Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67
68 #include <bus/pci/pcivar.h>
69 #include <bus/pci/pcireg.h>
70
71 #include <dev/netif/ig_hal/e1000_api.h>
72 #include <dev/netif/ig_hal/e1000_82575.h>
73 #include <dev/netif/igb/if_igb.h>
74
75 #ifdef IGB_RSS_DEBUG
76 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
77 do { \
78         if (sc->rss_debug >= lvl) \
79                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
80 } while (0)
81 #else   /* !IGB_RSS_DEBUG */
82 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
83 #endif  /* IGB_RSS_DEBUG */
84
85 #define IGB_NAME        "Intel(R) PRO/1000 "
86 #define IGB_DEVICE(id)  \
87         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
88 #define IGB_DEVICE_NULL { 0, 0, NULL }
89
90 static struct igb_device {
91         uint16_t        vid;
92         uint16_t        did;
93         const char      *desc;
94 } igb_devices[] = {
95         IGB_DEVICE(82575EB_COPPER),
96         IGB_DEVICE(82575EB_FIBER_SERDES),
97         IGB_DEVICE(82575GB_QUAD_COPPER),
98         IGB_DEVICE(82576),
99         IGB_DEVICE(82576_NS),
100         IGB_DEVICE(82576_NS_SERDES),
101         IGB_DEVICE(82576_FIBER),
102         IGB_DEVICE(82576_SERDES),
103         IGB_DEVICE(82576_SERDES_QUAD),
104         IGB_DEVICE(82576_QUAD_COPPER),
105         IGB_DEVICE(82576_QUAD_COPPER_ET2),
106         IGB_DEVICE(82576_VF),
107         IGB_DEVICE(82580_COPPER),
108         IGB_DEVICE(82580_FIBER),
109         IGB_DEVICE(82580_SERDES),
110         IGB_DEVICE(82580_SGMII),
111         IGB_DEVICE(82580_COPPER_DUAL),
112         IGB_DEVICE(82580_QUAD_FIBER),
113         IGB_DEVICE(DH89XXCC_SERDES),
114         IGB_DEVICE(DH89XXCC_SGMII),
115         IGB_DEVICE(DH89XXCC_SFP),
116         IGB_DEVICE(DH89XXCC_BACKPLANE),
117         IGB_DEVICE(I350_COPPER),
118         IGB_DEVICE(I350_FIBER),
119         IGB_DEVICE(I350_SERDES),
120         IGB_DEVICE(I350_SGMII),
121         IGB_DEVICE(I350_VF),
122         IGB_DEVICE(I210_COPPER),
123         IGB_DEVICE(I210_COPPER_IT),
124         IGB_DEVICE(I210_COPPER_OEM1),
125         IGB_DEVICE(I210_COPPER_FLASHLESS),
126         IGB_DEVICE(I210_SERDES_FLASHLESS),
127         IGB_DEVICE(I210_FIBER),
128         IGB_DEVICE(I210_SERDES),
129         IGB_DEVICE(I210_SGMII),
130         IGB_DEVICE(I211_COPPER),
131         IGB_DEVICE(I354_BACKPLANE_1GBPS),
132         IGB_DEVICE(I354_SGMII),
133
134         /* required last entry */
135         IGB_DEVICE_NULL
136 };
137
138 static int      igb_probe(device_t);
139 static int      igb_attach(device_t);
140 static int      igb_detach(device_t);
141 static int      igb_shutdown(device_t);
142 static int      igb_suspend(device_t);
143 static int      igb_resume(device_t);
144
145 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
146 static void     igb_setup_ifp(struct igb_softc *);
147 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
148 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
149 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
150 static void     igb_add_sysctl(struct igb_softc *);
151 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
152 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
153 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
154 static int      igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
155 static int      igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
156 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
157 static int      igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
158 static int      igb_get_txring_inuse(const struct igb_softc *, boolean_t);
159 static void     igb_set_timer_cpuid(struct igb_softc *, boolean_t);
160 #ifdef IFPOLL_ENABLE
161 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
162 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
163 #endif
164
165 static void     igb_vf_init_stats(struct igb_softc *);
166 static void     igb_reset(struct igb_softc *);
167 static void     igb_update_stats_counters(struct igb_softc *);
168 static void     igb_update_vf_stats_counters(struct igb_softc *);
169 static void     igb_update_link_status(struct igb_softc *);
170 static void     igb_init_tx_unit(struct igb_softc *);
171 static void     igb_init_rx_unit(struct igb_softc *);
172
173 static void     igb_set_vlan(struct igb_softc *);
174 static void     igb_set_multi(struct igb_softc *);
175 static void     igb_set_promisc(struct igb_softc *);
176 static void     igb_disable_promisc(struct igb_softc *);
177
178 static int      igb_alloc_rings(struct igb_softc *);
179 static void     igb_free_rings(struct igb_softc *);
180 static int      igb_create_tx_ring(struct igb_tx_ring *);
181 static int      igb_create_rx_ring(struct igb_rx_ring *);
182 static void     igb_free_tx_ring(struct igb_tx_ring *);
183 static void     igb_free_rx_ring(struct igb_rx_ring *);
184 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
185 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
186 static void     igb_init_tx_ring(struct igb_tx_ring *);
187 static int      igb_init_rx_ring(struct igb_rx_ring *);
188 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
189 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
190 static void     igb_rx_refresh(struct igb_rx_ring *, int);
191 static void     igb_setup_serializer(struct igb_softc *);
192
193 static void     igb_stop(struct igb_softc *);
194 static void     igb_init(void *);
195 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
197 static int      igb_media_change(struct ifnet *);
198 static void     igb_timer(void *);
199 static void     igb_watchdog(struct ifaltq_subque *);
200 static void     igb_start(struct ifnet *, struct ifaltq_subque *);
201 #ifdef IFPOLL_ENABLE
202 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
203 static void     igb_npoll_rx(struct ifnet *, void *, int);
204 static void     igb_npoll_tx(struct ifnet *, void *, int);
205 static void     igb_npoll_status(struct ifnet *);
206 #endif
207 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
208 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
209 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
210 #ifdef INVARIANTS
211 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
212                     boolean_t);
213 #endif
214
215 static void     igb_intr(void *);
216 static void     igb_intr_shared(void *);
217 static void     igb_rxeof(struct igb_rx_ring *, int);
218 static void     igb_txeof(struct igb_tx_ring *);
219 static void     igb_set_eitr(struct igb_softc *, int, int);
220 static void     igb_enable_intr(struct igb_softc *);
221 static void     igb_disable_intr(struct igb_softc *);
222 static void     igb_init_unshared_intr(struct igb_softc *);
223 static void     igb_init_intr(struct igb_softc *);
224 static int      igb_setup_intr(struct igb_softc *);
225 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
226 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
227 static void     igb_set_intr_mask(struct igb_softc *);
228 static int      igb_alloc_intr(struct igb_softc *);
229 static void     igb_free_intr(struct igb_softc *);
230 static void     igb_teardown_intr(struct igb_softc *);
231 static void     igb_msix_try_alloc(struct igb_softc *);
232 static void     igb_msix_rx_conf(struct igb_softc *, int, int *, int);
233 static void     igb_msix_tx_conf(struct igb_softc *, int, int *, int);
234 static void     igb_msix_free(struct igb_softc *, boolean_t);
235 static int      igb_msix_setup(struct igb_softc *);
236 static void     igb_msix_teardown(struct igb_softc *, int);
237 static void     igb_msix_rx(void *);
238 static void     igb_msix_tx(void *);
239 static void     igb_msix_status(void *);
240 static void     igb_msix_rxtx(void *);
241
242 /* Management and WOL Support */
243 static void     igb_get_mgmt(struct igb_softc *);
244 static void     igb_rel_mgmt(struct igb_softc *);
245 static void     igb_get_hw_control(struct igb_softc *);
246 static void     igb_rel_hw_control(struct igb_softc *);
247 static void     igb_enable_wol(device_t);
248
249 static device_method_t igb_methods[] = {
250         /* Device interface */
251         DEVMETHOD(device_probe,         igb_probe),
252         DEVMETHOD(device_attach,        igb_attach),
253         DEVMETHOD(device_detach,        igb_detach),
254         DEVMETHOD(device_shutdown,      igb_shutdown),
255         DEVMETHOD(device_suspend,       igb_suspend),
256         DEVMETHOD(device_resume,        igb_resume),
257         DEVMETHOD_END
258 };
259
260 static driver_t igb_driver = {
261         "igb",
262         igb_methods,
263         sizeof(struct igb_softc),
264 };
265
266 static devclass_t igb_devclass;
267
268 DECLARE_DUMMY_MODULE(if_igb);
269 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
270 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
271
272 static int      igb_rxd = IGB_DEFAULT_RXD;
273 static int      igb_txd = IGB_DEFAULT_TXD;
274 static int      igb_rxr = 0;
275 static int      igb_txr = 0;
276 static int      igb_msi_enable = 1;
277 static int      igb_msix_enable = 1;
278 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
279 static int      igb_fc_setting = e1000_fc_full;
280
281 /*
282  * DMA Coalescing, only for i350 - default to off,
283  * this feature is for power savings
284  */
285 static int      igb_dma_coalesce = 0;
286
287 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
288 TUNABLE_INT("hw.igb.txd", &igb_txd);
289 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
290 TUNABLE_INT("hw.igb.txr", &igb_txr);
291 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
292 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
293 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
294
295 /* i350 specific */
296 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
297 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
298
299 static __inline void
300 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
301 {
302         /* Ignore Checksum bit is set */
303         if (staterr & E1000_RXD_STAT_IXSM)
304                 return;
305
306         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
307             E1000_RXD_STAT_IPCS)
308                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
309
310         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
311                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
312                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
313                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
314                         mp->m_pkthdr.csum_data = htons(0xffff);
315                 }
316         }
317 }
318
319 static __inline struct pktinfo *
320 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
321     uint32_t hash, uint32_t hashtype, uint32_t staterr)
322 {
323         switch (hashtype) {
324         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
325                 pi->pi_netisr = NETISR_IP;
326                 pi->pi_flags = 0;
327                 pi->pi_l3proto = IPPROTO_TCP;
328                 break;
329
330         case E1000_RXDADV_RSSTYPE_IPV4:
331                 if (staterr & E1000_RXD_STAT_IXSM)
332                         return NULL;
333
334                 if ((staterr &
335                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
336                     E1000_RXD_STAT_TCPCS) {
337                         pi->pi_netisr = NETISR_IP;
338                         pi->pi_flags = 0;
339                         pi->pi_l3proto = IPPROTO_UDP;
340                         break;
341                 }
342                 /* FALL THROUGH */
343         default:
344                 return NULL;
345         }
346
347         m->m_flags |= M_HASH;
348         m->m_pkthdr.hash = toeplitz_hash(hash);
349         return pi;
350 }
351
352 static int
353 igb_probe(device_t dev)
354 {
355         const struct igb_device *d;
356         uint16_t vid, did;
357
358         vid = pci_get_vendor(dev);
359         did = pci_get_device(dev);
360
361         for (d = igb_devices; d->desc != NULL; ++d) {
362                 if (vid == d->vid && did == d->did) {
363                         device_set_desc(dev, d->desc);
364                         return 0;
365                 }
366         }
367         return ENXIO;
368 }
369
370 static int
371 igb_attach(device_t dev)
372 {
373         struct igb_softc *sc = device_get_softc(dev);
374         uint16_t eeprom_data;
375         int error = 0, ring_max;
376 #ifdef IFPOLL_ENABLE
377         int offset, offset_def;
378 #endif
379
380 #ifdef notyet
381         /* SYSCTL stuff */
382         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
383             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
384             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
385             igb_sysctl_nvm_info, "I", "NVM Information");
386         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
387             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
388             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
389             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
390 #endif
391
392         callout_init_mp(&sc->timer);
393         lwkt_serialize_init(&sc->main_serialize);
394
395         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
396             device_get_unit(dev));
397         sc->dev = sc->osdep.dev = dev;
398
399         /*
400          * Determine hardware and mac type
401          */
402         sc->hw.vendor_id = pci_get_vendor(dev);
403         sc->hw.device_id = pci_get_device(dev);
404         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
405         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
406         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
407
408         if (e1000_set_mac_type(&sc->hw))
409                 return ENXIO;
410
411         /* Are we a VF device? */
412         if (sc->hw.mac.type == e1000_vfadapt ||
413             sc->hw.mac.type == e1000_vfadapt_i350)
414                 sc->vf_ifp = 1;
415         else
416                 sc->vf_ifp = 0;
417
418         /*
419          * Configure total supported RX/TX ring count
420          */
421         switch (sc->hw.mac.type) {
422         case e1000_82575:
423                 ring_max = IGB_MAX_RING_82575;
424                 break;
425
426         case e1000_82576:
427                 ring_max = IGB_MAX_RING_82576;
428                 break;
429
430         case e1000_82580:
431                 ring_max = IGB_MAX_RING_82580;
432                 break;
433
434         case e1000_i350:
435                 ring_max = IGB_MAX_RING_I350;
436                 break;
437
438         case e1000_i354:
439                 ring_max = IGB_MAX_RING_I354;
440                 break;
441
442         case e1000_i210:
443                 ring_max = IGB_MAX_RING_I210;
444                 break;
445
446         case e1000_i211:
447                 ring_max = IGB_MAX_RING_I211;
448                 break;
449
450         default:
451                 ring_max = IGB_MIN_RING;
452                 break;
453         }
454
455         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
456         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
457 #ifdef IGB_RSS_DEBUG
458         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
459 #endif
460         sc->rx_ring_inuse = sc->rx_ring_cnt;
461
462         sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
463         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
464 #ifdef IGB_TSS_DEBUG
465         sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
466 #endif
467         sc->tx_ring_inuse = sc->tx_ring_cnt;
468
469         /* Enable bus mastering */
470         pci_enable_busmaster(dev);
471
472         /*
473          * Allocate IO memory
474          */
475         sc->mem_rid = PCIR_BAR(0);
476         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
477             RF_ACTIVE);
478         if (sc->mem_res == NULL) {
479                 device_printf(dev, "Unable to allocate bus resource: memory\n");
480                 error = ENXIO;
481                 goto failed;
482         }
483         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
484         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
485
486         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
487
488         /* Save PCI command register for Shared Code */
489         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
490         sc->hw.back = &sc->osdep;
491
492         /* Do Shared Code initialization */
493         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
494                 device_printf(dev, "Setup of Shared code failed\n");
495                 error = ENXIO;
496                 goto failed;
497         }
498
499         e1000_get_bus_info(&sc->hw);
500
501         sc->hw.mac.autoneg = DO_AUTO_NEG;
502         sc->hw.phy.autoneg_wait_to_complete = FALSE;
503         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
504
505         /* Copper options */
506         if (sc->hw.phy.media_type == e1000_media_type_copper) {
507                 sc->hw.phy.mdix = AUTO_ALL_MODES;
508                 sc->hw.phy.disable_polarity_correction = FALSE;
509                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
510         }
511
512         /* Set the frame limits assuming  standard ethernet sized frames. */
513         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
514
515         /* Allocate RX/TX rings */
516         error = igb_alloc_rings(sc);
517         if (error)
518                 goto failed;
519
520 #ifdef IFPOLL_ENABLE
521         /*
522          * NPOLLING RX CPU offset
523          */
524         if (sc->rx_ring_cnt == ncpus2) {
525                 offset = 0;
526         } else {
527                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
528                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
529                 if (offset >= ncpus2 ||
530                     offset % sc->rx_ring_cnt != 0) {
531                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
532                             offset, offset_def);
533                         offset = offset_def;
534                 }
535         }
536         sc->rx_npoll_off = offset;
537
538         /*
539          * NPOLLING TX CPU offset
540          */
541         if (sc->tx_ring_cnt == ncpus2) {
542                 offset = 0;
543         } else {
544                 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
545                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
546                 if (offset >= ncpus2 ||
547                     offset % sc->tx_ring_cnt != 0) {
548                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
549                             offset, offset_def);
550                         offset = offset_def;
551                 }
552         }
553         sc->tx_npoll_off = offset;
554 #endif
555
556         /* Allocate interrupt */
557         error = igb_alloc_intr(sc);
558         if (error)
559                 goto failed;
560
561         /* Setup serializers */
562         igb_setup_serializer(sc);
563
564         /* Allocate the appropriate stats memory */
565         if (sc->vf_ifp) {
566                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
567                     M_WAITOK | M_ZERO);
568                 igb_vf_init_stats(sc);
569         } else {
570                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
571                     M_WAITOK | M_ZERO);
572         }
573
574         /* Allocate multicast array memory. */
575         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
576             M_DEVBUF, M_WAITOK);
577
578         /* Some adapter-specific advanced features */
579         if (sc->hw.mac.type >= e1000_i350) {
580 #ifdef notyet
581                 igb_set_sysctl_value(adapter, "dma_coalesce",
582                     "configure dma coalesce",
583                     &adapter->dma_coalesce, igb_dma_coalesce);
584                 igb_set_sysctl_value(adapter, "eee_disabled",
585                     "enable Energy Efficient Ethernet",
586                     &adapter->hw.dev_spec._82575.eee_disable,
587                     igb_eee_disabled);
588 #else
589                 sc->dma_coalesce = igb_dma_coalesce;
590                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
591 #endif
592                 if (sc->hw.phy.media_type == e1000_media_type_copper) {
593                         if (sc->hw.mac.type == e1000_i354)
594                                 e1000_set_eee_i354(&sc->hw);
595                         else
596                                 e1000_set_eee_i350(&sc->hw);
597                 }
598         }
599
600         /*
601          * Start from a known state, this is important in reading the nvm and
602          * mac from that.
