Merge branch 'vendor/OPENSSL'
[dragonfly.git] / contrib / binutils-2.22 / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced local in a version script, do not add it.
367   if (this->is_forced_local())
368     return false;
369
370   // If the symbol was forced dynamic in a --dynamic-list file, add it.
371   if (parameters->options().in_dynamic_list(this->name()))
372     return true;
373
374   // If dynamic-list-data was specified, add any STT_OBJECT.
375   if (parameters->options().dynamic_list_data()
376       && !this->is_from_dynobj()
377       && this->type() == elfcpp::STT_OBJECT)
378     return true;
379
380   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382   if ((parameters->options().dynamic_list_cpp_new()
383        || parameters->options().dynamic_list_cpp_typeinfo())
384       && !this->is_from_dynobj())
385     {
386       // TODO(csilvers): We could probably figure out if we're an operator
387       //                 new/delete or typeinfo without the need to demangle.
388       char* demangled_name = cplus_demangle(this->name(),
389                                             DMGL_ANSI | DMGL_PARAMS);
390       if (demangled_name == NULL)
391         {
392           // Not a C++ symbol, so it can't satisfy these flags
393         }
394       else if (parameters->options().dynamic_list_cpp_new()
395                && (strprefix(demangled_name, "operator new")
396                    || strprefix(demangled_name, "operator delete")))
397         {
398           free(demangled_name);
399           return true;
400         }
401       else if (parameters->options().dynamic_list_cpp_typeinfo()
402                && (strprefix(demangled_name, "typeinfo name for")
403                    || strprefix(demangled_name, "typeinfo for")))
404         {
405           free(demangled_name);
406           return true;
407         }
408       else
409         free(demangled_name);
410     }
411
412   // If exporting all symbols or building a shared library,
413   // and the symbol is defined in a regular object and is
414   // externally visible, we need to add it.
415   if ((parameters->options().export_dynamic() || parameters->options().shared())
416       && !this->is_from_dynobj()
417       && !this->is_undefined()
418       && this->is_externally_visible())
419     return true;
420
421   return false;
422 }
423
424 // Return true if the final value of this symbol is known at link
425 // time.
426
427 bool
428 Symbol::final_value_is_known() const
429 {
430   // If we are not generating an executable, then no final values are
431   // known, since they will change at runtime.
432   if (parameters->options().output_is_position_independent()
433       || parameters->options().relocatable())
434     return false;
435
436   // If the symbol is not from an object file, and is not undefined,
437   // then it is defined, and known.
438   if (this->source_ != FROM_OBJECT)
439     {
440       if (this->source_ != IS_UNDEFINED)
441         return true;
442     }
443   else
444     {
445       // If the symbol is from a dynamic object, then the final value
446       // is not known.
447       if (this->object()->is_dynamic())
448         return false;
449
450       // If the symbol is not undefined (it is defined or common),
451       // then the final value is known.
452       if (!this->is_undefined())
453         return true;
454     }
455
456   // If the symbol is undefined, then whether the final value is known
457   // depends on whether we are doing a static link.  If we are doing a
458   // dynamic link, then the final value could be filled in at runtime.
459   // This could reasonably be the case for a weak undefined symbol.
460   return parameters->doing_static_link();
461 }
462
463 // Return the output section where this symbol is defined.
464
465 Output_section*
466 Symbol::output_section() const
467 {
468   switch (this->source_)
469     {
470     case FROM_OBJECT:
471       {
472         unsigned int shndx = this->u_.from_object.shndx;
473         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474           {
475             gold_assert(!this->u_.from_object.object->is_dynamic());
476             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478             return relobj->output_section(shndx);
479           }
480         return NULL;
481       }
482
483     case IN_OUTPUT_DATA:
484       return this->u_.in_output_data.output_data->output_section();
485
486     case IN_OUTPUT_SEGMENT:
487     case IS_CONSTANT:
488     case IS_UNDEFINED:
489       return NULL;
490
491     default:
492       gold_unreachable();
493     }
494 }
495
496 // Set the symbol's output section.  This is used for symbols defined
497 // in scripts.  This should only be called after the symbol table has
498 // been finalized.
