kernel: Move us to using M_NOWAIT and M_WAITOK for mbuf functions.
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 #define BGE_RESET_SHUTDOWN      0
122 #define BGE_RESET_START         1
123 #define BGE_RESET_SUSPEND       2
124
125 static const struct bge_type {
126         uint16_t                bge_vid;
127         uint16_t                bge_did;
128         char                    *bge_name;
129 } bge_devs[] = {
130         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131                 "3COM 3C996 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Alteon BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136                 "Alteon BCM5701 Gigabit Ethernet" },
137
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139                 "Altima AC1000 Gigabit Ethernet" },
140         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141                 "Altima AC1002 Gigabit Ethernet" },
142         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143                 "Altima AC9100 Gigabit Ethernet" },
144
145         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146                 "Apple BCM5701 Gigabit Ethernet" },
147
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149                 "Broadcom BCM5700 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151                 "Broadcom BCM5701 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155                 "Broadcom BCM5702X Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157                 "Broadcom BCM5702 Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161                 "Broadcom BCM5703X Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163                 "Broadcom BCM5703 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171                 "Broadcom BCM5705 Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173                 "Broadcom BCM5705F Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175                 "Broadcom BCM5705K Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177                 "Broadcom BCM5705M Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179                 "Broadcom BCM5705M Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181                 "Broadcom BCM5714C Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183                 "Broadcom BCM5714S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185                 "Broadcom BCM5715 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187                 "Broadcom BCM5715S Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189                 "Broadcom BCM5720 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191                 "Broadcom BCM5721 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193                 "Broadcom BCM5722 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195                 "Broadcom BCM5723 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197                 "Broadcom BCM5750 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199                 "Broadcom BCM5750M Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201                 "Broadcom BCM5751 Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203                 "Broadcom BCM5751F Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205                 "Broadcom BCM5751M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207                 "Broadcom BCM5752 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209                 "Broadcom BCM5752M Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211                 "Broadcom BCM5753 Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213                 "Broadcom BCM5753F Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215                 "Broadcom BCM5753M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217                 "Broadcom BCM5754 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219                 "Broadcom BCM5754M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221                 "Broadcom BCM5755 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223                 "Broadcom BCM5755M Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225                 "Broadcom BCM5756 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227                 "Broadcom BCM5761 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229                 "Broadcom BCM5761E Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231                 "Broadcom BCM5761S Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233                 "Broadcom BCM5761SE Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235                 "Broadcom BCM5764 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237                 "Broadcom BCM5780 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239                 "Broadcom BCM5780S Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241                 "Broadcom BCM5781 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243                 "Broadcom BCM5782 Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245                 "Broadcom BCM5784 Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247                 "Broadcom BCM5785F Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249                 "Broadcom BCM5785G Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251                 "Broadcom BCM5786 Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253                 "Broadcom BCM5787 Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255                 "Broadcom BCM5787F Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257                 "Broadcom BCM5787M Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259                 "Broadcom BCM5788 Gigabit Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261                 "Broadcom BCM5789 Gigabit Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263                 "Broadcom BCM5901 Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265                 "Broadcom BCM5901A2 Fast Ethernet" },
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267                 "Broadcom BCM5903M Fast Ethernet" },
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269                 "Broadcom BCM5906 Fast Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271                 "Broadcom BCM5906M Fast Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273                 "Broadcom BCM57760 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275                 "Broadcom BCM57780 Gigabit Ethernet"},
276         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277                 "Broadcom BCM57788 Gigabit Ethernet"},
278         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279                 "Broadcom BCM57790 Gigabit Ethernet"},
280         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281                 "SysKonnect Gigabit Ethernet" },
282
283         { 0, 0, NULL }
284 };
285
286 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
293
294 #define BGE_IS_CRIPPLED(sc)             \
295         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296
297 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298
299 static int      bge_probe(device_t);
300 static int      bge_attach(device_t);
301 static int      bge_detach(device_t);
302 static void     bge_txeof(struct bge_softc *, uint16_t);
303 static void     bge_rxeof(struct bge_softc *, uint16_t, int);
304
305 static void     bge_tick(void *);
306 static void     bge_stats_update(struct bge_softc *);
307 static void     bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309                 bge_defrag_shortdma(struct mbuf *);
310 static int      bge_encap(struct bge_softc *, struct mbuf **,
311                     uint32_t *, int *);
312 static void     bge_xmit(struct bge_softc *, uint32_t);
313 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
314                     uint16_t *, uint16_t *);
315
316 #ifdef IFPOLL_ENABLE
317 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void     bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void     bge_intr_crippled(void *);
321 static void     bge_intr_legacy(void *);
322 static void     bge_msi(void *);
323 static void     bge_msi_oneshot(void *);
324 static void     bge_intr(struct bge_softc *);
325 static void     bge_enable_intr(struct bge_softc *);
326 static void     bge_disable_intr(struct bge_softc *);
327 static void     bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void     bge_init(void *);
330 static void     bge_stop(struct bge_softc *);
331 static void     bge_watchdog(struct ifnet *);
332 static void     bge_shutdown(device_t);
333 static int      bge_suspend(device_t);
334 static int      bge_resume(device_t);
335 static int      bge_ifmedia_upd(struct ifnet *);
336 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337
338 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340
341 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343
344 static void     bge_setmulti(struct bge_softc *);
345 static void     bge_setpromisc(struct bge_softc *);
346 static void     bge_enable_msi(struct bge_softc *sc);
347
348 static int      bge_alloc_jumbo_mem(struct bge_softc *);
349 static void     bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351                 *bge_jalloc(struct bge_softc *);
352 static void     bge_jfree(void *);
353 static void     bge_jref(void *);
354 static int      bge_newbuf_std(struct bge_softc *, int, int);
355 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int      bge_init_rx_ring_std(struct bge_softc *);
359 static void     bge_free_rx_ring_std(struct bge_softc *);
360 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void     bge_free_tx_ring(struct bge_softc *);
363 static int      bge_init_tx_ring(struct bge_softc *);
364
365 static int      bge_chipinit(struct bge_softc *);
366 static int      bge_blockinit(struct bge_softc *);
367 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368
369 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void     bge_writembx(struct bge_softc *, int, int);
377
378 static int      bge_miibus_readreg(device_t, int, int);
379 static int      bge_miibus_writereg(device_t, int, int, int);
380 static void     bge_miibus_statchg(device_t);
381 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void     bge_link_poll(struct bge_softc *);
386
387 static void     bge_reset(struct bge_softc *);
388
389 static int      bge_dma_alloc(struct bge_softc *);
390 static void     bge_dma_free(struct bge_softc *);
391 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392                                     bus_dma_tag_t *, bus_dmamap_t *,
393                                     void **, bus_addr_t *);
394 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395
396 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
400
401 static void     bge_coal_change(struct bge_softc *);
402 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411                     int, int, uint32_t);
412
413 static void     bge_sig_post_reset(struct bge_softc *, int);
414 static void     bge_sig_legacy(struct bge_softc *, int);
415 static void     bge_sig_pre_reset(struct bge_softc *, int);
416 static void     bge_stop_fw(struct bge_softc *);
417 static void     bge_asf_driver_up(struct bge_softc *);
418
419 static void     bge_ape_lock_init(struct bge_softc *);
420 static void     bge_ape_read_fw_ver(struct bge_softc *);
421 static int      bge_ape_lock(struct bge_softc *, int);
422 static void     bge_ape_unlock(struct bge_softc *, int);
423 static void     bge_ape_send_event(struct bge_softc *, uint32_t);
424 static void     bge_ape_driver_state_change(struct bge_softc *, int);
425
426 /*
427  * Set following tunable to 1 for some IBM blade servers with the DNLK
428  * switch module. Auto negotiation is broken for those configurations.
429  */
430 static int      bge_fake_autoneg = 0;
431 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
432
433 static int      bge_msi_enable = 1;
434 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
435
436 static int      bge_allow_asf = 1;
437 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
438
439 #if !defined(KTR_IF_BGE)
440 #define KTR_IF_BGE      KTR_ALL
441 #endif
442 KTR_INFO_MASTER(if_bge);
443 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
444 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
445 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
446 #define logif(name)     KTR_LOG(if_bge_ ## name)
447
448 static device_method_t bge_methods[] = {
449         /* Device interface */
450         DEVMETHOD(device_probe,         bge_probe),
451         DEVMETHOD(device_attach,        bge_attach),
452         DEVMETHOD(device_detach,        bge_detach),
453         DEVMETHOD(device_shutdown,      bge_shutdown),
454         DEVMETHOD(device_suspend,       bge_suspend),
455         DEVMETHOD(device_resume,        bge_resume),
456
457         /* bus interface */
458         DEVMETHOD(bus_print_child,      bus_generic_print_child),
459         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
460
461         /* MII interface */
462         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
463         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
464         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
465
466         DEVMETHOD_END
467 };
468
469 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
470 static devclass_t bge_devclass;
471
472 DECLARE_DUMMY_MODULE(if_bge);
473 MODULE_DEPEND(if_bge, miibus, 1, 1, 1);
474 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
475 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
476
477 static uint32_t
478 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
479 {
480         device_t dev = sc->bge_dev;
481         uint32_t val;
482
483         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
484             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
485                 return 0;
486
487         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
488         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
489         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
490         return (val);
491 }
492
493 static void
494 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
495 {
496         device_t dev = sc->bge_dev;
497
498         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
499             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
500                 return;
501
502         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
503         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
504         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
505 }
506
507 #ifdef notdef
508 static uint32_t
509 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
510 {
511         device_t dev = sc->bge_dev;
512
513         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
514         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
515 }
516 #endif
517
518 static void
519 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
520 {
521         device_t dev = sc->bge_dev;
522
523         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
524         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
525 }
526
527 static void
528 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
529 {
530         CSR_WRITE_4(sc, off, val);
531 }
532
533 static void
534 bge_writembx(struct bge_softc *sc, int off, int val)
535 {
536         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
537                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
538
539         CSR_WRITE_4(sc, off, val);
540         if (sc->bge_mbox_reorder)
541                 CSR_READ_4(sc, off);
542 }
543
544 static uint8_t
545 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
546 {
547         uint32_t access, byte = 0;
548         int i;
549
550         /* Lock. */
551         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
552         for (i = 0; i < 8000; i++) {
553                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
554                         break;
555                 DELAY(20);
556         }
557         if (i == 8000)
558                 return (1);
559
560         /* Enable access. */
561         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
562         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
563
564         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
565         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
566         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
567                 DELAY(10);
568                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
569                         DELAY(10);
570                         break;
571                 }
572         }
573
574         if (i == BGE_TIMEOUT * 10) {
575                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
576                 return (1);
577         }
578
579         /* Get result. */
580         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
581
582         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
583
584         /* Disable access. */
585         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
586
587         /* Unlock. */
588         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
589         CSR_READ_4(sc, BGE_NVRAM_SWARB);
590
591         return (0);
592 }
593
594 /*
595  * Read a sequence of bytes from NVRAM.
596  */
597 static int
598 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
599 {
600         int err = 0, i;
601         uint8_t byte = 0;
602
603         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
604                 return (1);
605
606         for (i = 0; i < cnt; i++) {
607                 err = bge_nvram_getbyte(sc, off + i, &byte);
608                 if (err)
609                         break;
610                 *(dest + i) = byte;
611         }
612
613         return (err ? 1 : 0);
614 }
615
616 /*
617  * Read a byte of data stored in the EEPROM at address 'addr.' The
618  * BCM570x supports both the traditional bitbang interface and an
619  * auto access interface for reading the EEPROM. We use the auto
620  * access method.
621  */
622 static uint8_t
623 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
624 {
625         int i;
626         uint32_t byte = 0;
627
628         /*
629          * Enable use of auto EEPROM access so we can avoid
630          * having to use the bitbang method.
631          */
632         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
633
634         /* Reset the EEPROM, load the clock period. */
635         CSR_WRITE_4(sc, BGE_EE_ADDR,
636             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
637         DELAY(20);
638
639         /* Issue the read EEPROM command. */
640         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
641
642         /* Wait for completion */
643         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
644                 DELAY(10);
645                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
646                         break;
647         }
648
649         if (i == BGE_TIMEOUT) {
650                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
651                 return(1);
652         }
653
654         /* Get result. */
655         byte = CSR_READ_4(sc, BGE_EE_DATA);
656
657         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
658
659         return(0);
660 }
661
662 /*
663  * Read a sequence of bytes from the EEPROM.
664  */
665 static int
666 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
667 {
668         size_t i;
669         int err;
670         uint8_t byte;
671
672         for (byte = 0, err = 0, i = 0; i < len; i++) {
673                 err = bge_eeprom_getbyte(sc, off + i, &byte);
674                 if (err)
675                         break;
676                 *(dest + i) = byte;
677         }
678
679         return(err ? 1 : 0);
680 }
681
682 static int
683 bge_miibus_readreg(device_t dev, int phy, int reg)
684 {
685         struct bge_softc *sc = device_get_softc(dev);
686         uint32_t val;
687         int i;
688
689         KASSERT(phy == sc->bge_phyno,
690             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
691
692         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
693                 return 0;
694
695         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
696         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
697                 CSR_WRITE_4(sc, BGE_MI_MODE,
698                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
699                 DELAY(80);
700         }
701
702         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
703             BGE_MIPHY(phy) | BGE_MIREG(reg));
704
705         /* Poll for the PHY register access to complete. */
706         for (i = 0; i < BGE_TIMEOUT; i++) {
707                 DELAY(10);
708                 val = CSR_READ_4(sc, BGE_MI_COMM);
709                 if ((val & BGE_MICOMM_BUSY) == 0) {
710                         DELAY(5);
711                         val = CSR_READ_4(sc, BGE_MI_COMM);
712                         break;
713                 }
714         }
715         if (i == BGE_TIMEOUT) {
716                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
717                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
718                 val = 0;
719         }
720
721         /* Restore the autopoll bit if necessary. */
722         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
723                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
724                 DELAY(80);
725         }
726
727         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
728
729         if (val & BGE_MICOMM_READFAIL)
730                 return 0;
731
732         return (val & 0xFFFF);
733 }
734
735 static int
736 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
737 {
738         struct bge_softc *sc = device_get_softc(dev);
739         int i;
740
741         KASSERT(phy == sc->bge_phyno,
742             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
743
744         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
745             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
746                return 0;
747
748         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
749                 return 0;
750
751         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
752         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
753                 CSR_WRITE_4(sc, BGE_MI_MODE,
754                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
755                 DELAY(80);
756         }
757
758         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
759             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
760
761         for (i = 0; i < BGE_TIMEOUT; i++) {
762                 DELAY(10);
763                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
764                         DELAY(5);
765                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
766                         break;
767                 }
768         }
769         if (i == BGE_TIMEOUT) {
770                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
771                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
772         }
773
774         /* Restore the autopoll bit if necessary. */
775         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
776                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
777                 DELAY(80);
778         }
779
780         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
781
782         return 0;
783 }
784
785 static void
786 bge_miibus_statchg(device_t dev)
787 {
788         struct bge_softc *sc;
789         struct mii_data *mii;
790         uint32_t mac_mode;
791
792         sc = device_get_softc(dev);
793         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
794                 return;
795
796         mii = device_get_softc(sc->bge_miibus);
797
798         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
799             (IFM_ACTIVE | IFM_AVALID)) {
800                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
801                 case IFM_10_T:
802                 case IFM_100_TX:
803                         sc->bge_link = 1;
804                         break;
805                 case IFM_1000_T:
806                 case IFM_1000_SX:
807                 case IFM_2500_SX:
808                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
809                                 sc->bge_link = 1;
810                         else
811                                 sc->bge_link = 0;
812                         break;
813                 default:
814                         sc->bge_link = 0;
815                         break;
816                 }
817         } else {
818                 sc->bge_link = 0;
819         }
820         if (sc->bge_link == 0)
821                 return;
822
823         /*
824          * APE firmware touches these registers to keep the MAC
825          * connected to the outside world.  Try to keep the
826          * accesses atomic.
827          */
828
829         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
830             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
831
832         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
833             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
834                 mac_mode |= BGE_PORTMODE_GMII;
835         else
836                 mac_mode |= BGE_PORTMODE_MII;
837
838         if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
839                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
840
841         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
842         DELAY(40);
843 }
844
845 /*
846  * Memory management for jumbo frames.
847  */
848 static int
849 bge_alloc_jumbo_mem(struct bge_softc *sc)
850 {
851         struct ifnet *ifp = &sc->arpcom.ac_if;
852         struct bge_jslot *entry;
853         uint8_t *ptr;
854         bus_addr_t paddr;
855         int i, error;
856
857         /*
858          * Create tag for jumbo mbufs.
859          * This is really a bit of a kludge. We allocate a special
860          * jumbo buffer pool which (thanks to the way our DMA
861          * memory allocation works) will consist of contiguous
862          * pages. This means that even though a jumbo buffer might
863          * be larger than a page size, we don't really need to
864          * map it into more than one DMA segment. However, the
865          * default mbuf tag will result in multi-segment mappings,
866          * so we have to create a special jumbo mbuf tag that
867          * lets us get away with mapping the jumbo buffers as
868          * a single segment. I think eventually the driver should
869          * be changed so that it uses ordinary mbufs and cluster
870          * buffers, i.e. jumbo frames can span multiple DMA
871          * descriptors. But that's a project for another day.
872          */
873
874         /*
875          * Create DMA stuffs for jumbo RX ring.
876          */
877         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
878                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
879                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
880                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
881                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
882         if (error) {
883                 if_printf(ifp, "could not create jumbo RX ring\n");
884                 return error;
885         }
886
887         /*
888          * Create DMA stuffs for jumbo buffer block.
889          */
890         error = bge_dma_block_alloc(sc, BGE_JMEM,
891                                     &sc->bge_cdata.bge_jumbo_tag,
892                                     &sc->bge_cdata.bge_jumbo_map,
893                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
894                                     &paddr);
895         if (error) {
896                 if_printf(ifp, "could not create jumbo buffer\n");
897                 return error;
898         }
899
900         SLIST_INIT(&sc->bge_jfree_listhead);
901
902         /*
903          * Now divide it up into 9K pieces and save the addresses
904          * in an array. Note that we play an evil trick here by using
905          * the first few bytes in the buffer to hold the the address
906          * of the softc structure for this interface. This is because
907          * bge_jfree() needs it, but it is called by the mbuf management
908          * code which will not pass it to us explicitly.