603          */
604         e1000_reset_hw(&sc->hw);
605
606         /* Make sure we have a good EEPROM before we read from it */
607         if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
608             e1000_validate_nvm_checksum(&sc->hw) < 0) {
609                 /*
610                  * Some PCI-E parts fail the first check due to
611                  * the link being in sleep state, call it again,
612                  * if it fails a second time its a real issue.
613                  */
614                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
615                         device_printf(dev,
616                             "The EEPROM Checksum Is Not Valid\n");
617                         error = EIO;
618                         goto failed;
619                 }
620         }
621
622         /* Copy the permanent MAC address out of the EEPROM */
623         if (e1000_read_mac_addr(&sc->hw) < 0) {
624                 device_printf(dev, "EEPROM read error while reading MAC"
625                     " address\n");
626                 error = EIO;
627                 goto failed;
628         }
629         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
630                 device_printf(dev, "Invalid MAC address\n");
631                 error = EIO;
632                 goto failed;
633         }
634
635         /* Setup OS specific network interface */
636         igb_setup_ifp(sc);
637
638         /* Add sysctl tree, must after igb_setup_ifp() */
639         igb_add_sysctl(sc);
640
641         /* Now get a good starting state */
642         igb_reset(sc);
643
644         /* Initialize statistics */
645         igb_update_stats_counters(sc);
646
647         sc->hw.mac.get_link_status = 1;
648         igb_update_link_status(sc);
649
650         /* Indicate SOL/IDER usage */
651         if (e1000_check_reset_block(&sc->hw)) {
652                 device_printf(dev,
653                     "PHY reset is blocked due to SOL/IDER session.\n");
654         }
655
656         /* Determine if we have to control management hardware */
657         if (e1000_enable_mng_pass_thru(&sc->hw))
658                 sc->flags |= IGB_FLAG_HAS_MGMT;
659
660         /*
661          * Setup Wake-on-Lan
662          */
663         /* APME bit in EEPROM is mapped to WUC.APME */
664         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
665         if (eeprom_data)
666                 sc->wol = E1000_WUFC_MAG;
667         /* XXX disable WOL */
668         sc->wol = 0; 
669
670 #ifdef notyet
671         /* Register for VLAN events */
672         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
673              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
674         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
675              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
676 #endif
677
678 #ifdef notyet
679         igb_add_hw_stats(adapter);
680 #endif
681
682         /*
683          * Disable interrupt to prevent spurious interrupts (line based
684          * interrupt, MSI or even MSI-X), which had been observed on
685          * several types of LOMs, from being handled.
686          */
687         igb_disable_intr(sc);
688
689         error = igb_setup_intr(sc);
690         if (error) {
691                 ether_ifdetach(&sc->arpcom.ac_if);
692                 goto failed;
693         }
694         return 0;
695
696 failed:
697         igb_detach(dev);
698         return error;
699 }
700
701 static int
702 igb_detach(device_t dev)
703 {
704         struct igb_softc *sc = device_get_softc(dev);
705
706         if (device_is_attached(dev)) {
707                 struct ifnet *ifp = &sc->arpcom.ac_if;
708
709                 ifnet_serialize_all(ifp);
710
711                 igb_stop(sc);
712
713                 e1000_phy_hw_reset(&sc->hw);
714
715                 /* Give control back to firmware */
716                 igb_rel_mgmt(sc);
717                 igb_rel_hw_control(sc);
718
719                 if (sc->wol) {
720                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
721                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
722                         igb_enable_wol(dev);
723                 }
724
725                 igb_teardown_intr(sc);
726
727                 ifnet_deserialize_all(ifp);
728
729                 ether_ifdetach(ifp);
730         } else if (sc->mem_res != NULL) {
731                 igb_rel_hw_control(sc);
732         }
733         bus_generic_detach(dev);
734
735         igb_free_intr(sc);
736
737         if (sc->msix_mem_res != NULL) {
738                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
739                     sc->msix_mem_res);
740         }
741         if (sc->mem_res != NULL) {
742                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
743                     sc->mem_res);
744         }
745
746         igb_free_rings(sc);
747
748         if (sc->mta != NULL)
749                 kfree(sc->mta, M_DEVBUF);
750         if (sc->stats != NULL)
751                 kfree(sc->stats, M_DEVBUF);
752         if (sc->serializes != NULL)
753                 kfree(sc->serializes, M_DEVBUF);
754
755         return 0;
756 }
757
758 static int
759 igb_shutdown(device_t dev)
760 {
761         return igb_suspend(dev);
762 }
763
764 static int
765 igb_suspend(device_t dev)
766 {
767         struct igb_softc *sc = device_get_softc(dev);
768         struct ifnet *ifp = &sc->arpcom.ac_if;
769
770         ifnet_serialize_all(ifp);
771
772         igb_stop(sc);
773
774         igb_rel_mgmt(sc);
775         igb_rel_hw_control(sc);
776
777         if (sc->wol) {
778                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
779                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
780                 igb_enable_wol(dev);
781         }
782
783         ifnet_deserialize_all(ifp);
784
785         return bus_generic_suspend(dev);
786 }
787
788 static int
789 igb_resume(device_t dev)
790 {
791         struct igb_softc *sc = device_get_softc(dev);
792         struct ifnet *ifp = &sc->arpcom.ac_if;
793         int i;
794
795         ifnet_serialize_all(ifp);
796
797         igb_init(sc);
798         igb_get_mgmt(sc);
799
800         for (i = 0; i < sc->tx_ring_inuse; ++i)
801                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
802
803         ifnet_deserialize_all(ifp);
804
805         return bus_generic_resume(dev);
806 }
807
808 static int
809 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
810 {
811         struct igb_softc *sc = ifp->if_softc;
812         struct ifreq *ifr = (struct ifreq *)data;
813         int max_frame_size, mask, reinit;
814         int error = 0;
815
816         ASSERT_IFNET_SERIALIZED_ALL(ifp);
817
818         switch (command) {
819         case SIOCSIFMTU:
820                 max_frame_size = 9234;
821                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
822                     ETHER_CRC_LEN) {
823                         error = EINVAL;
824                         break;
825                 }
826
827                 ifp->if_mtu = ifr->ifr_mtu;
828                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
829                     ETHER_CRC_LEN;
830
831                 if (ifp->if_flags & IFF_RUNNING)
832                         igb_init(sc);
833                 break;
834
835         case SIOCSIFFLAGS:
836                 if (ifp->if_flags & IFF_UP) {
837                         if (ifp->if_flags & IFF_RUNNING) {
838                                 if ((ifp->if_flags ^ sc->if_flags) &
839                                     (IFF_PROMISC | IFF_ALLMULTI)) {
840                                         igb_disable_promisc(sc);
841                                         igb_set_promisc(sc);
842                                 }
843                         } else {
844                                 igb_init(sc);
845                         }
846                 } else if (ifp->if_flags & IFF_RUNNING) {
847                         igb_stop(sc);
848                 }
849                 sc->if_flags = ifp->if_flags;
850                 break;
851
852         case SIOCADDMULTI:
853         case SIOCDELMULTI:
854                 if (ifp->if_flags & IFF_RUNNING) {
855                         igb_disable_intr(sc);
856                         igb_set_multi(sc);
857 #ifdef IFPOLL_ENABLE
858                         if (!(ifp->if_flags & IFF_NPOLLING))
859 #endif
860                                 igb_enable_intr(sc);
861                 }
862                 break;
863
864         case SIOCSIFMEDIA:
865                 /* Check SOL/IDER usage */
866                 if (e1000_check_reset_block(&sc->hw)) {
867                         if_printf(ifp, "Media change is "
868                             "blocked due to SOL/IDER session.\n");
869                         break;
870                 }
871                 /* FALL THROUGH */
872
873         case SIOCGIFMEDIA:
874                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
875                 break;
876
877         case SIOCSIFCAP:
878                 reinit = 0;
879                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
880                 if (mask & IFCAP_RXCSUM) {
881                         ifp->if_capenable ^= IFCAP_RXCSUM;
882                         reinit = 1;
883                 }
884                 if (mask & IFCAP_VLAN_HWTAGGING) {
885                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
886                         reinit = 1;
887                 }
888                 if (mask & IFCAP_TXCSUM) {
889                         ifp->if_capenable ^= IFCAP_TXCSUM;
890                         if (ifp->if_capenable & IFCAP_TXCSUM)
891                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
892                         else
893                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
894                 }
895                 if (mask & IFCAP_TSO) {
896                         ifp->if_capenable ^= IFCAP_TSO;
897                         if (ifp->if_capenable & IFCAP_TSO)
898                                 ifp->if_hwassist |= CSUM_TSO;
899                         else
900                                 ifp->if_hwassist &= ~CSUM_TSO;
901                 }
902                 if (mask & IFCAP_RSS)
903                         ifp->if_capenable ^= IFCAP_RSS;
904                 if (reinit && (ifp->if_flags & IFF_RUNNING))
905                         igb_init(sc);
906                 break;
907
908         default:
909                 error = ether_ioctl(ifp, command, data);
910                 break;
911         }
912         return error;
913 }
914
915 static void
916 igb_init(void *xsc)
917 {
918         struct igb_softc *sc = xsc;
919         struct ifnet *ifp = &sc->arpcom.ac_if;
920         boolean_t polling;
921         int i;
922
923         ASSERT_IFNET_SERIALIZED_ALL(ifp);
924
925         igb_stop(sc);
926
927         /* Get the latest mac address, User can use a LAA */
928         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
929
930         /* Put the address into the Receive Address Array */
931         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
932
933         igb_reset(sc);
934         igb_update_link_status(sc);
935
936         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
937
938         /* Configure for OS presence */
939         igb_get_mgmt(sc);
940
941         polling = FALSE;
942 #ifdef IFPOLL_ENABLE
943         if (ifp->if_flags & IFF_NPOLLING)
944                 polling = TRUE;
945 #endif
946
947         /* Configured used RX/TX rings */
948         igb_set_ring_inuse(sc, polling);
949         ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
950
951         /* Initialize interrupt */
952         igb_init_intr(sc);
953
954         /* Prepare transmit descriptors and buffers */
955         for (i = 0; i < sc->tx_ring_inuse; ++i)
956                 igb_init_tx_ring(&sc->tx_rings[i]);
957         igb_init_tx_unit(sc);
958
959         /* Setup Multicast table */
960         igb_set_multi(sc);
961
962 #if 0
963         /*
964          * Figure out the desired mbuf pool
965          * for doing jumbo/packetsplit
966          */
967         if (adapter->max_frame_size <= 2048)
968                 adapter->rx_mbuf_sz = MCLBYTES;
969         else if (adapter->max_frame_size <= 4096)
970                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
971         else
972                 adapter->rx_mbuf_sz = MJUM9BYTES;
973 #endif
974
975         /* Prepare receive descriptors and buffers */
976         for (i = 0; i < sc->rx_ring_inuse; ++i) {
977                 int error;
978
979                 error = igb_init_rx_ring(&sc->rx_rings[i]);
980                 if (error) {
981                         if_printf(ifp, "Could not setup receive structures\n");
982                         igb_stop(sc);
983                         return;
984                 }
985         }
986         igb_init_rx_unit(sc);
987
988         /* Enable VLAN support */
989         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
990                 igb_set_vlan(sc);
991
992         /* Don't lose promiscuous settings */
993         igb_set_promisc(sc);
994
995         ifp->if_flags |= IFF_RUNNING;
996         for (i = 0; i < sc->tx_ring_inuse; ++i) {
997                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
998                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
999         }
1000
1001         igb_set_timer_cpuid(sc, polling);
1002         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1003         e1000_clear_hw_cntrs_base_generic(&sc->hw);
1004
1005         /* This clears any pending interrupts */
1006         E1000_READ_REG(&sc->hw, E1000_ICR);
1007
1008         /*
1009          * Only enable interrupts if we are not polling, make sure
1010          * they are off otherwise.
1011          */
1012         if (polling) {
1013                 igb_disable_intr(sc);
1014         } else {
1015                 igb_enable_intr(sc);
1016                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1017         }
1018
1019         /* Set Energy Efficient Ethernet */
1020         if (sc->hw.phy.media_type == e1000_media_type_copper) {
1021                 if (sc->hw.mac.type == e1000_i354)
1022                         e1000_set_eee_i354(&sc->hw);
1023                 else
1024                         e1000_set_eee_i350(&sc->hw);
1025         }
1026 }
1027
1028 static void
1029 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1030 {
1031         struct igb_softc *sc = ifp->if_softc;
1032
1033         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1034
1035         if ((ifp->if_flags & IFF_RUNNING) == 0)
1036                 sc->hw.mac.get_link_status = 1;
1037         igb_update_link_status(sc);
1038
1039         ifmr->ifm_status = IFM_AVALID;
1040         ifmr->ifm_active = IFM_ETHER;
1041
1042         if (!sc->link_active)
1043                 return;
1044
1045         ifmr->ifm_status |= IFM_ACTIVE;
1046
1047         switch (sc->link_speed) {
1048         case 10:
1049                 ifmr->ifm_active |= IFM_10_T;
1050                 break;
1051
1052         case 100:
1053                 /*
1054                  * Support for 100Mb SFP - these are Fiber 
1055                  * but the media type appears as serdes
1056                  */
1057                 if (sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1058                         ifmr->ifm_active |= IFM_100_FX;
1059                 else
1060                         ifmr->ifm_active |= IFM_100_TX;
1061                 break;
1062
1063         case 1000:
1064                 ifmr->ifm_active |= IFM_1000_T;
1065                 break;
1066         }
1067
1068         if (sc->link_duplex == FULL_DUPLEX)
1069                 ifmr->ifm_active |= IFM_FDX;
1070         else
1071                 ifmr->ifm_active |= IFM_HDX;
1072 }
1073
1074 static int
1075 igb_media_change(struct ifnet *ifp)
1076 {
1077         struct igb_softc *sc = ifp->if_softc;
1078         struct ifmedia *ifm = &sc->media;
1079
1080         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1081
1082         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1083                 return EINVAL;
1084
1085         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1086         case IFM_AUTO:
1087                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1088                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1089                 break;
1090
1091         case IFM_1000_LX:
1092         case IFM_1000_SX:
1093         case IFM_1000_T:
1094                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1095                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1096                 break;
1097
1098         case IFM_100_TX:
1099                 sc->hw.mac.autoneg = FALSE;
1100                 sc->hw.phy.autoneg_advertised = 0;
1101                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1102                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1103                 else
1104                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1105                 break;
1106
1107         case IFM_10_T:
1108                 sc->hw.mac.autoneg = FALSE;
1109                 sc->hw.phy.autoneg_advertised = 0;
1110                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1111                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1112                 else
1113                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1114                 break;
1115
1116         default:
1117                 if_printf(ifp, "Unsupported media type\n");
1118                 break;
1119         }
1120
1121         igb_init(sc);
1122
1123         return 0;
1124 }
1125
1126 static void
1127 igb_set_promisc(struct igb_softc *sc)
1128 {
1129         struct ifnet *ifp = &sc->arpcom.ac_if;
1130         struct e1000_hw *hw = &sc->hw;
1131         uint32_t reg;
1132
1133         if (sc->vf_ifp) {
1134                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1135                 return;
1136         }
1137
1138         reg = E1000_READ_REG(hw, E1000_RCTL);
1139         if (ifp->if_flags & IFF_PROMISC) {
1140                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1141                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1142         } else if (ifp->if_flags & IFF_ALLMULTI) {
1143                 reg |= E1000_RCTL_MPE;
1144                 reg &= ~E1000_RCTL_UPE;
1145                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1146         }
1147 }
1148
1149 static void
1150 igb_disable_promisc(struct igb_softc *sc)
1151 {
1152         struct e1000_hw *hw = &sc->hw;
1153         struct ifnet *ifp = &sc->arpcom.ac_if;
1154         uint32_t reg;
1155         int mcnt = 0;
1156
1157         if (sc->vf_ifp) {
1158                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1159                 return;
1160         }
1161         reg = E1000_READ_REG(hw, E1000_RCTL);
1162         reg &= ~E1000_RCTL_UPE;
1163         if (ifp->if_flags & IFF_ALLMULTI) {
1164                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1165         } else {
1166                 struct  ifmultiaddr *ifma;
1167                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1168                         if (ifma->ifma_addr->sa_family != AF_LINK)
1169                                 continue;
1170                         if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1171                                 break;
1172                         mcnt++;
1173                 }
1174         }
1175         /* Don't disable if in MAX groups */
1176         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1177                 reg &= ~E1000_RCTL_MPE;
1178         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1179 }
1180
1181 static void
1182 igb_set_multi(struct igb_softc *sc)
1183 {
1184         struct ifnet *ifp = &sc->arpcom.ac_if;
1185         struct ifmultiaddr *ifma;
1186         uint32_t reg_rctl = 0;
1187         uint8_t *mta;
1188         int mcnt = 0;
1189
1190         mta = sc->mta;
1191         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1192
1193         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1194                 if (ifma->ifma_addr->sa_family != AF_LINK)
1195                         continue;
1196
1197                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1198                         break;
1199
1200                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1201                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1202                 mcnt++;
1203         }
1204
1205         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1206                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1207                 reg_rctl |= E1000_RCTL_MPE;
1208                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1209         } else {
1210                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1211         }
1212 }
1213
1214 static void
1215 igb_timer(void *xsc)
1216 {
1217         struct igb_softc *sc = xsc;
1218
1219         lwkt_serialize_enter(&sc->main_serialize);
1220
1221         igb_update_link_status(sc);
1222         igb_update_stats_counters(sc);
1223
1224         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1225
1226         lwkt_serialize_exit(&sc->main_serialize);
1227 }
1228
1229 static void
1230 igb_update_link_status(struct igb_softc *sc)
1231 {
1232         struct ifnet *ifp = &sc->arpcom.ac_if;
1233         struct e1000_hw *hw = &sc->hw;
1234         uint32_t link_check, thstat, ctrl;
1235
1236         link_check = thstat = ctrl = 0;
1237
1238         /* Get the cached link value or read for real */
1239         switch (hw->phy.media_type) {
1240         case e1000_media_type_copper:
1241                 if (hw->mac.get_link_status) {
1242                         /* Do the work to read phy */
1243                         e1000_check_for_link(hw);
1244                         link_check = !hw->mac.get_link_status;
1245                 } else {
1246                         link_check = TRUE;
1247                 }
1248                 break;
1249
1250         case e1000_media_type_fiber:
1251                 e1000_check_for_link(hw);
1252                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1253                 break;
1254
1255         case e1000_media_type_internal_serdes:
1256                 e1000_check_for_link(hw);
1257                 link_check = hw->mac.serdes_has_link;
1258                 break;
1259
1260         /* VF device is type_unknown */
1261         case e1000_media_type_unknown:
1262                 e1000_check_for_link(hw);
1263                 link_check = !hw->mac.get_link_status;
1264                 /* Fall thru */
1265         default:
1266                 break;
1267         }
1268
1269         /* Check for thermal downshift or shutdown */
1270         if (hw->mac.type == e1000_i350) {
1271                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1272                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1273         }
1274
1275         /* Now we check if a transition has happened */
1276         if (link_check && sc->link_active == 0) {
1277                 e1000_get_speed_and_duplex(hw, 
1278                     &sc->link_speed, &sc->link_duplex);
1279                 if (bootverbose) {
1280                         const char *flowctl;
1281
1282                         /* Get the flow control for display */
1283                         switch (hw->fc.current_mode) {
1284                         case e1000_fc_rx_pause:
1285                                 flowctl = "RX";
1286                                 break;
1287
1288                         case e1000_fc_tx_pause:
1289                                 flowctl = "TX";
1290                                 break;
1291
1292                         case e1000_fc_full:
1293                                 flowctl = "Full";
1294                                 break;
1295
1296                         default:
1297                                 flowctl = "None";
1298                                 break;
1299                         }
1300
1301                         if_printf(ifp, "Link is up %d Mbps %s, "
1302                             "Flow control: %s\n",
1303                             sc->link_speed,
1304                             sc->link_duplex == FULL_DUPLEX ?
