drm/i915: Rename drm_i915_private.rings to .ring
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43         struct drm_i915_gem_object *obj;
44         volatile u32 *cpu_page;
45         u32 gtt_offset;
46 };
47
48 static inline int ring_space(struct intel_ring_buffer *ring)
49 {
50         int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
51         if (space < 0)
52                 space += ring->size;
53         return space;
54 }
55
56 static int
57 render_ring_flush(struct intel_ring_buffer *ring,
58                   uint32_t      invalidate_domains,
59                   uint32_t      flush_domains)
60 {
61         struct drm_device *dev = ring->dev;
62         uint32_t cmd;
63         int ret;
64
65         /*
66          * read/write caches:
67          *
68          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
69          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
70          * also flushed at 2d versus 3d pipeline switches.
71          *
72          * read-only caches:
73          *
74          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
75          * MI_READ_FLUSH is set, and is always flushed on 965.
76          *
77          * I915_GEM_DOMAIN_COMMAND may not exist?
78          *
79          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
80          * invalidated when MI_EXE_FLUSH is set.
81          *
82          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
83          * invalidated with every MI_FLUSH.
84          *
85          * TLBs:
86          *
87          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
88          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
89          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
90          * are flushed at any MI_FLUSH.
91          */
92
93         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
94         if ((invalidate_domains|flush_domains) &
95             I915_GEM_DOMAIN_RENDER)
96                 cmd &= ~MI_NO_WRITE_FLUSH;
97         if (INTEL_INFO(dev)->gen < 4) {
98                 /*
99                  * On the 965, the sampler cache always gets flushed
100                  * and this bit is reserved.
101                  */
102                 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
103                         cmd |= MI_READ_FLUSH;
104         }
105         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
106                 cmd |= MI_EXE_FLUSH;
107
108         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
109             (IS_G4X(dev) || IS_GEN5(dev)))
110                 cmd |= MI_INVALIDATE_ISP;
111
112         ret = intel_ring_begin(ring, 2);
113         if (ret)
114                 return ret;
115
116         intel_ring_emit(ring, cmd);
117         intel_ring_emit(ring, MI_NOOP);
118         intel_ring_advance(ring);
119
120         return 0;
121 }
122
123 /**
124  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
125  * implementing two workarounds on gen6.  From section 1.4.7.1
126  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
127  *
128  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
129  * produced by non-pipelined state commands), software needs to first
130  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
131  * 0.
132  *
133  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
134  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
135  *
136  * And the workaround for these two requires this workaround first:
137  *
138  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
139  * BEFORE the pipe-control with a post-sync op and no write-cache
140  * flushes.
141  *
142  * And this last workaround is tricky because of the requirements on
143  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
144  * volume 2 part 1:
145  *
146  *     "1 of the following must also be set:
147  *      - Render Target Cache Flush Enable ([12] of DW1)
148  *      - Depth Cache Flush Enable ([0] of DW1)
149  *      - Stall at Pixel Scoreboard ([1] of DW1)
150  *      - Depth Stall ([13] of DW1)
151  *      - Post-Sync Operation ([13] of DW1)
152  *      - Notify Enable ([8] of DW1)"
153  *
154  * The cache flushes require the workaround flush that triggered this
155  * one, so we can't use it.  Depth stall would trigger the same.
156  * Post-sync nonzero is what triggered this second workaround, so we
157  * can't use that one either.  Notify enable is IRQs, which aren't
158  * really our business.  That leaves only stall at scoreboard.
159  */
160 static int
161 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
162 {
163         struct pipe_control *pc = ring->private;
164         u32 scratch_addr = pc->gtt_offset + 128;
165         int ret;
166
167
168         ret = intel_ring_begin(ring, 6);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
173         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
174                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
175         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
176         intel_ring_emit(ring, 0); /* low dword */
177         intel_ring_emit(ring, 0); /* high dword */
178         intel_ring_emit(ring, MI_NOOP);
179         intel_ring_advance(ring);
180
181         ret = intel_ring_begin(ring, 6);
182         if (ret)
183                 return ret;
184
185         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
187         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188         intel_ring_emit(ring, 0);
189         intel_ring_emit(ring, 0);
190         intel_ring_emit(ring, MI_NOOP);
191         intel_ring_advance(ring);
192
193         return 0;
194 }
195
196 static int
197 gen6_render_ring_flush(struct intel_ring_buffer *ring,
198                          u32 invalidate_domains, u32 flush_domains)
199 {
200         u32 flags = 0;
201         struct pipe_control *pc = ring->private;
202         u32 scratch_addr = pc->gtt_offset + 128;
203         int ret;
204
205         /* Force SNB workarounds for PIPE_CONTROL flushes */
206         intel_emit_post_sync_nonzero_flush(ring);
207
208         /* Just flush everything.  Experiments have shown that reducing the
209          * number of bits based on the write domains has little performance
210          * impact.