499
500 void
501 Symbol::set_output_section(Output_section* os)
502 {
503   switch (this->source_)
504     {
505     case FROM_OBJECT:
506     case IN_OUTPUT_DATA:
507       gold_assert(this->output_section() == os);
508       break;
509     case IS_CONSTANT:
510       this->source_ = IN_OUTPUT_DATA;
511       this->u_.in_output_data.output_data = os;
512       this->u_.in_output_data.offset_is_from_end = false;
513       break;
514     case IN_OUTPUT_SEGMENT:
515     case IS_UNDEFINED:
516     default:
517       gold_unreachable();
518     }
519 }
520
521 // Class Symbol_table.
522
523 Symbol_table::Symbol_table(unsigned int count,
524                            const Version_script_info& version_script)
525   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526     forwarders_(), commons_(), tls_commons_(), small_commons_(),
527     large_commons_(), forced_locals_(), warnings_(),
528     version_script_(version_script), gc_(NULL), icf_(NULL)
529 {
530   namepool_.reserve(count);
531 }
532
533 Symbol_table::~Symbol_table()
534 {
535 }
536
537 // The symbol table key equality function.  This is called with
538 // Stringpool keys.
539
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542                                           const Symbol_table_key& k2) const
543 {
544   return k1.first == k2.first && k1.second == k2.second;
545 }
546
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549 {
550   return (parameters->options().icf_enabled()
551           && this->icf_->is_section_folded(obj, shndx));
552 }
553
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
556
557 void 
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
559 {
560   for (options::String_set::const_iterator p =
561          parameters->options().undefined_begin();
562        p != parameters->options().undefined_end();
563        ++p)
564     {
565       const char* name = p->c_str();
566       Symbol* sym = this->lookup(name);
567       gold_assert(sym != NULL);
568       if (sym->source() == Symbol::FROM_OBJECT 
569           && !sym->object()->is_dynamic())
570         {
571           Relobj* obj = static_cast<Relobj*>(sym->object());
572           bool is_ordinary;
573           unsigned int shndx = sym->shndx(&is_ordinary);
574           if (is_ordinary)
575             {
576               gold_assert(this->gc_ != NULL);
577               this->gc_->worklist().push(Section_id(obj, shndx));
578             }
579         }
580     }
581
582   for (Script_options::referenced_const_iterator p =
583          layout->script_options()->referenced_begin();
584        p != layout->script_options()->referenced_end();
585        ++p)
586     {
587       Symbol* sym = this->lookup(p->c_str());
588       gold_assert(sym != NULL);
589       if (sym->source() == Symbol::FROM_OBJECT
590           && !sym->object()->is_dynamic())
591         {
592           Relobj* obj = static_cast<Relobj*>(sym->object());
593           bool is_ordinary;
594           unsigned int shndx = sym->shndx(&is_ordinary);
595           if (is_ordinary)
596             {
597               gold_assert(this->gc_ != NULL);
598               this->gc_->worklist().push(Section_id(obj, shndx));
599             }
600         }
601     }
602 }
603
604 void
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606 {
607   if (!sym->is_from_dynobj() 
608       && sym->is_externally_visible())
609     {
610       //Add the object and section to the work list.
611       Relobj* obj = static_cast<Relobj*>(sym->object());
612       bool is_ordinary;
613       unsigned int shndx = sym->shndx(&is_ordinary);
614       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615         {
616           gold_assert(this->gc_!= NULL);
617           this->gc_->worklist().push(Section_id(obj, shndx));
618         }
619     }
620 }
621
622 // When doing garbage collection, keep symbols that have been seen in
623 // dynamic objects.
624 inline void 
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626 {
627   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628       && !sym->object()->is_dynamic())
629     {
630       Relobj* obj = static_cast<Relobj*>(sym->object()); 
631       bool is_ordinary;
632       unsigned int shndx = sym->shndx(&is_ordinary);
633       if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634         {
635           gold_assert(this->gc_ != NULL);
636           this->gc_->worklist().push(Section_id(obj, shndx));
637         }
638     }
639 }
640
641 // Make TO a symbol which forwards to FROM.
