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9013                 return false;
9014
9015         return true;
9016 }
9017
9018 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9019 {
9020         struct drm_device *dev = crtc->base.dev;
9021         struct drm_i915_private *dev_priv = dev->dev_private;
9022         u32 reg;
9023
9024         /* Clear any frame start delays used for debugging left by the BIOS */
9025         reg = PIPECONF(crtc->cpu_transcoder);
9026         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9027
9028         /* We need to sanitize the plane -> pipe mapping first because this will
9029          * disable the crtc (and hence change the state) if it is wrong. Note
9030          * that gen4+ has a fixed plane -> pipe mapping.  */
9031         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9032                 struct intel_connector *connector;
9033                 bool plane;
9034
9035                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9036                               crtc->base.base.id);
9037
9038                 /* Pipe has the wrong plane attached and the plane is active.
9039                  * Temporarily change the plane mapping and disable everything
9040                  * ...  */
9041                 plane = crtc->plane;
9042                 crtc->plane = !plane;
9043                 dev_priv->display.crtc_disable(&crtc->base);
9044                 crtc->plane = plane;
9045
9046                 /* ... and break all links. */
9047                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9048                                     base.head) {
9049                         if (connector->encoder->base.crtc != &crtc->base)
9050                                 continue;
9051
9052                         intel_connector_break_all_links(connector);
9053                 }
9054
9055                 WARN_ON(crtc->active);
9056                 crtc->base.enabled = false;
9057         }
9058
9059         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9060             crtc->pipe == PIPE_A && !crtc->active) {
9061                 /* BIOS forgot to enable pipe A, this mostly happens after
9062                  * resume. Force-enable the pipe to fix this, the update_dpms
9063                  * call below we restore the pipe to the right state, but leave
9064                  * the required bits on. */
9065                 intel_enable_pipe_a(dev);
9066         }
9067
9068         /* Adjust the state of the output pipe according to whether we
9069          * have active connectors/encoders. */
9070         intel_crtc_update_dpms(&crtc->base);
9071
9072         if (crtc->active != crtc->base.enabled) {
9073                 struct intel_encoder *encoder;
9074
9075                 /* This can happen either due to bugs in the get_hw_state
9076                  * functions or because the pipe is force-enabled due to the
9077                  * pipe A quirk. */
9078                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9079                               crtc->base.base.id,
9080                               crtc->base.enabled ? "enabled" : "disabled",
9081                               crtc->active ? "enabled" : "disabled");
9082
9083                 crtc->base.enabled = crtc->active;
9084
9085                 /* Because we only establish the connector -> encoder ->
9086                  * crtc links if something is active, this means the
9087                  * crtc is now deactivated. Break the links. connector
9088                  * -> encoder links are only establish when things are
9089                  *  actually up, hence no need to break them. */
9090                 WARN_ON(crtc->active);
9091
9092                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9093                         WARN_ON(encoder->connectors_active);
9094                         encoder->base.crtc = NULL;
9095                 }
9096         }
9097 }
9098
9099 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9100 {
9101         struct intel_connector *connector;
9102         struct drm_device *dev = encoder->base.dev;
9103
9104         /* We need to check both for a crtc link (meaning that the
9105          * encoder is active and trying to read from a pipe) and the
9106          * pipe itself being active. */
9107         bool has_active_crtc = encoder->base.crtc &&
9108                 to_intel_crtc(encoder->base.crtc)->active;
9109
9110         if (encoder->connectors_active && !has_active_crtc) {
9111                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9112                               encoder->base.base.id,
9113                               drm_get_encoder_name(&encoder->base));
9114
9115                 /* Connector is active, but has no active pipe. This is
9116                  * fallout from our resume register restoring. Disable
9117                  * the encoder manually again. */
9118                 if (encoder->base.crtc) {
9119                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9120                                       encoder->base.base.id,
9121                                       drm_get_encoder_name(&encoder->base));
9122                         encoder->disable(encoder);
9123                 }
9124
9125                 /* Inconsistent output/port/pipe state happens presumably due to
9126                  * a bug in one of the get_hw_state functions. Or someplace else
9127                  * in our code, like the register restore mess on resume. Clamp
9128                  * things to off as a safer default. */
9129                 list_for_each_entry(connector,
9130                                     &dev->mode_config.connector_list,
9131                                     base.head) {
9132                         if (connector->encoder != encoder)
9133                                 continue;
9134
9135                         intel_connector_break_all_links(connector);
9136                 }
9137         }
9138         /* Enabled encoders without active connectors will be fixed in
9139          * the crtc fixup. */
9140 }
9141
9142 void i915_redisable_vga(struct drm_device *dev)
9143 {
9144         struct drm_i915_private *dev_priv = dev->dev_private;
9145         u32 vga_reg = i915_vgacntrl_reg(dev);
9146
9147         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9148                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9149                 i915_disable_vga(dev);
9150         }
9151 }
9152
9153 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9154  * and i915 state tracking structures. */
9155 void intel_modeset_setup_hw_state(struct drm_device *dev,
9156                                   bool force_restore)
9157 {
9158         struct drm_i915_private *dev_priv = dev->dev_private;
9159         enum i915_pipe pipe;
9160         u32 tmp;