211          */
212         flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
213         flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
214         flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
215         flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
216         flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
217         flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
218         flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
219
220         ret = intel_ring_begin(ring, 6);
221         if (ret)
222                 return ret;
223
224         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225         intel_ring_emit(ring, flags);
226         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
227         intel_ring_emit(ring, 0); /* lower dword */
228         intel_ring_emit(ring, 0); /* uppwer dword */
229         intel_ring_emit(ring, MI_NOOP);
230         intel_ring_advance(ring);
231
232         return 0;
233 }
234
235 static void ring_write_tail(struct intel_ring_buffer *ring,
236                             uint32_t value)
237 {
238         drm_i915_private_t *dev_priv = ring->dev->dev_private;
239         I915_WRITE_TAIL(ring, value);
240 }
241
242 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
243 {
244         drm_i915_private_t *dev_priv = ring->dev->dev_private;
245         uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
246                         RING_ACTHD(ring->mmio_base) : ACTHD;
247
248         return I915_READ(acthd_reg);
249 }
250
251 static int init_ring_common(struct intel_ring_buffer *ring)
252 {
253         drm_i915_private_t *dev_priv = ring->dev->dev_private;
254         struct drm_i915_gem_object *obj = ring->obj;
255         uint32_t head;
256
257         /* Stop the ring if it's running. */
258         I915_WRITE_CTL(ring, 0);
259         I915_WRITE_HEAD(ring, 0);
260         ring->write_tail(ring, 0);
261
262         /* Initialize the ring. */
263         I915_WRITE_START(ring, obj->gtt_offset);
264         head = I915_READ_HEAD(ring) & HEAD_ADDR;
265
266         /* G45 ring initialization fails to reset head to zero */
267         if (head != 0) {
268                 DRM_DEBUG("%s head not reset to zero "
269                               "ctl %08x head %08x tail %08x start %08x\n",
270                               ring->name,
271                               I915_READ_CTL(ring),
272                               I915_READ_HEAD(ring),
273                               I915_READ_TAIL(ring),
274                               I915_READ_START(ring));
275
276                 I915_WRITE_HEAD(ring, 0);
277
278                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
279                         DRM_ERROR("failed to set %s head to zero "
280                                   "ctl %08x head %08x tail %08x start %08x\n",
281                                   ring->name,
282                                   I915_READ_CTL(ring),
283                                   I915_READ_HEAD(ring),
284                                   I915_READ_TAIL(ring),
285                                   I915_READ_START(ring));
286                 }
287         }
288
289         I915_WRITE_CTL(ring,
290                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
291                         | RING_VALID);
292
293         /* If the head is still not zero, the ring is dead */
294         if (_intel_wait_for(ring->dev,
295             (I915_READ_CTL(ring) & RING_VALID) != 0 &&
296              I915_READ_START(ring) == obj->gtt_offset &&
297              (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
298             50, 1, "915rii")) {
299                 DRM_ERROR("%s initialization failed "
300                                 "ctl %08x head %08x tail %08x start %08x\n",
301                                 ring->name,
302                                 I915_READ_CTL(ring),
303                                 I915_READ_HEAD(ring),
304                                 I915_READ_TAIL(ring),
305                                 I915_READ_START(ring));
306                 return -EIO;
307         }
308
309         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
310                 i915_kernel_lost_context(ring->dev);
311         else {
312                 ring->head = I915_READ_HEAD(ring);
313                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
314                 ring->space = ring_space(ring);
315         }
316
317         return 0;
318 }
319
320 static int
321 init_pipe_control(struct intel_ring_buffer *ring)
322 {
323         struct pipe_control *pc;
324         struct drm_i915_gem_object *obj;
325         int ret;
326
327         if (ring->private)
328                 return 0;
329
330         pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
331         if (!pc)
332                 return -ENOMEM;
333
334         obj = i915_gem_alloc_object(ring->dev, 4096);
335         if (obj == NULL) {
336                 DRM_ERROR("Failed to allocate seqno page\n");
337                 ret = -ENOMEM;
338                 goto err;
339         }
340
341         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
342
343         ret = i915_gem_object_pin(obj, 4096, true);
344         if (ret)
345                 goto err_unref;
346
347         pc->gtt_offset = obj->gtt_offset;
348         pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
349         if (pc->cpu_page == NULL)
350                 goto err_unpin;
351         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
352         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
353             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
354
355         pc->obj = obj;
356         ring->private = pc;
357         return 0;
358
359 err_unpin:
360         i915_gem_object_unpin(obj);
361 err_unref:
362         drm_gem_object_unreference(&obj->base);
363 err:
364         drm_free(pc, DRM_I915_GEM);
365         return ret;
366 }
367
368 static void
369 cleanup_pipe_control(struct intel_ring_buffer *ring)
370 {
371         struct pipe_control *pc = ring->private;
372         struct drm_i915_gem_object *obj;
373
374         if (!ring->private)
375                 return;
376
377         obj = pc->obj;
378         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
379         kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
380         i915_gem_object_unpin(obj);
381         drm_gem_object_unreference(&obj->base);
382
383         drm_free(pc, DRM_I915_GEM);
384         ring->private = NULL;
385 }
386
387 static int init_render_ring(struct intel_ring_buffer *ring)
388 {
389         struct drm_device *dev = ring->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         int ret = init_ring_common(ring);
392
393         if (INTEL_INFO(dev)->gen > 3)
394                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
395
396         /* We need to disable the AsyncFlip performance optimisations in order
397          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
398          * programmed to '1' on all products.
399          */
400         if (INTEL_INFO(dev)->gen >= 6)
401                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
402
403         /* Required for the hardware to program scanline values for waiting */
404         if (INTEL_INFO(dev)->gen == 6)
405                 I915_WRITE(GFX_MODE,
406                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
407
408         if (IS_GEN7(dev))
409                 I915_WRITE(GFX_MODE_GEN7,
410                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
412
413         if (INTEL_INFO(dev)->gen >= 5) {
414                 ret = init_pipe_control(ring);
415                 if (ret)
416                         return ret;
417         }
418
419         if (IS_GEN6(dev)) {
420                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
421                  * "If this bit is set, STCunit will have LRA as replacement
422                  *  policy. [...] This bit must be reset.  LRA replacement
423                  *  policy is not supported."
424                  */
425                 I915_WRITE(CACHE_MODE_0,
426                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
427         }
428
429         if (INTEL_INFO(dev)->gen >= 6)
430                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
431
432         if (HAS_L3_GPU_CACHE(dev))
433                 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
434
435         return ret;
436 }
437
438 static void render_ring_cleanup(struct intel_ring_buffer *ring)
439 {
440         if (!ring->private)
441                 return;
442
443         cleanup_pipe_control(ring);
444 }
445
446 static void
447 update_mboxes(struct intel_ring_buffer *ring,
448             u32 seqno,
449             u32 mmio_offset)
450 {
451         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
452                               MI_SEMAPHORE_GLOBAL_GTT |
453                               MI_SEMAPHORE_REGISTER |
454                               MI_SEMAPHORE_UPDATE);
455         intel_ring_emit(ring, seqno);
456         intel_ring_emit(ring, mmio_offset);
457 }
458
459 /**
460  * gen6_add_request - Update the semaphore mailbox registers
461  * 
462  * @ring - ring that is adding a request
463  * @seqno - return seqno stuck into the ring
464  *
465  * Update the mailbox registers in the *other* rings with the current seqno.