642
643 void
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645 {
646   gold_assert(from != to);
647   gold_assert(!from->is_forwarder() && !to->is_forwarder());
648   this->forwarders_[from] = to;
649   from->set_forwarder();
650 }
651
652 // Resolve the forwards from FROM, returning the real symbol.
653
654 Symbol*
655 Symbol_table::resolve_forwards(const Symbol* from) const
656 {
657   gold_assert(from->is_forwarder());
658   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659     this->forwarders_.find(from);
660   gold_assert(p != this->forwarders_.end());
661   return p->second;
662 }
663
664 // Look up a symbol by name.
665
666 Symbol*
667 Symbol_table::lookup(const char* name, const char* version) const
668 {
669   Stringpool::Key name_key;
670   name = this->namepool_.find(name, &name_key);
671   if (name == NULL)
672     return NULL;
673
674   Stringpool::Key version_key = 0;
675   if (version != NULL)
676     {
677       version = this->namepool_.find(version, &version_key);
678       if (version == NULL)
679         return NULL;
680     }
681
682   Symbol_table_key key(name_key, version_key);
683   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684   if (p == this->table_.end())
685     return NULL;
686   return p->second;
687 }
688
689 // Resolve a Symbol with another Symbol.  This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version.  Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
694
695 template<int size, bool big_endian>
696 void
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698 {
699   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700   elfcpp::Sym_write<size, big_endian> esym(buf);
701   // We don't bother to set the st_name or the st_shndx field.
702   esym.put_st_value(from->value());
703   esym.put_st_size(from->symsize());
704   esym.put_st_info(from->binding(), from->type());
705   esym.put_st_other(from->visibility(), from->nonvis());
706   bool is_ordinary;
707   unsigned int shndx = from->shndx(&is_ordinary);
708   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709                 from->version());
710   if (from->in_reg())
711     to->set_in_reg();
712   if (from->in_dyn())
713     to->set_in_dyn();
714   if (parameters->options().gc_sections())
715     this->gc_mark_dyn_syms(to);
716 }
717
718 // Record that a symbol is forced to be local by a version script or
719 // by visibility.
720
721 void
722 Symbol_table::force_local(Symbol* sym)
723 {
724   if (!sym->is_defined() && !sym->is_common())
725     return;
726   if (sym->is_forced_local())
727     {
728       // We already got this one.
729       return;
730     }
731   sym->set_is_forced_local();
732   this->forced_locals_.push_back(sym);
733 }
734
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
736 // is only called for undefined symbols, when at least one --wrap
737 // option was used.
738
739 const char*
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741 {
742   // For some targets, we need to ignore a specific character when
743   // wrapping, and add it back later.
744   char prefix = '\0';
745   if (name[0] == parameters->target().wrap_char())
746     {
747       prefix = name[0];
748       ++name;
749     }
750
751   if (parameters->options().is_wrap(name))
752     {
753       // Turn NAME into __wrap_NAME.
754       std::string s;
755       if (prefix != '\0')
756         s += prefix;
757       s += "__wrap_";
758       s += name;
759
760       // This will give us both the old and new name in NAMEPOOL_, but
761       // that is OK.  Only the versions we need will wind up in the
762       // real string table in the output file.
763       return this->namepool_.add(s.c_str(), true, name_key);
764     }
765
766   const char* const real_prefix = "__real_";
767   const size_t real_prefix_length = strlen(real_prefix);
768   if (strncmp(name, real_prefix, real_prefix_length) == 0
769       && parameters->options().is_wrap(name + real_prefix_length))
770     {
771       // Turn __real_NAME into NAME.
772       std::string s;
773       if (prefix != '\0')
774         s += prefix;
775       s += name + real_prefix_length;
776       return this->namepool_.add(s.c_str(), true, name_key);
777     }
778
779   return name;
780 }
781
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version.  SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
787
788 template<int size, bool big_endian>
789 void
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
791                                      bool default_is_new,
792                                      Symbol_table_type::iterator pdef)
793 {
794   if (default_is_new)
795     {
796       // This is the first time we have seen NAME/NULL.  Make
797       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798       // version.