909          */
910         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
911                 entry = &sc->bge_cdata.bge_jslots[i];
912                 entry->bge_sc = sc;
913                 entry->bge_buf = ptr;
914                 entry->bge_paddr = paddr;
915                 entry->bge_inuse = 0;
916                 entry->bge_slot = i;
917                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
918
919                 ptr += BGE_JLEN;
920                 paddr += BGE_JLEN;
921         }
922         return 0;
923 }
924
925 static void
926 bge_free_jumbo_mem(struct bge_softc *sc)
927 {
928         /* Destroy jumbo RX ring. */
929         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
930                            sc->bge_cdata.bge_rx_jumbo_ring_map,
931                            sc->bge_ldata.bge_rx_jumbo_ring);
932
933         /* Destroy jumbo buffer block. */
934         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
935                            sc->bge_cdata.bge_jumbo_map,
936                            sc->bge_ldata.bge_jumbo_buf);
937 }
938
939 /*
940  * Allocate a jumbo buffer.
941  */
942 static struct bge_jslot *
943 bge_jalloc(struct bge_softc *sc)
944 {
945         struct bge_jslot *entry;
946
947         lwkt_serialize_enter(&sc->bge_jslot_serializer);
948         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
949         if (entry) {
950                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
951                 entry->bge_inuse = 1;
952         } else {
953                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
954         }
955         lwkt_serialize_exit(&sc->bge_jslot_serializer);
956         return(entry);
957 }
958
959 /*
960  * Adjust usage count on a jumbo buffer.
961  */
962 static void
963 bge_jref(void *arg)
964 {
965         struct bge_jslot *entry = (struct bge_jslot *)arg;
966         struct bge_softc *sc = entry->bge_sc;
967
968         if (sc == NULL)
969                 panic("bge_jref: can't find softc pointer!");
970
971         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
972                 panic("bge_jref: asked to reference buffer "
973                     "that we don't manage!");
974         } else if (entry->bge_inuse == 0) {
975                 panic("bge_jref: buffer already free!");
976         } else {
977                 atomic_add_int(&entry->bge_inuse, 1);
978         }
979 }
980
981 /*
982  * Release a jumbo buffer.
983  */
984 static void
985 bge_jfree(void *arg)
986 {
987         struct bge_jslot *entry = (struct bge_jslot *)arg;
988         struct bge_softc *sc = entry->bge_sc;
989
990         if (sc == NULL)
991                 panic("bge_jfree: can't find softc pointer!");
992
993         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
994                 panic("bge_jfree: asked to free buffer that we don't manage!");
995         } else if (entry->bge_inuse == 0) {
996                 panic("bge_jfree: buffer already free!");
997         } else {
998                 /*
999                  * Possible MP race to 0, use the serializer.  The atomic insn
1000                  * is still needed for races against bge_jref().
1001                  */
1002                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
1003                 atomic_subtract_int(&entry->bge_inuse, 1);
1004                 if (entry->bge_inuse == 0) {
1005                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
1006                                           entry, jslot_link);
1007                 }
1008                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
1009         }
1010 }
1011
1012
1013 /*
1014  * Intialize a standard receive ring descriptor.
1015  */
1016 static int
1017 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1018 {
1019         struct mbuf *m_new = NULL;
1020         bus_dma_segment_t seg;
1021         bus_dmamap_t map;
1022         int error, nsegs;
1023
1024         m_new = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
1025         if (m_new == NULL)
1026                 return ENOBUFS;
1027         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1028
1029         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1030                 m_adj(m_new, ETHER_ALIGN);
1031
1032         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1033                         sc->bge_cdata.bge_rx_tmpmap, m_new,
1034                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1035         if (error) {
1036                 m_freem(m_new);
1037                 return error;
1038         }
1039
1040         if (!init) {
1041                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1042                                 sc->bge_cdata.bge_rx_std_dmamap[i],
1043                                 BUS_DMASYNC_POSTREAD);
1044                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1045                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1046         }
1047
1048         map = sc->bge_cdata.bge_rx_tmpmap;
1049         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1050         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1051
1052         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1053         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1054
1055         bge_setup_rxdesc_std(sc, i);
1056         return 0;
1057 }
1058
1059 static void
1060 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1061 {
1062         struct bge_rxchain *rc;
1063         struct bge_rx_bd *r;
1064
1065         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1066         r = &sc->bge_ldata.bge_rx_std_ring[i];
1067
1068         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1069         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1070         r->bge_len = rc->bge_mbuf->m_len;
1071         r->bge_idx = i;
1072         r->bge_flags = BGE_RXBDFLAG_END;
1073 }
1074
1075 /*
1076  * Initialize a jumbo receive ring descriptor. This allocates
1077  * a jumbo buffer from the pool managed internally by the driver.
1078  */
1079 static int
1080 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1081 {
1082         struct mbuf *m_new = NULL;
1083         struct bge_jslot *buf;
1084         bus_addr_t paddr;
1085
1086         /* Allocate the mbuf. */
1087         MGETHDR(m_new, init ? M_WAITOK : M_NOWAIT, MT_DATA);
1088         if (m_new == NULL)
1089                 return ENOBUFS;
1090
1091         /* Allocate the jumbo buffer */
1092         buf = bge_jalloc(sc);
1093         if (buf == NULL) {
1094                 m_freem(m_new);
1095                 return ENOBUFS;
1096         }
1097
1098         /* Attach the buffer to the mbuf. */
1099         m_new->m_ext.ext_arg = buf;
1100         m_new->m_ext.ext_buf = buf->bge_buf;
1101         m_new->m_ext.ext_free = bge_jfree;
1102         m_new->m_ext.ext_ref = bge_jref;
1103         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1104
1105         m_new->m_flags |= M_EXT;
1106
1107         m_new->m_data = m_new->m_ext.ext_buf;
1108         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1109
1110         paddr = buf->bge_paddr;
1111         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1112                 m_adj(m_new, ETHER_ALIGN);
1113                 paddr += ETHER_ALIGN;
1114         }
1115
1116         /* Save necessary information */
1117         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1118         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1119
1120         /* Set up the descriptor. */
1121         bge_setup_rxdesc_jumbo(sc, i);
1122         return 0;
1123 }
1124
1125 static void
1126 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1127 {
1128         struct bge_rx_bd *r;
1129         struct bge_rxchain *rc;
1130
1131         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1132         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1133
1134         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1135         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1136         r->bge_len = rc->bge_mbuf->m_len;
1137         r->bge_idx = i;
1138         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1139 }
1140
1141 static int
1142 bge_init_rx_ring_std(struct bge_softc *sc)
1143 {
1144         int i, error;
1145
1146         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1147                 error = bge_newbuf_std(sc, i, 1);
1148                 if (error)
1149                         return error;
1150         }
1151
1152         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1153         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1154
1155         return(0);
1156 }
1157
1158 static void
1159 bge_free_rx_ring_std(struct bge_softc *sc)
1160 {
1161         int i;
1162
1163         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1164                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1165
1166                 if (rc->bge_mbuf != NULL) {
1167                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1168                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1169                         m_freem(rc->bge_mbuf);
1170                         rc->bge_mbuf = NULL;
1171                 }
1172                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1173                     sizeof(struct bge_rx_bd));
1174         }
1175 }
1176
1177 static int
1178 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1179 {
1180         struct bge_rcb *rcb;
1181         int i, error;
1182
1183         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1184                 error = bge_newbuf_jumbo(sc, i, 1);
1185                 if (error)
1186                         return error;
1187         }
1188
1189         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1190
1191         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1192         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1193         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1194
1195         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1196
1197         return(0);
1198 }
1199
1200 static void
1201 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1202 {
1203         int i;
1204
1205         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1206                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1207
1208                 if (rc->bge_mbuf != NULL) {
1209                         m_freem(rc->bge_mbuf);
1210                         rc->bge_mbuf = NULL;
1211                 }
1212                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1213                     sizeof(struct bge_rx_bd));
1214         }
1215 }
1216
1217 static void
1218 bge_free_tx_ring(struct bge_softc *sc)
1219 {
1220         int i;
1221
1222         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1223                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1224                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1225                                           sc->bge_cdata.bge_tx_dmamap[i]);
1226                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1227                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1228                 }
1229                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1230                     sizeof(struct bge_tx_bd));
1231         }
1232 }
1233
1234 static int
1235 bge_init_tx_ring(struct bge_softc *sc)
1236 {
1237         sc->bge_txcnt = 0;
1238         sc->bge_tx_saved_considx = 0;
1239         sc->bge_tx_prodidx = 0;
1240
1241         /* Initialize transmit producer index for host-memory send ring. */
1242         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1243
1244         /* 5700 b2 errata */
1245         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1246                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1247
1248         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1249         /* 5700 b2 errata */
1250         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1251                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1252
1253         return(0);
1254 }
1255
1256 static void
1257 bge_setmulti(struct bge_softc *sc)
1258 {
1259         struct ifnet *ifp;
1260         struct ifmultiaddr *ifma;
1261         uint32_t hashes[4] = { 0, 0, 0, 0 };
1262         int h, i;
1263
1264         ifp = &sc->arpcom.ac_if;
1265
1266         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1267                 for (i = 0; i < 4; i++)
1268                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1269                 return;
1270         }
1271
1272         /* First, zot all the existing filters. */
1273         for (i = 0; i < 4; i++)
1274                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1275
1276         /* Now program new ones. */
1277         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1278                 if (ifma->ifma_addr->sa_family != AF_LINK)
1279                         continue;
1280                 h = ether_crc32_le(
1281                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1282                     ETHER_ADDR_LEN) & 0x7f;
1283                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1284         }
1285
1286         for (i = 0; i < 4; i++)
1287                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1288 }
1289
1290 /*
1291  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1292  * self-test results.
1293  */
1294 static int
1295 bge_chipinit(struct bge_softc *sc)
1296 {
1297         int i;
1298         uint32_t dma_rw_ctl, mode_ctl;
1299         uint16_t val;
1300
1301         /* Set endian type before we access any non-PCI registers. */
1302         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1303             BGE_INIT | sc->bge_pci_miscctl, 4);
1304
1305         /*
1306          * Clear the MAC statistics block in the NIC's
1307          * internal memory.
1308          */
1309         for (i = BGE_STATS_BLOCK;
1310             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1311                 BGE_MEMWIN_WRITE(sc, i, 0);
1312
1313         for (i = BGE_STATUS_BLOCK;
1314             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1315                 BGE_MEMWIN_WRITE(sc, i, 0);
1316
1317         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1318                 /*
1319                  * Fix data corruption caused by non-qword write with WB.
1320                  * Fix master abort in PCI mode.
1321                  * Fix PCI latency timer.
1322                  */
1323                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1324                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1325                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1326         }
1327
1328         /* Set up the PCI DMA control register. */
1329         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1330         if (sc->bge_flags & BGE_FLAG_PCIE) {
1331                 /* PCI-E bus */
1332                 /* DMA read watermark not used on PCI-E */
1333                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1334         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1335                 /* PCI-X bus */
1336                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1337                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1338                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1339                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1340                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1341                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1342                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1343                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1344                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1345                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1346                         uint32_t rd_wat = 0x7;
1347                         uint32_t clkctl;
1348
1349                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1350                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1351                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1352                                 dma_rw_ctl |=
1353                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1354                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1355                                 dma_rw_ctl |=
1356                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1357                         }
1358                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1359                                 rd_wat = 0x4;
1360
1361                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1362                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1363                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1364                 } else {
1365                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1366                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1367                         dma_rw_ctl |= 0xf;
1368                 }
1369         } else {
1370                 /* Conventional PCI bus */
1371                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1372                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1373                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1374                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1375                         dma_rw_ctl |= 0xf;
1376         }
1377
1378         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1379             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1380                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1381         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1382             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1383                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1384                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1385         }
1386         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1387
1388         /*
1389          * Set up general mode register.
1390          */
1391         mode_ctl = BGE_DMA_SWAP_OPTIONS|
1392             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1393             BGE_MODECTL_TX_NO_PHDR_CSUM;
1394
1395         /*
1396          * BCM5701 B5 have a bug causing data corruption when using
1397          * 64-bit DMA reads, which can be terminated early and then
1398          * completed later as 32-bit accesses, in combination with
1399          * certain bridges.
1400          */
1401         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1402             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1403                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1404
1405         /*
1406          * Tell the firmware the driver is running
1407          */
1408         if (sc->bge_asf_mode & ASF_STACKUP)
1409                 mode_ctl |= BGE_MODECTL_STACKUP;
1410
1411         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1412
1413         /*
1414          * Disable memory write invalidate.  Apparently it is not supported
1415          * properly by these devices.  Also ensure that INTx isn't disabled,
1416          * as these chips need it even when using MSI.
1417          */
1418         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1419             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1420
1421         /* Set the timer prescaler (always 66Mhz) */
1422         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1423
1424         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1425                 DELAY(40);      /* XXX */
1426
1427                 /* Put PHY into ready state */
1428                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1429                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1430                 DELAY(40);
1431         }
1432
1433         return(0);
1434 }
1435
1436 static int
1437 bge_blockinit(struct bge_softc *sc)
1438 {
1439         struct bge_rcb *rcb;
1440         bus_size_t vrcb;
1441         bge_hostaddr taddr;
1442         uint32_t val;
1443         int i, limit;
1444
1445         /*
1446          * Initialize the memory window pointer register so that
1447          * we can access the first 32K of internal NIC RAM. This will
1448          * allow us to set up the TX send ring RCBs and the RX return
1449          * ring RCBs, plus other things which live in NIC memory.
1450          */
1451         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1452
1453         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1454
1455         if (!BGE_IS_5705_PLUS(sc)) {
1456                 /* Configure mbuf memory pool */
1457                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1458                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1459                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1460                 else
1461                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1462
1463                 /* Configure DMA resource pool */
1464                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1465                     BGE_DMA_DESCRIPTORS);
1466                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1467         }
1468
1469         /* Configure mbuf pool watermarks */
1470         if (!BGE_IS_5705_PLUS(sc)) {
1471                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1472                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1473                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1475                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1476                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1477                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1478         } else {
1479                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1480                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1481                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1482         }
1483
1484         /* Configure DMA resource watermarks */
1485         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1486         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1487
1488         /* Enable buffer manager */
1489         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1490             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1491
1492         /* Poll for buffer manager start indication */
1493         for (i = 0; i < BGE_TIMEOUT; i++) {
1494                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1495                         break;
1496                 DELAY(10);
1497         }
1498
1499         if (i == BGE_TIMEOUT) {
1500                 if_printf(&sc->arpcom.ac_if,
1501                           "buffer manager failed to start\n");
1502                 return(ENXIO);
1503         }
1504
1505         /* Enable flow-through queues */
1506         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1507         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1508
1509         /* Wait until queue initialization is complete */
1510         for (i = 0; i < BGE_TIMEOUT; i++) {
1511                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1512                         break;
1513                 DELAY(10);
1514         }
1515
1516         if (i == BGE_TIMEOUT) {
1517                 if_printf(&sc->arpcom.ac_if,
1518                           "flow-through queue init failed\n");
1519                 return(ENXIO);
1520         }
1521
1522         /*
1523          * Summary of rings supported by the controller:
1524          *
1525          * Standard Receive Producer Ring
1526          * - This ring is used to feed receive buffers for "standard"
1527          *   sized frames (typically 1536 bytes) to the controller.
1528          *
1529          * Jumbo Receive Producer Ring
1530          * - This ring is used to feed receive buffers for jumbo sized
1531          *   frames (i.e. anything bigger than the "standard" frames)
1532          *   to the controller.
1533          *
1534          * Mini Receive Producer Ring
1535          * - This ring is used to feed receive buffers for "mini"
1536          *   sized frames to the controller.
1537          * - This feature required external memory for the controller
1538          *   but was never used in a production system.  Should always
1539          *   be disabled.
1540          *
1541          * Receive Return Ring
1542          * - After the controller has placed an incoming frame into a
1543          *   receive buffer that buffer is moved into a receive return
1544          *   ring.  The driver is then responsible to passing the
1545          *   buffer up to the stack.  Many versions of the controller
1546          *   support multiple RR rings.
1547          *
1548          * Send Ring
1549          * - This ring is used for outgoing frames.  Many versions of
1550          *   the controller support multiple send rings.
1551          */
1552
1553         /* Initialize the standard receive producer ring control block. */
1554         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1555         rcb->bge_hostaddr.bge_addr_lo =
1556             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1557         rcb->bge_hostaddr.bge_addr_hi =
1558             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1559         if (BGE_IS_5705_PLUS(sc)) {
1560                 /*
1561                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1562                  * Bits 15-2 : Reserved (should be 0)
1563                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1564                  * Bit 0     : Reserved
1565                  */
1566                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1567         } else {
1568                 /*
1569                  * Ring size is always XXX entries
1570                  * Bits 31-16: Maximum RX frame size
1571                  * Bits 15-2 : Reserved (should be 0)
1572                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1573                  * Bit 0     : Reserved
1574                  */
1575                 rcb->bge_maxlen_flags =
1576                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1577         }
1578         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1579         /* Write the standard receive producer ring control block. */
1580         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1581         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1582         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1583         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1584         /* Reset the standard receive producer ring producer index. */
1585         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1586
1587         /*
1588          * Initialize the jumbo RX producer ring control
1589          * block.  We set the 'ring disabled' bit in the
1590          * flags field until we're actually ready to start
1591          * using this ring (i.e. once we set the MTU
1592          * high enough to require it).