466  * This acts like a signal in the canonical semaphore.
467  */
468 static int
469 gen6_add_request(struct intel_ring_buffer *ring,
470                  u32 *seqno)
471 {
472         u32 mbox1_reg;
473         u32 mbox2_reg;
474         int ret;
475
476         ret = intel_ring_begin(ring, 10);
477         if (ret)
478                 return ret;
479
480         mbox1_reg = ring->signal_mbox[0];
481         mbox2_reg = ring->signal_mbox[1];
482
483         *seqno = i915_gem_next_request_seqno(ring);
484
485         update_mboxes(ring, *seqno, mbox1_reg);
486         update_mboxes(ring, *seqno, mbox2_reg);
487         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
488         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
489         intel_ring_emit(ring, *seqno);
490         intel_ring_emit(ring, MI_USER_INTERRUPT);
491         intel_ring_advance(ring);
492
493         return 0;
494 }
495
496 /**
497  * intel_ring_sync - sync the waiter to the signaller on seqno
498  *
499  * @waiter - ring that is waiting
500  * @signaller - ring which has, or will signal
501  * @seqno - seqno which the waiter will block on
502  */
503 static int
504 intel_ring_sync(struct intel_ring_buffer *waiter,
505                 struct intel_ring_buffer *signaller,
506                 int ring,
507                 u32 seqno)
508 {
509         int ret;
510         u32 dw1 = MI_SEMAPHORE_MBOX |
511                   MI_SEMAPHORE_COMPARE |
512                   MI_SEMAPHORE_REGISTER;
513
514         ret = intel_ring_begin(waiter, 4);
515         if (ret)
516                 return ret;
517
518         intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
519         intel_ring_emit(waiter, seqno);
520         intel_ring_emit(waiter, 0);
521         intel_ring_emit(waiter, MI_NOOP);
522         intel_ring_advance(waiter);
523
524         return 0;
525 }
526
527 int render_ring_sync_to(struct intel_ring_buffer *waiter,
528     struct intel_ring_buffer *signaller, u32 seqno);
529 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533
534 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
535 int
536 render_ring_sync_to(struct intel_ring_buffer *waiter,
537                     struct intel_ring_buffer *signaller,
538                     u32 seqno)
539 {
540         KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
541             ("valid RCS semaphore"));
542         return intel_ring_sync(waiter,
543                                signaller,
544                                RCS,
545                                seqno);
546 }
547
548 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
549 int
550 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
551                       struct intel_ring_buffer *signaller,
552                       u32 seqno)
553 {
554         KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
555             ("Valid VCS semaphore"));
556         return intel_ring_sync(waiter,
557                                signaller,
558                                VCS,
559                                seqno);
560 }
561
562 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
563 int
564 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
565                       struct intel_ring_buffer *signaller,
566                       u32 seqno)
567 {
568         KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
569             ("Valid BCS semaphore"));
570         return intel_ring_sync(waiter,
571                                signaller,
572                                BCS,
573                                seqno);
574 }
575
576 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
577 do {                                                                    \
578         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
579                  PIPE_CONTROL_DEPTH_STALL);                             \
580         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
581         intel_ring_emit(ring__, 0);                                                     \
582         intel_ring_emit(ring__, 0);                                                     \
583 } while (0)
584
585 static int
586 pc_render_add_request(struct intel_ring_buffer *ring,
587                       uint32_t *result)
588 {
589         u32 seqno = i915_gem_next_request_seqno(ring);
590         struct pipe_control *pc = ring->private;
591         u32 scratch_addr = pc->gtt_offset + 128;
592         int ret;
593
594         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
595          * incoherent with writes to memory, i.e. completely fubar,
596          * so we need to use PIPE_NOTIFY instead.
597          *
598          * However, we also need to workaround the qword write
599          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
600          * memory before requesting an interrupt.
601          */
602         ret = intel_ring_begin(ring, 32);
603         if (ret)
604                 return ret;
605
606         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
607                         PIPE_CONTROL_WRITE_FLUSH |
608                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
609         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
610         intel_ring_emit(ring, seqno);
611         intel_ring_emit(ring, 0);
612         PIPE_CONTROL_FLUSH(ring, scratch_addr);
613         scratch_addr += 128; /* write to separate cachelines */
614         PIPE_CONTROL_FLUSH(ring, scratch_addr);
615         scratch_addr += 128;
616         PIPE_CONTROL_FLUSH(ring, scratch_addr);
617         scratch_addr += 128;
618         PIPE_CONTROL_FLUSH(ring, scratch_addr);
619         scratch_addr += 128;
620         PIPE_CONTROL_FLUSH(ring, scratch_addr);
621         scratch_addr += 128;
622         PIPE_CONTROL_FLUSH(ring, scratch_addr);
623         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
624                         PIPE_CONTROL_WRITE_FLUSH |
625                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
626                         PIPE_CONTROL_NOTIFY);
627         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
628         intel_ring_emit(ring, seqno);
629         intel_ring_emit(ring, 0);
630         intel_ring_advance(ring);
631
632         *result = seqno;
633         return 0;
634 }
635
636 static int
637 render_ring_add_request(struct intel_ring_buffer *ring,
638                         uint32_t *result)
639 {
640         u32 seqno = i915_gem_next_request_seqno(ring);
641         int ret;
642
643         ret = intel_ring_begin(ring, 4);
644         if (ret)
645                 return ret;
646
647         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
648         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
649         intel_ring_emit(ring, seqno);
650         intel_ring_emit(ring, MI_USER_INTERRUPT);
651         intel_ring_advance(ring);
652
653         *result = seqno;
654         return 0;
655 }
656
657  static u32
658 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