799       pdef->second = sym;
800       sym->set_is_default();
801     }
802   else if (pdef->second == sym)
803     {
804       // NAME/NULL already points to NAME/VERSION.  Don't mark the
805       // symbol as the default if it is not already the default.
806     }
807   else
808     {
809       // This is the unfortunate case where we already have entries
810       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
811       // NAME/VERSION where VERSION is the default version.  We have
812       // already resolved this new symbol with the existing
813       // NAME/VERSION symbol.
814
815       // It's possible that NAME/NULL and NAME/VERSION are both
816       // defined in regular objects.  This can only happen if one
817       // object file defines foo and another defines foo@@ver.  This
818       // is somewhat obscure, but we call it a multiple definition
819       // error.
820
821       // It's possible that NAME/NULL actually has a version, in which
822       // case it won't be the same as VERSION.  This happens with
823       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
824       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
825       // then see an unadorned t2_2 in an object file and give it
826       // version VER1 from the version script.  This looks like a
827       // default definition for VER1, so it looks like we should merge
828       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
829       // not obvious that this is an error, either.  So we just punt.
830
831       // If one of the symbols has non-default visibility, and the
832       // other is defined in a shared object, then they are different
833       // symbols.
834
835       // Otherwise, we just resolve the symbols as though they were
836       // the same.
837
838       if (pdef->second->version() != NULL)
839         gold_assert(pdef->second->version() != sym->version());
840       else if (sym->visibility() != elfcpp::STV_DEFAULT
841                && pdef->second->is_from_dynobj())
842         ;
843       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844                && sym->is_from_dynobj())
845         ;
846       else
847         {
848           const Sized_symbol<size>* symdef;
849           symdef = this->get_sized_symbol<size>(pdef->second);
850           Symbol_table::resolve<size, big_endian>(sym, symdef);
851           this->make_forwarder(pdef->second, sym);
852           pdef->second = sym;
853           sym->set_is_default();
854         }
855     }
856 }
857
858 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
859 // name and VERSION is the version; both are canonicalized.  DEF is
860 // whether this is the default version.  ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
863
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol.  That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol.  This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION.  If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
871
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure.  That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table.  We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files.  So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
881 // forwarders.
882 //
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code.  ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
887
888 template<int size, bool big_endian>
889 Sized_symbol<size>*
890 Symbol_table::add_from_object(Object* object,
891                               const char* name,
892                               Stringpool::Key name_key,
893                               const char* version,
894                               Stringpool::Key version_key,
895                               bool is_default_version,
896                               const elfcpp::Sym<size, big_endian>& sym,
897                               unsigned int st_shndx,
898                               bool is_ordinary,
899                               unsigned int orig_st_shndx)
900 {
901   // Print a message if this symbol is being traced.
902   if (parameters->options().is_trace_symbol(name))
903     {
904       if (orig_st_shndx == elfcpp::SHN_UNDEF)
905         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906       else
907         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908     }
909
910   // For an undefined symbol, we may need to adjust the name using
911   // --wrap.
912   if (orig_st_shndx == elfcpp::SHN_UNDEF
913       && parameters->options().any_wrap())
914     {
915       const char* wrap_name = this->wrap_symbol(name, &name_key);
916       if (wrap_name != name)
917         {
918           // If we see a reference to malloc with version GLIBC_2.0,
919           // and we turn it into a reference to __wrap_malloc, then we
920           // discard the version number.  Otherwise the user would be
921           // required to specify the correct version for
922           // __wrap_malloc.
923           version = NULL;
924           version_key = 0;
925           name = wrap_name;
926         }
927     }
928
929   Symbol* const snull = NULL;
930   std::pair<typename Symbol_table_type::iterator, bool> ins =
931     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932                                        snull));
933
934   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935     std::make_pair(this->table_.end(), false);
936   if (is_default_version)
937     {
938       const Stringpool::Key vnull_key = 0;
939       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940                                                                      vnull_key),
941                                                       snull));
942     }
943
944   // ins.first: an iterator, which is a pointer to a pair.
945   // ins.first->first: the key (a pair of name and version).
946   // ins.first->second: the value (Symbol*).
947   // ins.second: true if new entry was inserted, false if not.