1305                             "Full Duplex" : "Half Duplex",
1306                             flowctl);
1307                 }
1308                 sc->link_active = 1;
1309
1310                 ifp->if_baudrate = sc->link_speed * 1000000;
1311                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1312                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1313                         if_printf(ifp, "Link: thermal downshift\n");
1314                 /* Delay Link Up for Phy update */
1315                 if ((hw->mac.type == e1000_i210 ||
1316                      hw->mac.type == e1000_i211) &&
1317                     hw->phy.id == I210_I_PHY_ID)
1318                         msec_delay(IGB_I210_LINK_DELAY);
1319                 /* This can sleep */
1320                 ifp->if_link_state = LINK_STATE_UP;
1321                 if_link_state_change(ifp);
1322         } else if (!link_check && sc->link_active == 1) {
1323                 ifp->if_baudrate = sc->link_speed = 0;
1324                 sc->link_duplex = 0;
1325                 if (bootverbose)
1326                         if_printf(ifp, "Link is Down\n");
1327                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1328                     (thstat & E1000_THSTAT_PWR_DOWN))
1329                         if_printf(ifp, "Link: thermal shutdown\n");
1330                 sc->link_active = 0;
1331                 /* This can sleep */
1332                 ifp->if_link_state = LINK_STATE_DOWN;
1333                 if_link_state_change(ifp);
1334         }
1335 }
1336
1337 static void
1338 igb_stop(struct igb_softc *sc)
1339 {
1340         struct ifnet *ifp = &sc->arpcom.ac_if;
1341         int i;
1342
1343         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1344
1345         igb_disable_intr(sc);
1346
1347         callout_stop(&sc->timer);
1348
1349         ifp->if_flags &= ~IFF_RUNNING;
1350         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1351                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1352                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1353                 sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1354         }
1355
1356         e1000_reset_hw(&sc->hw);
1357         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1358
1359         e1000_led_off(&sc->hw);
1360         e1000_cleanup_led(&sc->hw);
1361
1362         for (i = 0; i < sc->tx_ring_cnt; ++i)
1363                 igb_free_tx_ring(&sc->tx_rings[i]);
1364         for (i = 0; i < sc->rx_ring_cnt; ++i)
1365                 igb_free_rx_ring(&sc->rx_rings[i]);
1366 }
1367
1368 static void
1369 igb_reset(struct igb_softc *sc)
1370 {
1371         struct ifnet *ifp = &sc->arpcom.ac_if;
1372         struct e1000_hw *hw = &sc->hw;
1373         struct e1000_fc_info *fc = &hw->fc;
1374         uint32_t pba = 0;
1375         uint16_t hwm;
1376
1377         /* Let the firmware know the OS is in control */
1378         igb_get_hw_control(sc);
1379
1380         /*
1381          * Packet Buffer Allocation (PBA)
1382          * Writing PBA sets the receive portion of the buffer
1383          * the remainder is used for the transmit buffer.
1384          */
1385         switch (hw->mac.type) {
1386         case e1000_82575:
1387                 pba = E1000_PBA_32K;
1388                 break;
1389
1390         case e1000_82576:
1391         case e1000_vfadapt:
1392                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1393                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1394                 break;
1395
1396         case e1000_82580:
1397         case e1000_i350:
1398         case e1000_i354:
1399         case e1000_vfadapt_i350:
1400                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1401                 pba = e1000_rxpbs_adjust_82580(pba);
1402                 break;
1403
1404         case e1000_i210:
1405         case e1000_i211:
1406                 pba = E1000_PBA_34K;
1407                 break;
1408
1409         default:
1410                 break;
1411         }
1412
1413         /* Special needs in case of Jumbo frames */
1414         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1415                 uint32_t tx_space, min_tx, min_rx;
1416
1417                 pba = E1000_READ_REG(hw, E1000_PBA);
1418                 tx_space = pba >> 16;
1419                 pba &= 0xffff;
1420
1421                 min_tx = (sc->max_frame_size +
1422                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1423                 min_tx = roundup2(min_tx, 1024);
1424                 min_tx >>= 10;
1425                 min_rx = sc->max_frame_size;
1426                 min_rx = roundup2(min_rx, 1024);
1427                 min_rx >>= 10;
1428                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1429                         pba = pba - (min_tx - tx_space);
1430                         /*
1431                          * if short on rx space, rx wins
1432                          * and must trump tx adjustment
1433                          */
1434                         if (pba < min_rx)
1435                                 pba = min_rx;
1436                 }
1437                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1438         }
1439
1440         /*
1441          * These parameters control the automatic generation (Tx) and
1442          * response (Rx) to Ethernet PAUSE frames.
1443          * - High water mark should allow for at least two frames to be
1444          *   received after sending an XOFF.
1445          * - Low water mark works best when it is very near the high water mark.
1446          *   This allows the receiver to restart by sending XON when it has
1447          *   drained a bit.
1448          */
1449         hwm = min(((pba << 10) * 9 / 10),
1450             ((pba << 10) - 2 * sc->max_frame_size));
1451
1452         if (hw->mac.type < e1000_82576) {
1453                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1454                 fc->low_water = fc->high_water - 8;
1455         } else {
1456                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1457                 fc->low_water = fc->high_water - 16;
1458         }
1459         fc->pause_time = IGB_FC_PAUSE_TIME;
1460         fc->send_xon = TRUE;
1461         fc->requested_mode = e1000_fc_default;
1462
1463         /* Issue a global reset */
1464         e1000_reset_hw(hw);
1465         E1000_WRITE_REG(hw, E1000_WUC, 0);
1466
1467         if (e1000_init_hw(hw) < 0)
1468                 if_printf(ifp, "Hardware Initialization Failed\n");
1469
1470         /* Setup DMA Coalescing */
1471         if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1472                 uint32_t dmac;
1473                 uint32_t reg;
1474
1475                 if (sc->dma_coalesce == 0) {
1476                         /*
1477                          * Disabled
1478                          */
1479                         reg = E1000_READ_REG(hw, E1000_DMACR);
1480                         reg &= ~E1000_DMACR_DMAC_EN;
1481                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
1482                         goto reset_out;
1483                 }
1484
1485                 /* Set starting thresholds */
1486                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1487                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1488
1489                 hwm = 64 * pba - sc->max_frame_size / 16;
1490                 if (hwm < 64 * (pba - 6))
1491                         hwm = 64 * (pba - 6);
1492                 reg = E1000_READ_REG(hw, E1000_FCRTC);
1493                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1494                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1495                     & E1000_FCRTC_RTH_COAL_MASK);
1496                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1497
1498                 dmac = pba - sc->max_frame_size / 512;
1499                 if (dmac < pba - 10)
1500                         dmac = pba - 10;
1501                 reg = E1000_READ_REG(hw, E1000_DMACR);
1502                 reg &= ~E1000_DMACR_DMACTHR_MASK;
1503                 reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1504                     & E1000_DMACR_DMACTHR_MASK);
1505                 /* Transition to L0x or L1 if available.. */
1506                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1507                 /* timer = value in sc->dma_coalesce in 32usec intervals */
1508                 reg |= (sc->dma_coalesce >> 5);
1509                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1510
1511                 /* Set the interval before transition */
1512                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1513                 reg |= 0x80000004;
1514                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1515
1516                 /* Free space in tx packet buffer to wake from DMA coal */
1517                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1518                     (20480 - (2 * sc->max_frame_size)) >> 6);
1519
1520                 /* Make low power state decision controlled by DMA coal */
1521                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1522                 reg &= ~E1000_PCIEMISC_LX_DECISION;
1523                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1524                 if_printf(ifp, "DMA Coalescing enabled\n");
1525         } else if (hw->mac.type == e1000_82580) {
1526                 uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1527
1528                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
1529                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1530                     reg & ~E1000_PCIEMISC_LX_DECISION);
1531         }
1532
1533 reset_out:
1534         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1535         e1000_get_phy_info(hw);
1536         e1000_check_for_link(hw);
1537 }
1538
1539 static void
1540 igb_setup_ifp(struct igb_softc *sc)
1541 {
1542         struct ifnet *ifp = &sc->arpcom.ac_if;
1543         int i;
1544
1545         ifp->if_softc = sc;
1546         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1547         ifp->if_init = igb_init;
1548         ifp->if_ioctl = igb_ioctl;
1549         ifp->if_start = igb_start;
1550         ifp->if_serialize = igb_serialize;
1551         ifp->if_deserialize = igb_deserialize;
1552         ifp->if_tryserialize = igb_tryserialize;
1553 #ifdef INVARIANTS
1554         ifp->if_serialize_assert = igb_serialize_assert;
1555 #endif
1556 #ifdef IFPOLL_ENABLE
1557         ifp->if_npoll = igb_npoll;
1558 #endif
1559
1560         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1561         ifq_set_ready(&ifp->if_snd);
1562         ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1563
1564         ifp->if_mapsubq = ifq_mapsubq_mask;
1565         ifq_set_subq_mask(&ifp->if_snd, 0);
1566
1567         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1568
1569         ifp->if_capabilities =
1570             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1571         if (IGB_ENABLE_HWRSS(sc))
1572                 ifp->if_capabilities |= IFCAP_RSS;
1573         ifp->if_capenable = ifp->if_capabilities;
1574         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1575
1576         /*
1577          * Tell the upper layer(s) we support long frames
1578          */
1579         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1580
1581         /* Setup TX rings and subqueues */
1582         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1583                 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1584                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1585
1586                 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1587                 ifsq_set_priv(ifsq, txr);
1588                 ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1589                 txr->ifsq = ifsq;
1590
1591                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1592         }
1593
1594         /*
1595          * Specify the media types supported by this adapter and register
1596          * callbacks to update media and link information
1597          */
1598         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1599         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1600             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1601                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1602                     0, NULL);
1603                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1604         } else {
1605                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1606                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1607                     0, NULL);
1608                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1609                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1610                     0, NULL);
1611                 if (sc->hw.phy.type != e1000_phy_ife) {
1612                         ifmedia_add(&sc->media,
1613                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1614                         ifmedia_add(&sc->media,
1615                             IFM_ETHER | IFM_1000_T, 0, NULL);
1616                 }
1617         }
1618         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1619         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1620 }
1621
1622 static void
1623 igb_add_sysctl(struct igb_softc *sc)
1624 {
1625         struct sysctl_ctx_list *ctx;
1626         struct sysctl_oid *tree;
1627         char node[32];
1628         int i;
1629
1630         ctx = device_get_sysctl_ctx(sc->dev);
1631         tree = device_get_sysctl_tree(sc->dev);
1632         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1633             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1634         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1635             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1636             "# of RX rings used");
1637         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1638             OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1639         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1640             OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1641             "# of TX rings used");
1642         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1643             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1644             "# of RX descs");
1645         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1646             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1647             "# of TX descs");
1648
1649         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1650                 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1651                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1652                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1653         } else {
1654                 for (i = 0; i < sc->msix_cnt; ++i) {
1655                         struct igb_msix_data *msix = &sc->msix_data[i];
1656
1657                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1658                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1659                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1660                             msix, 0, igb_sysctl_msix_rate, "I",
1661                             msix->msix_rate_desc);
1662                 }
1663         }
1664
1665         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1666             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1667             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1668             "# of segments per TX interrupt");
1669
1670         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1671             OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1672             sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1673             "# of segments sent before write to hardware register");
1674
1675         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1676             OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1677             sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1678             "# of segments received before write to hardware register");
1679
1680 #ifdef IFPOLL_ENABLE
1681         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1682             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1683             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1684         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1685             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1686             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1687 #endif
1688
1689 #ifdef IGB_RSS_DEBUG
1690         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1691             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1692             "RSS debug level");
1693         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1694                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1695                 SYSCTL_ADD_ULONG(ctx,
1696                     SYSCTL_CHILDREN(tree), OID_AUTO, node,
1697                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1698         }
1699 #endif
1700 #ifdef IGB_TSS_DEBUG
1701         for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1702                 ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1703                 SYSCTL_ADD_ULONG(ctx,
1704                     SYSCTL_CHILDREN(tree), OID_AUTO, node,
1705                     CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1706         }
1707 #endif
1708 }
1709
1710 static int
1711 igb_alloc_rings(struct igb_softc *sc)
1712 {
1713         int error, i;
1714
1715         /*
1716          * Create top level busdma tag
1717          */
1718         error = bus_dma_tag_create(NULL, 1, 0,
1719             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1720             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1721             &sc->parent_tag);
1722         if (error) {
1723                 device_printf(sc->dev, "could not create top level DMA tag\n");
1724                 return error;
1725         }
1726
1727         /*
1728          * Allocate TX descriptor rings and buffers
1729          */
1730         sc->tx_rings = kmalloc_cachealign(
1731             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1732             M_DEVBUF, M_WAITOK | M_ZERO);
1733         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1734                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1735
1736                 /* Set up some basics */
1737                 txr->sc = sc;
1738                 txr->me = i;
1739                 lwkt_serialize_init(&txr->tx_serialize);
1740
1741                 error = igb_create_tx_ring(txr);
1742                 if (error)
1743                         return error;
1744         }
1745
1746         /*
1747          * Allocate RX descriptor rings and buffers
1748          */ 
1749         sc->rx_rings = kmalloc_cachealign(
1750             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1751             M_DEVBUF, M_WAITOK | M_ZERO);
1752         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1753                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1754
1755                 /* Set up some basics */
1756                 rxr->sc = sc;
1757                 rxr->me = i;
1758                 lwkt_serialize_init(&rxr->rx_serialize);
1759
1760                 error = igb_create_rx_ring(rxr);
1761                 if (error)
1762                         return error;
1763         }
1764
1765         return 0;
1766 }
1767
1768 static void
1769 igb_free_rings(struct igb_softc *sc)
1770 {
1771         int i;
1772
1773         if (sc->tx_rings != NULL) {
1774                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1775                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1776
1777                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1778                 }
1779                 kfree(sc->tx_rings, M_DEVBUF);
1780         }
1781
1782         if (sc->rx_rings != NULL) {
1783                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1784                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1785
1786                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1787                 }
1788                 kfree(sc->rx_rings, M_DEVBUF);
1789         }
1790 }
1791
1792 static int
1793 igb_create_tx_ring(struct igb_tx_ring *txr)
1794 {
1795         int tsize, error, i, ntxd;
1796
1797         /*
1798          * Validate number of transmit descriptors. It must not exceed
1799          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1800          */
1801         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1802         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1803             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1804                 device_printf(txr->sc->dev,
1805                     "Using %d TX descriptors instead of %d!\n",
1806                     IGB_DEFAULT_TXD, ntxd);
1807                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1808         } else {
1809                 txr->num_tx_desc = ntxd;
1810         }
1811
1812         /*
1813          * Allocate TX descriptor ring
1814          */
1815         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1816             IGB_DBA_ALIGN);
1817         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1818             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1819             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1820         if (txr->txdma.dma_vaddr == NULL) {
1821                 device_printf(txr->sc->dev,
1822                     "Unable to allocate TX Descriptor memory\n");
1823                 return ENOMEM;
1824         }
1825         txr->tx_base = txr->txdma.dma_vaddr;
1826         bzero(txr->tx_base, tsize);
1827
1828         tsize = __VM_CACHELINE_ALIGN(
1829             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1830         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1831
1832         /*
1833          * Allocate TX head write-back buffer
1834          */
1835         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1836             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1837             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1838         if (txr->tx_hdr == NULL) {
1839                 device_printf(txr->sc->dev,
1840                     "Unable to allocate TX head write-back buffer\n");
1841                 return ENOMEM;
1842         }
1843
1844         /*
1845          * Create DMA tag for TX buffers
1846          */
1847         error = bus_dma_tag_create(txr->sc->parent_tag,
1848             1, 0,               /* alignment, bounds */
1849             BUS_SPACE_MAXADDR,  /* lowaddr */
1850             BUS_SPACE_MAXADDR,  /* highaddr */
1851             NULL, NULL,         /* filter, filterarg */
1852             IGB_TSO_SIZE,       /* maxsize */
1853             IGB_MAX_SCATTER,    /* nsegments */
1854             PAGE_SIZE,          /* maxsegsize */
1855             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1856             BUS_DMA_ONEBPAGE,   /* flags */
1857             &txr->tx_tag);
1858         if (error) {
1859                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1860                 kfree(txr->tx_buf, M_DEVBUF);
1861                 txr->tx_buf = NULL;
1862                 return error;
1863         }
1864
1865         /*
1866          * Create DMA maps for TX buffers
1867          */
1868         for (i = 0; i < txr->num_tx_desc; ++i) {
1869                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1870
1871                 error = bus_dmamap_create(txr->tx_tag,
1872                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1873                 if (error) {
1874                         device_printf(txr->sc->dev,
1875                             "Unable to create TX DMA map\n");
1876                         igb_destroy_tx_ring(txr, i);
1877                         return error;
1878                 }
1879         }
1880
1881         if (txr->sc->hw.mac.type == e1000_82575)
1882                 txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1883
1884         /*
1885          * Initialize various watermark
1886          */
1887         txr->spare_desc = IGB_TX_SPARE;
1888         txr->intr_nsegs = txr->num_tx_desc / 16;
1889         txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1890         txr->oact_hi_desc = txr->num_tx_desc / 2;
1891         txr->oact_lo_desc = txr->num_tx_desc / 8;
1892         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1893                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1894         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1895                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1896
1897         return 0;
1898 }
1899
1900 static void
1901 igb_free_tx_ring(struct igb_tx_ring *txr)
1902 {
1903         int i;
1904
1905         for (i = 0; i < txr->num_tx_desc; ++i) {
1906                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1907
1908                 if (txbuf->m_head != NULL) {
1909                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1910                         m_freem(txbuf->m_head);
1911                         txbuf->m_head = NULL;
1912                 }
1913         }
1914 }
1915
1916 static void
1917 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1918 {
1919         int i;
1920
1921         if (txr->txdma.dma_vaddr != NULL) {
1922                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1923                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1924                     txr->txdma.dma_map);
1925                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1926                 txr->txdma.dma_vaddr = NULL;
1927         }
1928
1929         if (txr->tx_hdr != NULL) {
1930                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1931                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1932                     txr->tx_hdr_dmap);
1933                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1934                 txr->tx_hdr = NULL;
1935         }
1936
1937         if (txr->tx_buf == NULL)
1938                 return;
1939
1940         for (i = 0; i < ndesc; ++i) {
1941                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1942
1943                 KKASSERT(txbuf->m_head == NULL);
1944                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1945         }
1946         bus_dma_tag_destroy(txr->tx_tag);
1947
1948         kfree(txr->tx_buf, M_DEVBUF);
1949         txr->tx_buf = NULL;
1950 }
1951
1952 static void
1953 igb_init_tx_ring(struct igb_tx_ring *txr)
1954 {
1955         /* Clear the old descriptor contents */
1956         bzero(txr->tx_base,
1957             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1958
1959         /* Clear TX head write-back buffer */
1960         *(txr->tx_hdr) = 0;
1961
1962         /* Reset indices */
1963         txr->next_avail_desc = 0;
1964         txr->next_to_clean = 0;
1965         txr->tx_nsegs = 0;
1966
1967         /* Set number of descriptors available */
1968         txr->tx_avail = txr->num_tx_desc;
1969
1970         /* Enable this TX ring */
1971         txr->tx_flags |= IGB_TXFLAG_ENABLED;
1972 }
1973
1974 static void
1975 igb_init_tx_unit(struct igb_softc *sc)
1976 {
1977         struct e1000_hw *hw = &sc->hw;
1978         uint32_t tctl;
1979         int i;
1980
1981         /* Setup the Tx Descriptor Rings */
1982         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1983                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1984                 uint64_t bus_addr = txr->txdma.dma_paddr;
1985                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1986                 uint32_t txdctl = 0;
1987                 uint32_t dca_txctrl;
1988
1989                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1990                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1991                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1992                     (uint32_t)(bus_addr >> 32));
1993                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1994                     (uint32_t)bus_addr);
1995
1996                 /* Setup the HW Tx Head and Tail descriptor pointers */
1997                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1998                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1999
2000                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
2001                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2002                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
2003
2004                 /*
2005                  * Don't set WB_on_EITR:
2006                  * - 82575 does not have it
2007                  * - It almost has no effect on 82576, see:
2008                  *   82576 specification update errata #26
2009                  * - It causes unnecessary bus traffic
2010                  */
2011                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
2012                     (uint32_t)(hdr_paddr >> 32));
2013                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
2014                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
2015
2016                 /*
2017                  * WTHRESH is ignored by the hardware, since header
2018                  * write back mode is used.