659 {
660         struct drm_device *dev = ring->dev;
661
662         /* Workaround to force correct ordering between irq and seqno writes on
663          * ivb (and maybe also on snb) by reading from a CS register (like
664          * ACTHD) before reading the status page. */
665         if (/* IS_GEN6(dev) || */IS_GEN7(dev))
666                 intel_ring_get_active_head(ring);
667         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
668 }
669
670 static uint32_t
671 ring_get_seqno(struct intel_ring_buffer *ring)
672 {
673         if (ring->status_page.page_addr == NULL)
674                 return (-1);
675         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
676 }
677
678 static uint32_t
679 pc_render_get_seqno(struct intel_ring_buffer *ring)
680 {
681         struct pipe_control *pc = ring->private;
682         if (pc != NULL)
683                 return pc->cpu_page[0];
684         else
685                 return (-1);
686 }
687
688 static void
689 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
690 {
691         dev_priv->gt_irq_mask &= ~mask;
692         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
693         POSTING_READ(GTIMR);
694 }
695
696 static void
697 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
698 {
699         dev_priv->gt_irq_mask |= mask;
700         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
701         POSTING_READ(GTIMR);
702 }
703
704 static void
705 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
706 {
707         dev_priv->irq_mask &= ~mask;
708         I915_WRITE(IMR, dev_priv->irq_mask);
709         POSTING_READ(IMR);
710 }
711
712 static void
713 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
714 {
715         dev_priv->irq_mask |= mask;
716         I915_WRITE(IMR, dev_priv->irq_mask);
717         POSTING_READ(IMR);
718 }
719
720 static bool
721 render_ring_get_irq(struct intel_ring_buffer *ring)
722 {
723         struct drm_device *dev = ring->dev;
724         drm_i915_private_t *dev_priv = dev->dev_private;
725
726         if (!dev->irq_enabled)
727                 return false;
728
729         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
730         if (ring->irq_refcount++ == 0) {
731                 if (HAS_PCH_SPLIT(dev))
732                         ironlake_enable_irq(dev_priv,
733                                             GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
734                 else
735                         i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
736         }
737
738         return true;
739 }
740
741 static void
742 render_ring_put_irq(struct intel_ring_buffer *ring)
743 {
744         struct drm_device *dev = ring->dev;
745         drm_i915_private_t *dev_priv = dev->dev_private;
746
747         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
748         if (--ring->irq_refcount == 0) {
749                 if (HAS_PCH_SPLIT(dev))
750                         ironlake_disable_irq(dev_priv,
751                                              GT_USER_INTERRUPT |
752                                              GT_PIPE_NOTIFY);
753                 else
754                         i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
755         }
756 }
757
758 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
759 {
760         struct drm_device *dev = ring->dev;
761         drm_i915_private_t *dev_priv = dev->dev_private;
762         uint32_t mmio = 0;
763
764         /* The ring status page addresses are no longer next to the rest of
765          * the ring registers as of gen7.
766          */
767         if (IS_GEN7(dev)) {
768                 switch (ring->id) {
769                 case RCS:
770                         mmio = RENDER_HWS_PGA_GEN7;
771                         break;
772                 case BCS:
773                         mmio = BLT_HWS_PGA_GEN7;
774                         break;
775                 case VCS:
776                         mmio = BSD_HWS_PGA_GEN7;
777                         break;
778                 }
779         } else if (IS_GEN6(dev)) {
780                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
781         } else {
782                 mmio = RING_HWS_PGA(ring->mmio_base);
783         }
784
785         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
786         POSTING_READ(mmio);
787 }
788
789 static int
790 bsd_ring_flush(struct intel_ring_buffer *ring,
791                uint32_t     invalidate_domains,
792                uint32_t     flush_domains)
793 {
794         int ret;
795
796         ret = intel_ring_begin(ring, 2);
797         if (ret)
798                 return ret;
799
800         intel_ring_emit(ring, MI_FLUSH);
801         intel_ring_emit(ring, MI_NOOP);
802         intel_ring_advance(ring);
803         return 0;
804 }
805
806 static int
807 ring_add_request(struct intel_ring_buffer *ring,
808                  uint32_t *result)
809 {
810         uint32_t seqno;
811         int ret;
812
813         ret = intel_ring_begin(ring, 4);
814         if (ret)
815                 return ret;
816
817         seqno = i915_gem_next_request_seqno(ring);
818
819         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
820         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
821         intel_ring_emit(ring, seqno);
822         intel_ring_emit(ring, MI_USER_INTERRUPT);
823         intel_ring_advance(ring);
824
825         *result = seqno;
826         return 0;
827 }
828
829 static bool
830 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
831 {
832         struct drm_device *dev = ring->dev;
833         drm_i915_private_t *dev_priv = dev->dev_private;
834
835         if (!dev->irq_enabled)
836                return false;
837
838         gen6_gt_force_wake_get(dev_priv);
839
840         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
841         if (ring->irq_refcount++ == 0) {
842                 ring->irq_mask &= ~rflag;
843                 I915_WRITE_IMR(ring, ring->irq_mask);
844                 ironlake_enable_irq(dev_priv, gflag);
845         }
846
847         return true;
848 }
849
850 static void
851 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
852 {
853         struct drm_device *dev = ring->dev;
854         drm_i915_private_t *dev_priv = dev->dev_private;
855
856         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
857         if (--ring->irq_refcount == 0) {
858                 ring->irq_mask |= rflag;
859                 I915_WRITE_IMR(ring, ring->irq_mask);
860                 ironlake_disable_irq(dev_priv, gflag);
861         }
862
863         gen6_gt_force_wake_put(dev_priv);
864 }
865
866 static bool
867 bsd_ring_get_irq(struct intel_ring_buffer *ring)
868 {
869         struct drm_device *dev = ring->dev;
870         drm_i915_private_t *dev_priv = dev->dev_private;
871
872         if (!dev->irq_enabled)
873                 return false;
874
875         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
876         if (ring->irq_refcount++ == 0) {