948
949   Sized_symbol<size>* ret;
950   bool was_undefined;
951   bool was_common;
952   if (!ins.second)
953     {
954       // We already have an entry for NAME/VERSION.
955       ret = this->get_sized_symbol<size>(ins.first->second);
956       gold_assert(ret != NULL);
957
958       was_undefined = ret->is_undefined();
959       was_common = ret->is_common();
960
961       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962                     version);
963       if (parameters->options().gc_sections())
964         this->gc_mark_dyn_syms(ret);
965
966       if (is_default_version)
967         this->define_default_version<size, big_endian>(ret, insdefault.second,
968                                                        insdefault.first);
969     }
970   else
971     {
972       // This is the first time we have seen NAME/VERSION.
973       gold_assert(ins.first->second == NULL);
974
975       if (is_default_version && !insdefault.second)
976         {
977           // We already have an entry for NAME/NULL.  If we override
978           // it, then change it to NAME/VERSION.
979           ret = this->get_sized_symbol<size>(insdefault.first->second);
980
981           was_undefined = ret->is_undefined();
982           was_common = ret->is_common();
983
984           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985                         version);
986           if (parameters->options().gc_sections())
987             this->gc_mark_dyn_syms(ret);
988           ins.first->second = ret;
989         }
990       else
991         {
992           was_undefined = false;
993           was_common = false;
994
995           Sized_target<size, big_endian>* target =
996             parameters->sized_target<size, big_endian>();
997           if (!target->has_make_symbol())
998             ret = new Sized_symbol<size>();
999           else
1000             {
1001               ret = target->make_symbol();
1002               if (ret == NULL)
1003                 {
1004                   // This means that we don't want a symbol table
1005                   // entry after all.
1006                   if (!is_default_version)
1007                     this->table_.erase(ins.first);
1008                   else
1009                     {
1010                       this->table_.erase(insdefault.first);
1011                       // Inserting INSDEFAULT invalidated INS.
1012                       this->table_.erase(std::make_pair(name_key,
1013                                                         version_key));
1014                     }
1015                   return NULL;
1016                 }
1017             }
1018
1019           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
1021           ins.first->second = ret;
1022           if (is_default_version)
1023             {
1024               // This is the first time we have seen NAME/NULL.  Point
1025               // it at the new entry for NAME/VERSION.
1026               gold_assert(insdefault.second);
1027               insdefault.first->second = ret;
1028             }
1029         }
1030
1031       if (is_default_version)
1032         ret->set_is_default();
1033     }
1034
1035   // Record every time we see a new undefined symbol, to speed up
1036   // archive groups.
1037   if (!was_undefined && ret->is_undefined())
1038     {
1039       ++this->saw_undefined_;
1040       if (parameters->options().has_plugins())
1041         parameters->options().plugins()->new_undefined_symbol(ret);
1042     }
1043
1044   // Keep track of common symbols, to speed up common symbol
1045   // allocation.
1046   if (!was_common && ret->is_common())
1047     {
1048       if (ret->type() == elfcpp::STT_TLS)
1049         this->tls_commons_.push_back(ret);
1050       else if (!is_ordinary
1051                && st_shndx == parameters->target().small_common_shndx())
1052         this->small_commons_.push_back(ret);
1053       else if (!is_ordinary
1054                && st_shndx == parameters->target().large_common_shndx())
1055         this->large_commons_.push_back(ret);
1056       else
1057         this->commons_.push_back(ret);
1058     }
1059
1060   // If we're not doing a relocatable link, then any symbol with
1061   // hidden or internal visibility is local.