2019                  */
2020                 txdctl |= IGB_TX_PTHRESH;
2021                 txdctl |= IGB_TX_HTHRESH << 8;
2022                 txdctl |= IGB_TX_WTHRESH << 16;
2023                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2024                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2025         }
2026
2027         if (sc->vf_ifp)
2028                 return;
2029
2030         e1000_config_collision_dist(hw);
2031
2032         /* Program the Transmit Control Register */
2033         tctl = E1000_READ_REG(hw, E1000_TCTL);
2034         tctl &= ~E1000_TCTL_CT;
2035         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2036             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2037
2038         /* This write will effectively turn on the transmit unit. */
2039         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2040 }
2041
2042 static boolean_t
2043 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2044 {
2045         struct e1000_adv_tx_context_desc *TXD;
2046         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2047         int ehdrlen, ctxd, ip_hlen = 0;
2048         boolean_t offload = TRUE;
2049
2050         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2051                 offload = FALSE;
2052
2053         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2054
2055         ctxd = txr->next_avail_desc;
2056         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2057
2058         /*
2059          * In advanced descriptors the vlan tag must 
2060          * be placed into the context descriptor, thus
2061          * we need to be here just for that setup.
2062          */
2063         if (mp->m_flags & M_VLANTAG) {
2064                 uint16_t vlantag;
2065
2066                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2067                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2068         } else if (!offload) {
2069                 return FALSE;
2070         }
2071
2072         ehdrlen = mp->m_pkthdr.csum_lhlen;
2073         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2074
2075         /* Set the ether header length */
2076         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2077         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2078                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2079                 ip_hlen = mp->m_pkthdr.csum_iphlen;
2080                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2081         }
2082         vlan_macip_lens |= ip_hlen;
2083
2084         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2085         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2086                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2087         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2088                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2089
2090         /*
2091          * 82575 needs the TX context index added; the queue
2092          * index is used as TX context index here.
2093          */
2094         if (txr->sc->hw.mac.type == e1000_82575)
2095                 mss_l4len_idx = txr->me << 4;
2096
2097         /* Now copy bits into descriptor */
2098         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2099         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2100         TXD->seqnum_seed = htole32(0);
2101         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2102
2103         /* We've consumed the first desc, adjust counters */
2104         if (++ctxd == txr->num_tx_desc)
2105                 ctxd = 0;
2106         txr->next_avail_desc = ctxd;
2107         --txr->tx_avail;
2108
2109         return offload;
2110 }
2111
2112 static void
2113 igb_txeof(struct igb_tx_ring *txr)
2114 {
2115         int first, hdr, avail;
2116
2117         if (txr->tx_avail == txr->num_tx_desc)
2118                 return;
2119
2120         first = txr->next_to_clean;
2121         hdr = *(txr->tx_hdr);
2122
2123         if (first == hdr)
2124                 return;
2125
2126         avail = txr->tx_avail;
2127         while (first != hdr) {
2128                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2129
2130                 ++avail;
2131                 if (txbuf->m_head) {
2132                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
2133                         m_freem(txbuf->m_head);
2134                         txbuf->m_head = NULL;
2135                 }
2136                 if (++first == txr->num_tx_desc)
2137                         first = 0;
2138         }
2139         txr->next_to_clean = first;
2140         txr->tx_avail = avail;
2141
2142         /*
2143          * If we have a minimum free, clear OACTIVE
2144          * to tell the stack that it is OK to send packets.
2145          */
2146         if (IGB_IS_NOT_OACTIVE(txr)) {
2147                 ifsq_clr_oactive(txr->ifsq);
2148
2149                 /*
2150                  * We have enough TX descriptors, turn off
2151                  * the watchdog.  We allow small amount of
2152                  * packets (roughly intr_nsegs) pending on
2153                  * the transmit ring.
2154                  */
2155                 txr->tx_watchdog.wd_timer = 0;
2156         }
2157 }
2158
2159 static int
2160 igb_create_rx_ring(struct igb_rx_ring *rxr)
2161 {
2162         int rsize, i, error, nrxd;
2163
2164         /*
2165          * Validate number of receive descriptors. It must not exceed
2166          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2167          */
2168         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2169         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2170             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2171                 device_printf(rxr->sc->dev,
2172                     "Using %d RX descriptors instead of %d!\n",
2173                     IGB_DEFAULT_RXD, nrxd);
2174                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2175         } else {
2176                 rxr->num_rx_desc = nrxd;
2177         }
2178
2179         /*
2180          * Allocate RX descriptor ring
2181          */
2182         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2183             IGB_DBA_ALIGN);
2184         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2185             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2186             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2187             &rxr->rxdma.dma_paddr);
2188         if (rxr->rxdma.dma_vaddr == NULL) {
2189                 device_printf(rxr->sc->dev,
2190                     "Unable to allocate RxDescriptor memory\n");
2191                 return ENOMEM;
2192         }
2193         rxr->rx_base = rxr->rxdma.dma_vaddr;
2194         bzero(rxr->rx_base, rsize);
2195
2196         rsize = __VM_CACHELINE_ALIGN(
2197             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2198         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2199
2200         /*
2201          * Create DMA tag for RX buffers
2202          */
2203         error = bus_dma_tag_create(rxr->sc->parent_tag,
2204             1, 0,               /* alignment, bounds */
2205             BUS_SPACE_MAXADDR,  /* lowaddr */
2206             BUS_SPACE_MAXADDR,  /* highaddr */
2207             NULL, NULL,         /* filter, filterarg */
2208             MCLBYTES,           /* maxsize */
2209             1,                  /* nsegments */
2210             MCLBYTES,           /* maxsegsize */
2211             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2212             &rxr->rx_tag);
2213         if (error) {
2214                 device_printf(rxr->sc->dev,
2215                     "Unable to create RX payload DMA tag\n");
2216                 kfree(rxr->rx_buf, M_DEVBUF);
2217                 rxr->rx_buf = NULL;
2218                 return error;
2219         }
2220
2221         /*
2222          * Create spare DMA map for RX buffers
2223          */
2224         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2225             &rxr->rx_sparemap);
2226         if (error) {
2227                 device_printf(rxr->sc->dev,
2228                     "Unable to create spare RX DMA maps\n");
2229                 bus_dma_tag_destroy(rxr->rx_tag);
2230                 kfree(rxr->rx_buf, M_DEVBUF);
2231                 rxr->rx_buf = NULL;
2232                 return error;
2233         }
2234
2235         /*
2236          * Create DMA maps for RX buffers
2237          */
2238         for (i = 0; i < rxr->num_rx_desc; i++) {
2239                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2240
2241                 error = bus_dmamap_create(rxr->rx_tag,
2242                     BUS_DMA_WAITOK, &rxbuf->map);
2243                 if (error) {
2244                         device_printf(rxr->sc->dev,
2245                             "Unable to create RX DMA maps\n");
2246                         igb_destroy_rx_ring(rxr, i);
2247                         return error;
2248                 }
2249         }
2250
2251         /*
2252          * Initialize various watermark
2253          */
2254         rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2255
2256         return 0;
2257 }
2258
2259 static void
2260 igb_free_rx_ring(struct igb_rx_ring *rxr)
2261 {
2262         int i;
2263
2264         for (i = 0; i < rxr->num_rx_desc; ++i) {
2265                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2266
2267                 if (rxbuf->m_head != NULL) {
2268                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2269                         m_freem(rxbuf->m_head);
2270                         rxbuf->m_head = NULL;
2271                 }
2272         }
2273
2274         if (rxr->fmp != NULL)
2275                 m_freem(rxr->fmp);
2276         rxr->fmp = NULL;
2277         rxr->lmp = NULL;
2278 }
2279
2280 static void
2281 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2282 {
2283         int i;
2284
2285         if (rxr->rxdma.dma_vaddr != NULL) {
2286                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2287                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2288                     rxr->rxdma.dma_map);
2289                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2290                 rxr->rxdma.dma_vaddr = NULL;
2291         }
2292
2293         if (rxr->rx_buf == NULL)
2294                 return;
2295
2296         for (i = 0; i < ndesc; ++i) {
2297                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2298
2299                 KKASSERT(rxbuf->m_head == NULL);
2300                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2301         }
2302         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2303         bus_dma_tag_destroy(rxr->rx_tag);
2304
2305         kfree(rxr->rx_buf, M_DEVBUF);
2306         rxr->rx_buf = NULL;
2307 }
2308
2309 static void
2310 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2311 {
2312         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2313         rxd->wb.upper.status_error = 0;
2314 }
2315
2316 static int
2317 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2318 {
2319         struct mbuf *m;
2320         bus_dma_segment_t seg;
2321         bus_dmamap_t map;
2322         struct igb_rx_buf *rxbuf;
2323         int error, nseg;
2324
2325         m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2326         if (m == NULL) {
2327                 if (wait) {
2328                         if_printf(&rxr->sc->arpcom.ac_if,
2329                             "Unable to allocate RX mbuf\n");
2330                 }
2331                 return ENOBUFS;
2332         }
2333         m->m_len = m->m_pkthdr.len = MCLBYTES;
2334
2335         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2336                 m_adj(m, ETHER_ALIGN);
2337
2338         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2339             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2340         if (error) {
2341                 m_freem(m);
2342                 if (wait) {
2343                         if_printf(&rxr->sc->arpcom.ac_if,
2344                             "Unable to load RX mbuf\n");
2345                 }
2346                 return error;
2347         }
2348
2349         rxbuf = &rxr->rx_buf[i];
2350         if (rxbuf->m_head != NULL)
2351                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2352
2353         map = rxbuf->map;
2354         rxbuf->map = rxr->rx_sparemap;
2355         rxr->rx_sparemap = map;
2356
2357         rxbuf->m_head = m;
2358         rxbuf->paddr = seg.ds_addr;
2359
2360         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2361         return 0;
2362 }
2363
2364 static int
2365 igb_init_rx_ring(struct igb_rx_ring *rxr)
2366 {
2367         int i;
2368
2369         /* Clear the ring contents */
2370         bzero(rxr->rx_base,
2371             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2372
2373         /* Now replenish the ring mbufs */
2374         for (i = 0; i < rxr->num_rx_desc; ++i) {
2375                 int error;
2376
2377                 error = igb_newbuf(rxr, i, TRUE);
2378                 if (error)
2379                         return error;
2380         }
2381
2382         /* Setup our descriptor indices */
2383         rxr->next_to_check = 0;
2384
2385         rxr->fmp = NULL;
2386         rxr->lmp = NULL;
2387         rxr->discard = FALSE;
2388
2389         return 0;
2390 }
2391
2392 static void
2393 igb_init_rx_unit(struct igb_softc *sc)
2394 {
2395         struct ifnet *ifp = &sc->arpcom.ac_if;
2396         struct e1000_hw *hw = &sc->hw;
2397         uint32_t rctl, rxcsum, srrctl = 0;
2398         int i;
2399
2400         /*
2401          * Make sure receives are disabled while setting
2402          * up the descriptor ring
2403          */
2404         rctl = E1000_READ_REG(hw, E1000_RCTL);
2405         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2406
2407 #if 0
2408         /*
2409         ** Set up for header split
2410         */
2411         if (igb_header_split) {
2412                 /* Use a standard mbuf for the header */
2413                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2414                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2415         } else
2416 #endif
2417                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2418
2419         /*
2420         ** Set up for jumbo frames
2421         */
2422         if (ifp->if_mtu > ETHERMTU) {
2423                 rctl |= E1000_RCTL_LPE;
2424 #if 0
2425                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2426                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2427                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2428                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2429                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2430                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2431                 }
2432                 /* Set maximum packet len */
2433                 psize = adapter->max_frame_size;
2434                 /* are we on a vlan? */
2435                 if (adapter->ifp->if_vlantrunk != NULL)
2436                         psize += VLAN_TAG_SIZE;
2437                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2438 #else
2439                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2440                 rctl |= E1000_RCTL_SZ_2048;
2441 #endif
2442         } else {
2443                 rctl &= ~E1000_RCTL_LPE;
2444                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2445                 rctl |= E1000_RCTL_SZ_2048;
2446         }
2447
2448         /* Setup the Base and Length of the Rx Descriptor Rings */
2449         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2450                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2451                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2452                 uint32_t rxdctl;
2453
2454                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2455                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2456                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2457                     (uint32_t)(bus_addr >> 32));
2458                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2459                     (uint32_t)bus_addr);
2460                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2461                 /* Enable this Queue */
2462                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2463                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2464                 rxdctl &= 0xFFF00000;
2465                 rxdctl |= IGB_RX_PTHRESH;
2466                 rxdctl |= IGB_RX_HTHRESH << 8;
2467                 /*
2468                  * Don't set WTHRESH to a value above 1 on 82576, see:
2469                  * 82576 specification update errata #26
2470                  */
2471                 rxdctl |= IGB_RX_WTHRESH << 16;
2472                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2473         }
2474
2475         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2476         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2477
2478         /*
2479          * Receive Checksum Offload for TCP and UDP
2480          *
2481          * Checksum offloading is also enabled if multiple receive
2482          * queue is to be supported, since we need it to figure out
2483          * fragments.