877                 if (IS_G4X(dev))
878                         i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
879                 else
880                         ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
881         }
882
883         return true;
884 }
885 static void
886 bsd_ring_put_irq(struct intel_ring_buffer *ring)
887 {
888         struct drm_device *dev = ring->dev;
889         drm_i915_private_t *dev_priv = dev->dev_private;
890
891         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
892         if (--ring->irq_refcount == 0) {
893                 if (IS_G4X(dev))
894                         i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
895                 else
896                         ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
897         }
898 }
899
900 static int
901 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
902     uint32_t length)
903 {
904         int ret;
905
906         ret = intel_ring_begin(ring, 2);
907         if (ret)
908                 return ret;
909
910         intel_ring_emit(ring,
911                         MI_BATCH_BUFFER_START | (2 << 6) |
912                         MI_BATCH_NON_SECURE_I965);
913         intel_ring_emit(ring, offset);
914         intel_ring_advance(ring);
915
916         return 0;
917 }
918
919 static int
920 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
921                                 uint32_t offset, uint32_t len)
922 {
923         struct drm_device *dev = ring->dev;
924         int ret;
925
926         if (IS_I830(dev) || IS_845G(dev)) {
927                 ret = intel_ring_begin(ring, 4);
928                 if (ret)
929                         return ret;
930
931                 intel_ring_emit(ring, MI_BATCH_BUFFER);
932                 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
933                 intel_ring_emit(ring, offset + len - 8);
934                 intel_ring_emit(ring, 0);
935         } else {
936                 ret = intel_ring_begin(ring, 2);
937                 if (ret)
938                         return ret;
939
940                 if (INTEL_INFO(dev)->gen >= 4) {
941                         intel_ring_emit(ring,
942                                         MI_BATCH_BUFFER_START | (2 << 6) |
943                                         MI_BATCH_NON_SECURE_I965);
944                         intel_ring_emit(ring, offset);
945                 } else {
946                         intel_ring_emit(ring,
947                                         MI_BATCH_BUFFER_START | (2 << 6));
948                         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
949                 }
950         }
951         intel_ring_advance(ring);
952
953         return 0;
954 }
955
956 static void cleanup_status_page(struct intel_ring_buffer *ring)
957 {
958         drm_i915_private_t *dev_priv = ring->dev->dev_private;
959         struct drm_i915_gem_object *obj;
960
961         obj = ring->status_page.obj;
962         if (obj == NULL)
963                 return;
964
965         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
966         kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
967             PAGE_SIZE);
968         i915_gem_object_unpin(obj);
969         drm_gem_object_unreference(&obj->base);
970         ring->status_page.obj = NULL;
971
972         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
973 }
974
975 static int init_status_page(struct intel_ring_buffer *ring)
976 {
977         struct drm_device *dev = ring->dev;
978         drm_i915_private_t *dev_priv = dev->dev_private;
979         struct drm_i915_gem_object *obj;
980         int ret;
981
982         obj = i915_gem_alloc_object(dev, 4096);
983         if (obj == NULL) {
984                 DRM_ERROR("Failed to allocate status page\n");
985                 ret = -ENOMEM;
986                 goto err;
987         }
988
989         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
990
991         ret = i915_gem_object_pin(obj, 4096, true);
992         if (ret != 0) {
993                 goto err_unref;
994         }
995
996         ring->status_page.gfx_addr = obj->gtt_offset;
997         ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
998             PAGE_SIZE, PAGE_SIZE);
999         if (ring->status_page.page_addr == NULL) {
1000                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1001                 goto err_unpin;
1002         }
1003         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1004             1);
1005         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1006             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1007         ring->status_page.obj = obj;
1008         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1009
1010         intel_ring_setup_status_page(ring);
1011         DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1012                         ring->name, ring->status_page.gfx_addr);
1013
1014         return 0;
1015
1016 err_unpin:
1017         i915_gem_object_unpin(obj);
1018 err_unref:
1019         drm_gem_object_unreference(&obj->base);
1020 err:
1021         return ret;
1022 }
1023
1024 static
1025 int intel_init_ring_buffer(struct drm_device *dev,
1026                            struct intel_ring_buffer *ring)
1027 {
1028         struct drm_i915_gem_object *obj;
1029         int ret;
1030
1031         ring->dev = dev;
1032         INIT_LIST_HEAD(&ring->active_list);
1033         INIT_LIST_HEAD(&ring->request_list);
1034         INIT_LIST_HEAD(&ring->gpu_write_list);
1035
1036         lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1037         ring->irq_mask = ~0;
1038
1039         if (I915_NEED_GFX_HWS(dev)) {
1040                 ret = init_status_page(ring);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         obj = i915_gem_alloc_object(dev, ring->size);
1046         if (obj == NULL) {
1047                 DRM_ERROR("Failed to allocate ringbuffer\n");
1048                 ret = -ENOMEM;
1049                 goto err_hws;
1050         }
1051
1052         ring->obj = obj;
1053
1054         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1055         if (ret)
1056                 goto err_unref;
1057
1058         ring->map.size = ring->size;
1059         ring->map.offset = dev->agp->base + obj->gtt_offset;
1060         ring->map.type = 0;
1061         ring->map.flags = 0;
1062         ring->map.mtrr = 0;
1063
1064         drm_core_ioremap_wc(&ring->map, dev);
1065         if (ring->map.virtual == NULL) {
1066                 DRM_ERROR("Failed to map ringbuffer.\n");
1067                 ret = -EINVAL;
1068                 goto err_unpin;
1069         }
1070
1071         ring->virtual_start = ring->map.virtual;
1072         ret = ring->init(ring);
1073         if (ret)
1074                 goto err_unmap;
1075
1076         /* Workaround an erratum on the i830 which causes a hang if
1077          * the TAIL pointer points to within the last 2 cachelines
1078          * of the buffer.