1593          */
1594         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1595                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1596                 /* Get the jumbo receive producer ring RCB parameters. */
1597                 rcb->bge_hostaddr.bge_addr_lo =
1598                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1599                 rcb->bge_hostaddr.bge_addr_hi =
1600                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1601                 rcb->bge_maxlen_flags =
1602                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1603                     BGE_RCB_FLAG_RING_DISABLED);
1604                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1605                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1606                     rcb->bge_hostaddr.bge_addr_hi);
1607                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1608                     rcb->bge_hostaddr.bge_addr_lo);
1609                 /* Program the jumbo receive producer ring RCB parameters. */
1610                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1611                     rcb->bge_maxlen_flags);
1612                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1613                 /* Reset the jumbo receive producer ring producer index. */
1614                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1615         }
1616
1617         /* Disable the mini receive producer ring RCB. */
1618         if (BGE_IS_5700_FAMILY(sc)) {
1619                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1620                 rcb->bge_maxlen_flags =
1621                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1622                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1623                     rcb->bge_maxlen_flags);
1624                 /* Reset the mini receive producer ring producer index. */
1625                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1626         }
1627
1628         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1629         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1630             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1631              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1632              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1633                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1634                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1635         }
1636
1637         /*
1638          * The BD ring replenish thresholds control how often the
1639          * hardware fetches new BD's from the producer rings in host
1640          * memory.  Setting the value too low on a busy system can
1641          * starve the hardware and recue the throughpout.
1642          *
1643          * Set the BD ring replentish thresholds. The recommended
1644          * values are 1/8th the number of descriptors allocated to
1645          * each ring.
1646          */
1647         if (BGE_IS_5705_PLUS(sc))
1648                 val = 8;
1649         else
1650                 val = BGE_STD_RX_RING_CNT / 8;
1651         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1652         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1653                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1654                     BGE_JUMBO_RX_RING_CNT/8);
1655         }
1656
1657         /*
1658          * Disable all send rings by setting the 'ring disabled' bit
1659          * in the flags field of all the TX send ring control blocks,
1660          * located in NIC memory.
1661          */
1662         if (!BGE_IS_5705_PLUS(sc)) {
1663                 /* 5700 to 5704 had 16 send rings. */
1664                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1665         } else {
1666                 limit = 1;
1667         }
1668         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1669         for (i = 0; i < limit; i++) {
1670                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1671                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1672                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1673                 vrcb += sizeof(struct bge_rcb);
1674         }
1675
1676         /* Configure send ring RCB 0 (we use only the first ring) */
1677         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1678         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1679         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1680         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1681         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1682             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1683         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1684             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1685
1686         /*
1687          * Disable all receive return rings by setting the
1688          * 'ring diabled' bit in the flags field of all the receive
1689          * return ring control blocks, located in NIC memory.
1690          */
1691         if (!BGE_IS_5705_PLUS(sc))
1692                 limit = BGE_RX_RINGS_MAX;
1693         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1694                 limit = 4;
1695         else
1696                 limit = 1;
1697         /* Disable all receive return rings. */
1698         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1699         for (i = 0; i < limit; i++) {
1700                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1701                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1702                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1703                     BGE_RCB_FLAG_RING_DISABLED);
1704                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1705                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1706                     (i * (sizeof(uint64_t))), 0);
1707                 vrcb += sizeof(struct bge_rcb);
1708         }
1709
1710         /*
1711          * Set up receive return ring 0.  Note that the NIC address
1712          * for RX return rings is 0x0.  The return rings live entirely
1713          * within the host, so the nicaddr field in the RCB isn't used.
1714          */
1715         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1716         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1717         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1718         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1719         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1720         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1721             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1722
1723         /* Set random backoff seed for TX */
1724         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1725             (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1726              sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1727              sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1728             BGE_TX_BACKOFF_SEED_MASK);
1729
1730         /* Set inter-packet gap */
1731         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1732
1733         /*
1734          * Specify which ring to use for packets that don't match
1735          * any RX rules.
1736          */
1737         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1738
1739         /*
1740          * Configure number of RX lists. One interrupt distribution
1741          * list, sixteen active lists, one bad frames class.
1742          */
1743         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1744
1745         /* Inialize RX list placement stats mask. */
1746         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1747         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1748
1749         /* Disable host coalescing until we get it set up */
1750         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1751
1752         /* Poll to make sure it's shut down. */
1753         for (i = 0; i < BGE_TIMEOUT; i++) {
1754                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1755                         break;
1756                 DELAY(10);
1757         }
1758
1759         if (i == BGE_TIMEOUT) {
1760                 if_printf(&sc->arpcom.ac_if,
1761                           "host coalescing engine failed to idle\n");
1762                 return(ENXIO);
1763         }
1764
1765         /* Set up host coalescing defaults */
1766         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1767         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1768         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1769         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1770         if (!BGE_IS_5705_PLUS(sc)) {
1771                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1772                     sc->bge_rx_coal_ticks_int);
1773                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1774                     sc->bge_tx_coal_ticks_int);
1775         }
1776         /*
1777          * NOTE:
1778          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1779          * have following two registers; obviously it is wrong.
1780          */
1781         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1782         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1783
1784         /* Set up address of statistics block */
1785         if (!BGE_IS_5705_PLUS(sc)) {
1786                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1787                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1788                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1789                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1790
1791                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1792                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1793                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1794         }
1795
1796         /* Set up address of status block */
1797         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1798         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1799             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1800         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1801             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1802
1803         /*
1804          * Set up status block partail update size.
1805          *
1806          * Because only single TX ring, RX produce ring and Rx return ring
1807          * are used, ask device to update only minimum part of status block
1808          * except for BCM5700 AX/BX, whose status block partial update size
1809          * can't be configured.
1810          */
1811         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1812             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1813                 /* XXX Actually reserved on BCM5700 AX/BX */
1814                 val = BGE_STATBLKSZ_FULL;
1815         } else {
1816                 val = BGE_STATBLKSZ_32BYTE;
1817         }
1818 #if 0
1819         /*
1820          * Does not seem to have visible effect in both
1821          * bulk data (1472B UDP datagram) and tiny data
1822          * (18B UDP datagram) TX tests.
1823          */
1824         if (!BGE_IS_CRIPPLED(sc))
1825                 val |= BGE_HCCMODE_CLRTICK_TX;
1826 #endif
1827
1828         /* Turn on host coalescing state machine */
1829         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1830
1831         /* Turn on RX BD completion state machine and enable attentions */
1832         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1833             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1834
1835         /* Turn on RX list placement state machine */
1836         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1837
1838         /* Turn on RX list selector state machine. */
1839         if (!BGE_IS_5705_PLUS(sc))
1840                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1841
1842         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1843             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1844             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1845             BGE_MACMODE_FRMHDR_DMA_ENB;
1846
1847         if (sc->bge_flags & BGE_FLAG_TBI)
1848                 val |= BGE_PORTMODE_TBI;
1849         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1850                 val |= BGE_PORTMODE_GMII;
1851         else
1852                 val |= BGE_PORTMODE_MII;
1853
1854         /* Allow APE to send/receive frames. */
1855         if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
1856                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1857
1858         /* Turn on DMA, clear stats */
1859         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1860         DELAY(40);
1861
1862         /* Set misc. local control, enable interrupts on attentions */
1863         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1864
1865 #ifdef notdef
1866         /* Assert GPIO pins for PHY reset */
1867         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1868             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1869         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1870             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1871 #endif
1872
1873         /* Turn on DMA completion state machine */
1874         if (!BGE_IS_5705_PLUS(sc))
1875                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1876
1877         /* Turn on write DMA state machine */
1878         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1879         if (BGE_IS_5755_PLUS(sc)) {
1880                 /* Enable host coalescing bug fix. */
1881                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1882         }
1883         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1884                 /* Request larger DMA burst size to get better performance. */
1885                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1886         }
1887         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1888         DELAY(40);
1889
1890         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1891             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1892             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1893             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1894                 /*
1895                  * Enable fix for read DMA FIFO overruns.
1896                  * The fix is to limit the number of RX BDs
1897                  * the hardware would fetch at a fime.
1898                  */
1899                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1900                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1901                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1902         }
1903
1904         /* Turn on read DMA state machine */
1905         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1906         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1907             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1908             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1909                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1910                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1911                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1912         if (sc->bge_flags & BGE_FLAG_PCIE)
1913                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1914         if (sc->bge_flags & BGE_FLAG_TSO)
1915                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1916         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1917         DELAY(40);
1918
1919         /* Turn on RX data completion state machine */
1920         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1921
1922         /* Turn on RX BD initiator state machine */
1923         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1924
1925         /* Turn on RX data and RX BD initiator state machine */
1926         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1927
1928         /* Turn on Mbuf cluster free state machine */
1929         if (!BGE_IS_5705_PLUS(sc))
1930                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1931
1932         /* Turn on send BD completion state machine */
1933         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1934
1935         /* Turn on send data completion state machine */
1936         val = BGE_SDCMODE_ENABLE;
1937         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1938                 val |= BGE_SDCMODE_CDELAY; 
1939         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1940
1941         /* Turn on send data initiator state machine */
1942         if (sc->bge_flags & BGE_FLAG_TSO)
1943                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1944                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1945         else
1946                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1947
1948         /* Turn on send BD initiator state machine */
1949         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1950
1951         /* Turn on send BD selector state machine */
1952         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1953
1954         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1955         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1956             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1957
1958         /* ack/clear link change events */
1959         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1960             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1961             BGE_MACSTAT_LINK_CHANGED);
1962         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1963
1964         /*
1965          * Enable attention when the link has changed state for
1966          * devices that use auto polling.
1967          */
1968         if (sc->bge_flags & BGE_FLAG_TBI) {
1969                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1970         } else {
1971                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1972                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1973                         DELAY(80);
1974                 }
1975                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1976                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1977                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1978                             BGE_EVTENB_MI_INTERRUPT);
1979                 }
1980         }
1981
1982         /*
1983          * Clear any pending link state attention.
1984          * Otherwise some link state change events may be lost until attention
1985          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1986          * It's not necessary on newer BCM chips - perhaps enabling link
1987          * state change attentions implies clearing pending attention.
1988          */
1989         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1990             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1991             BGE_MACSTAT_LINK_CHANGED);
1992
1993         /* Enable link state change attentions. */
1994         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1995
1996         return(0);
1997 }
1998
1999 /*
2000  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2001  * against our list and return its name if we find a match. Note
2002  * that since the Broadcom controller contains VPD support, we
2003  * can get the device name string from the controller itself instead
2004  * of the compiled-in string. This is a little slow, but it guarantees
2005  * we'll always announce the right product name.
2006  */
2007 static int
2008 bge_probe(device_t dev)
2009 {
2010         const struct bge_type *t;
2011         uint16_t product, vendor;
2012
2013         product = pci_get_device(dev);
2014         vendor = pci_get_vendor(dev);
2015
2016         for (t = bge_devs; t->bge_name != NULL; t++) {
2017                 if (vendor == t->bge_vid && product == t->bge_did)
2018                         break;
2019         }
2020         if (t->bge_name == NULL)
2021                 return(ENXIO);
2022
2023         device_set_desc(dev, t->bge_name);
2024         return(0);
2025 }
2026
2027 static int
2028 bge_attach(device_t dev)
2029 {
2030         struct ifnet *ifp;
2031         struct bge_softc *sc;
2032         struct sysctl_ctx_list *ctx;
2033         struct sysctl_oid *tree;
2034         uint32_t hwcfg = 0, misccfg;
2035         int error = 0, rid, capmask;
2036         uint8_t ether_addr[ETHER_ADDR_LEN];
2037         uint16_t product, vendor;
2038         driver_intr_t *intr_func;
2039         uintptr_t mii_priv = 0;
2040         u_int intr_flags;
2041         int msi_enable;
2042
2043         sc = device_get_softc(dev);
2044         sc->bge_dev = dev;
2045         callout_init_mp(&sc->bge_stat_timer);
2046         lwkt_serialize_init(&sc->bge_jslot_serializer);
2047
2048         sc->bge_func_addr = pci_get_function(dev);
2049         product = pci_get_device(dev);
2050         vendor = pci_get_vendor(dev);
2051
2052 #ifndef BURN_BRIDGES
2053         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2054                 uint32_t irq, mem;
2055
2056                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2057                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2058
2059                 device_printf(dev, "chip is in D%d power mode "
2060                     "-- setting to D0\n", pci_get_powerstate(dev));
2061
2062                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2063
2064                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2065                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2066         }
2067 #endif  /* !BURN_BRIDGE */
2068
2069         /*
2070          * Map control/status registers.
2071          */
2072         pci_enable_busmaster(dev);
2073
2074         rid = BGE_PCI_BAR0;
2075         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2076             RF_ACTIVE);
2077
2078         if (sc->bge_res == NULL) {
2079                 device_printf(dev, "couldn't map memory\n");
2080                 return ENXIO;
2081         }
2082
2083         sc->bge_btag = rman_get_bustag(sc->bge_res);
2084         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2085
2086         /* Save various chip information */
2087         sc->bge_chipid =
2088             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2089             BGE_PCIMISCCTL_ASICREV_SHIFT;
2090         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2091                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2092                 sc->bge_flags |= BGE_FLAG_CPMU;
2093                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2094         }
2095         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2096         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2097
2098         /* Save chipset family. */
2099         switch (sc->bge_asicrev) {
2100         case BGE_ASICREV_BCM5755:
2101         case BGE_ASICREV_BCM5761:
2102         case BGE_ASICREV_BCM5784:
2103         case BGE_ASICREV_BCM5785:
2104         case BGE_ASICREV_BCM5787:
2105         case BGE_ASICREV_BCM57780:
2106             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2107                 BGE_FLAG_5705_PLUS;
2108             break;
2109
2110         case BGE_ASICREV_BCM5700:
2111         case BGE_ASICREV_BCM5701:
2112         case BGE_ASICREV_BCM5703:
2113         case BGE_ASICREV_BCM5704:
2114                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2115                 break;
2116
2117         case BGE_ASICREV_BCM5714_A0:
2118         case BGE_ASICREV_BCM5780:
2119         case BGE_ASICREV_BCM5714:
2120                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2121                 /* Fall through */
2122
2123         case BGE_ASICREV_BCM5750:
2124         case BGE_ASICREV_BCM5752:
2125         case BGE_ASICREV_BCM5906:
2126                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2127                 /* Fall through */
2128
2129         case BGE_ASICREV_BCM5705:
2130                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2131                 break;
2132         }
2133
2134         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2135                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2136
2137         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2138                 sc->bge_flags |= BGE_FLAG_APE;
2139
2140         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2141         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2142             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2143              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2144                 sc->bge_flags |= BGE_FLAG_5788;
2145
2146         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2147         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2148                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2149
2150         /*
2151          * Increase STD RX ring prod index by at most 8 for BCM5750,
2152          * BCM5752 and BCM5755 to workaround hardware errata.
2153          */
2154         if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2155             sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2156             sc->bge_asicrev == BGE_ASICREV_BCM5755)
2157                 sc->bge_rx_wreg = 8;
2158
2159         /*
2160          * Check if this is a PCI-X or PCI Express device.
2161          */
2162         if (BGE_IS_5705_PLUS(sc)) {
2163                 if (pci_is_pcie(dev)) {
2164                         sc->bge_flags |= BGE_FLAG_PCIE;
2165                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2166                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2167                 }
2168         } else {
2169                 /*
2170                  * Check if the device is in PCI-X Mode.
2171                  * (This bit is not valid on PCI Express controllers.)
2172                  */
2173                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2174                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2175                         sc->bge_flags |= BGE_FLAG_PCIX;
2176                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2177                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2178                             "mbox_reorder", 0);
2179                 }
2180         }
2181         device_printf(dev, "CHIP ID 0x%08x; "
2182                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2183                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2184                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2185                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2186                         "PCI-E" : "PCI"));
2187
2188         /*
2189          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2190          * not actually a MAC controller bug but an issue with the embedded
2191          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2192          */
2193         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2194             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2195                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2196
2197         /*
2198          * When using the BCM5701 in PCI-X mode, data corruption has
2199          * been observed in the first few bytes of some received packets.
2200          * Aligning the packet buffer in memory eliminates the corruption.
2201          * Unfortunately, this misaligns the packet payloads.  On platforms
2202          * which do not support unaligned accesses, we will realign the
2203          * payloads by copying the received packets.
2204          */
2205         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2206             (sc->bge_flags & BGE_FLAG_PCIX))
2207                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2208
2209         if (!BGE_IS_CRIPPLED(sc)) {
2210                 if (device_getenv_int(dev, "status_tag", 1)) {
2211                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2212                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2213                         if (bootverbose)
2214                                 device_printf(dev, "enable status tag\n");
2215                 }
2216         }
2217
2218         if (BGE_IS_5755_PLUS(sc)) {
2219                 /*
2220                  * BCM5754 and BCM5787 shares the same ASIC id so
2221                  * explicit device id check is required.
2222                  * Due to unknown reason TSO does not work on BCM5755M.
2223                  */
2224                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2225                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2226                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2227                         sc->bge_flags |= BGE_FLAG_TSO;
2228         }
2229
2230         /*
2231          * Set various PHY quirk flags.
2232          */
2233
2234         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2235              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2236             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2237                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2238
2239         capmask = MII_CAPMASK_DEFAULT;
2240         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2241              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2242             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2243              vendor == PCI_VENDOR_BROADCOM &&
2244              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2245               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2246               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2247             (vendor == PCI_VENDOR_BROADCOM &&
2248              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2249               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2250               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2251             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2252             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2253                 /* 10/100 only */
2254                 capmask &= ~BMSR_EXTSTAT;
2255         }
2256
2257         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2258         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2259             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2260              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2261               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2262             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2263                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2264
2265         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2266             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2267                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2268
2269         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2270             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2271                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2272
2273         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2274                 mii_priv |= BRGPHY_FLAG_5704_A0;
2275
2276         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2277                 mii_priv |= BRGPHY_FLAG_5906;
2278
2279         if (BGE_IS_5705_PLUS(sc) &&
2280             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2281             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2282             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2283             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2284             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2285                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2286                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2287                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2288                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2289                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2290                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2291                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2292                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2293                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2294                 } else {
2295                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2296                 }
2297         }
2298
2299         /*
2300          * Chips with APE need BAR2 access for APE registers/memory.