1062   if ((ret->visibility() == elfcpp::STV_HIDDEN
1063        || ret->visibility() == elfcpp::STV_INTERNAL)
1064       && (ret->binding() == elfcpp::STB_GLOBAL
1065           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066           || ret->binding() == elfcpp::STB_WEAK)
1067       && !parameters->options().relocatable())
1068     this->force_local(ret);
1069
1070   return ret;
1071 }
1072
1073 // Add all the symbols in a relocatable object to the hash table.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Symbol_table::add_from_relobj(
1078     Sized_relobj_file<size, big_endian>* relobj,
1079     const unsigned char* syms,
1080     size_t count,
1081     size_t symndx_offset,
1082     const char* sym_names,
1083     size_t sym_name_size,
1084     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085     size_t* defined)
1086 {
1087   *defined = 0;
1088
1089   gold_assert(size == parameters->target().get_size());
1090
1091   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
1093   const bool just_symbols = relobj->just_symbols();
1094
1095   const unsigned char* p = syms;
1096   for (size_t i = 0; i < count; ++i, p += sym_size)
1097     {
1098       (*sympointers)[i] = NULL;
1099
1100       elfcpp::Sym<size, big_endian> sym(p);
1101
1102       unsigned int st_name = sym.get_st_name();
1103       if (st_name >= sym_name_size)
1104         {
1105           relobj->error(_("bad global symbol name offset %u at %zu"),
1106                         st_name, i);
1107           continue;
1108         }
1109
1110       const char* name = sym_names + st_name;
1111
1112       bool is_ordinary;
1113       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114                                                        sym.get_st_shndx(),
1115                                                        &is_ordinary);
1116       unsigned int orig_st_shndx = st_shndx;
1117       if (!is_ordinary)
1118         orig_st_shndx = elfcpp::SHN_UNDEF;
1119
1120       if (st_shndx != elfcpp::SHN_UNDEF)
1121         ++*defined;
1122
1123       // A symbol defined in a section which we are not including must
1124       // be treated as an undefined symbol.
1125       bool is_defined_in_discarded_section = false;
1126       if (st_shndx != elfcpp::SHN_UNDEF
1127           && is_ordinary
1128           && !relobj->is_section_included(st_shndx)
1129           && !this->is_section_folded(relobj, st_shndx))
1130         {
1131           st_shndx = elfcpp::SHN_UNDEF;
1132           is_defined_in_discarded_section = true;
1133         }
1134
1135       // In an object file, an '@' in the name separates the symbol
1136       // name from the version name.  If there are two '@' characters,
1137       // this is the default version.
1138       const char* ver = strchr(name, '@');
1139       Stringpool::Key ver_key = 0;
1140       int namelen = 0;
1141       // IS_DEFAULT_VERSION: is the version default?
1142       // IS_FORCED_LOCAL: is the symbol forced local?
1143       bool is_default_version = false;
1144       bool is_forced_local = false;
1145
1146       if (ver != NULL)
1147         {
1148           // The symbol name is of the form foo@VERSION or foo@@VERSION
1149           namelen = ver - name;
1150           ++ver;
1151           if (*ver == '@')
1152             {
1153               is_default_version = true;
1154               ++ver;
1155             }
1156           ver = this->namepool_.add(ver, true, &ver_key);
1157         }
1158       // We don't want to assign a version to an undefined symbol,
1159       // even if it is listed in the version script.  FIXME: What
1160       // about a common symbol?
1161       else
1162         {
1163           namelen = strlen(name);
1164           if (!this->version_script_.empty()
1165               && st_shndx != elfcpp::SHN_UNDEF)
1166             {
1167               // The symbol name did not have a version, but the
1168               // version script may assign a version anyway.
1169               std::string version;
1170               bool is_global;
1171               if (this->version_script_.get_symbol_version(name, &version,
1172                                                            &is_global))
1173                 {
1174                   if (!is_global)
1175                     is_forced_local = true;
1176                   else if (!version.empty())
1177                     {
1178                       ver = this->namepool_.add_with_length(version.c_str(),
1179                                                             version.length(),
1180                                                             true,
1181                                                             &ver_key);
1182                       is_default_version = true;
1183                     }
1184                 }
1185             }
1186         }
1187
1188       elfcpp::Sym<size, big_endian>* psym = &sym;
1189       unsigned char symbuf[sym_size];
1190       elfcpp::Sym<size, big_endian> sym2(symbuf);
1191       if (just_symbols)
1192         {
1193           memcpy(symbuf, p, sym_size);
1194           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1195           if (orig_st_shndx != elfcpp::SHN_UNDEF
1196               && is_ordinary
1197               && relobj->e_type() == elfcpp::ET_REL)
1198             {
1199               // Symbol values in relocatable object files are section
1200               // relative.  This is normally what we want, but since here
1201               // we are converting the symbol to absolute we need to add
1202               // the section address.  The section address in an object
1203               // file is normally zero, but people can use a linker
1204               // script to change it.