1079          */
1080         ring->effective_size = ring->size;
1081         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1082                 ring->effective_size -= 128;
1083
1084         return 0;
1085
1086 err_unmap:
1087         drm_core_ioremapfree(&ring->map, dev);
1088 err_unpin:
1089         i915_gem_object_unpin(obj);
1090 err_unref:
1091         drm_gem_object_unreference(&obj->base);
1092         ring->obj = NULL;
1093 err_hws:
1094         cleanup_status_page(ring);
1095         return ret;
1096 }
1097
1098 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1099 {
1100         struct drm_i915_private *dev_priv;
1101         int ret;
1102
1103         if (ring->obj == NULL)
1104                 return;
1105
1106         /* Disable the ring buffer. The ring must be idle at this point */
1107         dev_priv = ring->dev->dev_private;
1108         ret = intel_wait_ring_idle(ring);
1109         I915_WRITE_CTL(ring, 0);
1110
1111         drm_core_ioremapfree(&ring->map, ring->dev);
1112
1113         i915_gem_object_unpin(ring->obj);
1114         drm_gem_object_unreference(&ring->obj->base);
1115         ring->obj = NULL;
1116
1117         if (ring->cleanup)
1118                 ring->cleanup(ring);
1119
1120         cleanup_status_page(ring);
1121 }
1122
1123 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1124 {
1125         unsigned int *virt;
1126         int rem = ring->size - ring->tail;
1127
1128         if (ring->space < rem) {
1129                 int ret = intel_wait_ring_buffer(ring, rem);
1130                 if (ret)
1131                         return ret;
1132         }
1133
1134         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1135         rem /= 8;
1136         while (rem--) {
1137                 *virt++ = MI_NOOP;
1138                 *virt++ = MI_NOOP;
1139         }
1140
1141         ring->tail = 0;
1142         ring->space = ring_space(ring);
1143
1144         return 0;
1145 }
1146
1147 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1148 {
1149         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1150         bool was_interruptible;
1151         int ret;
1152
1153         /* XXX As we have not yet audited all the paths to check that
1154          * they are ready for ERESTARTSYS from intel_ring_begin, do not
1155          * allow us to be interruptible by a signal.
1156          */
1157         was_interruptible = dev_priv->mm.interruptible;
1158         dev_priv->mm.interruptible = false;
1159
1160         ret = i915_wait_request(ring, seqno, true);
1161
1162         dev_priv->mm.interruptible = was_interruptible;
1163
1164         return ret;
1165 }
1166
1167 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1168 {
1169         struct drm_i915_gem_request *request;
1170         u32 seqno = 0;
1171         int ret;
1172
1173         i915_gem_retire_requests_ring(ring);
1174
1175         if (ring->last_retired_head != -1) {
1176                 ring->head = ring->last_retired_head;
1177                 ring->last_retired_head = -1;
1178                 ring->space = ring_space(ring);
1179                 if (ring->space >= n)
1180                         return 0;
1181         }
1182
1183         list_for_each_entry(request, &ring->request_list, list) {
1184                 int space;
1185
1186                 if (request->tail == -1)
1187                         continue;
1188
1189                 space = request->tail - (ring->tail + 8);
1190                 if (space < 0)
1191                         space += ring->size;
1192                 if (space >= n) {
1193                         seqno = request->seqno;
1194                         break;
1195                 }
1196
1197                 /* Consume this request in case we need more space than
1198                  * is available and so need to prevent a race between
1199                  * updating last_retired_head and direct reads of
1200                  * I915_RING_HEAD. It also provides a nice sanity check.
1201                  */
1202                 request->tail = -1;
1203         }
1204
1205         if (seqno == 0)
1206                 return -ENOSPC;
1207
1208         ret = intel_ring_wait_seqno(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         if (ring->last_retired_head == -1)
1213                 return -ENOSPC;
1214
1215         ring->head = ring->last_retired_head;
1216         ring->last_retired_head = -1;
1217         ring->space = ring_space(ring);
1218         if (ring->space < n)
1219                 return -ENOSPC;
1220
1221         return 0;
1222 }
1223
1224 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1225 {
1226         struct drm_device *dev = ring->dev;
1227         struct drm_i915_private *dev_priv = dev->dev_private;
1228         int end;
1229         int ret;
1230
1231         ret = intel_ring_wait_request(ring, n);
1232         if (ret != -ENOSPC)
1233                 return ret;
1234
1235         if (drm_core_check_feature(dev, DRIVER_GEM))
1236                 /* With GEM the hangcheck timer should kick us out of the loop,
1237                  * leaving it early runs the risk of corrupting GEM state (due
1238                  * to running on almost untested codepaths). But on resume
1239                  * timers don't work yet, so prevent a complete hang in that
1240                  * case by choosing an insanely large timeout. */
1241                 end = ticks + hz * 60;
1242         else
1243                 end = ticks + hz * 3;
1244         do {
1245                 ring->head = I915_READ_HEAD(ring);
1246                 ring->space = ring_space(ring);
1247                 if (ring->space >= n) {
1248                         return 0;
1249                 }
1250
1251 #if 0
1252                 if (dev->primary->master) {
1253                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1254                         if (master_priv->sarea_priv)
1255                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1256                 }
1257 #else
1258                 if (dev_priv->sarea_priv)
1259                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1260 #endif
1261
1262                 DELAY(1000);
1263                 if (atomic_read(&dev_priv->mm.wedged) != 0) {
1264                         return -EAGAIN;
1265                 }
1266         } while (!time_after(ticks, end));
1267         return -EBUSY;
1268 }
1269
1270 int intel_ring_begin(struct intel_ring_buffer *ring,
1271                      int num_dwords)
1272 {
1273         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1274         int n = 4*num_dwords;