2301          */
2302         if (sc->bge_flags & BGE_FLAG_APE) {
2303                 uint32_t pcistate;
2304
2305                 rid = PCIR_BAR(2);
2306                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2307                     RF_ACTIVE);
2308                 if (sc->bge_res2 == NULL) {
2309                         device_printf(dev, "couldn't map BAR2 memory\n");
2310                         error = ENXIO;
2311                         goto fail;
2312                 }
2313
2314                 /* Enable APE register/memory access by host driver. */
2315                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2316                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2317                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2318                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2319                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2320
2321                 bge_ape_lock_init(sc);
2322                 bge_ape_read_fw_ver(sc);
2323         }
2324
2325         /*
2326          * Allocate interrupt
2327          */
2328         msi_enable = bge_msi_enable;
2329         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2330                 /* If "tagged status" is disabled, don't enable MSI */
2331                 msi_enable = 0;
2332         } else if (msi_enable) {
2333                 msi_enable = 0; /* Disable by default */
2334                 if (BGE_IS_575X_PLUS(sc)) {
2335                         msi_enable = 1;
2336                         /* XXX we filter all 5714 chips */
2337                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2338                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2339                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2340                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2341                                 msi_enable = 0;
2342                         else if (BGE_IS_5755_PLUS(sc) ||
2343                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2344                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2345                 }
2346         }
2347         if (msi_enable) {
2348                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2349                         device_printf(dev, "no MSI capability\n");
2350                         msi_enable = 0;
2351                 }
2352         }
2353
2354         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2355             &intr_flags);
2356
2357         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2358             intr_flags);
2359         if (sc->bge_irq == NULL) {
2360                 device_printf(dev, "couldn't map interrupt\n");
2361                 error = ENXIO;
2362                 goto fail;
2363         }
2364
2365         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2366                 bge_enable_msi(sc);
2367         else
2368                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2369
2370         /* Initialize if_name earlier, so if_printf could be used */
2371         ifp = &sc->arpcom.ac_if;
2372         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2373
2374         sc->bge_asf_mode = 0;
2375         /* No ASF if APE present. */
2376         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2377                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2378                     BGE_SRAM_DATA_SIG_MAGIC)) {
2379                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2380                             BGE_HWCFG_ASF) {
2381                                 sc->bge_asf_mode |= ASF_ENABLE;
2382                                 sc->bge_asf_mode |= ASF_STACKUP;
2383                                 if (BGE_IS_575X_PLUS(sc))
2384                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2385                         }
2386                 }
2387         }
2388
2389         /*
2390          * Try to reset the chip.
2391          */
2392         bge_stop_fw(sc);
2393         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2394         bge_reset(sc);
2395         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2396         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2397
2398         if (bge_chipinit(sc)) {
2399                 device_printf(dev, "chip initialization failed\n");
2400                 error = ENXIO;
2401                 goto fail;
2402         }
2403
2404         /*
2405          * Get station address
2406          */
2407         error = bge_get_eaddr(sc, ether_addr);
2408         if (error) {
2409                 device_printf(dev, "failed to read station address\n");
2410                 goto fail;
2411         }
2412
2413         /* 5705/5750 limits RX return ring to 512 entries. */
2414         if (BGE_IS_5705_PLUS(sc))
2415                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2416         else
2417                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2418
2419         error = bge_dma_alloc(sc);
2420         if (error)
2421                 goto fail;
2422
2423         /* Set default tuneable values. */
2424         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2425         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2426         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2427         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2428         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2429         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2430                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2431                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2432                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2433                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2434         } else {
2435                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2436                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2437                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2438                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2439         }
2440         sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2441
2442         /* Set up TX spare and reserved descriptor count */
2443         if (sc->bge_flags & BGE_FLAG_TSO) {
2444                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2445                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2446         } else {
2447                 sc->bge_txspare = BGE_NSEG_SPARE;
2448                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2449         }
2450
2451         /* Set up ifnet structure */
2452         ifp->if_softc = sc;
2453         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2454         ifp->if_ioctl = bge_ioctl;
2455         ifp->if_start = bge_start;
2456 #ifdef IFPOLL_ENABLE
2457         ifp->if_npoll = bge_npoll;
2458 #endif
2459         ifp->if_watchdog = bge_watchdog;
2460         ifp->if_init = bge_init;
2461         ifp->if_mtu = ETHERMTU;
2462         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2463         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2464         ifq_set_ready(&ifp->if_snd);
2465
2466         /*
2467          * 5700 B0 chips do not support checksumming correctly due
2468          * to hardware bugs.
2469          */
2470         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2471                 ifp->if_capabilities |= IFCAP_HWCSUM;
2472                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2473         }
2474         if (sc->bge_flags & BGE_FLAG_TSO) {
2475                 ifp->if_capabilities |= IFCAP_TSO;
2476                 ifp->if_hwassist |= CSUM_TSO;
2477         }
2478         ifp->if_capenable = ifp->if_capabilities;
2479
2480         /*
2481          * Figure out what sort of media we have by checking the
2482          * hardware config word in the first 32k of NIC internal memory,
2483          * or fall back to examining the EEPROM if necessary.
2484          * Note: on some BCM5700 cards, this value appears to be unset.
2485          * If that's the case, we have to rely on identifying the NIC
2486          * by its PCI subsystem ID, as we do below for the SysKonnect
2487          * SK-9D41.
2488          */
2489         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2490                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2491         } else {
2492                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2493                                     sizeof(hwcfg))) {
2494                         device_printf(dev, "failed to read EEPROM\n");
2495                         error = ENXIO;
2496                         goto fail;
2497                 }
2498                 hwcfg = ntohl(hwcfg);
2499         }
2500
2501         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2502         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2503             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2504                 if (BGE_IS_5714_FAMILY(sc))
2505                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2506                 else
2507                         sc->bge_flags |= BGE_FLAG_TBI;
2508         }
2509
2510         /* Setup MI MODE */
2511         if (sc->bge_flags & BGE_FLAG_CPMU)
2512                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2513         else
2514                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2515         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2516                 /* Enable auto polling for BCM570[0-5]. */
2517                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2518         }
2519
2520         /* Setup link status update stuffs */
2521         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2522             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2523                 sc->bge_link_upd = bge_bcm5700_link_upd;
2524                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2525         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2526                 sc->bge_link_upd = bge_tbi_link_upd;
2527                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2528         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2529                 sc->bge_link_upd = bge_autopoll_link_upd;
2530                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2531         } else {
2532                 sc->bge_link_upd = bge_copper_link_upd;
2533                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2534         }
2535
2536         /*
2537          * Broadcom's own driver always assumes the internal
2538          * PHY is at GMII address 1.  On some chips, the PHY responds
2539          * to accesses at all addresses, which could cause us to
2540          * bogusly attach the PHY 32 times at probe type.  Always
2541          * restricting the lookup to address 1 is simpler than
2542          * trying to figure out which chips revisions should be
2543          * special-cased.
2544          */
2545         sc->bge_phyno = 1;
2546
2547         if (sc->bge_flags & BGE_FLAG_TBI) {
2548                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2549                     bge_ifmedia_upd, bge_ifmedia_sts);
2550                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2551                 ifmedia_add(&sc->bge_ifmedia,
2552                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2553                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2554                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2555                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2556         } else {
2557                 struct mii_probe_args mii_args;
2558                 int tries;
2559
2560                 /*
2561                  * Do transceiver setup and tell the firmware the
2562                  * driver is down so we can try to get access the
2563                  * probe if ASF is running.  Retry a couple of times
2564                  * if we get a conflict with the ASF firmware accessing
2565                  * the PHY.
2566                  */
2567                 tries = 0;
2568                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2569 again:
2570                 bge_asf_driver_up(sc);
2571
2572                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2573                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2574                 mii_args.mii_capmask = capmask;
2575                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2576                 mii_args.mii_priv = mii_priv;
2577
2578                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2579                 if (error) {
2580                         if (tries++ < 4) {
2581                                 device_printf(sc->bge_dev, "Probe MII again\n");
2582                                 bge_miibus_writereg(sc->bge_dev,
2583                                     sc->bge_phyno, MII_BMCR, BMCR_RESET);
2584                                 goto again;
2585                         }
2586                         device_printf(dev, "MII without any PHY!\n");
2587                         goto fail;
2588                 }
2589
2590                 /*
2591                  * Now tell the firmware we are going up after probing the PHY
2592                  */
2593                 if (sc->bge_asf_mode & ASF_STACKUP)
2594                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2595         }
2596
2597         ctx = device_get_sysctl_ctx(sc->bge_dev);
2598         tree = device_get_sysctl_tree(sc->bge_dev);
2599
2600         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_coal_ticks",
2601                         CTLTYPE_INT | CTLFLAG_RW,
2602                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2603                         "Receive coalescing ticks (usec).");
2604         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_coal_ticks",
2605                         CTLTYPE_INT | CTLFLAG_RW,
2606                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2607                         "Transmit coalescing ticks (usec).");
2608         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_coal_bds",
2609                         CTLTYPE_INT | CTLFLAG_RW,
2610                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2611                         "Receive max coalesced BD count.");
2612         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_coal_bds",
2613                         CTLTYPE_INT | CTLFLAG_RW,
2614                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2615                         "Transmit max coalesced BD count.");
2616
2617         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_wreg", CTLFLAG_RW,
2618                        &sc->bge_tx_wreg, 0,
2619                        "# of segments before writing to hardware register");
2620
2621         if (sc->bge_flags & BGE_FLAG_PCIE) {
2622                 /*
2623                  * A common design characteristic for many Broadcom
2624                  * client controllers is that they only support a
2625                  * single outstanding DMA read operation on the PCIe
2626                  * bus. This means that it will take twice as long to
2627                  * fetch a TX frame that is split into header and
2628                  * payload buffers as it does to fetch a single,
2629                  * contiguous TX frame (2 reads vs. 1 read). For these
2630                  * controllers, coalescing buffers to reduce the number
2631                  * of memory reads is effective way to get maximum
2632                  * performance(about 940Mbps).  Without collapsing TX
2633                  * buffers the maximum TCP bulk transfer performance
2634                  * is about 850Mbps. However forcing coalescing mbufs
2635                  * consumes a lot of CPU cycles, so leave it off by
2636                  * default.
2637                  */
2638                 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2639                                "force_defrag", CTLFLAG_RW,
2640                                &sc->bge_force_defrag, 0,
2641                                "Force defragment on TX path");
2642         }
2643         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2644                 if (!BGE_IS_5705_PLUS(sc)) {
2645                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2646                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2647                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2648                             "Receive coalescing ticks "
2649                             "during interrupt (usec).");
2650                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2651                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2652                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2653                             "Transmit coalescing ticks "
2654                             "during interrupt (usec).");
2655                 }
2656                 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2657                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2658                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2659                     "Receive max coalesced BD count during interrupt.");
2660                 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2661                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2662                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2663                     "Transmit max coalesced BD count during interrupt.");
2664         }
2665
2666         /*
2667          * Call MI attach routine.
2668          */
2669         ether_ifattach(ifp, ether_addr, NULL);
2670
2671         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2672
2673 #ifdef IFPOLL_ENABLE
2674         /* Polling setup */
2675         ifpoll_compat_setup(&sc->bge_npoll, ctx, tree,
2676             device_get_unit(dev), ifp->if_serializer);
2677 #endif
2678
2679         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2680                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2681                         intr_func = bge_msi_oneshot;
2682                         if (bootverbose)
2683                                 device_printf(dev, "oneshot MSI\n");
2684                 } else {
2685                         intr_func = bge_msi;
2686                 }
2687         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2688                 intr_func = bge_intr_legacy;
2689         } else {
2690                 intr_func = bge_intr_crippled;
2691         }
2692         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2693             &sc->bge_intrhand, ifp->if_serializer);
2694         if (error) {
2695                 ether_ifdetach(ifp);
2696                 device_printf(dev, "couldn't set up irq\n");
2697                 goto fail;
2698         }
2699
2700         return(0);
2701 fail:
2702         bge_detach(dev);
2703         return(error);
2704 }
2705
2706 static int
2707 bge_detach(device_t dev)
2708 {
2709         struct bge_softc *sc = device_get_softc(dev);
2710
2711         if (device_is_attached(dev)) {
2712                 struct ifnet *ifp = &sc->arpcom.ac_if;
2713
2714                 lwkt_serialize_enter(ifp->if_serializer);
2715                 bge_stop(sc);
2716                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2717                 lwkt_serialize_exit(ifp->if_serializer);
2718
2719                 ether_ifdetach(ifp);
2720         }
2721
2722         if (sc->bge_flags & BGE_FLAG_TBI)
2723                 ifmedia_removeall(&sc->bge_ifmedia);
2724         if (sc->bge_miibus)
2725                 device_delete_child(dev, sc->bge_miibus);
2726         bus_generic_detach(dev);
2727
2728         if (sc->bge_irq != NULL) {
2729                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2730                     sc->bge_irq);
2731         }
2732         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2733                 pci_release_msi(dev);
2734
2735         if (sc->bge_res != NULL) {
2736                 bus_release_resource(dev, SYS_RES_MEMORY,
2737                     BGE_PCI_BAR0, sc->bge_res);
2738         }
2739         if (sc->bge_res2 != NULL) {
2740                 bus_release_resource(dev, SYS_RES_MEMORY,
2741                     PCIR_BAR(2), sc->bge_res2);
2742         }
2743
2744         bge_dma_free(sc);
2745
2746         return 0;
2747 }
2748
2749 static void
2750 bge_reset(struct bge_softc *sc)
2751 {
2752         device_t dev = sc->bge_dev;
2753         uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2754         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2755         int i, val = 0;
2756
2757         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2758         if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
2759                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2760         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2761
2762         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2763             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2764                 if (sc->bge_flags & BGE_FLAG_PCIE)
2765                         write_op = bge_writemem_direct;
2766                 else
2767                         write_op = bge_writemem_ind;
2768         } else {
2769                 write_op = bge_writereg_ind;
2770         }
2771
2772         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2773             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
2774                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2775                 for (i = 0; i < 8000; i++) {
2776                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
2777                             BGE_NVRAMSWARB_GNT1)
2778                                 break;
2779                         DELAY(20);
2780                 }
2781                 if (i == 8000) {
2782                         if (bootverbose) {
2783                                 if_printf(&sc->arpcom.ac_if,
2784                                     "NVRAM lock timedout!\n");
2785                         }
2786                 }
2787         }
2788         /* Take APE lock when performing reset. */
2789         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
2790
2791         /* Save some important PCI state. */
2792         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2793         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2794
2795         pci_write_config(dev, BGE_PCI_MISC_CTL,
2796             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2797             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2798             sc->bge_pci_miscctl, 4);
2799
2800         /* Disable fastboot on controllers that support it. */
2801         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2802             BGE_IS_5755_PLUS(sc)) {
2803                 if (bootverbose)
2804                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2805                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2806         }
2807
2808         /*
2809          * Write the magic number to SRAM at offset 0xB50.
2810          * When firmware finishes its initialization it will
2811          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2812          */
2813         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2814
2815         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2816
2817         /* XXX: Broadcom Linux driver. */
2818         if (sc->bge_flags & BGE_FLAG_PCIE) {
2819                 /* Force PCI-E 1.0a mode */
2820                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2821                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2822                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2823                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2824                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2825                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2826                 }
2827                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2828                         /* Prevent PCIE link training during global reset */
2829                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2830                         reset |= (1<<29);
2831                 }
2832         }
2833
2834         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2835                 uint32_t status, ctrl;
2836
2837                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2838                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2839                     status | BGE_VCPU_STATUS_DRV_RESET);
2840                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2841                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2842                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2843         }
2844
2845         /* 
2846          * Set GPHY Power Down Override to leave GPHY
2847          * powered up in D0 uninitialized.
2848          */
2849         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2850                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2851
2852         /* Issue global reset */
2853         write_op(sc, BGE_MISC_CFG, reset);
2854
2855         if (sc->bge_flags & BGE_FLAG_PCIE)
2856                 DELAY(100 * 1000);
2857         else
2858                 DELAY(1000);
2859
2860         /* XXX: Broadcom Linux driver. */
2861         if (sc->bge_flags & BGE_FLAG_PCIE) {
2862                 uint16_t devctl;
2863
2864                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2865                         uint32_t v;
2866
2867                         DELAY(500000); /* wait for link training to complete */
2868                         v = pci_read_config(dev, 0xc4, 4);
2869                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2870                 }
2871
2872                 devctl = pci_read_config(dev,
2873                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2874
2875                 /* Disable no snoop and disable relaxed ordering. */
2876                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2877
2878                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2879                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2880                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2881                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2882                 }
2883
2884                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2885                     devctl, 2);
2886
2887                 /* Clear error status. */
2888                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2889                     PCIEM_DEVSTS_CORR_ERR |
2890                     PCIEM_DEVSTS_NFATAL_ERR |
2891                     PCIEM_DEVSTS_FATAL_ERR |
2892                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2893         }
2894
2895         /* Reset some of the PCI state that got zapped by reset */
2896         pci_write_config(dev, BGE_PCI_MISC_CTL,
2897             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2898             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2899             sc->bge_pci_miscctl, 4);
2900         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2901         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
2902             (sc->bge_flags & BGE_FLAG_PCIX))
2903                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
2904         if (sc->bge_mfw_flags & BGE_MFW_ON_APE) {
2905                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2906                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2907                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2908         }
2909         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2910         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2911         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2912
2913         /*
2914          * Disable PCI-X relaxed ordering to ensure status block update
2915          * comes first then packet buffer DMA. Otherwise driver may
2916          * read stale status block.
2917          */
2918         if (sc->bge_flags & BGE_FLAG_PCIX) {
2919                 uint16_t devctl;
2920
2921                 devctl = pci_read_config(dev,
2922                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2923                 devctl &= ~PCIXM_COMMAND_ERO;
2924                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2925                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2926                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2927                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2928                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2929                             PCIXM_COMMAND_MAX_READ);
2930                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2931                 }
2932                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2933                     devctl, 2);
2934         }
2935
2936         /*
2937          * Enable memory arbiter and re-enable MSI if necessary.
2938          */
2939         if (BGE_IS_5714_FAMILY(sc)) {
2940                 uint32_t val;
2941
2942                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2943                         /*
2944                          * Resetting BCM5714 family will clear MSI
2945                          * enable bit; restore it after resetting.