9161         struct intel_crtc *crtc;
9162         struct intel_encoder *encoder;
9163         struct intel_connector *connector;
9164
9165         if (HAS_DDI(dev)) {
9166                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9167
9168                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9169                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9170                         case TRANS_DDI_EDP_INPUT_A_ON:
9171                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9172                                 pipe = PIPE_A;
9173                                 break;
9174                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9175                                 pipe = PIPE_B;
9176                                 break;
9177                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9178                                 pipe = PIPE_C;
9179                                 break;
9180                         }
9181
9182                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9183                         crtc->cpu_transcoder = TRANSCODER_EDP;
9184
9185                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9186                                       pipe_name(pipe));
9187                 }
9188         }
9189
9190         for_each_pipe(pipe) {
9191                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9192
9193                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9194                 if (tmp & PIPECONF_ENABLE)
9195                         crtc->active = true;
9196                 else
9197                         crtc->active = false;
9198
9199                 crtc->base.enabled = crtc->active;
9200
9201                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9202                               crtc->base.base.id,
9203                               crtc->active ? "enabled" : "disabled");
9204         }
9205
9206         if (HAS_DDI(dev))
9207                 intel_ddi_setup_hw_pll_state(dev);
9208
9209         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9210                             base.head) {
9211                 pipe = 0;
9212
9213                 if (encoder->get_hw_state(encoder, &pipe)) {
9214                         encoder->base.crtc =
9215                                 dev_priv->pipe_to_crtc_mapping[pipe];
9216                 } else {
9217                         encoder->base.crtc = NULL;
9218                 }
9219
9220                 encoder->connectors_active = false;
9221                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9222                               encoder->base.base.id,
9223                               drm_get_encoder_name(&encoder->base),
9224                               encoder->base.crtc ? "enabled" : "disabled",
9225                               pipe);
9226         }
9227
9228         list_for_each_entry(connector, &dev->mode_config.connector_list,
9229                             base.head) {
9230                 if (connector->get_hw_state(connector)) {
9231                         connector->base.dpms = DRM_MODE_DPMS_ON;
9232                         connector->encoder->connectors_active = true;
9233                         connector->base.encoder = &connector->encoder->base;
9234                 } else {
9235                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9236                         connector->base.encoder = NULL;
9237                 }
9238                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9239                               connector->base.base.id,
9240                               drm_get_connector_name(&connector->base),
9241                               connector->base.encoder ? "enabled" : "disabled");
9242         }
9243
9244         /* HW state is read out, now we need to sanitize this mess. */
9245         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9246                             base.head) {
9247                 intel_sanitize_encoder(encoder);
9248         }
9249
9250         for_each_pipe(pipe) {
9251                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9252                 intel_sanitize_crtc(crtc);
9253         }
9254
9255         if (force_restore) {
9256                 /*
9257                  * We need to use raw interfaces for restoring state to avoid
9258                  * checking (bogus) intermediate states.
9259                  */
9260                 for_each_pipe(pipe) {
9261                         struct drm_crtc *crtc =
9262                                 dev_priv->pipe_to_crtc_mapping[pipe];
9263
9264                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9265                                          crtc->fb);
9266                 }
9267
9268                 i915_redisable_vga(dev);
9269         } else {
9270                 intel_modeset_update_staged_output_state(dev);
9271         }
9272
9273         intel_modeset_check_state(dev);
9274
9275         drm_mode_config_reset(dev);
9276 }
9277
9278 void intel_modeset_gem_init(struct drm_device *dev)
9279 {
9280         intel_modeset_init_hw(dev);
9281
9282         intel_setup_overlay(dev);
9283
9284         intel_modeset_setup_hw_state(dev, false);
9285 }
9286
9287 void intel_modeset_cleanup(struct drm_device *dev)
9288 {
9289         struct drm_i915_private *dev_priv = dev->dev_private;
9290         struct drm_crtc *crtc;
9291         struct intel_crtc *intel_crtc;
9292
9293         drm_kms_helper_poll_fini(dev);
9294         mutex_lock(&dev->struct_mutex);
9295
9296 #if 0
9297         intel_unregister_dsm_handler();
9298 #endif
9299
9300         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9301                 /* Skip inactive CRTCs */
9302                 if (!crtc->fb)
9303                         continue;
9304
9305                 intel_crtc = to_intel_crtc(crtc);
9306                 intel_increase_pllclock(crtc);
9307         }
9308
9309         intel_disable_fbc(dev);
9310
9311         intel_disable_gt_powersave(dev);
9312
9313         ironlake_teardown_rc6(dev);
9314
9315         if (IS_VALLEYVIEW(dev))
9316                 vlv_init_dpio(dev);
9317
9318         mutex_unlock(&dev->struct_mutex);
9319
9320         /* Disable the irq before mode object teardown, for the irq might
9321          * enqueue unpin/hotplug work. */
9322         drm_irq_uninstall(dev);
9323         cancel_work_sync(&dev_priv->hotplug_work);
9324         cancel_work_sync(&dev_priv->rps.work);
9325
9326         /* flush any delayed tasks or pending work */
9327         flush_scheduled_work();
9328
9329         /* destroy backlight, if any, before the connectors */
9330         intel_panel_destroy_backlight(dev);
9331
9332         drm_mode_config_cleanup(dev);
9333
9334         intel_cleanup_overlay(dev);
9335 }
9336
9337 /*
9338  * Return which encoder is currently attached for connector.