1275         int ret;
1276
1277         if (atomic_read(&dev_priv->mm.wedged))
1278                 return -EIO;
1279
1280         if (ring->tail + n > ring->effective_size) {
1281                 ret = intel_wrap_ring_buffer(ring);
1282                 if (ret != 0)
1283                         return ret;
1284         }
1285
1286         if (ring->space < n) {
1287                 ret = intel_wait_ring_buffer(ring, n);
1288                 if (ret != 0)
1289                         return ret;
1290         }
1291
1292         ring->space -= n;
1293         return 0;
1294 }
1295
1296 void intel_ring_advance(struct intel_ring_buffer *ring)
1297 {
1298         ring->tail &= ring->size - 1;
1299         ring->write_tail(ring, ring->tail);
1300 }
1301
1302 static const struct intel_ring_buffer render_ring = {
1303         .name                   = "render ring",
1304         .id                     = RCS,
1305         .mmio_base              = RENDER_RING_BASE,
1306         .size                   = 32 * PAGE_SIZE,
1307         .init                   = init_render_ring,
1308         .write_tail             = ring_write_tail,
1309         .flush                  = render_ring_flush,
1310         .add_request            = render_ring_add_request,
1311         .get_seqno              = ring_get_seqno,
1312         .irq_get                = render_ring_get_irq,
1313         .irq_put                = render_ring_put_irq,
1314         .dispatch_execbuffer    = render_ring_dispatch_execbuffer,
1315         .cleanup                = render_ring_cleanup,
1316         .sync_to                = render_ring_sync_to,
1317         .semaphore_register     = {MI_SEMAPHORE_SYNC_INVALID,
1318                                    MI_SEMAPHORE_SYNC_RV,
1319                                    MI_SEMAPHORE_SYNC_RB},
1320         .signal_mbox            = {GEN6_VRSYNC, GEN6_BRSYNC},
1321 };
1322
1323 /* ring buffer for bit-stream decoder */
1324
1325 static const struct intel_ring_buffer bsd_ring = {
1326         .name                   = "bsd ring",
1327         .id                     = VCS,
1328         .mmio_base              = BSD_RING_BASE,
1329         .size                   = 32 * PAGE_SIZE,
1330         .init                   = init_ring_common,
1331         .write_tail             = ring_write_tail,
1332         .flush                  = bsd_ring_flush,
1333         .add_request            = ring_add_request,
1334         .get_seqno              = ring_get_seqno,
1335         .irq_get                = bsd_ring_get_irq,
1336         .irq_put                = bsd_ring_put_irq,
1337         .dispatch_execbuffer    = ring_dispatch_execbuffer,
1338 };
1339
1340
1341 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1342                                      u32 value)
1343 {
1344         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1345
1346        /* Every tail move must follow the sequence below */
1347
1348         /* Disable notification that the ring is IDLE. The GT
1349          * will then assume that it is busy and bring it out of rc6.
1350          */
1351         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1352                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1353
1354         /* Clear the context id. Here be magic! */
1355         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1356
1357         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1358         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1359                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1360                      50))
1361                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1362
1363         /* Now that the ring is fully powered up, update the tail */
1364         I915_WRITE_TAIL(ring, value);
1365         POSTING_READ(RING_TAIL(ring->mmio_base));
1366
1367         /* Let the ring send IDLE messages to the GT again,
1368          * and so let it sleep to conserve power when idle.
1369          */
1370         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1371                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1372 }
1373
1374 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1375                            uint32_t invalidate, uint32_t flush)
1376 {
1377         uint32_t cmd;
1378         int ret;
1379
1380         ret = intel_ring_begin(ring, 4);
1381         if (ret)
1382                 return ret;
1383
1384         cmd = MI_FLUSH_DW;
1385         if (invalidate & I915_GEM_GPU_DOMAINS)
1386                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1387         intel_ring_emit(ring, cmd);
1388         intel_ring_emit(ring, 0);
1389         intel_ring_emit(ring, 0);
1390         intel_ring_emit(ring, MI_NOOP);
1391         intel_ring_advance(ring);
1392         return 0;
1393 }
1394
1395 static int
1396 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1397                               uint32_t offset, uint32_t len)
1398 {
1399         int ret;
1400
1401         ret = intel_ring_begin(ring, 2);
1402         if (ret)
1403                 return ret;
1404
1405         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1406         /* bit0-7 is the length on GEN6+ */
1407         intel_ring_emit(ring, offset);
1408         intel_ring_advance(ring);
1409
1410         return 0;
1411 }
1412
1413 static bool
1414 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1415 {
1416         return gen6_ring_get_irq(ring,
1417                                  GT_USER_INTERRUPT,
1418                                  GEN6_RENDER_USER_INTERRUPT);
1419 }
1420
1421 static void
1422 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1423 {
1424         return gen6_ring_put_irq(ring,
1425                                  GT_USER_INTERRUPT,
1426                                  GEN6_RENDER_USER_INTERRUPT);
1427 }
1428
1429 static bool
1430 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1431 {
1432         return gen6_ring_get_irq(ring,
1433                                  GT_GEN6_BSD_USER_INTERRUPT,
1434                                  GEN6_BSD_USER_INTERRUPT);
1435 }
1436
1437 static void
1438 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1439 {
1440         return gen6_ring_put_irq(ring,
1441                                  GT_GEN6_BSD_USER_INTERRUPT,
1442                                  GEN6_BSD_USER_INTERRUPT);
1443 }
1444
1445 /* ring buffer for Video Codec for Gen6+ */
1446 static const struct intel_ring_buffer gen6_bsd_ring = {
1447         .name                   = "gen6 bsd ring",