1205               sw.put_st_value(sym.get_st_value()
1206                               + relobj->section_address(orig_st_shndx));
1207             }
1208           st_shndx = elfcpp::SHN_ABS;
1209           is_ordinary = false;
1210           psym = &sym2;
1211         }
1212
1213       // Fix up visibility if object has no-export set.
1214       if (relobj->no_export()
1215           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1216         {
1217           // We may have copied symbol already above.
1218           if (psym != &sym2)
1219             {
1220               memcpy(symbuf, p, sym_size);
1221               psym = &sym2;
1222             }
1223
1224           elfcpp::STV visibility = sym2.get_st_visibility();
1225           if (visibility == elfcpp::STV_DEFAULT
1226               || visibility == elfcpp::STV_PROTECTED)
1227             {
1228               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1229               unsigned char nonvis = sym2.get_st_nonvis();
1230               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1231             }
1232         }
1233
1234       Stringpool::Key name_key;
1235       name = this->namepool_.add_with_length(name, namelen, true,
1236                                              &name_key);
1237
1238       Sized_symbol<size>* res;
1239       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1240                                   is_default_version, *psym, st_shndx,
1241                                   is_ordinary, orig_st_shndx);
1242       
1243       if (is_forced_local)
1244         this->force_local(res);
1245
1246       // If building a shared library using garbage collection, do not 
1247       // treat externally visible symbols as garbage.
1248       if (parameters->options().gc_sections() 
1249           && parameters->options().shared())
1250         this->gc_mark_symbol_for_shlib(res);
1251
1252       if (is_defined_in_discarded_section)
1253         res->set_is_defined_in_discarded_section();
1254
1255       (*sympointers)[i] = res;
1256     }
1257 }
1258
1259 // Add a symbol from a plugin-claimed file.
1260
1261 template<int size, bool big_endian>
1262 Symbol*
1263 Symbol_table::add_from_pluginobj(
1264     Sized_pluginobj<size, big_endian>* obj,
1265     const char* name,
1266     const char* ver,
1267     elfcpp::Sym<size, big_endian>* sym)
1268 {
1269   unsigned int st_shndx = sym->get_st_shndx();
1270   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1271
1272   Stringpool::Key ver_key = 0;
1273   bool is_default_version = false;
1274   bool is_forced_local = false;
1275
1276   if (ver != NULL)
1277     {
1278       ver = this->namepool_.add(ver, true, &ver_key);
1279     }
1280   // We don't want to assign a version to an undefined symbol,
1281   // even if it is listed in the version script.  FIXME: What
1282   // about a common symbol?
1283   else
1284     {
1285       if (!this->version_script_.empty()
1286           && st_shndx != elfcpp::SHN_UNDEF)
1287         {
1288           // The symbol name did not have a version, but the
1289           // version script may assign a version anyway.
1290           std::string version;
1291           bool is_global;
1292           if (this->version_script_.get_symbol_version(name, &version,
1293                                                        &is_global))
1294             {
1295               if (!is_global)
1296                 is_forced_local = true;
1297               else if (!version.empty())
1298                 {
1299                   ver = this->namepool_.add_with_length(version.c_str(),
1300                                                         version.length(),
1301                                                         true,
1302                                                         &ver_key);
1303                   is_default_version = true;
1304                 }
1305             }
1306         }
1307     }
1308
1309   Stringpool::Key name_key;
1310   name = this->namepool_.add(name, true, &name_key);
1311
1312   Sized_symbol<size>* res;
1313   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1314                               is_default_version, *sym, st_shndx,
1315                               is_ordinary, st_shndx);
1316
1317   if (is_forced_local)
1318     this->force_local(res);
1319
1320   return res;
1321 }
1322
1323 // Add all the symbols in a dynamic object to the hash table.