9339  */
9340 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9341 {
9342         return &intel_attached_encoder(connector)->base;
9343 }
9344
9345 void intel_connector_attach_encoder(struct intel_connector *connector,
9346                                     struct intel_encoder *encoder)
9347 {
9348         connector->encoder = encoder;
9349         drm_mode_connector_attach_encoder(&connector->base,
9350                                           &encoder->base);
9351 }
9352
9353 /*
9354  * set vga decode state - true == enable VGA decode
9355  */
9356 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9357 {
9358         struct drm_i915_private *dev_priv = dev->dev_private;
9359         u16 gmch_ctrl;
9360
9361         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9362         if (state)
9363                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9364         else
9365                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9366         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9367         return 0;
9368 }
9369
9370 #ifdef CONFIG_DEBUG_FS
9371 #include <linux/seq_file.h>
9372
9373 struct intel_display_error_state {
9374         struct intel_cursor_error_state {
9375                 u32 control;
9376                 u32 position;
9377                 u32 base;
9378                 u32 size;
9379         } cursor[I915_MAX_PIPES];
9380
9381         struct intel_pipe_error_state {
9382                 u32 conf;
9383                 u32 source;
9384
9385                 u32 htotal;
9386                 u32 hblank;
9387                 u32 hsync;
9388                 u32 vtotal;
9389                 u32 vblank;
9390                 u32 vsync;
9391         } pipe[I915_MAX_PIPES];
9392
9393         struct intel_plane_error_state {
9394                 u32 control;
9395                 u32 stride;
9396                 u32 size;
9397                 u32 pos;
9398                 u32 addr;
9399                 u32 surface;
9400                 u32 tile_offset;
9401         } plane[I915_MAX_PIPES];
9402 };
9403
9404 struct intel_display_error_state *
9405 intel_display_capture_error_state(struct drm_device *dev)
9406 {
9407         drm_i915_private_t *dev_priv = dev->dev_private;
9408         struct intel_display_error_state *error;
9409         enum transcoder cpu_transcoder;
9410         int i;
9411
9412         error = kmalloc(sizeof(*error), M_DRM, M_WAITOK | M_NULLOK);
9413         if (error == NULL)
9414                 return NULL;
9415
9416         for_each_pipe(i) {
9417                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9418
9419                 error->cursor[i].control = I915_READ(CURCNTR(i));
9420                 error->cursor[i].position = I915_READ(CURPOS(i));
9421                 error->cursor[i].base = I915_READ(CURBASE(i));
9422
9423                 error->plane[i].control = I915_READ(DSPCNTR(i));
9424                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9425                 error->plane[i].size = I915_READ(DSPSIZE(i));
9426                 error->plane[i].pos = I915_READ(DSPPOS(i));
9427                 error->plane[i].addr = I915_READ(DSPADDR(i));
9428                 if (INTEL_INFO(dev)->gen >= 4) {
9429                         error->plane[i].surface = I915_READ(DSPSURF(i));
9430                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9431                 }
9432
9433                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9434                 error->pipe[i].source = I915_READ(PIPESRC(i));
9435                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9436                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9437                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9438                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9439                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9440                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9441         }
9442
9443         return error;
9444 }
9445
9446 void
9447 intel_display_print_error_state(struct seq_file *m,
9448                                 struct drm_device *dev,
9449                                 struct intel_display_error_state *error)
9450 {
9451         drm_i915_private_t *dev_priv = dev->dev_private;
9452         int i;
9453
9454         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9455         for_each_pipe(i) {
9456                 seq_printf(m, "Pipe [%d]:\n", i);
9457                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9458                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9459                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9460                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9461                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9462                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9463                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9464                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9465
9466                 seq_printf(m, "Plane [%d]:\n", i);
9467                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9468                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9469                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9470                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9471                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9472                 if (INTEL_INFO(dev)->gen >= 4) {
9473                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9474                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9475                 }
9476
9477                 seq_printf(m, "Cursor [%d]:\n", i);
9478                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9479                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9480                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9481         }
9482 }
9483 #endif