2946                          */
2947                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2948                             PCIM_MSICTRL_MSI_ENABLE, 2);
2949                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2950                 }
2951                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2952                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2953         } else {
2954                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2955         }
2956
2957         /* Fix up byte swapping. */
2958         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2959             BGE_MODECTL_BYTESWAP_DATA);
2960
2961         val = CSR_READ_4(sc, BGE_MAC_MODE);
2962         val = (val & ~mac_mode_mask) | mac_mode;
2963         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2964         DELAY(40);
2965
2966         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
2967
2968         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2969                 for (i = 0; i < BGE_TIMEOUT; i++) {
2970                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2971                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2972                                 break;
2973                         DELAY(100);
2974                 }
2975                 if (i == BGE_TIMEOUT) {
2976                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2977                         return;
2978                 }
2979         } else {
2980                 int delay_us = 10;
2981
2982                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2983                         delay_us = 100;
2984
2985                 /*
2986                  * Poll until we see the 1's complement of the magic number.
2987                  * This indicates that the firmware initialization
2988                  * is complete.
2989                  */
2990                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2991                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2992                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
2993                                 break;
2994                         DELAY(delay_us);
2995                 }
2996                 if (i == BGE_FIRMWARE_TIMEOUT) {
2997                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2998                                   "timed out, found 0x%08x\n", val);
2999                 }
3000         }
3001
3002         /*
3003          * The 5704 in TBI mode apparently needs some special
3004          * adjustment to insure the SERDES drive level is set
3005          * to 1.2V.
3006          */
3007         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3008             (sc->bge_flags & BGE_FLAG_TBI)) {
3009                 uint32_t serdescfg;
3010
3011                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3012                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3013                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3014         }
3015
3016         /* XXX: Broadcom Linux driver. */
3017         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
3018             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3019             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3020                 uint32_t v;
3021
3022                 /* Enable Data FIFO protection. */
3023                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
3024                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
3025         }
3026
3027         DELAY(10000);
3028 }
3029
3030 /*
3031  * Frame reception handling. This is called if there's a frame
3032  * on the receive return list.
3033  *
3034  * Note: we have to be able to handle two possibilities here:
3035  * 1) the frame is from the jumbo recieve ring
3036  * 2) the frame is from the standard receive ring
3037  */
3038
3039 static void
3040 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
3041 {
3042         struct ifnet *ifp;
3043         int stdcnt = 0, jumbocnt = 0;
3044
3045         ifp = &sc->arpcom.ac_if;
3046
3047         while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
3048                 struct bge_rx_bd        *cur_rx;
3049                 uint32_t                rxidx;
3050                 struct mbuf             *m = NULL;
3051                 uint16_t                vlan_tag = 0;
3052                 int                     have_tag = 0;
3053
3054                 --count;
3055
3056                 cur_rx =
3057             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3058
3059                 rxidx = cur_rx->bge_idx;
3060                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3061                 logif(rx_pkt);
3062
3063                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3064                         have_tag = 1;
3065                         vlan_tag = cur_rx->bge_vlan_tag;
3066                 }
3067
3068                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3069                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3070                         jumbocnt++;
3071
3072                         if (rxidx != sc->bge_jumbo) {
3073                                 IFNET_STAT_INC(ifp, ierrors, 1);
3074                                 if_printf(ifp, "sw jumbo index(%d) "
3075                                     "and hw jumbo index(%d) mismatch, drop!\n",
3076                                     sc->bge_jumbo, rxidx);
3077                                 bge_setup_rxdesc_jumbo(sc, rxidx);
3078                                 continue;
3079                         }
3080
3081                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3082                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3083                                 IFNET_STAT_INC(ifp, ierrors, 1);
3084                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3085                                 continue;
3086                         }
3087                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3088                                 IFNET_STAT_INC(ifp, ierrors, 1);
3089                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3090                                 continue;
3091                         }
3092                 } else {
3093                         int discard = 0;
3094
3095                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3096                         stdcnt++;
3097
3098                         if (rxidx != sc->bge_std) {
3099                                 IFNET_STAT_INC(ifp, ierrors, 1);
3100                                 if_printf(ifp, "sw std index(%d) "
3101                                     "and hw std index(%d) mismatch, drop!\n",
3102                                     sc->bge_std, rxidx);
3103                                 bge_setup_rxdesc_std(sc, rxidx);
3104                                 discard = 1;
3105                                 goto refresh_rx;
3106                         }
3107
3108                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3109                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3110                                 IFNET_STAT_INC(ifp, ierrors, 1);
3111                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3112                                 discard = 1;
3113                                 goto refresh_rx;
3114                         }
3115                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3116                                 IFNET_STAT_INC(ifp, ierrors, 1);
3117                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3118                                 discard = 1;
3119                         }
3120 refresh_rx:
3121                         if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3122                                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3123                                     sc->bge_std);
3124                                 stdcnt = 0;
3125                         }
3126                         if (discard)
3127                                 continue;
3128                 }
3129
3130                 IFNET_STAT_INC(ifp, ipackets, 1);
3131 #if !defined(__i386__) && !defined(__x86_64__)
3132                 /*
3133                  * The x86 allows unaligned accesses, but for other
3134                  * platforms we must make sure the payload is aligned.
3135                  */
3136                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3137                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3138                             cur_rx->bge_len);
3139                         m->m_data += ETHER_ALIGN;
3140                 }
3141 #endif
3142                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3143                 m->m_pkthdr.rcvif = ifp;
3144
3145                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3146                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3147                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3148                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3149                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3150                         }
3151                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3152                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3153                                 m->m_pkthdr.csum_data =
3154                                         cur_rx->bge_tcp_udp_csum;
3155                                 m->m_pkthdr.csum_flags |=
3156                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3157                         }
3158                 }
3159
3160                 /*
3161                  * If we received a packet with a vlan tag, pass it
3162                  * to vlan_input() instead of ether_input().
3163                  */
3164                 if (have_tag) {
3165                         m->m_flags |= M_VLANTAG;
3166                         m->m_pkthdr.ether_vlantag = vlan_tag;
3167                 }
3168                 ifp->if_input(ifp, m, NULL, -1);
3169         }
3170
3171         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3172         if (stdcnt)
3173                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3174         if (jumbocnt)
3175                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3176 }
3177
3178 static void
3179 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3180 {
3181         struct ifnet *ifp;
3182
3183         ifp = &sc->arpcom.ac_if;
3184
3185         /*
3186          * Go through our tx ring and free mbufs for those
3187          * frames that have been sent.
3188          */
3189         while (sc->bge_tx_saved_considx != tx_cons) {
3190                 uint32_t idx = 0;
3191
3192                 idx = sc->bge_tx_saved_considx;
3193                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3194                         IFNET_STAT_INC(ifp, opackets, 1);
3195                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3196                             sc->bge_cdata.bge_tx_dmamap[idx]);
3197                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3198                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3199                 }
3200                 sc->bge_txcnt--;
3201                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3202                 logif(tx_pkt);
3203         }
3204
3205         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3206             (sc->bge_txrsvd + sc->bge_txspare))
3207                 ifq_clr_oactive(&ifp->if_snd);
3208
3209         if (sc->bge_txcnt == 0)
3210                 ifp->if_timer = 0;
3211
3212         if (!ifq_is_empty(&ifp->if_snd))
3213                 if_devstart(ifp);
3214 }
3215
3216 #ifdef IFPOLL_ENABLE
3217
3218 static void
3219 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3220 {
3221         struct bge_softc *sc = ifp->if_softc;
3222         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3223         uint16_t rx_prod, tx_cons;
3224
3225         ASSERT_SERIALIZED(ifp->if_serializer);
3226
3227         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3228                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3229                 /*
3230                  * Process link state changes.
3231                  */
3232                 bge_link_poll(sc);
3233         }
3234
3235         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3236                 sc->bge_status_tag = sblk->bge_status_tag;
3237                 /*
3238                  * Use a load fence to ensure that status_tag
3239                  * is saved  before rx_prod and tx_cons.
3240                  */
3241                 cpu_lfence();
3242         }
3243
3244         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3245         if (sc->bge_rx_saved_considx != rx_prod)
3246                 bge_rxeof(sc, rx_prod, cycles);
3247
3248         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3249         if (sc->bge_tx_saved_considx != tx_cons)
3250                 bge_txeof(sc, tx_cons);
3251
3252         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3253                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3254
3255         if (sc->bge_coal_chg)
3256                 bge_coal_change(sc);
3257 }
3258
3259 static void
3260 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3261 {
3262         struct bge_softc *sc = ifp->if_softc;
3263
3264         ASSERT_SERIALIZED(ifp->if_serializer);
3265
3266         if (info != NULL) {
3267                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3268
3269                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3270                 info->ifpi_rx[cpuid].arg = NULL;
3271                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3272
3273                 if (ifp->if_flags & IFF_RUNNING)
3274                         bge_disable_intr(sc);
3275                 ifq_set_cpuid(&ifp->if_snd, cpuid);
3276         } else {
3277                 if (ifp->if_flags & IFF_RUNNING)
3278                         bge_enable_intr(sc);
3279                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3280         }
3281 }
3282
3283 #endif  /* IFPOLL_ENABLE */
3284
3285 static void
3286 bge_intr_crippled(void *xsc)
3287 {
3288         struct bge_softc *sc = xsc;
3289         struct ifnet *ifp = &sc->arpcom.ac_if;
3290
3291         logif(intr);
3292
3293         /*
3294          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3295          * disable interrupts by writing nonzero like we used to, since with
3296          * our current organization this just gives complications and
3297          * pessimizations for re-enabling interrupts.  We used to have races
3298          * instead of the necessary complications.  Disabling interrupts
3299          * would just reduce the chance of a status update while we are
3300          * running (by switching to the interrupt-mode coalescence
3301          * parameters), but this chance is already very low so it is more
3302          * efficient to get another interrupt than prevent it.
3303          *
3304          * We do the ack first to ensure another interrupt if there is a
3305          * status update after the ack.  We don't check for the status
3306          * changing later because it is more efficient to get another
3307          * interrupt than prevent it, not quite as above (not checking is
3308          * a smaller optimization than not toggling the interrupt enable,
3309          * since checking doesn't involve PCI accesses and toggling require
3310          * the status check).  So toggling would probably be a pessimization
3311          * even with MSI.  It would only be needed for using a task queue.
3312          */
3313         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3314
3315         /*
3316          * Process link state changes.
3317          */
3318         bge_link_poll(sc);
3319
3320         if (ifp->if_flags & IFF_RUNNING) {
3321                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3322                 uint16_t rx_prod, tx_cons;
3323
3324                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3325                 if (sc->bge_rx_saved_considx != rx_prod)
3326                         bge_rxeof(sc, rx_prod, -1);
3327
3328                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3329                 if (sc->bge_tx_saved_considx != tx_cons)
3330                         bge_txeof(sc, tx_cons);
3331         }
3332
3333         if (sc->bge_coal_chg)
3334                 bge_coal_change(sc);
3335 }
3336
3337 static void
3338 bge_intr_legacy(void *xsc)
3339 {
3340         struct bge_softc *sc = xsc;
3341         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3342
3343         if (sc->bge_status_tag == sblk->bge_status_tag) {
3344                 uint32_t val;
3345
3346                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3347                 if (val & BGE_PCISTAT_INTR_NOTACT)
3348                         return;
3349         }
3350
3351         /*
3352          * NOTE:
3353          * Interrupt will have to be disabled if tagged status
3354          * is used, else interrupt will always be asserted on
3355          * certain chips (at least on BCM5750 AX/BX).
3356          */
3357         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3358
3359         bge_intr(sc);
3360 }
3361
3362 static void
3363 bge_msi(void *xsc)
3364 {
3365         struct bge_softc *sc = xsc;
3366
3367         /* Disable interrupt first */
3368         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3369         bge_intr(sc);
3370 }
3371
3372 static void
3373 bge_msi_oneshot(void *xsc)
3374 {
3375         bge_intr(xsc);
3376 }
3377
3378 static void
3379 bge_intr(struct bge_softc *sc)
3380 {
3381         struct ifnet *ifp = &sc->arpcom.ac_if;
3382         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3383         uint16_t rx_prod, tx_cons;
3384         uint32_t status;
3385
3386         sc->bge_status_tag = sblk->bge_status_tag;
3387         /*
3388          * Use a load fence to ensure that status_tag is saved 
3389          * before rx_prod, tx_cons and status.
3390          */
3391         cpu_lfence();
3392
3393         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3394         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3395         status = sblk->bge_status;
3396
3397         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3398                 bge_link_poll(sc);
3399
3400         if (ifp->if_flags & IFF_RUNNING) {
3401                 if (sc->bge_rx_saved_considx != rx_prod)
3402                         bge_rxeof(sc, rx_prod, -1);
3403
3404                 if (sc->bge_tx_saved_considx != tx_cons)
3405                         bge_txeof(sc, tx_cons);
3406         }
3407
3408         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3409
3410         if (sc->bge_coal_chg)
3411                 bge_coal_change(sc);
3412 }
3413
3414 static void
3415 bge_tick(void *xsc)
3416 {
3417         struct bge_softc *sc = xsc;
3418         struct ifnet *ifp = &sc->arpcom.ac_if;
3419
3420         lwkt_serialize_enter(ifp->if_serializer);
3421
3422         if (BGE_IS_5705_PLUS(sc))
3423                 bge_stats_update_regs(sc);
3424         else
3425                 bge_stats_update(sc);
3426
3427         if (sc->bge_flags & BGE_FLAG_TBI) {
3428                 /*
3429                  * Since in TBI mode auto-polling can't be used we should poll
3430                  * link status manually. Here we register pending link event
3431                  * and trigger interrupt.
3432                  */
3433                 sc->bge_link_evt++;
3434                 if (BGE_IS_CRIPPLED(sc))
3435                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3436                 else
3437                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3438         } else if (!sc->bge_link) {
3439                 mii_tick(device_get_softc(sc->bge_miibus));
3440         }
3441
3442         bge_asf_driver_up(sc);
3443
3444         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3445
3446         lwkt_serialize_exit(ifp->if_serializer);
3447 }
3448
3449 static void
3450 bge_stats_update_regs(struct bge_softc *sc)
3451 {
3452         struct ifnet *ifp = &sc->arpcom.ac_if;
3453         struct bge_mac_stats_regs stats;
3454         uint32_t *s;
3455         int i;
3456
3457         s = (uint32_t *)&stats;
3458         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3459                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3460                 s++;
3461         }
3462
3463         IFNET_STAT_SET(ifp, collisions,
3464            (stats.dot3StatsSingleCollisionFrames +
3465            stats.dot3StatsMultipleCollisionFrames +
3466            stats.dot3StatsExcessiveCollisions +
3467            stats.dot3StatsLateCollisions));
3468 }
3469
3470 static void
3471 bge_stats_update(struct bge_softc *sc)
3472 {
3473         struct ifnet *ifp = &sc->arpcom.ac_if;
3474         bus_size_t stats;
3475
3476         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3477
3478 #define READ_STAT(sc, stats, stat)      \
3479         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3480
3481         IFNET_STAT_SET(ifp, collisions,
3482            (READ_STAT(sc, stats,
3483                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3484             READ_STAT(sc, stats,
3485                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3486             READ_STAT(sc, stats,
3487                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3488             READ_STAT(sc, stats,
3489                 txstats.dot3StatsLateCollisions.bge_addr_lo)));
3490
3491 #undef READ_STAT
3492
3493 #ifdef notdef
3494         IFNET_STAT_SET(ifp, collisions,
3495            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3496            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3497            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3498            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3499 #endif
3500 }
3501
3502 /*
3503  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3504  * pointers to descriptors.
3505  */
3506 static int
3507 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3508     int *segs_used)
3509 {
3510         struct bge_tx_bd *d = NULL, *last_d;
3511         uint16_t csum_flags = 0, mss = 0;
3512         bus_dma_segment_t segs[BGE_NSEG_NEW];
3513         bus_dmamap_t map;
3514         int error, maxsegs, nsegs, idx, i;
3515         struct mbuf *m_head = *m_head0, *m_new;
3516
3517         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3518                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3519                 if (error)
3520                         return ENOBUFS;
3521                 m_head = *m_head0;
3522         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3523                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3524                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3525                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3526                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3527                 if (m_head->m_flags & M_LASTFRAG)
3528                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3529                 else if (m_head->m_flags & M_FRAG)
3530                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3531         }
3532
3533         idx = *txidx;
3534         map = sc->bge_cdata.bge_tx_dmamap[idx];
3535
3536         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3537         KASSERT(maxsegs >= sc->bge_txspare,
3538                 ("not enough segments %d", maxsegs));
3539
3540         if (maxsegs > BGE_NSEG_NEW)
3541                 maxsegs = BGE_NSEG_NEW;
3542
3543         /*
3544          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3545          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3546          * but when such padded frames employ the bge IP/TCP checksum
3547          * offload, the hardware checksum assist gives incorrect results
3548          * (possibly from incorporating its own padding into the UDP/TCP
3549          * checksum; who knows).  If we pad such runts with zeros, the
3550          * onboard checksum comes out correct.
3551          */
3552         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3553             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3554                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3555                 if (error)
3556                         goto back;
3557         }
3558
3559         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3560                 m_new = bge_defrag_shortdma(m_head);
3561                 if (m_new == NULL) {
3562                         error = ENOBUFS;
3563                         goto back;
3564                 }
3565                 *m_head0 = m_head = m_new;
3566         }
3567         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3568             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3569             m_head->m_next != NULL) {
3570                 /*
3571                  * Forcefully defragment mbuf chain to overcome hardware
3572                  * limitation which only support a single outstanding
3573                  * DMA read operation.  If it fails, keep moving on using
3574                  * the original mbuf chain.
3575                  */
3576                 m_new = m_defrag(m_head, M_NOWAIT);
3577                 if (m_new != NULL)
3578                         *m_head0 = m_head = m_new;
3579         }
3580
3581         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3582                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3583         if (error)
3584                 goto back;
3585         *segs_used += nsegs;
3586
3587         m_head = *m_head0;
3588         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3589
3590         for (i = 0; ; i++) {
3591                 d = &sc->bge_ldata.bge_tx_ring[idx];
3592
3593                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3594                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3595                 d->bge_len = segs[i].ds_len;
3596                 d->bge_flags = csum_flags;
3597                 d->bge_mss = mss;
3598
3599                 if (i == nsegs - 1)
3600                         break;
3601                 BGE_INC(idx, BGE_TX_RING_CNT);
3602         }
3603         last_d = d;
3604
3605         /* Set vlan tag to the first segment of the packet. */
3606         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3607         if (m_head->m_flags & M_VLANTAG) {
3608                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3609                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3610         } else {
3611                 d->bge_vlan_tag = 0;
3612         }
3613
3614         /* Mark the last segment as end of packet... */
3615         last_d->bge_flags |= BGE_TXBDFLAG_END;
3616
3617         /*
3618          * Insure that the map for this transmission is placed at
3619          * the array index of the last descriptor in this chain.