1448         .id                     = VCS,
1449         .mmio_base              = GEN6_BSD_RING_BASE,
1450         .size                   = 32 * PAGE_SIZE,
1451         .init                   = init_ring_common,
1452         .write_tail             = gen6_bsd_ring_write_tail,
1453         .flush                  = gen6_ring_flush,
1454         .add_request            = gen6_add_request,
1455         .get_seqno              = gen6_ring_get_seqno,
1456         .irq_get                = gen6_bsd_ring_get_irq,
1457         .irq_put                = gen6_bsd_ring_put_irq,
1458         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1459         .sync_to                = gen6_bsd_ring_sync_to,
1460         .semaphore_register     = {MI_SEMAPHORE_SYNC_VR,
1461                                    MI_SEMAPHORE_SYNC_INVALID,
1462                                    MI_SEMAPHORE_SYNC_VB},
1463         .signal_mbox            = {GEN6_RVSYNC, GEN6_BVSYNC},
1464 };
1465
1466 /* Blitter support (SandyBridge+) */
1467
1468 static bool
1469 blt_ring_get_irq(struct intel_ring_buffer *ring)
1470 {
1471         return gen6_ring_get_irq(ring,
1472                                  GT_GEN6_BLT_USER_INTERRUPT,
1473                                  GEN6_BLITTER_USER_INTERRUPT);
1474 }
1475
1476 static void
1477 blt_ring_put_irq(struct intel_ring_buffer *ring)
1478 {
1479         gen6_ring_put_irq(ring,
1480                           GT_GEN6_BLT_USER_INTERRUPT,
1481                           GEN6_BLITTER_USER_INTERRUPT);
1482 }
1483
1484 static int blt_ring_flush(struct intel_ring_buffer *ring,
1485                           uint32_t invalidate, uint32_t flush)
1486 {
1487         uint32_t cmd;
1488         int ret;
1489
1490         ret = intel_ring_begin(ring, 4);
1491         if (ret)
1492                 return ret;
1493
1494         cmd = MI_FLUSH_DW;
1495         if (invalidate & I915_GEM_DOMAIN_RENDER)
1496                 cmd |= MI_INVALIDATE_TLB;
1497         intel_ring_emit(ring, cmd);
1498         intel_ring_emit(ring, 0);
1499         intel_ring_emit(ring, 0);
1500         intel_ring_emit(ring, MI_NOOP);
1501         intel_ring_advance(ring);
1502         return 0;
1503 }
1504
1505 static const struct intel_ring_buffer gen6_blt_ring = {
1506         .name                   = "blt ring",
1507         .id                     = BCS,
1508         .mmio_base              = BLT_RING_BASE,
1509         .size                   = 32 * PAGE_SIZE,
1510         .init                   = init_ring_common,
1511         .write_tail             = ring_write_tail,
1512         .flush                  = blt_ring_flush,
1513         .add_request            = gen6_add_request,
1514         .get_seqno              = gen6_ring_get_seqno,
1515         .irq_get                = blt_ring_get_irq,
1516         .irq_put                = blt_ring_put_irq,
1517         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1518         .sync_to                = gen6_blt_ring_sync_to,
1519         .semaphore_register     = {MI_SEMAPHORE_SYNC_BR,
1520                                    MI_SEMAPHORE_SYNC_BV,
1521                                    MI_SEMAPHORE_SYNC_INVALID},
1522         .signal_mbox            = {GEN6_RBSYNC, GEN6_VBSYNC},
1523 };
1524
1525 int intel_init_render_ring_buffer(struct drm_device *dev)
1526 {
1527         drm_i915_private_t *dev_priv = dev->dev_private;
1528         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1529
1530         *ring = render_ring;
1531         if (INTEL_INFO(dev)->gen >= 6) {
1532                 ring->add_request = gen6_add_request;
1533                 ring->flush = gen6_render_ring_flush;
1534                 ring->irq_get = gen6_render_ring_get_irq;
1535                 ring->irq_put = gen6_render_ring_put_irq;
1536                 ring->get_seqno = gen6_ring_get_seqno;
1537         } else if (IS_GEN5(dev)) {
1538                 ring->add_request = pc_render_add_request;
1539                 ring->get_seqno = pc_render_get_seqno;
1540         }
1541
1542         if (!I915_NEED_GFX_HWS(dev)) {
1543                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1544                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1545         }
1546
1547         return intel_init_ring_buffer(dev, ring);
1548 }
1549
1550 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1551     uint32_t size)
1552 {
1553         drm_i915_private_t *dev_priv = dev->dev_private;
1554         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1555
1556         *ring = render_ring;
1557         if (INTEL_INFO(dev)->gen >= 6) {
1558                 ring->add_request = gen6_add_request;
1559                 ring->irq_get = gen6_render_ring_get_irq;
1560                 ring->irq_put = gen6_render_ring_put_irq;
1561         } else if (IS_GEN5(dev)) {
1562                 ring->add_request = pc_render_add_request;
1563                 ring->get_seqno = pc_render_get_seqno;
1564         }
1565
1566         ring->dev = dev;
1567         INIT_LIST_HEAD(&ring->active_list);
1568         INIT_LIST_HEAD(&ring->request_list);
1569         INIT_LIST_HEAD(&ring->gpu_write_list);
1570
1571         ring->size = size;
1572         ring->effective_size = ring->size;
1573         if (IS_I830(ring->dev))
1574                 ring->effective_size -= 128;
1575
1576         ring->map.offset = start;
1577         ring->map.size = size;
1578         ring->map.type = 0;
1579         ring->map.flags = 0;
1580         ring->map.mtrr = 0;
1581
1582         drm_core_ioremap_wc(&ring->map, dev);
1583         if (ring->map.virtual == NULL) {
1584                 DRM_ERROR("can not ioremap virtual address for"
1585                           " ring buffer\n");
1586                 return -ENOMEM;
1587         }
1588
1589         ring->virtual_start = (void *)ring->map.virtual;
1590         return 0;
1591 }
1592
1593 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1594 {
1595         drm_i915_private_t *dev_priv = dev->dev_private;
1596         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1597
1598         if (IS_GEN6(dev) || IS_GEN7(dev))
1599                 *ring = gen6_bsd_ring;
1600         else
1601                 *ring = bsd_ring;
1602
1603         return intel_init_ring_buffer(dev, ring);
1604 }
1605
1606 int intel_init_blt_ring_buffer(struct drm_device *dev)
1607 {
1608         drm_i915_private_t *dev_priv = dev->dev_private;
1609         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1610
1611         *ring = gen6_blt_ring;
1612
1613         return intel_init_ring_buffer(dev, ring);
1614 }