2484          */
2485         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2486                 /*
2487                  * NOTE:
2488                  * PCSD must be enabled to enable multiple
2489                  * receive queues.
2490                  */
2491                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2492                     E1000_RXCSUM_PCSD;
2493         } else {
2494                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2495                     E1000_RXCSUM_PCSD);
2496         }
2497         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2498
2499         if (IGB_ENABLE_HWRSS(sc)) {
2500                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2501                 uint32_t reta_shift;
2502                 int j, r;
2503
2504                 /*
2505                  * NOTE:
2506                  * When we reach here, RSS has already been disabled
2507                  * in igb_stop(), so we could safely configure RSS key
2508                  * and redirect table.
2509                  */
2510
2511                 /*
2512                  * Configure RSS key
2513                  */
2514                 toeplitz_get_key(key, sizeof(key));
2515                 for (i = 0; i < IGB_NRSSRK; ++i) {
2516                         uint32_t rssrk;
2517
2518                         rssrk = IGB_RSSRK_VAL(key, i);
2519                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2520
2521                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2522                 }
2523
2524                 /*
2525                  * Configure RSS redirect table in following fashion:
2526                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2527                  */
2528                 reta_shift = IGB_RETA_SHIFT;
2529                 if (hw->mac.type == e1000_82575)
2530                         reta_shift = IGB_RETA_SHIFT_82575;
2531
2532                 r = 0;
2533                 for (j = 0; j < IGB_NRETA; ++j) {
2534                         uint32_t reta = 0;
2535
2536                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2537                                 uint32_t q;
2538
2539                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2540                                 reta |= q << (8 * i);
2541                                 ++r;
2542                         }
2543                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2544                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2545                 }
2546
2547                 /*
2548                  * Enable multiple receive queues.
2549                  * Enable IPv4 RSS standard hash functions.
2550                  * Disable RSS interrupt on 82575
2551                  */
2552                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2553                                 E1000_MRQC_ENABLE_RSS_4Q |
2554                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2555                                 E1000_MRQC_RSS_FIELD_IPV4);
2556         }
2557
2558         /* Setup the Receive Control Register */
2559         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2560         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2561             E1000_RCTL_RDMTS_HALF |
2562             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2563         /* Strip CRC bytes. */
2564         rctl |= E1000_RCTL_SECRC;
2565         /* Make sure VLAN Filters are off */
2566         rctl &= ~E1000_RCTL_VFE;
2567         /* Don't store bad packets */
2568         rctl &= ~E1000_RCTL_SBP;
2569
2570         /* Enable Receives */
2571         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2572
2573         /*
2574          * Setup the HW Rx Head and Tail Descriptor Pointers
2575          *   - needs to be after enable
2576          */
2577         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2578                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2579
2580                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2581                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2582         }
2583 }
2584
2585 static void
2586 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2587 {
2588         if (--i < 0)
2589                 i = rxr->num_rx_desc - 1;
2590         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2591 }
2592
2593 static void
2594 igb_rxeof(struct igb_rx_ring *rxr, int count)
2595 {
2596         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2597         union e1000_adv_rx_desc *cur;
2598         uint32_t staterr;
2599         int i, ncoll = 0, cpuid = mycpuid;
2600
2601         i = rxr->next_to_check;
2602         cur = &rxr->rx_base[i];
2603         staterr = le32toh(cur->wb.upper.status_error);
2604
2605         if ((staterr & E1000_RXD_STAT_DD) == 0)
2606                 return;
2607
2608         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2609                 struct pktinfo *pi = NULL, pi0;
2610                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2611                 struct mbuf *m = NULL;
2612                 boolean_t eop;
2613
2614                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2615                 if (eop)
2616                         --count;
2617
2618                 ++ncoll;
2619                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2620                     !rxr->discard) {
2621                         struct mbuf *mp = rxbuf->m_head;
2622                         uint32_t hash, hashtype;
2623                         uint16_t vlan;
2624                         int len;
2625
2626                         len = le16toh(cur->wb.upper.length);
2627                         if ((rxr->sc->hw.mac.type == e1000_i350 ||
2628                              rxr->sc->hw.mac.type == e1000_i354) &&
2629                             (staterr & E1000_RXDEXT_STATERR_LB))
2630                                 vlan = be16toh(cur->wb.upper.vlan);
2631                         else
2632                                 vlan = le16toh(cur->wb.upper.vlan);
2633
2634                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2635                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2636                             E1000_RXDADV_RSSTYPE_MASK;
2637
2638                         IGB_RSS_DPRINTF(rxr->sc, 10,
2639                             "ring%d, hash 0x%08x, hashtype %u\n",
2640                             rxr->me, hash, hashtype);
2641
2642                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2643                             BUS_DMASYNC_POSTREAD);
2644
2645                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2646                                 IFNET_STAT_INC(ifp, iqdrops, 1);
2647                                 goto discard;
2648                         }
2649
2650                         mp->m_len = len;
2651                         if (rxr->fmp == NULL) {
2652                                 mp->m_pkthdr.len = len;
2653                                 rxr->fmp = mp;
2654                                 rxr->lmp = mp;
2655                         } else {
2656                                 rxr->lmp->m_next = mp;
2657                                 rxr->lmp = rxr->lmp->m_next;
2658                                 rxr->fmp->m_pkthdr.len += len;
2659                         }
2660
2661                         if (eop) {
2662                                 m = rxr->fmp;
2663                                 rxr->fmp = NULL;
2664                                 rxr->lmp = NULL;
2665
2666                                 m->m_pkthdr.rcvif = ifp;
2667                                 IFNET_STAT_INC(ifp, ipackets, 1);
2668
2669                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2670                                         igb_rxcsum(staterr, m);
2671
2672                                 if (staterr & E1000_RXD_STAT_VP) {
2673                                         m->m_pkthdr.ether_vlantag = vlan;
2674                                         m->m_flags |= M_VLANTAG;
2675                                 }
2676
2677                                 if (ifp->if_capenable & IFCAP_RSS) {
2678                                         pi = igb_rssinfo(m, &pi0,
2679                                             hash, hashtype, staterr);
2680                                 }
2681 #ifdef IGB_RSS_DEBUG
2682                                 rxr->rx_packets++;
2683 #endif
2684                         }
2685                 } else {
2686                         IFNET_STAT_INC(ifp, ierrors, 1);
2687 discard:
2688                         igb_setup_rxdesc(cur, rxbuf);
2689                         if (!eop)
2690                                 rxr->discard = TRUE;
2691                         else
2692                                 rxr->discard = FALSE;
2693                         if (rxr->fmp != NULL) {
2694                                 m_freem(rxr->fmp);
2695                                 rxr->fmp = NULL;
2696                                 rxr->lmp = NULL;
2697                         }
2698                         m = NULL;
2699                 }
2700
2701                 if (m != NULL)
2702                         ifp->if_input(ifp, m, pi, cpuid);
2703
2704                 /* Advance our pointers to the next descriptor. */
2705                 if (++i == rxr->num_rx_desc)
2706                         i = 0;
2707
2708                 if (ncoll >= rxr->wreg_nsegs) {
2709                         igb_rx_refresh(rxr, i);
2710                         ncoll = 0;
2711                 }
2712
2713                 cur = &rxr->rx_base[i];
2714                 staterr = le32toh(cur->wb.upper.status_error);
2715         }
2716         rxr->next_to_check = i;
2717
2718         if (ncoll > 0)
2719                 igb_rx_refresh(rxr, i);
2720 }
2721
2722
2723 static void
2724 igb_set_vlan(struct igb_softc *sc)
2725 {
2726         struct e1000_hw *hw = &sc->hw;
2727         uint32_t reg;
2728 #if 0
2729         struct ifnet *ifp = sc->arpcom.ac_if;
2730 #endif
2731
2732         if (sc->vf_ifp) {
2733                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2734                 return;
2735         }
2736
2737         reg = E1000_READ_REG(hw, E1000_CTRL);
2738         reg |= E1000_CTRL_VME;
2739         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2740
2741 #if 0
2742         /* Enable the Filter Table */
2743         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2744                 reg = E1000_READ_REG(hw, E1000_RCTL);
2745                 reg &= ~E1000_RCTL_CFIEN;
2746                 reg |= E1000_RCTL_VFE;
2747                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2748         }
2749 #endif
2750
2751         /* Update the frame size */
2752         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2753             sc->max_frame_size + VLAN_TAG_SIZE);
2754
2755 #if 0
2756         /* Don't bother with table if no vlans */
2757         if ((adapter->num_vlans == 0) ||
2758             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2759                 return;
2760         /*
2761         ** A soft reset zero's out the VFTA, so
2762         ** we need to repopulate it now.
2763         */
2764         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2765                 if (adapter->shadow_vfta[i] != 0) {
2766                         if (adapter->vf_ifp)
2767                                 e1000_vfta_set_vf(hw,
2768                                     adapter->shadow_vfta[i], TRUE);
2769                         else
2770                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2771                                  i, adapter->shadow_vfta[i]);
2772                 }
2773 #endif
2774 }
2775
2776 static void
2777 igb_enable_intr(struct igb_softc *sc)
2778 {
2779         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2780                 lwkt_serialize_handler_enable(&sc->main_serialize);
2781         } else {
2782                 int i;
2783
2784                 for (i = 0; i < sc->msix_cnt; ++i) {
2785                         lwkt_serialize_handler_enable(
2786                             sc->msix_data[i].msix_serialize);
2787                 }
2788         }
2789
2790         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2791                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2792                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2793                 else
2794                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2795                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2796                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2797                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2798         } else {
2799                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2800         }
2801         E1000_WRITE_FLUSH(&sc->hw);
2802 }
2803
2804 static void
2805 igb_disable_intr(struct igb_softc *sc)
2806 {
2807         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2808                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2809                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2810         }
2811         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2812         E1000_WRITE_FLUSH(&sc->hw);
2813
2814         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2815                 lwkt_serialize_handler_disable(&sc->main_serialize);
2816         } else {
2817                 int i;
2818
2819                 for (i = 0; i < sc->msix_cnt; ++i) {
2820                         lwkt_serialize_handler_disable(
2821                             sc->msix_data[i].msix_serialize);
2822                 }
2823         }
2824 }
2825
2826 /*
2827  * Bit of a misnomer, what this really means is
2828  * to enable OS management of the system... aka
2829  * to disable special hardware management features 
2830  */
2831 static void
2832 igb_get_mgmt(struct igb_softc *sc)
2833 {
2834         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2835                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2836                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2837
2838                 /* disable hardware interception of ARP */
2839                 manc &= ~E1000_MANC_ARP_EN;
2840
2841                 /* enable receiving management packets to the host */
2842                 manc |= E1000_MANC_EN_MNG2HOST;
2843                 manc2h |= 1 << 5; /* Mng Port 623 */
2844                 manc2h |= 1 << 6; /* Mng Port 664 */
2845                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2846                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2847         }
2848 }
2849
2850 /*
2851  * Give control back to hardware management controller
2852  * if there is one.
2853  */
2854 static void
2855 igb_rel_mgmt(struct igb_softc *sc)
2856 {
2857         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2858                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2859
2860                 /* Re-enable hardware interception of ARP */
2861                 manc |= E1000_MANC_ARP_EN;
2862                 manc &= ~E1000_MANC_EN_MNG2HOST;
2863
2864                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2865         }
2866 }
2867
2868 /*
2869  * Sets CTRL_EXT:DRV_LOAD bit.
2870  *
2871  * For ASF and Pass Through versions of f/w this means that
2872  * the driver is loaded. 
2873  */
2874 static void
2875 igb_get_hw_control(struct igb_softc *sc)
2876 {
2877         uint32_t ctrl_ext;
2878
2879         if (sc->vf_ifp)
2880                 return;
2881
2882         /* Let firmware know the driver has taken over */
2883         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2884         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2885             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2886 }
2887
2888 /*
2889  * Resets CTRL_EXT:DRV_LOAD bit.
2890  *
2891  * For ASF and Pass Through versions of f/w this means that the
2892  * driver is no longer loaded.
2893  */
2894 static void
2895 igb_rel_hw_control(struct igb_softc *sc)
2896 {
2897         uint32_t ctrl_ext;
2898
2899         if (sc->vf_ifp)
2900                 return;
2901
2902         /* Let firmware taken over control of h/w */
2903         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2904         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2905             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2906 }
2907
2908 static boolean_t
2909 igb_is_valid_ether_addr(const uint8_t *addr)
2910 {
2911         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2912
2913         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2914                 return FALSE;
2915         return TRUE;
2916 }
2917
2918 /*
2919  * Enable PCI Wake On Lan capability
2920  */
2921 static void
2922 igb_enable_wol(device_t dev)
2923 {
2924         uint16_t cap, status;
2925         uint8_t id;
2926
2927         /* First find the capabilities pointer*/
2928         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2929
2930         /* Read the PM Capabilities */
2931         id = pci_read_config(dev, cap, 1);
2932         if (id != PCIY_PMG)     /* Something wrong */
2933                 return;
2934
2935         /*
2936          * OK, we have the power capabilities,
2937          * so now get the status register
2938          */
2939         cap += PCIR_POWER_STATUS;
2940         status = pci_read_config(dev, cap, 2);
2941         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2942         pci_write_config(dev, cap, status, 2);
2943 }
2944
2945 static void
2946 igb_update_stats_counters(struct igb_softc *sc)
2947 {
2948         struct e1000_hw *hw = &sc->hw;
2949         struct e1000_hw_stats *stats;
2950         struct ifnet *ifp = &sc->arpcom.ac_if;
2951
2952         /* 
2953          * The virtual function adapter has only a
2954          * small controlled set of stats, do only 
2955          * those and return.
2956          */
2957         if (sc->vf_ifp) {
2958                 igb_update_vf_stats_counters(sc);
2959                 return;
2960         }
2961         stats = sc->stats;
2962
2963         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2964             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2965                 stats->symerrs +=
2966                     E1000_READ_REG(hw,E1000_SYMERRS);
2967                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2968         }
2969
2970         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2971         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2972         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2973         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2974
2975         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2976         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2977         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2978         stats->dc += E1000_READ_REG(hw, E1000_DC);
2979         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2980         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2981         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2982
2983         /*
2984          * For watchdog management we need to know if we have been
2985          * paused during the last interval, so capture that here.