3620          */
3621         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3622         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3623         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3624         sc->bge_txcnt += nsegs;
3625
3626         BGE_INC(idx, BGE_TX_RING_CNT);
3627         *txidx = idx;
3628 back:
3629         if (error) {
3630                 m_freem(*m_head0);
3631                 *m_head0 = NULL;
3632         }
3633         return error;
3634 }
3635
3636 static void
3637 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3638 {
3639         /* Transmit */
3640         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3641         /* 5700 b2 errata */
3642         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3643                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3644 }
3645
3646 /*
3647  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3648  * to the mbuf data regions directly in the transmit descriptors.
3649  */
3650 static void
3651 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3652 {
3653         struct bge_softc *sc = ifp->if_softc;
3654         struct mbuf *m_head = NULL;
3655         uint32_t prodidx;
3656         int nsegs = 0;
3657
3658         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3659
3660         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3661                 return;
3662
3663         prodidx = sc->bge_tx_prodidx;
3664
3665         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3666                 m_head = ifq_dequeue(&ifp->if_snd);
3667                 if (m_head == NULL)
3668                         break;
3669
3670                 /*
3671                  * XXX
3672                  * The code inside the if() block is never reached since we
3673                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3674                  * requests to checksum TCP/UDP in a fragmented packet.
3675                  * 
3676                  * XXX
3677                  * safety overkill.  If this is a fragmented packet chain
3678                  * with delayed TCP/UDP checksums, then only encapsulate
3679                  * it if we have enough descriptors to handle the entire
3680                  * chain at once.
3681                  * (paranoia -- may not actually be needed)
3682                  */
3683                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3684                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3685                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3686                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3687                                 ifq_set_oactive(&ifp->if_snd);
3688                                 ifq_prepend(&ifp->if_snd, m_head);
3689                                 break;
3690                         }
3691                 }
3692
3693                 /*
3694                  * Sanity check: avoid coming within bge_txrsvd
3695                  * descriptors of the end of the ring.  Also make
3696                  * sure there are bge_txspare descriptors for
3697                  * jumbo buffers' defragmentation.
3698                  */
3699                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3700                     (sc->bge_txrsvd + sc->bge_txspare)) {
3701                         ifq_set_oactive(&ifp->if_snd);
3702                         ifq_prepend(&ifp->if_snd, m_head);
3703                         break;
3704                 }
3705
3706                 /*
3707                  * Pack the data into the transmit ring. If we
3708                  * don't have room, set the OACTIVE flag and wait
3709                  * for the NIC to drain the ring.
3710                  */
3711                 if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3712                         ifq_set_oactive(&ifp->if_snd);
3713                         IFNET_STAT_INC(ifp, oerrors, 1);
3714                         break;
3715                 }
3716
3717                 if (nsegs >= sc->bge_tx_wreg) {
3718                         bge_xmit(sc, prodidx);
3719                         nsegs = 0;
3720                 }
3721
3722                 ETHER_BPF_MTAP(ifp, m_head);
3723
3724                 /*
3725                  * Set a timeout in case the chip goes out to lunch.
3726                  */
3727                 ifp->if_timer = 5;
3728         }
3729
3730         if (nsegs > 0)
3731                 bge_xmit(sc, prodidx);
3732         sc->bge_tx_prodidx = prodidx;
3733 }
3734
3735 static void
3736 bge_init(void *xsc)
3737 {
3738         struct bge_softc *sc = xsc;
3739         struct ifnet *ifp = &sc->arpcom.ac_if;
3740         uint16_t *m;
3741         uint32_t mode;
3742
3743         ASSERT_SERIALIZED(ifp->if_serializer);
3744
3745         /* Cancel pending I/O and flush buffers. */
3746         bge_stop(sc);
3747
3748         bge_stop_fw(sc);
3749         bge_sig_pre_reset(sc, BGE_RESET_START);
3750         bge_reset(sc);
3751         bge_sig_legacy(sc, BGE_RESET_START);
3752         bge_sig_post_reset(sc, BGE_RESET_START);
3753
3754         bge_chipinit(sc);
3755
3756         /*
3757          * Init the various state machines, ring
3758          * control blocks and firmware.
3759          */
3760         if (bge_blockinit(sc)) {
3761                 if_printf(ifp, "initialization failure\n");
3762                 bge_stop(sc);
3763                 return;
3764         }
3765
3766         /* Specify MTU. */
3767         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3768             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3769
3770         /* Load our MAC address. */
3771         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3772         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3773         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3774
3775         /* Enable or disable promiscuous mode as needed. */
3776         bge_setpromisc(sc);
3777
3778         /* Program multicast filter. */
3779         bge_setmulti(sc);
3780
3781         /* Init RX ring. */
3782         if (bge_init_rx_ring_std(sc)) {
3783                 if_printf(ifp, "RX ring initialization failed\n");
3784                 bge_stop(sc);
3785                 return;
3786         }
3787
3788         /*
3789          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3790          * memory to insure that the chip has in fact read the first
3791          * entry of the ring.
3792          */
3793         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3794                 uint32_t                v, i;
3795                 for (i = 0; i < 10; i++) {
3796                         DELAY(20);
3797                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3798                         if (v == (MCLBYTES - ETHER_ALIGN))
3799                                 break;
3800                 }
3801                 if (i == 10)
3802                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3803         }
3804
3805         /* Init jumbo RX ring. */
3806         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3807                 if (bge_init_rx_ring_jumbo(sc)) {
3808                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3809                         bge_stop(sc);
3810                         return;
3811                 }
3812         }
3813
3814         /* Init our RX return ring index */
3815         sc->bge_rx_saved_considx = 0;
3816
3817         /* Init TX ring. */
3818         bge_init_tx_ring(sc);
3819
3820         /* Enable TX MAC state machine lockup fix. */
3821         mode = CSR_READ_4(sc, BGE_TX_MODE);
3822         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3823                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3824         /* Turn on transmitter */
3825         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3826         DELAY(100);
3827
3828         /* Turn on receiver */
3829         mode = CSR_READ_4(sc, BGE_RX_MODE);
3830         if (BGE_IS_5755_PLUS(sc))
3831                 mode |= BGE_RXMODE_IPV6_ENABLE;
3832         CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
3833         DELAY(10);
3834
3835         /*
3836          * Set the number of good frames to receive after RX MBUF
3837          * Low Watermark has been reached.  After the RX MAC receives
3838          * this number of frames, it will drop subsequent incoming
3839          * frames until the MBUF High Watermark is reached.
3840          */
3841         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3842
3843         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3844                 if (bootverbose) {
3845                         if_printf(ifp, "MSI_MODE: %#x\n",
3846                             CSR_READ_4(sc, BGE_MSI_MODE));
3847                 }
3848
3849                 /*
3850                  * XXX
3851                  * Linux driver turns it on for all chips supporting MSI?!
3852                  */
3853                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3854                         /*
3855                          * XXX
3856                          * According to 5722-PG101-R,
3857                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3858                          * BCM5906.
3859                          */
3860                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3861                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3862                 }
3863         }
3864
3865         /* Tell firmware we're alive. */
3866         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3867
3868         /* Enable host interrupts if polling(4) is not enabled. */
3869         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3870 #ifdef IFPOLL_ENABLE
3871         if (ifp->if_flags & IFF_NPOLLING)
3872                 bge_disable_intr(sc);
3873         else
3874 #endif
3875         bge_enable_intr(sc);
3876
3877         ifp->if_flags |= IFF_RUNNING;
3878         ifq_clr_oactive(&ifp->if_snd);
3879
3880         bge_ifmedia_upd(ifp);
3881
3882         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3883 }
3884
3885 /*
3886  * Set media options.
3887  */
3888 static int
3889 bge_ifmedia_upd(struct ifnet *ifp)
3890 {
3891         struct bge_softc *sc = ifp->if_softc;
3892
3893         /* If this is a 1000baseX NIC, enable the TBI port. */
3894         if (sc->bge_flags & BGE_FLAG_TBI) {
3895                 struct ifmedia *ifm = &sc->bge_ifmedia;
3896
3897                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3898                         return(EINVAL);
3899
3900                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3901                 case IFM_AUTO:
3902                         /*
3903                          * The BCM5704 ASIC appears to have a special
3904                          * mechanism for programming the autoneg
3905                          * advertisement registers in TBI mode.
3906                          */
3907                         if (!bge_fake_autoneg &&
3908                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3909                                 uint32_t sgdig;
3910
3911                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3912                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3913                                 sgdig |= BGE_SGDIGCFG_AUTO |
3914                                          BGE_SGDIGCFG_PAUSE_CAP |
3915                                          BGE_SGDIGCFG_ASYM_PAUSE;
3916                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3917                                             sgdig | BGE_SGDIGCFG_SEND);
3918                                 DELAY(5);
3919                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3920                         }
3921                         break;
3922                 case IFM_1000_SX:
3923                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3924                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3925                                     BGE_MACMODE_HALF_DUPLEX);
3926                         } else {
3927                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3928                                     BGE_MACMODE_HALF_DUPLEX);
3929                         }
3930                         DELAY(40);
3931                         break;
3932                 default:
3933                         return(EINVAL);
3934                 }
3935         } else {
3936                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3937
3938                 sc->bge_link_evt++;
3939                 sc->bge_link = 0;
3940                 if (mii->mii_instance) {
3941                         struct mii_softc *miisc;
3942
3943                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3944                                 mii_phy_reset(miisc);
3945                 }
3946                 mii_mediachg(mii);
3947
3948                 /*
3949                  * Force an interrupt so that we will call bge_link_upd
3950                  * if needed and clear any pending link state attention.
3951                  * Without this we are not getting any further interrupts
3952                  * for link state changes and thus will not UP the link and
3953                  * not be able to send in bge_start.  The only way to get
3954                  * things working was to receive a packet and get an RX
3955                  * intr.
3956                  *
3957                  * bge_tick should help for fiber cards and we might not
3958                  * need to do this here if BGE_FLAG_TBI is set but as
3959                  * we poll for fiber anyway it should not harm.
3960                  */
3961                 if (BGE_IS_CRIPPLED(sc))
3962                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3963                 else
3964                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3965         }
3966         return(0);
3967 }
3968
3969 /*
3970  * Report current media status.
3971  */
3972 static void
3973 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3974 {
3975         struct bge_softc *sc = ifp->if_softc;
3976
3977         if ((ifp->if_flags & IFF_RUNNING) == 0)
3978                 return;
3979
3980         if (sc->bge_flags & BGE_FLAG_TBI) {
3981                 ifmr->ifm_status = IFM_AVALID;
3982                 ifmr->ifm_active = IFM_ETHER;
3983                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3984                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3985                         ifmr->ifm_status |= IFM_ACTIVE;
3986                 } else {
3987                         ifmr->ifm_active |= IFM_NONE;
3988                         return;
3989                 }
3990
3991                 ifmr->ifm_active |= IFM_1000_SX;
3992                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3993                         ifmr->ifm_active |= IFM_HDX;    
3994                 else
3995                         ifmr->ifm_active |= IFM_FDX;
3996         } else {
3997                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3998
3999                 mii_pollstat(mii);
4000                 ifmr->ifm_active = mii->mii_media_active;
4001                 ifmr->ifm_status = mii->mii_media_status;
4002         }
4003 }
4004
4005 static int
4006 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
4007 {
4008         struct bge_softc *sc = ifp->if_softc;
4009         struct ifreq *ifr = (struct ifreq *)data;
4010         int mask, error = 0;
4011
4012         ASSERT_SERIALIZED(ifp->if_serializer);
4013
4014         switch (command) {
4015         case SIOCSIFMTU:
4016                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
4017                     (BGE_IS_JUMBO_CAPABLE(sc) &&
4018                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
4019                         error = EINVAL;
4020                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
4021                         ifp->if_mtu = ifr->ifr_mtu;
4022                         if (ifp->if_flags & IFF_RUNNING)
4023                                 bge_init(sc);
4024                 }
4025                 break;
4026         case SIOCSIFFLAGS:
4027                 if (ifp->if_flags & IFF_UP) {
4028                         if (ifp->if_flags & IFF_RUNNING) {
4029                                 mask = ifp->if_flags ^ sc->bge_if_flags;
4030
4031                                 /*
4032                                  * If only the state of the PROMISC flag
4033                                  * changed, then just use the 'set promisc
4034                                  * mode' command instead of reinitializing
4035                                  * the entire NIC. Doing a full re-init
4036                                  * means reloading the firmware and waiting
4037                                  * for it to start up, which may take a
4038                                  * second or two.  Similarly for ALLMULTI.
4039                                  */
4040                                 if (mask & IFF_PROMISC)
4041                                         bge_setpromisc(sc);
4042                                 if (mask & IFF_ALLMULTI)
4043                                         bge_setmulti(sc);
4044                         } else {
4045                                 bge_init(sc);
4046                         }
4047                 } else if (ifp->if_flags & IFF_RUNNING) {
4048                         bge_stop(sc);
4049                 }
4050                 sc->bge_if_flags = ifp->if_flags;
4051                 break;
4052         case SIOCADDMULTI:
4053         case SIOCDELMULTI:
4054                 if (ifp->if_flags & IFF_RUNNING)
4055                         bge_setmulti(sc);
4056                 break;
4057         case SIOCSIFMEDIA:
4058         case SIOCGIFMEDIA:
4059                 if (sc->bge_flags & BGE_FLAG_TBI) {
4060                         error = ifmedia_ioctl(ifp, ifr,
4061                             &sc->bge_ifmedia, command);
4062                 } else {
4063                         struct mii_data *mii;
4064
4065                         mii = device_get_softc(sc->bge_miibus);
4066                         error = ifmedia_ioctl(ifp, ifr,
4067                                               &mii->mii_media, command);
4068                 }
4069                 break;
4070         case SIOCSIFCAP:
4071                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4072                 if (mask & IFCAP_HWCSUM) {
4073                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4074                         if (ifp->if_capenable & IFCAP_TXCSUM)
4075                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
4076                         else
4077                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4078                 }
4079                 if (mask & IFCAP_TSO) {
4080                         ifp->if_capenable ^= IFCAP_TSO;
4081                         if (ifp->if_capenable & IFCAP_TSO)
4082                                 ifp->if_hwassist |= CSUM_TSO;
4083                         else
4084                                 ifp->if_hwassist &= ~CSUM_TSO;
4085                 }
4086                 break;
4087         default:
4088                 error = ether_ioctl(ifp, command, data);
4089                 break;
4090         }
4091         return error;
4092 }
4093
4094 static void
4095 bge_watchdog(struct ifnet *ifp)
4096 {
4097         struct bge_softc *sc = ifp->if_softc;
4098
4099         if_printf(ifp, "watchdog timeout -- resetting\n");
4100
4101         bge_init(sc);
4102
4103         IFNET_STAT_INC(ifp, oerrors, 1);
4104
4105         if (!ifq_is_empty(&ifp->if_snd))
4106                 if_devstart(ifp);
4107 }
4108
4109 /*
4110  * Stop the adapter and free any mbufs allocated to the
4111  * RX and TX lists.
4112  */
4113 static void
4114 bge_stop(struct bge_softc *sc)
4115 {
4116         struct ifnet *ifp = &sc->arpcom.ac_if;
4117
4118         ASSERT_SERIALIZED(ifp->if_serializer);
4119
4120         callout_stop(&sc->bge_stat_timer);
4121
4122         /* Disable host interrupts. */
4123         bge_disable_intr(sc);
4124
4125         /*
4126          * Tell firmware we're shutting down.
4127          */
4128         bge_stop_fw(sc);
4129         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4130
4131         /*
4132          * Disable all of the receiver blocks
4133          */
4134         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4135         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4136         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4137         if (BGE_IS_5700_FAMILY(sc))
4138                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4139         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4140         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4141         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4142
4143         /*
4144          * Disable all of the transmit blocks
4145          */
4146         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4147         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4148         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4149         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4150         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4151         if (BGE_IS_5700_FAMILY(sc))
4152                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4153         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4154
4155         /*
4156          * Shut down all of the memory managers and related
4157          * state machines.
4158          */
4159         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4160         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4161         if (BGE_IS_5700_FAMILY(sc))
4162                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4163         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4164         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4165         if (!BGE_IS_5705_PLUS(sc)) {
4166                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4167                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4168         }
4169
4170         bge_reset(sc);
4171         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4172         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4173
4174         /*
4175          * Keep the ASF firmware running if up.
4176          */
4177         if (sc->bge_asf_mode & ASF_STACKUP)
4178                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4179         else
4180                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4181
4182         /* Free the RX lists. */
4183         bge_free_rx_ring_std(sc);
4184
4185         /* Free jumbo RX list. */
4186         if (BGE_IS_JUMBO_CAPABLE(sc))
4187                 bge_free_rx_ring_jumbo(sc);
4188
4189         /* Free TX buffers. */
4190         bge_free_tx_ring(sc);
4191
4192         sc->bge_status_tag = 0;
4193         sc->bge_link = 0;
4194         sc->bge_coal_chg = 0;
4195
4196         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4197
4198         ifp->if_flags &= ~IFF_RUNNING;
4199         ifq_clr_oactive(&ifp->if_snd);
4200         ifp->if_timer = 0;
4201 }
4202
4203 /*
4204  * Stop all chip I/O so that the kernel's probe routines don't
4205  * get confused by errant DMAs when rebooting.