2986          */ 
2987         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2988         stats->xoffrxc += sc->pause_frames;
2989         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2990         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2991         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2992         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2993         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2994         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2995         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2996         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2997         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2998         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2999         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
3000         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
3001
3002         /* For the 64-bit byte counters the low dword must be read first. */
3003         /* Both registers clear on the read of the high dword */
3004
3005         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
3006             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
3007         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
3008             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
3009
3010         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
3011         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
3012         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
3013         stats->roc += E1000_READ_REG(hw, E1000_ROC);
3014         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
3015
3016         stats->tor += E1000_READ_REG(hw, E1000_TORH);
3017         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
3018
3019         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
3020         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
3021         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
3022         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
3023         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
3024         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
3025         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
3026         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3027         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3028         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3029
3030         /* Interrupt Counts */
3031
3032         stats->iac += E1000_READ_REG(hw, E1000_IAC);
3033         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3034         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3035         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3036         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3037         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3038         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3039         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3040         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3041
3042         /* Host to Card Statistics */
3043
3044         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3045         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3046         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3047         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3048         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3049         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3050         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3051         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3052             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3053         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3054             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3055         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3056         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3057         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3058
3059         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3060         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3061         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3062         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3063         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3064         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3065
3066         IFNET_STAT_SET(ifp, collisions, stats->colc);
3067
3068         /* Rx Errors */
3069         IFNET_STAT_SET(ifp, ierrors,
3070             stats->rxerrc + stats->crcerrs + stats->algnerrc +
3071             stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3072
3073         /* Tx Errors */
3074         IFNET_STAT_SET(ifp, oerrors,
3075             stats->ecol + stats->latecol + sc->watchdog_events);
3076
3077         /* Driver specific counters */
3078         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3079         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3080         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3081         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3082         sc->packet_buf_alloc_tx =
3083             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3084         sc->packet_buf_alloc_rx =
3085             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3086 }
3087
3088 static void
3089 igb_vf_init_stats(struct igb_softc *sc)
3090 {
3091         struct e1000_hw *hw = &sc->hw;
3092         struct e1000_vf_stats *stats;
3093
3094         stats = sc->stats;
3095         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3096         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3097         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3098         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3099         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3100 }
3101  
3102 static void
3103 igb_update_vf_stats_counters(struct igb_softc *sc)
3104 {
3105         struct e1000_hw *hw = &sc->hw;
3106         struct e1000_vf_stats *stats;
3107
3108         if (sc->link_speed == 0)
3109                 return;
3110
3111         stats = sc->stats;
3112         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3113         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3114         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3115         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3116         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3117 }
3118
3119 #ifdef IFPOLL_ENABLE
3120
3121 static void
3122 igb_npoll_status(struct ifnet *ifp)
3123 {
3124         struct igb_softc *sc = ifp->if_softc;
3125         uint32_t reg_icr;
3126
3127         ASSERT_SERIALIZED(&sc->main_serialize);
3128
3129         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3130         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3131                 sc->hw.mac.get_link_status = 1;
3132                 igb_update_link_status(sc);
3133         }
3134 }
3135
3136 static void
3137 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3138 {
3139         struct igb_tx_ring *txr = arg;
3140
3141         ASSERT_SERIALIZED(&txr->tx_serialize);
3142
3143         igb_txeof(txr);
3144         if (!ifsq_is_empty(txr->ifsq))
3145                 ifsq_devstart(txr->ifsq);
3146 }
3147
3148 static void
3149 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3150 {
3151         struct igb_rx_ring *rxr = arg;
3152
3153         ASSERT_SERIALIZED(&rxr->rx_serialize);
3154
3155         igb_rxeof(rxr, cycle);
3156 }
3157
3158 static void
3159 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3160 {
3161         struct igb_softc *sc = ifp->if_softc;
3162         int i, txr_cnt, rxr_cnt;
3163
3164         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3165
3166         if (info) {
3167                 int off;
3168
3169                 info->ifpi_status.status_func = igb_npoll_status;
3170                 info->ifpi_status.serializer = &sc->main_serialize;
3171
3172                 txr_cnt = igb_get_txring_inuse(sc, TRUE);
3173                 off = sc->tx_npoll_off;
3174                 for (i = 0; i < txr_cnt; ++i) {
3175                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3176                         int idx = i + off;
3177
3178                         KKASSERT(idx < ncpus2);
3179                         info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3180                         info->ifpi_tx[idx].arg = txr;
3181                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3182                         ifsq_set_cpuid(txr->ifsq, idx);
3183                 }
3184
3185                 rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3186                 off = sc->rx_npoll_off;
3187                 for (i = 0; i < rxr_cnt; ++i) {
3188                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3189                         int idx = i + off;
3190
3191                         KKASSERT(idx < ncpus2);
3192                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3193                         info->ifpi_rx[idx].arg = rxr;
3194                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3195                 }
3196
3197                 if (ifp->if_flags & IFF_RUNNING) {
3198                         if (rxr_cnt == sc->rx_ring_inuse &&
3199                             txr_cnt == sc->tx_ring_inuse) {
3200                                 igb_set_timer_cpuid(sc, TRUE);
3201                                 igb_disable_intr(sc);
3202                         } else {
3203                                 igb_init(sc);
3204                         }
3205                 }
3206         } else {
3207                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3208                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3209
3210                         ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3211                 }
3212
3213                 if (ifp->if_flags & IFF_RUNNING) {
3214                         txr_cnt = igb_get_txring_inuse(sc, FALSE);
3215                         rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3216
3217                         if (rxr_cnt == sc->rx_ring_inuse &&
3218                             txr_cnt == sc->tx_ring_inuse) {
3219                                 igb_set_timer_cpuid(sc, FALSE);
3220                                 igb_enable_intr(sc);
3221                         } else {
3222                                 igb_init(sc);
3223                         }
3224                 }
3225         }
3226 }
3227
3228 #endif /* IFPOLL_ENABLE */
3229
3230 static void
3231 igb_intr(void *xsc)
3232 {
3233         struct igb_softc *sc = xsc;
3234         struct ifnet *ifp = &sc->arpcom.ac_if;
3235         uint32_t eicr;
3236
3237         ASSERT_SERIALIZED(&sc->main_serialize);
3238
3239         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3240
3241         if (eicr == 0)
3242                 return;
3243
3244         if (ifp->if_flags & IFF_RUNNING) {
3245                 struct igb_tx_ring *txr = &sc->tx_rings[0];
3246                 int i;
3247
3248                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3249                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3250
3251                         if (eicr & rxr->rx_intr_mask) {
3252                                 lwkt_serialize_enter(&rxr->rx_serialize);
3253                                 igb_rxeof(rxr, -1);
3254                                 lwkt_serialize_exit(&rxr->rx_serialize);
3255                         }
3256                 }
3257
3258                 if (eicr & txr->tx_intr_mask) {
3259                         lwkt_serialize_enter(&txr->tx_serialize);
3260                         igb_txeof(txr);
3261                         if (!ifsq_is_empty(txr->ifsq))
3262                                 ifsq_devstart(txr->ifsq);
3263                         lwkt_serialize_exit(&txr->tx_serialize);
3264                 }
3265         }
3266
3267         if (eicr & E1000_EICR_OTHER) {
3268                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3269
3270                 /* Link status change */
3271                 if (icr & E1000_ICR_LSC) {
3272                         sc->hw.mac.get_link_status = 1;
3273                         igb_update_link_status(sc);
3274                 }
3275         }
3276
3277         /*
3278          * Reading EICR has the side effect to clear interrupt mask,
3279          * so all interrupts need to be enabled here.
3280          */
3281         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3282 }
3283
3284 static void
3285 igb_intr_shared(void *xsc)
3286 {
3287         struct igb_softc *sc = xsc;
3288         struct ifnet *ifp = &sc->arpcom.ac_if;
3289         uint32_t reg_icr;
3290
3291         ASSERT_SERIALIZED(&sc->main_serialize);
3292
3293         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3294
3295         /* Hot eject?  */
3296         if (reg_icr == 0xffffffff)
3297                 return;
3298
3299         /* Definitely not our interrupt.  */
3300         if (reg_icr == 0x0)
3301                 return;
3302
3303         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3304                 return;
3305
3306         if (ifp->if_flags & IFF_RUNNING) {
3307                 if (reg_icr &
3308                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3309                         int i;
3310
3311                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3312                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3313
3314                                 lwkt_serialize_enter(&rxr->rx_serialize);
3315                                 igb_rxeof(rxr, -1);
3316                                 lwkt_serialize_exit(&rxr->rx_serialize);
3317                         }
3318                 }
3319
3320                 if (reg_icr & E1000_ICR_TXDW) {
3321                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3322
3323                         lwkt_serialize_enter(&txr->tx_serialize);
3324                         igb_txeof(txr);
3325                         if (!ifsq_is_empty(txr->ifsq))
3326                                 ifsq_devstart(txr->ifsq);
3327                         lwkt_serialize_exit(&txr->tx_serialize);
3328                 }
3329         }
3330
3331         /* Link status change */
3332         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3333                 sc->hw.mac.get_link_status = 1;
3334                 igb_update_link_status(sc);
3335         }
3336
3337         if (reg_icr & E1000_ICR_RXO)
3338                 sc->rx_overruns++;
3339 }
3340
3341 static int
3342 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3343     int *segs_used, int *idx)
3344 {
3345         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3346         bus_dmamap_t map;
3347         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3348         union e1000_adv_tx_desc *txd = NULL;
3349         struct mbuf *m_head = *m_headp;
3350         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3351         int maxsegs, nsegs, i, j, error;
3352         uint32_t hdrlen = 0;
3353
3354         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3355                 error = igb_tso_pullup(txr, m_headp);
3356                 if (error)
3357                         return error;
3358                 m_head = *m_headp;
3359         }
3360
3361         /* Set basic descriptor constants */
3362         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3363         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3364         if (m_head->m_flags & M_VLANTAG)
3365                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3366
3367         /*
3368          * Map the packet for DMA.
3369          */
3370         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3371         tx_buf_mapped = tx_buf;
3372         map = tx_buf->map;
3373
3374         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3375         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3376         if (maxsegs > IGB_MAX_SCATTER)
3377                 maxsegs = IGB_MAX_SCATTER;
3378
3379         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3380             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3381         if (error) {
3382                 if (error == ENOBUFS)
3383                         txr->sc->mbuf_defrag_failed++;
3384                 else
3385                         txr->sc->no_tx_dma_setup++;
3386
3387                 m_freem(*m_headp);
3388                 *m_headp = NULL;
3389                 return error;
3390         }
3391         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3392
3393         m_head = *m_headp;
3394
3395         /*
3396          * Set up the TX context descriptor, if any hardware offloading is
3397          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3398          * TX descriptor.
3399          *
3400          * Unlike these chips' predecessors (em/emx), TX context descriptor
3401          * will _not_ interfere TX data fetching pipelining.
3402          */
3403         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3404                 igb_tso_ctx(txr, m_head, &hdrlen);
3405                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3406                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3407                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3408                 txr->tx_nsegs++;
3409                 (*segs_used)++;
3410         } else if (igb_txcsum_ctx(txr, m_head)) {
3411                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3412                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3413                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3414                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3415                 txr->tx_nsegs++;
3416                 (*segs_used)++;
3417         }
3418
3419         *segs_used += nsegs;
3420         txr->tx_nsegs += nsegs;
3421         if (txr->tx_nsegs >= txr->intr_nsegs) {
3422                 /*
3423                  * Report Status (RS) is turned on every intr_nsegs
3424                  * descriptors (roughly).
3425                  */
3426                 txr->tx_nsegs = 0;
3427                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3428         }
3429
3430         /* Calculate payload length */
3431         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3432             << E1000_ADVTXD_PAYLEN_SHIFT);
3433
3434         /*
3435          * 82575 needs the TX context index added; the queue
3436          * index is used as TX context index here.
3437          */
3438         if (txr->sc->hw.mac.type == e1000_82575)
3439                 olinfo_status |= txr->me << 4;
3440
3441         /* Set up our transmit descriptors */
3442         i = txr->next_avail_desc;
3443         for (j = 0; j < nsegs; j++) {
3444                 bus_size_t seg_len;
3445                 bus_addr_t seg_addr;
3446
3447                 tx_buf = &txr->tx_buf[i];
3448                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3449                 seg_addr = segs[j].ds_addr;
3450                 seg_len = segs[j].ds_len;
3451
3452                 txd->read.buffer_addr = htole64(seg_addr);
3453                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3454                 txd->read.olinfo_status = htole32(olinfo_status);
3455                 if (++i == txr->num_tx_desc)
3456                         i = 0;
3457                 tx_buf->m_head = NULL;
3458         }
3459
3460         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3461         txr->next_avail_desc = i;
3462         txr->tx_avail -= nsegs;
3463
3464         tx_buf->m_head = m_head;
3465         tx_buf_mapped->map = tx_buf->map;
3466         tx_buf->map = map;
3467
3468         /*
3469          * Last Descriptor of Packet needs End Of Packet (EOP)
3470          */
3471         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3472
3473         /*
3474          * Defer TDT updating, until enough descrptors are setup
3475          */
3476         *idx = i;
3477 #ifdef IGB_TSS_DEBUG
3478         ++txr->tx_packets;
3479 #endif
3480
3481         return 0;
3482 }
3483
3484 static void
3485 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3486 {
3487         struct igb_softc *sc = ifp->if_softc;
3488         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3489         struct mbuf *m_head;
3490         int idx = -1, nsegs = 0;
3491
3492         KKASSERT(txr->ifsq == ifsq);
3493         ASSERT_SERIALIZED(&txr->tx_serialize);
3494
3495         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3496                 return;
3497
3498         if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3499                 ifsq_purge(ifsq);
3500                 return;
3501         }
3502
3503         if (!IGB_IS_NOT_OACTIVE(txr))
3504                 igb_txeof(txr);
3505
3506         while (!ifsq_is_empty(ifsq)) {
3507                 if (IGB_IS_OACTIVE(txr)) {
3508                         ifsq_set_oactive(ifsq);
3509                         /* Set watchdog on */
3510                         txr->tx_watchdog.wd_timer = 5;
3511                         break;
3512                 }
3513
3514                 m_head = ifsq_dequeue(ifsq);
3515                 if (m_head == NULL)
3516                         break;
3517
3518                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3519                         IFNET_STAT_INC(ifp, oerrors, 1);
3520                         continue;
3521                 }
3522
3523                 /*
3524                  * TX interrupt are aggressively aggregated, so increasing
3525                  * opackets at TX interrupt time will make the opackets
3526                  * statistics vastly inaccurate; we do the opackets increment
3527                  * now.
3528                  */
3529                 IFNET_STAT_INC(ifp, opackets, 1);
3530
3531                 if (nsegs >= txr->wreg_nsegs) {
3532                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3533                         idx = -1;
3534                         nsegs = 0;
3535                 }
3536
3537                 /* Send a copy of the frame to the BPF listener */
3538                 ETHER_BPF_MTAP(ifp, m_head);
3539         }
3540         if (idx >= 0)
3541                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3542 }
3543
3544 static void
3545 igb_watchdog(struct ifaltq_subque *ifsq)
3546 {
3547         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3548         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3549         struct igb_softc *sc = ifp->if_softc;
3550         int i;
3551
3552         KKASSERT(txr->ifsq == ifsq);
3553         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3554
3555         /* 
3556          * If flow control has paused us since last checking
3557          * it invalidates the watchdog timing, so dont run it.