4206  */
4207 static void
4208 bge_shutdown(device_t dev)
4209 {
4210         struct bge_softc *sc = device_get_softc(dev);
4211         struct ifnet *ifp = &sc->arpcom.ac_if;
4212
4213         lwkt_serialize_enter(ifp->if_serializer);
4214         bge_stop(sc);
4215         lwkt_serialize_exit(ifp->if_serializer);
4216 }
4217
4218 static int
4219 bge_suspend(device_t dev)
4220 {
4221         struct bge_softc *sc = device_get_softc(dev);
4222         struct ifnet *ifp = &sc->arpcom.ac_if;
4223
4224         lwkt_serialize_enter(ifp->if_serializer);
4225         bge_stop(sc);
4226         lwkt_serialize_exit(ifp->if_serializer);
4227
4228         return 0;
4229 }
4230
4231 static int
4232 bge_resume(device_t dev)
4233 {
4234         struct bge_softc *sc = device_get_softc(dev);
4235         struct ifnet *ifp = &sc->arpcom.ac_if;
4236
4237         lwkt_serialize_enter(ifp->if_serializer);
4238
4239         if (ifp->if_flags & IFF_UP) {
4240                 bge_init(sc);
4241
4242                 if (!ifq_is_empty(&ifp->if_snd))
4243                         if_devstart(ifp);
4244         }
4245
4246         lwkt_serialize_exit(ifp->if_serializer);
4247
4248         return 0;
4249 }
4250
4251 static void
4252 bge_setpromisc(struct bge_softc *sc)
4253 {
4254         struct ifnet *ifp = &sc->arpcom.ac_if;
4255
4256         if (ifp->if_flags & IFF_PROMISC)
4257                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4258         else
4259                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4260 }
4261
4262 static void
4263 bge_dma_free(struct bge_softc *sc)
4264 {
4265         int i;
4266
4267         /* Destroy RX mbuf DMA stuffs. */
4268         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4269                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4270                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4271                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4272                 }
4273                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4274                                    sc->bge_cdata.bge_rx_tmpmap);
4275                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4276         }
4277
4278         /* Destroy TX mbuf DMA stuffs. */
4279         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4280                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4281                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4282                             sc->bge_cdata.bge_tx_dmamap[i]);
4283                 }
4284                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4285         }
4286
4287         /* Destroy standard RX ring */
4288         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4289                            sc->bge_cdata.bge_rx_std_ring_map,
4290                            sc->bge_ldata.bge_rx_std_ring);
4291
4292         if (BGE_IS_JUMBO_CAPABLE(sc))
4293                 bge_free_jumbo_mem(sc);
4294
4295         /* Destroy RX return ring */
4296         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4297                            sc->bge_cdata.bge_rx_return_ring_map,
4298                            sc->bge_ldata.bge_rx_return_ring);
4299
4300         /* Destroy TX ring */
4301         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4302                            sc->bge_cdata.bge_tx_ring_map,
4303                            sc->bge_ldata.bge_tx_ring);
4304
4305         /* Destroy status block */
4306         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4307                            sc->bge_cdata.bge_status_map,
4308                            sc->bge_ldata.bge_status_block);
4309
4310         /* Destroy statistics block */
4311         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4312                            sc->bge_cdata.bge_stats_map,
4313                            sc->bge_ldata.bge_stats);
4314
4315         /* Destroy the parent tag */
4316         if (sc->bge_cdata.bge_parent_tag != NULL)
4317                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4318 }
4319
4320 static int
4321 bge_dma_alloc(struct bge_softc *sc)
4322 {
4323         struct ifnet *ifp = &sc->arpcom.ac_if;
4324         int i, error;
4325         bus_addr_t lowaddr;
4326         bus_size_t txmaxsz;
4327
4328         lowaddr = BUS_SPACE_MAXADDR;
4329         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4330                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4331
4332         /*
4333          * Allocate the parent bus DMA tag appropriate for PCI.
4334          *
4335          * All of the NetExtreme/NetLink controllers have 4GB boundary
4336          * DMA bug.
4337          * Whenever an address crosses a multiple of the 4GB boundary
4338          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4339          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4340          * state machine will lockup and cause the device to hang.
4341          */
4342         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4343                                    lowaddr, BUS_SPACE_MAXADDR,
4344                                    NULL, NULL,
4345                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4346                                    BUS_SPACE_MAXSIZE_32BIT,
4347                                    0, &sc->bge_cdata.bge_parent_tag);
4348         if (error) {
4349                 if_printf(ifp, "could not allocate parent dma tag\n");
4350                 return error;
4351         }
4352
4353         /*
4354          * Create DMA tag and maps for RX mbufs.
4355          */
4356         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4357                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4358                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4359                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4360                                    &sc->bge_cdata.bge_rx_mtag);
4361         if (error) {
4362                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4363                 return error;
4364         }
4365
4366         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4367                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4368         if (error) {
4369                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4370                 sc->bge_cdata.bge_rx_mtag = NULL;
4371                 return error;
4372         }
4373
4374         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4375                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4376                                           BUS_DMA_WAITOK,
4377                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4378                 if (error) {
4379                         int j;
4380
4381                         for (j = 0; j < i; ++j) {
4382                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4383                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4384                         }
4385                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4386                         sc->bge_cdata.bge_rx_mtag = NULL;
4387
4388                         if_printf(ifp, "could not create DMA map for RX\n");
4389                         return error;
4390                 }
4391         }
4392
4393         /*
4394          * Create DMA tag and maps for TX mbufs.
4395          */
4396         if (sc->bge_flags & BGE_FLAG_TSO)
4397                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4398         else
4399                 txmaxsz = BGE_JUMBO_FRAMELEN;
4400         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4401                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4402                                    NULL, NULL,
4403                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4404                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4405                                    BUS_DMA_ONEBPAGE,
4406                                    &sc->bge_cdata.bge_tx_mtag);
4407         if (error) {
4408                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4409                 return error;
4410         }
4411
4412         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4413                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4414                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4415                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4416                 if (error) {
4417                         int j;
4418
4419                         for (j = 0; j < i; ++j) {
4420                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4421                                         sc->bge_cdata.bge_tx_dmamap[j]);
4422                         }
4423                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4424                         sc->bge_cdata.bge_tx_mtag = NULL;
4425
4426                         if_printf(ifp, "could not create DMA map for TX\n");
4427                         return error;
4428                 }
4429         }
4430
4431         /*
4432          * Create DMA stuffs for standard RX ring.
4433          */
4434         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4435                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4436                                     &sc->bge_cdata.bge_rx_std_ring_map,
4437                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4438                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4439         if (error) {
4440                 if_printf(ifp, "could not create std RX ring\n");
4441                 return error;
4442         }
4443
4444         /*
4445          * Create jumbo buffer pool.
4446          */
4447         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4448                 error = bge_alloc_jumbo_mem(sc);
4449                 if (error) {
4450                         if_printf(ifp, "could not create jumbo buffer pool\n");
4451                         return error;
4452                 }
4453         }
4454
4455         /*
4456          * Create DMA stuffs for RX return ring.
4457          */
4458         error = bge_dma_block_alloc(sc,
4459             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4460             &sc->bge_cdata.bge_rx_return_ring_tag,
4461             &sc->bge_cdata.bge_rx_return_ring_map,
4462             (void *)&sc->bge_ldata.bge_rx_return_ring,
4463             &sc->bge_ldata.bge_rx_return_ring_paddr);
4464         if (error) {
4465                 if_printf(ifp, "could not create RX ret ring\n");
4466                 return error;
4467         }
4468
4469         /*
4470          * Create DMA stuffs for TX ring.
4471          */
4472         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4473                                     &sc->bge_cdata.bge_tx_ring_tag,
4474                                     &sc->bge_cdata.bge_tx_ring_map,
4475                                     (void *)&sc->bge_ldata.bge_tx_ring,
4476                                     &sc->bge_ldata.bge_tx_ring_paddr);
4477         if (error) {
4478                 if_printf(ifp, "could not create TX ring\n");
4479                 return error;
4480         }
4481
4482         /*
4483          * Create DMA stuffs for status block.
4484          */
4485         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4486                                     &sc->bge_cdata.bge_status_tag,
4487                                     &sc->bge_cdata.bge_status_map,
4488                                     (void *)&sc->bge_ldata.bge_status_block,
4489                                     &sc->bge_ldata.bge_status_block_paddr);
4490         if (error) {
4491                 if_printf(ifp, "could not create status block\n");
4492                 return error;
4493         }
4494
4495         /*
4496          * Create DMA stuffs for statistics block.
4497          */
4498         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4499                                     &sc->bge_cdata.bge_stats_tag,
4500                                     &sc->bge_cdata.bge_stats_map,
4501                                     (void *)&sc->bge_ldata.bge_stats,
4502                                     &sc->bge_ldata.bge_stats_paddr);
4503         if (error) {
4504                 if_printf(ifp, "could not create stats block\n");
4505                 return error;
4506         }
4507         return 0;
4508 }
4509
4510 static int
4511 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4512                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4513 {
4514         bus_dmamem_t dmem;
4515         int error;
4516
4517         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4518                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4519                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4520         if (error)
4521                 return error;
4522
4523         *tag = dmem.dmem_tag;
4524         *map = dmem.dmem_map;
4525         *addr = dmem.dmem_addr;
4526         *paddr = dmem.dmem_busaddr;
4527
4528         return 0;
4529 }
4530
4531 static void
4532 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4533 {
4534         if (tag != NULL) {
4535                 bus_dmamap_unload(tag, map);
4536                 bus_dmamem_free(tag, addr, map);
4537                 bus_dma_tag_destroy(tag);
4538         }
4539 }
4540
4541 /*
4542  * Grrr. The link status word in the status block does
4543  * not work correctly on the BCM5700 rev AX and BX chips,
4544  * according to all available information. Hence, we have
4545  * to enable MII interrupts in order to properly obtain
4546  * async link changes. Unfortunately, this also means that
4547  * we have to read the MAC status register to detect link
4548  * changes, thereby adding an additional register access to
4549  * the interrupt handler.
4550  *
4551  * XXX: perhaps link state detection procedure used for
4552  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4553  */
4554 static void
4555 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4556 {
4557         struct ifnet *ifp = &sc->arpcom.ac_if;
4558         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4559
4560         mii_pollstat(mii);
4561
4562         if (!sc->bge_link &&
4563             (mii->mii_media_status & IFM_ACTIVE) &&
4564             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4565                 sc->bge_link++;
4566                 if (bootverbose)
4567                         if_printf(ifp, "link UP\n");
4568         } else if (sc->bge_link &&
4569             (!(mii->mii_media_status & IFM_ACTIVE) ||
4570             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4571                 sc->bge_link = 0;
4572                 if (bootverbose)
4573                         if_printf(ifp, "link DOWN\n");
4574         }
4575
4576         /* Clear the interrupt. */
4577         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4578         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4579         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4580 }
4581
4582 static void
4583 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4584 {
4585         struct ifnet *ifp = &sc->arpcom.ac_if;
4586
4587 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4588
4589         /*
4590          * Sometimes PCS encoding errors are detected in
4591          * TBI mode (on fiber NICs), and for some reason
4592          * the chip will signal them as link changes.
4593          * If we get a link change event, but the 'PCS
4594          * encoding error' bit in the MAC status register
4595          * is set, don't bother doing a link check.
4596          * This avoids spurious "gigabit link up" messages
4597          * that sometimes appear on fiber NICs during
4598          * periods of heavy traffic.
4599          */
4600         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4601                 if (!sc->bge_link) {
4602                         sc->bge_link++;
4603                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4604                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4605                                     BGE_MACMODE_TBI_SEND_CFGS);
4606                                 DELAY(40);
4607                         }
4608                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4609
4610                         if (bootverbose)
4611                                 if_printf(ifp, "link UP\n");
4612
4613                         ifp->if_link_state = LINK_STATE_UP;
4614                         if_link_state_change(ifp);
4615                 }
4616         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4617                 if (sc->bge_link) {
4618                         sc->bge_link = 0;
4619
4620                         if (bootverbose)
4621                                 if_printf(ifp, "link DOWN\n");
4622
4623                         ifp->if_link_state = LINK_STATE_DOWN;
4624                         if_link_state_change(ifp);
4625                 }
4626         }
4627
4628 #undef PCS_ENCODE_ERR
4629
4630         /* Clear the attention. */
4631         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4632             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4633             BGE_MACSTAT_LINK_CHANGED);
4634 }
4635
4636 static void
4637 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4638 {
4639         struct ifnet *ifp = &sc->arpcom.ac_if;
4640         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4641
4642         mii_pollstat(mii);
4643         bge_miibus_statchg(sc->bge_dev);
4644
4645         if (bootverbose) {
4646                 if (sc->bge_link)
4647                         if_printf(ifp, "link UP\n");
4648                 else
4649                         if_printf(ifp, "link DOWN\n");
4650         }
4651
4652         /* Clear the attention. */
4653         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4654             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4655             BGE_MACSTAT_LINK_CHANGED);
4656 }
4657
4658 static void
4659 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4660 {
4661         struct ifnet *ifp = &sc->arpcom.ac_if;
4662         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4663
4664         mii_pollstat(mii);
4665
4666         if (!sc->bge_link &&
4667             (mii->mii_media_status & IFM_ACTIVE) &&
4668             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4669                 sc->bge_link++;
4670                 if (bootverbose)
4671                         if_printf(ifp, "link UP\n");
4672         } else if (sc->bge_link &&
4673             (!(mii->mii_media_status & IFM_ACTIVE) ||
4674             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4675                 sc->bge_link = 0;
4676                 if (bootverbose)
4677                         if_printf(ifp, "link DOWN\n");
4678         }
4679
4680         /* Clear the attention. */
4681         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4682             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4683             BGE_MACSTAT_LINK_CHANGED);
4684 }
4685
4686 static int
4687 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4688 {
4689         struct bge_softc *sc = arg1;
4690
4691         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4692             &sc->bge_rx_coal_ticks,
4693             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4694             BGE_RX_COAL_TICKS_CHG);
4695 }
4696
4697 static int
4698 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4699 {
4700         struct bge_softc *sc = arg1;
4701
4702         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4703             &sc->bge_tx_coal_ticks,
4704             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4705             BGE_TX_COAL_TICKS_CHG);
4706 }
4707
4708 static int
4709 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4710 {
4711         struct bge_softc *sc = arg1;
4712
4713         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4714             &sc->bge_rx_coal_bds,
4715             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4716             BGE_RX_COAL_BDS_CHG);
4717 }
4718
4719 static int
4720 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4721 {
4722         struct bge_softc *sc = arg1;
4723
4724         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4725             &sc->bge_tx_coal_bds,
4726             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4727             BGE_TX_COAL_BDS_CHG);
4728 }
4729
4730 static int
4731 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4732 {
4733         struct bge_softc *sc = arg1;
4734
4735         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4736             &sc->bge_rx_coal_ticks_int,
4737             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4738             BGE_RX_COAL_TICKS_INT_CHG);
4739 }
4740
4741 static int
4742 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4743 {
4744         struct bge_softc *sc = arg1;
4745
4746         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4747             &sc->bge_tx_coal_ticks_int,
4748             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4749             BGE_TX_COAL_TICKS_INT_CHG);
4750 }
4751
4752 static int
4753 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4754 {
4755         struct bge_softc *sc = arg1;
4756
4757         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4758             &sc->bge_rx_coal_bds_int,
4759             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4760             BGE_RX_COAL_BDS_INT_CHG);
4761 }
4762
4763 static int
4764 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4765 {
4766         struct bge_softc *sc = arg1;
4767
4768         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4769             &sc->bge_tx_coal_bds_int,
4770             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4771             BGE_TX_COAL_BDS_INT_CHG);
4772 }
4773
4774 static int
4775 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4776     int coal_min, int coal_max, uint32_t coal_chg_mask)
4777 {
4778         struct bge_softc *sc = arg1;
4779         struct ifnet *ifp = &sc->arpcom.ac_if;
4780         int error = 0, v;
4781
4782         lwkt_serialize_enter(ifp->if_serializer);
4783
4784         v = *coal;
4785         error = sysctl_handle_int(oidp, &v, 0, req);
4786         if (!error && req->newptr != NULL) {
4787                 if (v < coal_min || v > coal_max) {
4788                         error = EINVAL;
4789                 } else {
4790                         *coal = v;
4791                         sc->bge_coal_chg |= coal_chg_mask;
4792                 }
4793         }
4794
4795         lwkt_serialize_exit(ifp->if_serializer);
4796         return error;
4797 }
4798
4799 static void
4800 bge_coal_change(struct bge_softc *sc)
4801 {
4802         struct ifnet *ifp = &sc->arpcom.ac_if;
4803
4804         ASSERT_SERIALIZED(ifp->if_serializer);
4805
4806         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4807                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4808                             sc->bge_rx_coal_ticks);
4809                 DELAY(10);
4810                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4811
4812                 if (bootverbose) {
4813                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4814                                   sc->bge_rx_coal_ticks);
4815                 }
4816         }
4817
4818         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4819                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4820                             sc->bge_tx_coal_ticks);
4821                 DELAY(10);
4822                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4823
4824                 if (bootverbose) {
4825                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4826                                   sc->bge_tx_coal_ticks);
4827                 }
4828         }
4829
4830         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4831                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4832                             sc->bge_rx_coal_bds);
4833                 DELAY(10);
4834                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4835
4836                 if (bootverbose) {
4837                         if_printf(ifp, "rx_coal_bds -> %u\n",
4838                                   sc->bge_rx_coal_bds);
4839                 }
4840         }
4841
4842         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4843                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4844                             sc->bge_tx_coal_bds);
4845                 DELAY(10);
4846                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4847
4848                 if (bootverbose) {
4849                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4850                                   sc->bge_tx_coal_bds);
4851                 }
4852         }
4853
4854         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4855                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4856                     sc->bge_rx_coal_ticks_int);
4857                 DELAY(10);
4858                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4859
4860                 if (bootverbose) {
4861                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4862                             sc->bge_rx_coal_ticks_int);
4863                 }
4864         }
4865
4866         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4867                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4868                     sc->bge_tx_coal_ticks_int);
4869                 DELAY(10);
4870                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4871
4872                 if (bootverbose) {
4873                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4874                             sc->bge_tx_coal_ticks_int);
4875                 }
4876         }
4877
4878         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4879                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4880                     sc->bge_rx_coal_bds_int);
4881                 DELAY(10);
4882                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4883
4884                 if (bootverbose) {
4885                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4886                             sc->bge_rx_coal_bds_int);
4887                 }
4888         }
4889
4890         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4891                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4892                     sc->bge_tx_coal_bds_int);
4893                 DELAY(10);
4894                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4895
4896                 if (bootverbose) {
4897                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4898                             sc->bge_tx_coal_bds_int);
4899                 }
4900         }
4901
4902         sc->bge_coal_chg = 0;
4903 }
4904
4905 static void
4906 bge_enable_intr(struct bge_softc *sc)
4907 {
4908         struct ifnet *ifp = &sc->arpcom.ac_if;
4909
4910         lwkt_serialize_handler_enable(ifp->if_serializer);
4911
4912         /*
4913          * Enable interrupt.
4914          */
4915         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4916         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4917                 /* XXX Linux driver */
4918                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4919         }
4920
4921         /*
4922          * Unmask the interrupt when we stop polling.
4923          */
4924         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4925             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4926
4927         /*
4928          * Trigger another interrupt, since above writing
4929          * to interrupt mailbox0 may acknowledge pending
4930          * interrupt.
4931          */
4932         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4933 }
4934
4935 static void
4936 bge_disable_intr(struct bge_softc *sc)
4937 {
4938         struct ifnet *ifp = &sc->arpcom.ac_if;
4939
4940         /*
4941          * Mask the interrupt when we start polling.
4942          */
4943         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4944             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4945
4946         /*
4947          * Acknowledge possible asserted interrupt.
4948          */
4949         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4950
4951         sc->bge_npoll.ifpc_stcount = 0;
4952
4953         lwkt_serialize_handler_disable(ifp->if_serializer);
4954 }
4955
4956 static int
4957 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4958 {
4959         uint32_t mac_addr;
4960         int ret = 1;
4961
4962         mac_addr = bge_readmem_ind(sc, 0x0c14);
4963         if ((mac_addr >> 16) == 0x484b) {
4964                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4965                 ether_addr[1] = (uint8_t)mac_addr;
4966                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4967                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4968                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4969                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4970                 ether_addr[5] = (uint8_t)mac_addr;
4971                 ret = 0;
4972         }
4973         return ret;
4974 }
4975
4976 static int
4977 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4978 {
4979         int mac_offset = BGE_EE_MAC_OFFSET;
4980
4981         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4982                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4983
4984         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4985 }
4986
4987 static int
4988 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4989 {
4990         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4991                 return 1;
4992
4993         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4994                                ETHER_ADDR_LEN);
4995 }
4996
4997 static int
4998 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4999 {
5000         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5001                 /* NOTE: Order is critical */
5002                 bge_get_eaddr_mem,
5003                 bge_get_eaddr_nvram,
5004                 bge_get_eaddr_eeprom,
5005                 NULL
5006         };
5007         const bge_eaddr_fcn_t *func;
5008
5009         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5010                 if ((*func)(sc, eaddr) == 0)
5011                         break;
5012         }
5013         return (*func == NULL ? ENXIO : 0);
5014 }
5015
5016 /*
5017  * NOTE: 'm' is not freed upon failure
5018  */
5019 struct mbuf *
5020 bge_defrag_shortdma(struct mbuf *m)
5021 {
5022         struct mbuf *n;
5023         int found;
5024
5025         /*
5026          * If device receive two back-to-back send BDs with less than
5027          * or equal to 8 total bytes then the device may hang.  The two
5028          * back-to-back send BDs must in the same frame for this failure
5029          * to occur.  Scan mbuf chains and see whether two back-to-back
5030          * send BDs are there.  If this is the case, allocate new mbuf
5031          * and copy the frame to workaround the silicon bug.
5032          */
5033         for (n = m, found = 0; n != NULL; n = n->m_next) {
5034                 if (n->m_len < 8) {
5035                         found++;
5036                         if (found > 1)
5037                                 break;
5038                         continue;
5039                 }
5040                 found = 0;
5041         }
5042
5043         if (found > 1)
5044                 n = m_defrag(m, M_NOWAIT);
5045         else
5046                 n = m;
5047         return n;
5048 }
5049
5050 static void
5051 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5052 {
5053         int i;
5054
5055         BGE_CLRBIT(sc, reg, bit);
5056         for (i = 0; i < BGE_TIMEOUT; i++) {
5057                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5058                         return;
5059                 DELAY(100);
5060         }
5061 }
5062
5063 static void
5064 bge_link_poll(struct bge_softc *sc)
5065 {
5066         uint32_t status;
5067
5068         status = CSR_READ_4(sc, BGE_MAC_STS);
5069         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5070                 sc->bge_link_evt = 0;
5071                 sc->bge_link_upd(sc, status);
5072         }
5073 }
5074
5075 static void
5076 bge_enable_msi(struct bge_softc *sc)
5077 {
5078         uint32_t msi_mode;
5079
5080         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5081         msi_mode |= BGE_MSIMODE_ENABLE;
5082         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5083                 /*
5084                  * According to all of the datasheets that are publicly
5085                  * available, bit 5 of the MSI_MODE is defined to be
5086                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5087                  * which "oneshot MSI" is enabled.  However, it is always
5088                  * safe to clear it here.
5089                  */
5090                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5091         }
5092         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5093 }
5094
5095 static int
5096 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5097     uint16_t *mss0, uint16_t *flags0)
5098 {
5099         struct mbuf *m;
5100         struct ip *ip;
5101         struct tcphdr *th;
5102         int thoff, iphlen, hoff, hlen;
5103         uint16_t flags, mss;
5104
5105         m = *mp;
5106         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5107
5108         hoff = m->m_pkthdr.csum_lhlen;
5109         iphlen = m->m_pkthdr.csum_iphlen;
5110         thoff = m->m_pkthdr.csum_thlen;
5111
5112         KASSERT(hoff > 0, ("invalid ether header len"));
5113         KASSERT(iphlen > 0, ("invalid ip header len"));
5114         KASSERT(thoff > 0, ("invalid tcp header len"));
5115
5116         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5117                 m = m_pullup(m, hoff + iphlen + thoff);
5118                 if (m == NULL) {
5119                         *mp = NULL;
5120                         return ENOBUFS;
5121                 }
5122                 *mp = m;
5123         }
5124         ip = mtodoff(m, struct ip *, hoff);
5125         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5126
5127         mss = m->m_pkthdr.tso_segsz;
5128         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5129
5130         ip->ip_len = htons(mss + iphlen + thoff);
5131         th->th_sum = 0;
5132
5133         hlen = (iphlen + thoff) >> 2;
5134         mss |= (hlen << 11);
5135
5136         *mss0 = mss;
5137         *flags0 = flags;
5138
5139         return 0;
5140 }
5141
5142 static void
5143 bge_stop_fw(struct bge_softc *sc)
5144 {
5145         int i;
5146
5147         if (sc->bge_asf_mode) {
5148                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5149                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5150                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5151
5152                 for (i = 0; i < 100; i++ ) {
5153                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5154                             BGE_RX_CPU_DRV_EVENT))
5155                                 break;
5156                         DELAY(10);
5157                 }
5158         }
5159 }
5160
5161 static void
5162 bge_sig_pre_reset(struct bge_softc *sc, int type)
5163 {
5164         /*
5165          * Some chips don't like this so only do this if ASF is enabled
5166          */
5167         if (sc->bge_asf_mode)
5168                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5169
5170         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5171                 switch (type) {
5172                 case BGE_RESET_START:
5173                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5174                             BGE_FW_DRV_STATE_START);
5175                         break;
5176                 case BGE_RESET_SHUTDOWN:
5177                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5178                             BGE_FW_DRV_STATE_UNLOAD);
5179                         break;
5180                 case BGE_RESET_SUSPEND:
5181                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5182                             BGE_FW_DRV_STATE_SUSPEND);
5183                         break;
5184                 }
5185         }
5186
5187         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5188                 bge_ape_driver_state_change(sc, type);
5189 }
5190
5191 static void
5192 bge_sig_legacy(struct bge_softc *sc, int type)
5193 {
5194         if (sc->bge_asf_mode) {
5195                 switch (type) {
5196                 case BGE_RESET_START:
5197                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5198                             BGE_FW_DRV_STATE_START);
5199                         break;
5200                 case BGE_RESET_SHUTDOWN:
5201                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5202                             BGE_FW_DRV_STATE_UNLOAD);
5203                         break;
5204                 }
5205         }
5206 }
5207
5208 static void
5209 bge_sig_post_reset(struct bge_softc *sc, int type)
5210 {
5211         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5212                 switch (type) {
5213                 case BGE_RESET_START:
5214                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5215                             BGE_FW_DRV_STATE_START_DONE);
5216                         /* START DONE */
5217                         break;
5218                 case BGE_RESET_SHUTDOWN:
5219                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5220                             BGE_FW_DRV_STATE_UNLOAD_DONE);
5221                         break;
5222                 }
5223         }
5224         if (type == BGE_RESET_SHUTDOWN)
5225                 bge_ape_driver_state_change(sc, type);
5226 }
5227
5228 static void
5229 bge_asf_driver_up(struct bge_softc *sc)
5230 {
5231         if (sc->bge_asf_mode & ASF_STACKUP) {
5232                 /* Send ASF heartbeat aprox. every 2s */
5233                 if (sc->bge_asf_count)
5234                         sc->bge_asf_count --;
5235                 else {
5236                         sc->bge_asf_count = 2;
5237                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5238                             BGE_FW_CMD_DRV_ALIVE);
5239                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5240                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5241                             BGE_FW_HB_TIMEOUT_SEC);
5242                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5243                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5244                             BGE_RX_CPU_DRV_EVENT);
5245                 }
5246         }
5247 }
5248
5249 /*
5250  * Clear all stale locks and select the lock for this driver instance.
5251  */
5252 static void
5253 bge_ape_lock_init(struct bge_softc *sc)
5254 {
5255         uint32_t bit, regbase;
5256         int i;
5257
5258         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5259                 regbase = BGE_APE_LOCK_GRANT;
5260         else
5261                 regbase = BGE_APE_PER_LOCK_GRANT;
5262
5263         /* Clear any stale locks. */
5264         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
5265                 switch (i) {
5266                 case BGE_APE_LOCK_PHY0:
5267                 case BGE_APE_LOCK_PHY1:
5268                 case BGE_APE_LOCK_PHY2:
5269                 case BGE_APE_LOCK_PHY3:
5270                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
5271                         break;
5272                 default:
5273                         if (sc->bge_func_addr == 0)
5274                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
5275                         else
5276                                 bit = (1 << sc->bge_func_addr);
5277                 }
5278                 APE_WRITE_4(sc, regbase + 4 * i, bit);
5279         }
5280
5281         /* Select the PHY lock based on the device's function number. */
5282         switch (sc->bge_func_addr) {
5283         case 0:
5284                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
5285                 break;
5286         case 1:
5287                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
5288                 break;
5289         case 2:
5290                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
5291                 break;
5292         case 3:
5293                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
5294                 break;
5295         default:
5296                 device_printf(sc->bge_dev,
5297                     "PHY lock not supported on this function\n");
5298         }
5299 }
5300
5301 /*
5302  * Check for APE firmware, set flags, and print version info.
5303  */
5304 static void
5305 bge_ape_read_fw_ver(struct bge_softc *sc)
5306 {
5307         const char *fwtype;
5308         uint32_t apedata, features;
5309
5310         /* Check for a valid APE signature in shared memory. */
5311         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
5312         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
5313                 device_printf(sc->bge_dev, "no APE signature\n");
5314                 sc->bge_mfw_flags &= ~BGE_MFW_ON_APE;
5315                 return;
5316         }
5317
5318         /* Check if APE firmware is running. */
5319         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
5320         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
5321                 device_printf(sc->bge_dev, "APE signature found "
5322                     "but FW status not ready! 0x%08x\n", apedata);
5323                 return;
5324         }
5325
5326         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
5327
5328         /* Fetch the APE firwmare type and version. */
5329         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
5330         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
5331         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
5332                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
5333                 fwtype = "NCSI";
5334         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
5335                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
5336                 fwtype = "DASH";
5337         } else
5338                 fwtype = "UNKN";
5339
5340         /* Print the APE firmware version. */
5341         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
5342             fwtype,
5343             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
5344             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
5345             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
5346             (apedata & BGE_APE_FW_VERSION_BLDMSK));
5347 }
5348
5349 static int
5350 bge_ape_lock(struct bge_softc *sc, int locknum)
5351 {
5352         uint32_t bit, gnt, req, status;
5353         int i, off;
5354
5355         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5356                 return (0);
5357
5358         /* Lock request/grant registers have different bases. */
5359         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
5360                 req = BGE_APE_LOCK_REQ;
5361                 gnt = BGE_APE_LOCK_GRANT;
5362         } else {
5363                 req = BGE_APE_PER_LOCK_REQ;
5364                 gnt = BGE_APE_PER_LOCK_GRANT;
5365         }
5366
5367         off = 4 * locknum;
5368
5369         switch (locknum) {
5370         case BGE_APE_LOCK_GPIO:
5371                 /* Lock required when using GPIO. */
5372                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5373                         return (0);
5374                 if (sc->bge_func_addr == 0)
5375                         bit = BGE_APE_LOCK_REQ_DRIVER0;
5376                 else
5377                         bit = (1 << sc->bge_func_addr);
5378                 break;
5379         case BGE_APE_LOCK_GRC:
5380                 /* Lock required to reset the device. */
5381                 if (sc->bge_func_addr == 0)
5382                         bit = BGE_APE_LOCK_REQ_DRIVER0;
5383                 else
5384                         bit = (1 << sc->bge_func_addr);
5385                 break;
5386         case BGE_APE_LOCK_MEM:
5387                 /* Lock required when accessing certain APE memory. */
5388                 if (sc->bge_func_addr == 0)
5389                         bit = BGE_APE_LOCK_REQ_DRIVER0;
5390                 else
5391                         bit = (1 << sc->bge_func_addr);
5392                 break;
5393         case BGE_APE_LOCK_PHY0:
5394         case BGE_APE_LOCK_PHY1:
5395         case BGE_APE_LOCK_PHY2:
5396         case BGE_APE_LOCK_PHY3:
5397                 /* Lock required when accessing PHYs. */
5398                 bit = BGE_APE_LOCK_REQ_DRIVER0;
5399                 break;
5400         default:
5401                 return (EINVAL);
5402         }
5403
5404         /* Request a lock. */
5405         APE_WRITE_4(sc, req + off, bit);
5406
5407         /* Wait up to 1 second to acquire lock. */
5408         for (i = 0; i < 20000; i++) {
5409                 status = APE_READ_4(sc, gnt + off);
5410                 if (status == bit)
5411                         break;
5412                 DELAY(50);
5413         }
5414
5415         /* Handle any errors. */
5416         if (status != bit) {
5417                 device_printf(sc->bge_dev, "APE lock %d request failed! "
5418                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
5419                     locknum, req + off, bit & 0xFFFF, gnt + off,
5420                     status & 0xFFFF);
5421                 /* Revoke the lock request. */
5422                 APE_WRITE_4(sc, gnt + off, bit);
5423                 return (EBUSY);
5424         }
5425
5426         return (0);
5427 }
5428
5429 static void
5430 bge_ape_unlock(struct bge_softc *sc, int locknum)
5431 {
5432         uint32_t bit, gnt;
5433         int off;
5434
5435         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5436                 return;
5437
5438         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5439                 gnt = BGE_APE_LOCK_GRANT;
5440         else
5441                 gnt = BGE_APE_PER_LOCK_GRANT;
5442
5443         off = 4 * locknum;
5444
5445         switch (locknum) {
5446         case BGE_APE_LOCK_GPIO:
5447                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5448                         return;
5449                 if (sc->bge_func_addr == 0)
5450                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
5451                 else
5452                         bit = (1 << sc->bge_func_addr);
5453                 break;
5454         case BGE_APE_LOCK_GRC:
5455                 if (sc->bge_func_addr == 0)
5456                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
5457                 else
5458                         bit = (1 << sc->bge_func_addr);
5459                 break;
5460         case BGE_APE_LOCK_MEM:
5461                 if (sc->bge_func_addr == 0)
5462                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
5463                 else
5464                         bit = (1 << sc->bge_func_addr);
5465                 break;
5466         case BGE_APE_LOCK_PHY0:
5467         case BGE_APE_LOCK_PHY1:
5468         case BGE_APE_LOCK_PHY2:
5469         case BGE_APE_LOCK_PHY3:
5470                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
5471                 break;
5472         default:
5473                 return;
5474         }
5475
5476         APE_WRITE_4(sc, gnt + off, bit);
5477 }
5478
5479 /*
5480  * Send an event to the APE firmware.
5481  */
5482 static void
5483 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
5484 {
5485         uint32_t apedata;
5486         int i;
5487
5488         /* NCSI does not support APE events. */
5489         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5490                 return;
5491
5492         /* Wait up to 1ms for APE to service previous event. */
5493         for (i = 10; i > 0; i--) {
5494                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
5495                         break;
5496                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
5497                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
5498                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
5499                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
5500                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5501                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
5502                         break;
5503                 }
5504                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5505                 DELAY(100);
5506         }
5507         if (i == 0)
5508                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
5509                     event);
5510 }
5511
5512 static void
5513 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
5514 {
5515         uint32_t apedata, event;
5516
5517         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5518                 return;
5519
5520         switch (kind) {
5521         case BGE_RESET_START:
5522                 /* If this is the first load, clear the load counter. */
5523                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
5524                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
5525                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
5526                 else {
5527                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
5528                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
5529                 }
5530                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
5531                     BGE_APE_HOST_SEG_SIG_MAGIC);
5532                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
5533                     BGE_APE_HOST_SEG_LEN_MAGIC);
5534
5535                 /* Add some version info if bge(4) supports it. */
5536                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
5537                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
5538                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
5539                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
5540                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
5541                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
5542                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5543                     BGE_APE_HOST_DRVR_STATE_START);
5544                 event = BGE_APE_EVENT_STATUS_STATE_START;
5545                 break;
5546         case BGE_RESET_SHUTDOWN:
5547                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5548                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
5549                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
5550                 break;
5551         case BGE_RESET_SUSPEND:
5552                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
5553                 break;
5554         default:
5555                 return;
5556         }
5557
5558         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
5559             BGE_APE_EVENT_STATUS_STATE_CHNGE);
5560 }