3558          */
3559         if (sc->pause_frames) {
3560                 sc->pause_frames = 0;
3561                 txr->tx_watchdog.wd_timer = 5;
3562                 return;
3563         }
3564
3565         if_printf(ifp, "Watchdog timeout -- resetting\n");
3566         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3567             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3568             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3569         if_printf(ifp, "TX(%d) desc avail = %d, "
3570             "Next TX to Clean = %d\n",
3571             txr->me, txr->tx_avail, txr->next_to_clean);
3572
3573         IFNET_STAT_INC(ifp, oerrors, 1);
3574         sc->watchdog_events++;
3575
3576         igb_init(sc);
3577         for (i = 0; i < sc->tx_ring_inuse; ++i)
3578                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3579 }
3580
3581 static void
3582 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3583 {
3584         uint32_t eitr = 0;
3585
3586         if (rate > 0) {
3587                 if (sc->hw.mac.type == e1000_82575) {
3588                         eitr = 1000000000 / 256 / rate;
3589                         /*
3590                          * NOTE:
3591                          * Document is wrong on the 2 bits left shift
3592                          */
3593                 } else {
3594                         eitr = 1000000 / rate;
3595                         eitr <<= IGB_EITR_INTVL_SHIFT;
3596                 }
3597
3598                 if (eitr == 0) {
3599                         /* Don't disable it */
3600                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3601                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3602                         /* Don't allow it to be too large */
3603                         eitr = IGB_EITR_INTVL_MASK;
3604                 }
3605         }
3606         if (sc->hw.mac.type == e1000_82575)
3607                 eitr |= eitr << 16;
3608         else
3609                 eitr |= E1000_EITR_CNT_IGNR;
3610         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3611 }
3612
3613 static int
3614 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3615 {
3616         struct igb_softc *sc = (void *)arg1;
3617         struct ifnet *ifp = &sc->arpcom.ac_if;
3618         int error, intr_rate;
3619
3620         intr_rate = sc->intr_rate;
3621         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3622         if (error || req->newptr == NULL)
3623                 return error;
3624         if (intr_rate < 0)
3625                 return EINVAL;
3626
3627         ifnet_serialize_all(ifp);
3628
3629         sc->intr_rate = intr_rate;
3630         if (ifp->if_flags & IFF_RUNNING)
3631                 igb_set_eitr(sc, 0, sc->intr_rate);
3632
3633         if (bootverbose)
3634                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3635
3636         ifnet_deserialize_all(ifp);
3637
3638         return 0;
3639 }
3640
3641 static int
3642 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3643 {
3644         struct igb_msix_data *msix = (void *)arg1;
3645         struct igb_softc *sc = msix->msix_sc;
3646         struct ifnet *ifp = &sc->arpcom.ac_if;
3647         int error, msix_rate;
3648
3649         msix_rate = msix->msix_rate;
3650         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3651         if (error || req->newptr == NULL)
3652                 return error;
3653         if (msix_rate < 0)
3654                 return EINVAL;
3655
3656         lwkt_serialize_enter(msix->msix_serialize);
3657
3658         msix->msix_rate = msix_rate;
3659         if (ifp->if_flags & IFF_RUNNING)
3660                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3661
3662         if (bootverbose) {
3663                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3664                     msix->msix_rate);
3665         }
3666
3667         lwkt_serialize_exit(msix->msix_serialize);
3668
3669         return 0;
3670 }
3671
3672 static int
3673 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3674 {
3675         struct igb_softc *sc = (void *)arg1;
3676         struct ifnet *ifp = &sc->arpcom.ac_if;
3677         struct igb_tx_ring *txr = &sc->tx_rings[0];
3678         int error, nsegs;
3679
3680         nsegs = txr->intr_nsegs;
3681         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3682         if (error || req->newptr == NULL)
3683                 return error;
3684         if (nsegs <= 0)
3685                 return EINVAL;
3686
3687         ifnet_serialize_all(ifp);
3688
3689         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3690             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3691                 error = EINVAL;
3692         } else {
3693                 int i;
3694
3695                 error = 0;
3696                 for (i = 0; i < sc->tx_ring_cnt; ++i)
3697                         sc->tx_rings[i].intr_nsegs = nsegs;
3698         }
3699
3700         ifnet_deserialize_all(ifp);
3701
3702         return error;
3703 }
3704
3705 static int
3706 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3707 {
3708         struct igb_softc *sc = (void *)arg1;
3709         struct ifnet *ifp = &sc->arpcom.ac_if;
3710         int error, nsegs, i;
3711
3712         nsegs = sc->rx_rings[0].wreg_nsegs;
3713         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3714         if (error || req->newptr == NULL)
3715                 return error;
3716
3717         ifnet_serialize_all(ifp);
3718         for (i = 0; i < sc->rx_ring_cnt; ++i)
3719                 sc->rx_rings[i].wreg_nsegs =nsegs;
3720         ifnet_deserialize_all(ifp);
3721
3722         return 0;
3723 }
3724
3725 static int
3726 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3727 {
3728         struct igb_softc *sc = (void *)arg1;
3729         struct ifnet *ifp = &sc->arpcom.ac_if;
3730         int error, nsegs, i;
3731
3732         nsegs = sc->tx_rings[0].wreg_nsegs;
3733         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3734         if (error || req->newptr == NULL)
3735                 return error;
3736
3737         ifnet_serialize_all(ifp);
3738         for (i = 0; i < sc->tx_ring_cnt; ++i)
3739                 sc->tx_rings[i].wreg_nsegs =nsegs;
3740         ifnet_deserialize_all(ifp);
3741
3742         return 0;
3743 }
3744
3745 #ifdef IFPOLL_ENABLE
3746
3747 static int
3748 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3749 {
3750         struct igb_softc *sc = (void *)arg1;
3751         struct ifnet *ifp = &sc->arpcom.ac_if;
3752         int error, off;
3753
3754         off = sc->rx_npoll_off;
3755         error = sysctl_handle_int(oidp, &off, 0, req);
3756         if (error || req->newptr == NULL)
3757                 return error;
3758         if (off < 0)
3759                 return EINVAL;
3760
3761         ifnet_serialize_all(ifp);
3762         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3763                 error = EINVAL;
3764         } else {
3765                 error = 0;
3766                 sc->rx_npoll_off = off;
3767         }
3768         ifnet_deserialize_all(ifp);
3769
3770         return error;
3771 }
3772
3773 static int
3774 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3775 {
3776         struct igb_softc *sc = (void *)arg1;
3777         struct ifnet *ifp = &sc->arpcom.ac_if;
3778         int error, off;
3779
3780         off = sc->tx_npoll_off;
3781         error = sysctl_handle_int(oidp, &off, 0, req);
3782         if (error || req->newptr == NULL)
3783                 return error;
3784         if (off < 0)
3785                 return EINVAL;
3786
3787         ifnet_serialize_all(ifp);
3788         if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3789                 error = EINVAL;
3790         } else {
3791                 error = 0;
3792                 sc->tx_npoll_off = off;
3793         }
3794         ifnet_deserialize_all(ifp);
3795
3796         return error;
3797 }
3798
3799 #endif  /* IFPOLL_ENABLE */
3800
3801 static void
3802 igb_init_intr(struct igb_softc *sc)
3803 {
3804         igb_set_intr_mask(sc);
3805
3806         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3807                 igb_init_unshared_intr(sc);
3808
3809         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3810                 igb_set_eitr(sc, 0, sc->intr_rate);
3811         } else {
3812                 int i;
3813
3814                 for (i = 0; i < sc->msix_cnt; ++i)
3815                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3816         }
3817 }
3818
3819 static void
3820 igb_init_unshared_intr(struct igb_softc *sc)
3821 {
3822         struct e1000_hw *hw = &sc->hw;
3823         const struct igb_rx_ring *rxr;
3824         const struct igb_tx_ring *txr;
3825         uint32_t ivar, index;
3826         int i;
3827
3828         /*
3829          * Enable extended mode
3830          */
3831         if (sc->hw.mac.type != e1000_82575) {
3832                 uint32_t gpie;
3833                 int ivar_max;
3834
3835                 gpie = E1000_GPIE_NSICR;
3836                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3837                         gpie |= E1000_GPIE_MSIX_MODE |
3838                             E1000_GPIE_EIAME |
3839                             E1000_GPIE_PBA;
3840                 }
3841                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3842
3843                 /*
3844                  * Clear IVARs
3845                  */
3846                 switch (sc->hw.mac.type) {
3847                 case e1000_82576:
3848                         ivar_max = IGB_MAX_IVAR_82576;
3849                         break;
3850
3851                 case e1000_82580:
3852                         ivar_max = IGB_MAX_IVAR_82580;
3853                         break;
3854
3855                 case e1000_i350:
3856                         ivar_max = IGB_MAX_IVAR_I350;
3857                         break;
3858
3859                 case e1000_i354:
3860                         ivar_max = IGB_MAX_IVAR_I354;
3861                         break;
3862
3863                 case e1000_vfadapt:
3864                 case e1000_vfadapt_i350:
3865                         ivar_max = IGB_MAX_IVAR_VF;
3866                         break;
3867
3868                 case e1000_i210:
3869                         ivar_max = IGB_MAX_IVAR_I210;
3870                         break;
3871
3872                 case e1000_i211:
3873                         ivar_max = IGB_MAX_IVAR_I211;
3874                         break;
3875
3876                 default:
3877                         panic("unknown mac type %d\n", sc->hw.mac.type);
3878                 }
3879                 for (i = 0; i < ivar_max; ++i)
3880                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3881                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3882         } else {
3883                 uint32_t tmp;
3884
3885                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3886                     ("82575 w/ MSI-X"));
3887                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3888                 tmp |= E1000_CTRL_EXT_IRCA;
3889                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3890         }
3891
3892         /*
3893          * Map TX/RX interrupts to EICR
3894          */
3895         switch (sc->hw.mac.type) {
3896         case e1000_82580:
3897         case e1000_i350:
3898         case e1000_i354:
3899         case e1000_vfadapt:
3900         case e1000_vfadapt_i350:
3901         case e1000_i210:
3902         case e1000_i211:
3903                 /* RX entries */
3904                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3905                         rxr = &sc->rx_rings[i];
3906
3907                         index = i >> 1;
3908                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3909
3910                         if (i & 1) {
3911                                 ivar &= 0xff00ffff;
3912                                 ivar |=
3913                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3914                         } else {
3915                                 ivar &= 0xffffff00;
3916                                 ivar |=
3917                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3918                         }
3919                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3920                 }
3921                 /* TX entries */
3922                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3923                         txr = &sc->tx_rings[i];
3924
3925                         index = i >> 1;
3926                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3927
3928                         if (i & 1) {
3929                                 ivar &= 0x00ffffff;
3930                                 ivar |=
3931                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3932                         } else {
3933                                 ivar &= 0xffff00ff;
3934                                 ivar |=
3935                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3936                         }
3937                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3938                 }
3939                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3940                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3941                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3942                 }
3943                 break;
3944
3945         case e1000_82576:
3946                 /* RX entries */
3947                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3948                         rxr = &sc->rx_rings[i];
3949
3950                         index = i & 0x7; /* Each IVAR has two entries */
3951                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3952
3953                         if (i < 8) {
3954                                 ivar &= 0xffffff00;
3955                                 ivar |=
3956                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3957                         } else {
3958                                 ivar &= 0xff00ffff;
3959                                 ivar |=
3960                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3961                         }
3962                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3963                 }
3964                 /* TX entries */
3965                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3966                         txr = &sc->tx_rings[i];
3967
3968                         index = i & 0x7; /* Each IVAR has two entries */
3969                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3970
3971                         if (i < 8) {
3972                                 ivar &= 0xffff00ff;
3973                                 ivar |=
3974                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3975                         } else {
3976                                 ivar &= 0x00ffffff;
3977                                 ivar |=
3978                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3979                         }
3980                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3981                 }
3982                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3983                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3984                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3985                 }
3986                 break;
3987
3988         case e1000_82575:
3989                 /*
3990                  * Enable necessary interrupt bits.
3991                  *
3992                  * The name of the register is confusing; in addition to
3993                  * configuring the first vector of MSI-X, it also configures
3994                  * which bits of EICR could be set by the hardware even when
3995                  * MSI or line interrupt is used; it thus controls interrupt
3996                  * generation.  It MUST be configured explicitly; the default
3997                  * value mentioned in the datasheet is wrong: RX queue0 and
3998                  * TX queue0 are NOT enabled by default.
3999                  */
4000                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
4001                 break;
4002
4003         default:
4004                 panic("unknown mac type %d\n", sc->hw.mac.type);
4005         }
4006 }
4007
4008 static int
4009 igb_setup_intr(struct igb_softc *sc)
4010 {
4011         int error;
4012
4013         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4014                 return igb_msix_setup(sc);
4015
4016         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
4017             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
4018             sc, &sc->intr_tag, &sc->main_serialize);
4019         if (error) {
4020                 device_printf(sc->dev, "Failed to register interrupt handler");
4021                 return error;
4022         }
4023         return 0;
4024 }
4025
4026 static void
4027 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
4028 {
4029         if (txr->sc->hw.mac.type == e1000_82575) {
4030                 txr->tx_intr_bit = 0;   /* unused */
4031                 switch (txr->me) {
4032                 case 0:
4033                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
4034                         break;
4035                 case 1:
4036                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
4037                         break;
4038                 case 2:
4039                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4040                         break;
4041                 case 3:
4042                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4043                         break;
4044                 default:
4045                         panic("unsupported # of TX ring, %d\n", txr->me);
4046                 }
4047         } else {
4048                 int intr_bit = *intr_bit0;
4049
4050                 txr->tx_intr_bit = intr_bit % intr_bitmax;
4051                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4052
4053                 *intr_bit0 = intr_bit + 1;
4054         }
4055 }
4056
4057 static void
4058 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4059 {
4060         if (rxr->sc->hw.mac.type == e1000_82575) {
4061                 rxr->rx_intr_bit = 0;   /* unused */
4062                 switch (rxr->me) {
4063                 case 0:
4064                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4065                         break;
4066                 case 1:
4067                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4068                         break;
4069                 case 2:
4070                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4071                         break;
4072                 case 3:
4073                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4074                         break;
4075                 default:
4076                         panic("unsupported # of RX ring, %d\n", rxr->me);
4077                 }
4078         } else {
4079                 int intr_bit = *intr_bit0;
4080
4081                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
4082                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4083
4084                 *intr_bit0 = intr_bit + 1;
4085         }
4086 }
4087
4088 static void
4089 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4090 {
4091         struct igb_softc *sc = ifp->if_softc;
4092
4093         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4094 }
4095
4096 static void
4097 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4098 {
4099         struct igb_softc *sc = ifp->if_softc;
4100
4101         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4102 }
4103
4104 static int
4105 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4106 {
4107         struct igb_softc *sc = ifp->if_softc;
4108
4109         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4110             slz);
4111 }
4112
4113 #ifdef INVARIANTS
4114
4115 static void
4116 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4117     boolean_t serialized)
4118 {
4119         struct igb_softc *sc = ifp->if_softc;
4120
4121         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4122             slz, serialized);
4123 }
4124
4125 #endif  /* INVARIANTS */
4126
4127 static void
4128 igb_set_intr_mask(struct igb_softc *sc)
4129 {
4130         int i;
4131
4132         sc->intr_mask = sc->sts_intr_mask;
4133         for (i = 0; i < sc->rx_ring_inuse; ++i)
4134                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4135         for (i = 0; i < sc->tx_ring_inuse; ++i)
4136                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4137         if (bootverbose) {
4138                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4139                     sc->intr_mask);
4140         }
4141 }
4142
4143 static int
4144 igb_alloc_intr(struct igb_softc *sc)
4145 {
4146         int i, intr_bit, intr_bitmax;
4147         u_int intr_flags;
4148
4149         igb_msix_try_alloc(sc);
4150         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4151                 goto done;
4152
4153         /*
4154          * Allocate MSI/legacy interrupt resource
4155          */
4156         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4157             &sc->intr_rid, &intr_flags);
4158
4159         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4160                 int unshared;
4161
4162                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4163                 if (!unshared) {
4164                         sc->flags |= IGB_FLAG_SHARED_INTR;
4165                         if (bootverbose)
4166                                 device_printf(sc->dev, "IRQ shared\n");
4167                 } else {
4168                         intr_flags &= ~RF_SHAREABLE;
4169                         if (bootverbose)
4170                                 device_printf(sc->dev, "IRQ unshared\n");
4171                 }
4172         }
4173
4174         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4175             &sc->intr_rid, intr_flags);
4176         if (sc->intr_res == NULL) {
4177                 device_printf(sc->dev, "Unable to allocate bus resource: "
4178                     "interrupt\n");
4179                 return ENXIO;
4180         }
4181
4182         for (i = 0; i < sc->tx_ring_cnt; ++i)
4183                 sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
4184
4185         /*
4186          * Setup MSI/legacy interrupt mask
4187          */
4188         switch (sc->hw.mac.type) {
4189         case e1000_82575:
4190                 intr_bitmax = IGB_MAX_TXRXINT_82575;
4191                 break;
4192
4193         case e1000_82576:
4194                 intr_bitmax = IGB_MAX_TXRXINT_82576;
4195                 break;
4196
4197         case e1000_82580:
4198                 intr_bitmax = IGB_MAX_TXRXINT_82580;
4199                 break;
4200
4201         case e1000_i350:
4202                 intr_bitmax = IGB_MAX_TXRXINT_I350;
4203                 break;
4204
4205         case e1000_i354:
4206                 intr_bitmax = IGB_MAX_TXRXINT_I354;
4207                 break;
4208
4209         case e1000_i210:
4210                 intr_bitmax = IGB_MAX_TXRXINT_I210;
4211                 break;
4212
4213         case e1000_i211:
4214                 intr_bitmax = IGB_MAX_TXRXINT_I211;
4215                 break;
4216
4217         default:
4218                 intr_bitmax = IGB_MIN_TXRXINT;
4219                 break;
4220         }
4221         intr_bit = 0;
4222         for (i = 0; i < sc->tx_ring_cnt; ++i)
4223                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4224         for (i = 0; i < sc->rx_ring_cnt; ++i)
4225                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4226         sc->sts_intr_bit = 0;
4227         sc->sts_intr_mask = E1000_EICR_OTHER;
4228
4229         /* Initialize interrupt rate */
4230         sc->intr_rate = IGB_INTR_RATE;
4231 done:
4232         igb_set_ring_inuse(sc, FALSE);
4233         igb_set_intr_mask(sc);
4234         return 0;
4235 }
4236
4237 static void
4238 igb_free_intr(struct igb_softc *sc)
4239 {
4240         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4241                 if (sc->intr_res != NULL) {
4242                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4243                             sc->intr_res);
4244                 }
4245                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
4246                         pci_release_msi(sc->dev);
4247         } else {
4248                 igb_msix_free(sc, TRUE);
4249         }
4250 }
4251
4252 static void
4253 igb_teardown_intr(struct igb_softc *sc)
4254 {
4255         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4256                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4257         else
4258                 igb_msix_teardown(sc, sc->msix_cnt);
4259 }
4260
4261 static void
4262 igb_msix_try_alloc(struct igb_softc *sc)
4263 {
4264         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4265         int i, x, error;
4266         int offset, offset_def;
4267         struct igb_msix_data *msix;
4268         boolean_t aggregate, setup = FALSE;
4269
4270         /*
4271          * Don't enable MSI-X on 82575, see:
4272          * 82575 specification update errata #25
4273          */
4274         if (sc->hw.mac.type == e1000_82575)
4275                 return;
4276
4277         /* Don't enable MSI-X on VF */
4278         if (sc->vf_ifp)
4279                 return;
4280
4281         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4282             igb_msix_enable);
4283         if (!msix_enable)
4284                 return;
4285
4286         msix_cnt = pci_msix_count(sc->dev);
4287 #ifdef IGB_MSIX_DEBUG
4288         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4289 #endif
4290         if (msix_cnt <= 1) {
4291                 /* One MSI-X model does not make sense */
4292                 return;
4293         }
4294
4295         i = 0;
4296         while ((1 << (i + 1)) <= msix_cnt)
4297                 ++i;
4298         msix_cnt2 = 1 << i;
4299
4300         if (bootverbose) {
4301                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4302                     msix_cnt2, msix_cnt);
4303         }
4304
4305         KKASSERT(msix_cnt2 <= msix_cnt);
4306         if (msix_cnt == msix_cnt2) {
4307                 /* We need at least one MSI-X for link status */
4308                 msix_cnt2 >>= 1;
4309                 if (msix_cnt2 <= 1) {
4310                         /* One MSI-X for RX/TX does not make sense */
4311                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4312                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4313                         return;
4314                 }
4315                 KKASSERT(msix_cnt > msix_cnt2);
4316
4317                 if (bootverbose) {
4318                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4319                             msix_cnt2, msix_cnt);
4320                 }
4321         }
4322
4323         sc->rx_ring_msix = sc->rx_ring_cnt;
4324         if (sc->rx_ring_msix > msix_cnt2)
4325                 sc->rx_ring_msix = msix_cnt2;
4326
4327         sc->tx_ring_msix = sc->tx_ring_cnt;
4328         if (sc->tx_ring_msix > msix_cnt2)
4329                 sc->tx_ring_msix = msix_cnt2;
4330
4331         if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4332                 /*
4333                  * Independent TX/RX MSI-X
4334                  */
4335                 aggregate = FALSE;
4336                 if (bootverbose)
4337                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4338                 alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4339         } else {
4340                 /*
4341                  * Aggregate TX/RX MSI-X
4342                  */
4343                 aggregate = TRUE;
4344                 if (bootverbose)
4345                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4346                 alloc_cnt = msix_cnt2;
4347                 if (alloc_cnt > ncpus2)
4348                         alloc_cnt = ncpus2;
4349                 if (sc->rx_ring_msix > alloc_cnt)
4350                         sc->rx_ring_msix = alloc_cnt;
4351                 if (sc->tx_ring_msix > alloc_cnt)
4352                         sc->tx_ring_msix = alloc_cnt;
4353         }
4354         ++alloc_cnt;    /* For link status */
4355
4356         if (bootverbose) {
4357                 device_printf(sc->dev, "MSI-X alloc %d, "
4358                     "RX ring %d, TX ring %d\n", alloc_cnt,
4359                     sc->rx_ring_msix, sc->tx_ring_msix);
4360         }
4361
4362         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4363         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4364             &sc->msix_mem_rid, RF_ACTIVE);
4365         if (sc->msix_mem_res == NULL) {
4366                 sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4367                 sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4368                     &sc->msix_mem_rid, RF_ACTIVE);
4369                 if (sc->msix_mem_res == NULL) {
4370                         device_printf(sc->dev, "Unable to map MSI-X table\n");
4371                         return;
4372                 }
4373         }
4374
4375         sc->msix_cnt = alloc_cnt;
4376         sc->msix_data = kmalloc_cachealign(
4377             sizeof(struct igb_msix_data) * sc->msix_cnt,
4378             M_DEVBUF, M_WAITOK | M_ZERO);
4379         for (x = 0; x < sc->msix_cnt; ++x) {
4380                 msix = &sc->msix_data[x];
4381
4382                 lwkt_serialize_init(&msix->msix_serialize0);
4383                 msix->msix_sc = sc;
4384                 msix->msix_rid = -1;
4385                 msix->msix_vector = x;
4386                 msix->msix_mask = 1 << msix->msix_vector;
4387                 msix->msix_rate = IGB_INTR_RATE;
4388         }
4389
4390         x = 0;
4391         if (!aggregate) {
4392                 /*
4393                  * RX rings
4394                  */
4395                 if (sc->rx_ring_msix == ncpus2) {
4396                         offset = 0;
4397                 } else {
4398                         offset_def = (sc->rx_ring_msix *
4399                             device_get_unit(sc->dev)) % ncpus2;
4400
4401                         offset = device_getenv_int(sc->dev,
4402                             "msix.rxoff", offset_def);
4403                         if (offset >= ncpus2 ||
4404                             offset % sc->rx_ring_msix != 0) {
4405                                 device_printf(sc->dev,
4406                                     "invalid msix.rxoff %d, use %d\n",
4407                                     offset, offset_def);
4408                                 offset = offset_def;
4409                         }
4410                 }
4411                 igb_msix_rx_conf(sc, 0, &x, offset);
4412
4413                 /*
4414                  * TX rings
4415                  */
4416                 if (sc->tx_ring_msix == ncpus2) {
4417                         offset = 0;
4418                 } else {
4419                         offset_def = (sc->tx_ring_msix *
4420                             device_get_unit(sc->dev)) % ncpus2;
4421
4422                         offset = device_getenv_int(sc->dev,
4423                             "msix.txoff", offset_def);
4424                         if (offset >= ncpus2 ||
4425                             offset % sc->tx_ring_msix != 0) {
4426                                 device_printf(sc->dev,
4427                                     "invalid msix.txoff %d, use %d\n",
4428                                     offset, offset_def);
4429                                 offset = offset_def;
4430                         }
4431                 }
4432                 igb_msix_tx_conf(sc, 0, &x, offset);
4433         } else {
4434                 int ring_agg, ring_max;
4435
4436                 ring_agg = sc->rx_ring_msix;
4437                 if (ring_agg > sc->tx_ring_msix)
4438                         ring_agg = sc->tx_ring_msix;
4439
4440                 ring_max = sc->rx_ring_msix;
4441                 if (ring_max < sc->tx_ring_msix)
4442                         ring_max = sc->tx_ring_msix;
4443
4444                 if (ring_max == ncpus2) {
4445                         offset = 0;
4446                 } else {
4447                         offset_def = (ring_max * device_get_unit(sc->dev)) %
4448                             ncpus2;
4449
4450                         offset = device_getenv_int(sc->dev, "msix.off",
4451                             offset_def);
4452                         if (offset >= ncpus2 || offset % ring_max != 0) {
4453                                 device_printf(sc->dev,
4454                                     "invalid msix.off %d, use %d\n",
4455                                     offset, offset_def);
4456                                 offset = offset_def;
4457                         }
4458                 }
4459
4460                 for (i = 0; i < ring_agg; ++i) {
4461                         struct igb_tx_ring *txr = &sc->tx_rings[i];
4462                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
4463
4464                         KKASSERT(x < sc->msix_cnt);
4465                         msix = &sc->msix_data[x++];
4466
4467                         txr->tx_intr_bit = msix->msix_vector;
4468                         txr->tx_intr_mask = msix->msix_mask;
4469                         rxr->rx_intr_bit = msix->msix_vector;
4470                         rxr->rx_intr_mask = msix->msix_mask;
4471
4472                         msix->msix_serialize = &msix->msix_serialize0;
4473                         msix->msix_func = igb_msix_rxtx;
4474                         msix->msix_arg = msix;
4475                         msix->msix_rx = rxr;
4476                         msix->msix_tx = txr;
4477
4478                         msix->msix_cpuid = i + offset;
4479                         KKASSERT(msix->msix_cpuid < ncpus2);
4480                         txr->tx_intr_cpuid = msix->msix_cpuid;
4481
4482                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4483                             "%s rxtx%d", device_get_nameunit(sc->dev), i);
4484                         msix->msix_rate = IGB_MSIX_RX_RATE;
4485                         ksnprintf(msix->msix_rate_desc,
4486                             sizeof(msix->msix_rate_desc),
4487                             "RXTX%d interrupt rate", i);
4488                 }
4489
4490                 if (ring_agg != ring_max) {
4491                         if (ring_max == sc->tx_ring_msix)
4492                                 igb_msix_tx_conf(sc, i, &x, offset);
4493                         else
4494                                 igb_msix_rx_conf(sc, i, &x, offset);
4495                 }
4496         }
4497
4498         /*
4499          * Link status
4500          */
4501         KKASSERT(x < sc->msix_cnt);
4502         msix = &sc->msix_data[x++];
4503         sc->sts_intr_bit = msix->msix_vector;
4504         sc->sts_intr_mask = msix->msix_mask;
4505
4506         msix->msix_serialize = &sc->main_serialize;
4507         msix->msix_func = igb_msix_status;
4508         msix->msix_arg = sc;
4509         msix->msix_cpuid = 0;
4510         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4511             device_get_nameunit(sc->dev));
4512         ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4513             "status interrupt rate");
4514
4515         KKASSERT(x == sc->msix_cnt);
4516
4517         error = pci_setup_msix(sc->dev);
4518         if (error) {
4519                 device_printf(sc->dev, "Setup MSI-X failed\n");
4520                 goto back;
4521         }
4522         setup = TRUE;
4523
4524         for (i = 0; i < sc->msix_cnt; ++i) {
4525                 msix = &sc->msix_data[i];
4526
4527                 error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4528                     &msix->msix_rid, msix->msix_cpuid);
4529                 if (error) {
4530                         device_printf(sc->dev,
4531                             "Unable to allocate MSI-X %d on cpu%d\n",
4532                             msix->msix_vector, msix->msix_cpuid);
4533                         goto back;
4534                 }
4535
4536                 msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4537                     &msix->msix_rid, RF_ACTIVE);
4538                 if (msix->msix_res == NULL) {
4539                         device_printf(sc->dev,
4540                             "Unable to allocate MSI-X %d resource\n",
4541                             msix->msix_vector);
4542                         error = ENOMEM;
4543                         goto back;
4544                 }
4545         }
4546
4547         pci_enable_msix(sc->dev);
4548         sc->intr_type = PCI_INTR_TYPE_MSIX;
4549 back:
4550         if (error)
4551                 igb_msix_free(sc, setup);
4552 }
4553
4554 static void
4555 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4556 {
4557         int i;
4558
4559         KKASSERT(sc->msix_cnt > 1);
4560
4561         for (i = 0; i < sc->msix_cnt; ++i) {
4562                 struct igb_msix_data *msix = &sc->msix_data[i];
4563
4564                 if (msix->msix_res != NULL) {
4565                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4566                             msix->msix_rid, msix->msix_res);
4567                 }
4568                 if (msix->msix_rid >= 0)
4569                         pci_release_msix_vector(sc->dev, msix->msix_rid);
4570         }
4571         if (setup)
4572                 pci_teardown_msix(sc->dev);
4573
4574         sc->msix_cnt = 0;
4575         kfree(sc->msix_data, M_DEVBUF);
4576         sc->msix_data = NULL;
4577 }
4578
4579 static int
4580 igb_msix_setup(struct igb_softc *sc)
4581 {
4582         int i;
4583
4584         for (i = 0; i < sc->msix_cnt; ++i) {
4585                 struct igb_msix_data *msix = &sc->msix_data[i];
4586                 int error;
4587
4588                 error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4589                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4590                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4591                 if (error) {
4592                         device_printf(sc->dev, "could not set up %s "
4593                             "interrupt handler.\n", msix->msix_desc);
4594                         igb_msix_teardown(sc, i);
4595                         return error;
4596                 }
4597         }
4598         return 0;
4599 }
4600
4601 static void
4602 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4603 {
4604         int i;
4605
4606         for (i = 0; i < msix_cnt; ++i) {
4607                 struct igb_msix_data *msix = &sc->msix_data[i];
4608
4609                 bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4610         }
4611 }
4612
4613 static void
4614 igb_msix_rx(void *arg)
4615 {
4616         struct igb_rx_ring *rxr = arg;
4617
4618         ASSERT_SERIALIZED(&rxr->rx_serialize);
4619         igb_rxeof(rxr, -1);
4620
4621         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4622 }
4623
4624 static void
4625 igb_msix_tx(void *arg)
4626 {
4627         struct igb_tx_ring *txr = arg;
4628
4629         ASSERT_SERIALIZED(&txr->tx_serialize);
4630
4631         igb_txeof(txr);
4632         if (!ifsq_is_empty(txr->ifsq))
4633                 ifsq_devstart(txr->ifsq);
4634
4635         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4636 }
4637
4638 static void
4639 igb_msix_status(void *arg)
4640 {
4641         struct igb_softc *sc = arg;
4642         uint32_t icr;
4643
4644         ASSERT_SERIALIZED(&sc->main_serialize);
4645
4646         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4647         if (icr & E1000_ICR_LSC) {
4648                 sc->hw.mac.get_link_status = 1;
4649                 igb_update_link_status(sc);
4650         }
4651
4652         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4653 }
4654
4655 static void
4656 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4657 {
4658         sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4659         sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4660         if (bootverbose) {
4661                 if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4662                     sc->rx_ring_inuse, sc->rx_ring_cnt,
4663                     sc->tx_ring_inuse, sc->tx_ring_cnt);
4664         }
4665 }
4666
4667 static int
4668 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4669 {
4670         if (!IGB_ENABLE_HWRSS(sc))
4671                 return 1;
4672
4673         if (polling)
4674                 return sc->rx_ring_cnt;
4675         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4676                 return IGB_MIN_RING_RSS;
4677         else
4678                 return sc->rx_ring_msix;
4679 }
4680
4681 static int
4682 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4683 {
4684         if (!IGB_ENABLE_HWTSS(sc))
4685                 return 1;
4686
4687         if (polling)
4688                 return sc->tx_ring_cnt;
4689         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4690                 return IGB_MIN_RING;
4691         else
4692                 return sc->tx_ring_msix;
4693 }
4694
4695 static int
4696 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4697 {
4698         int hoff, iphlen, thoff;
4699         struct mbuf *m;
4700
4701         m = *mp;
4702         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4703
4704         iphlen = m->m_pkthdr.csum_iphlen;
4705         thoff = m->m_pkthdr.csum_thlen;
4706         hoff = m->m_pkthdr.csum_lhlen;
4707
4708         KASSERT(iphlen > 0, ("invalid ip hlen"));
4709         KASSERT(thoff > 0, ("invalid tcp hlen"));
4710         KASSERT(hoff > 0, ("invalid ether hlen"));
4711
4712         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4713                 m = m_pullup(m, hoff + iphlen + thoff);
4714                 if (m == NULL) {
4715                         *mp = NULL;
4716                         return ENOBUFS;
4717                 }
4718                 *mp = m;
4719         }
4720         if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4721                 struct ip *ip;
4722
4723                 ip = mtodoff(m, struct ip *, hoff);
4724                 ip->ip_len = 0;
4725         }
4726
4727         return 0;
4728 }
4729
4730 static void
4731 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4732 {
4733         struct e1000_adv_tx_context_desc *TXD;
4734         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4735         int hoff, ctxd, iphlen, thoff;
4736
4737         iphlen = m->m_pkthdr.csum_iphlen;
4738         thoff = m->m_pkthdr.csum_thlen;
4739         hoff = m->m_pkthdr.csum_lhlen;
4740
4741         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4742
4743         ctxd = txr->next_avail_desc;
4744         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4745
4746         if (m->m_flags & M_VLANTAG) {
4747                 uint16_t vlantag;
4748
4749                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4750                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4751         }
4752
4753         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4754         vlan_macip_lens |= iphlen;
4755
4756         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4757         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4758         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4759
4760         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4761         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4762
4763         /*
4764          * 82575 needs the TX context index added; the queue
4765          * index is used as TX context index here.
4766          */
4767         if (txr->sc->hw.mac.type == e1000_82575)
4768                 mss_l4len_idx |= txr->me << 4;
4769
4770         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4771         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4772         TXD->seqnum_seed = htole32(0);
4773         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4774
4775         /* We've consumed the first desc, adjust counters */
4776         if (++ctxd == txr->num_tx_desc)
4777                 ctxd = 0;
4778         txr->next_avail_desc = ctxd;
4779         --txr->tx_avail;
4780
4781         *hlen = hoff + iphlen + thoff;
4782 }
4783
4784 static void
4785 igb_setup_serializer(struct igb_softc *sc)
4786 {
4787         const struct igb_msix_data *msix;
4788         int i, j;
4789
4790         /*
4791          * Allocate serializer array
4792          */
4793
4794         /* Main + TX + RX */
4795         sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4796
4797         /* Aggregate TX/RX MSI-X */
4798         for (i = 0; i < sc->msix_cnt; ++i) {
4799                 msix = &sc->msix_data[i];
4800                 if (msix->msix_serialize == &msix->msix_serialize0)
4801                         sc->serialize_cnt++;
4802         }
4803
4804         sc->serializes =
4805             kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4806                 M_DEVBUF, M_WAITOK | M_ZERO);
4807
4808         /*
4809          * Setup serializers
4810          *
4811          * NOTE: Order is critical
4812          */
4813
4814         i = 0;
4815
4816         KKASSERT(i < sc->serialize_cnt);
4817         sc->serializes[i++] = &sc->main_serialize;
4818
4819         for (j = 0; j < sc->msix_cnt; ++j) {
4820                 msix = &sc->msix_data[j];
4821                 if (msix->msix_serialize == &msix->msix_serialize0) {
4822                         KKASSERT(i < sc->serialize_cnt);
4823                         sc->serializes[i++] = msix->msix_serialize;
4824                 }
4825         }
4826
4827         for (j = 0; j < sc->tx_ring_cnt; ++j) {
4828                 KKASSERT(i < sc->serialize_cnt);
4829                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4830         }
4831
4832         for (j = 0; j < sc->rx_ring_cnt; ++j) {
4833                 KKASSERT(i < sc->serialize_cnt);
4834                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4835         }
4836
4837         KKASSERT(i == sc->serialize_cnt);
4838 }
4839
4840 static void
4841 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4842 {
4843         int x = *x0;
4844
4845         for (; i < sc->rx_ring_msix; ++i) {
4846                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
4847                 struct igb_msix_data *msix;
4848
4849                 KKASSERT(x < sc->msix_cnt);
4850                 msix = &sc->msix_data[x++];
4851
4852                 rxr->rx_intr_bit = msix->msix_vector;
4853                 rxr->rx_intr_mask = msix->msix_mask;
4854
4855                 msix->msix_serialize = &rxr->rx_serialize;
4856                 msix->msix_func = igb_msix_rx;
4857                 msix->msix_arg = rxr;
4858
4859                 msix->msix_cpuid = i + offset;
4860                 KKASSERT(msix->msix_cpuid < ncpus2);
4861
4862                 ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4863                     device_get_nameunit(sc->dev), i);
4864
4865                 msix->msix_rate = IGB_MSIX_RX_RATE;
4866                 ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4867                     "RX%d interrupt rate", i);
4868         }
4869         *x0 = x;
4870 }
4871
4872 static void
4873 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4874 {
4875         int x = *x0;
4876
4877         for (; i < sc->tx_ring_msix; ++i) {
4878                 struct igb_tx_ring *txr = &sc->tx_rings[i];
4879                 struct igb_msix_data *msix;
4880
4881                 KKASSERT(x < sc->msix_cnt);
4882                 msix = &sc->msix_data[x++];
4883
4884                 txr->tx_intr_bit = msix->msix_vector;
4885                 txr->tx_intr_mask = msix->msix_mask;
4886
4887                 msix->msix_serialize = &txr->tx_serialize;
4888                 msix->msix_func = igb_msix_tx;
4889                 msix->msix_arg = txr;
4890
4891                 msix->msix_cpuid = i + offset;
4892                 KKASSERT(msix->msix_cpuid < ncpus2);
4893                 txr->tx_intr_cpuid = msix->msix_cpuid;
4894
4895                 ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4896                     device_get_nameunit(sc->dev), i);
4897
4898                 msix->msix_rate = IGB_MSIX_TX_RATE;
4899                 ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4900                     "TX%d interrupt rate", i);
4901         }
4902         *x0 = x;
4903 }
4904
4905 static void
4906 igb_msix_rxtx(void *arg)
4907 {
4908         struct igb_msix_data *msix = arg;
4909         struct igb_rx_ring *rxr = msix->msix_rx;
4910         struct igb_tx_ring *txr = msix->msix_tx;
4911
4912         ASSERT_SERIALIZED(&msix->msix_serialize0);
4913
4914         lwkt_serialize_enter(&rxr->rx_serialize);
4915         igb_rxeof(rxr, -1);
4916         lwkt_serialize_exit(&rxr->rx_serialize);
4917
4918         lwkt_serialize_enter(&txr->tx_serialize);
4919         igb_txeof(txr);
4920         if (!ifsq_is_empty(txr->ifsq))
4921                 ifsq_devstart(txr->ifsq);
4922         lwkt_serialize_exit(&txr->tx_serialize);
4923
4924         E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4925 }
4926
4927 static void
4928 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4929 {
4930         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4931                 sc->timer_cpuid = 0; /* XXX fixed */
4932         else
4933                 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4934 }