1324
1325 template<int size, bool big_endian>
1326 void
1327 Symbol_table::add_from_dynobj(
1328     Sized_dynobj<size, big_endian>* dynobj,
1329     const unsigned char* syms,
1330     size_t count,
1331     const char* sym_names,
1332     size_t sym_name_size,
1333     const unsigned char* versym,
1334     size_t versym_size,
1335     const std::vector<const char*>* version_map,
1336     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1337     size_t* defined)
1338 {
1339   *defined = 0;
1340
1341   gold_assert(size == parameters->target().get_size());
1342
1343   if (dynobj->just_symbols())
1344     {
1345       gold_error(_("--just-symbols does not make sense with a shared object"));
1346       return;
1347     }
1348
1349   if (versym != NULL && versym_size / 2 < count)
1350     {
1351       dynobj->error(_("too few symbol versions"));
1352       return;
1353     }
1354
1355   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1356
1357   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1358   // weak aliases.  This is necessary because if the dynamic object
1359   // provides the same variable under two names, one of which is a
1360   // weak definition, and the regular object refers to the weak
1361   // definition, we have to put both the weak definition and the
1362   // strong definition into the dynamic symbol table.  Given a weak
1363   // definition, the only way that we can find the corresponding
1364   // strong definition, if any, is to search the symbol table.
1365   std::vector<Sized_symbol<size>*> object_symbols;
1366
1367   const unsigned char* p = syms;
1368   const unsigned char* vs = versym;
1369   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1370     {
1371       elfcpp::Sym<size, big_endian> sym(p);
1372
1373       if (sympointers != NULL)
1374         (*sympointers)[i] = NULL;
1375
1376       // Ignore symbols with local binding or that have
1377       // internal or hidden visibility.
1378       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1379           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1380           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1381         continue;
1382
1383       // A protected symbol in a shared library must be treated as a
1384       // normal symbol when viewed from outside the shared library.
1385       // Implement this by overriding the visibility here.
1386       elfcpp::Sym<size, big_endian>* psym = &sym;
1387       unsigned char symbuf[sym_size];
1388       elfcpp::Sym<size, big_endian> sym2(symbuf);
1389       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1390         {
1391           memcpy(symbuf, p, sym_size);
1392           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1393           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1394           psym = &sym2;
1395         }
1396
1397       unsigned int st_name = psym->get_st_name();
1398       if (st_name >= sym_name_size)
1399         {
1400           dynobj->error(_("bad symbol name offset %u at %zu"),
1401                         st_name, i);
1402           continue;
1403         }
1404
1405       const char* name = sym_names + st_name;
1406
1407       bool is_ordinary;
1408       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1409                                                        &is_ordinary);
1410
1411       if (st_shndx != elfcpp::SHN_UNDEF)
1412         ++*defined;
1413
1414       Sized_symbol<size>* res;
1415
1416       if (versym == NULL)
1417         {
1418           Stringpool::Key name_key;
1419           name = this->namepool_.add(name, true, &name_key);
1420           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1421                                       false, *psym, st_shndx, is_ordinary,
1422                                       st_shndx);
1423         }
1424       else
1425         {
1426           // Read the version information.
1427
1428           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1429
1430           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1431           v &= elfcpp::VERSYM_VERSION;
1432
1433           // The Sun documentation says that V can be VER_NDX_LOCAL,
1434           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1435           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1436           // The old GNU linker will happily generate VER_NDX_LOCAL
1437           // for an undefined symbol.  I don't know what the Sun
1438           // linker will generate.
1439
1440           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1441               && st_shndx != elfcpp::SHN_UNDEF)
1442             {
1443               // This symbol should not be visible outside the object.
1444               continue;
1445             }
1446
1447           // At this point we are definitely going to add this symbol.
1448           Stringpool::Key name_key;
1449           name = this->namepool_.add(name, true, &name_key);
1450
1451           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1452               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1453             {
1454               // This symbol does not have a version.
1455               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1456                                           false, *psym, st_shndx, is_ordinary,
1457                                           st_shndx);
1458             }
1459           else
1460             {
1461               if (v >= version_map->size())
1462                 {
1463                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1464                                 i, v);
1465                   continue;
1466                 }
1467
1468               const char* version = (*version_map)[v];
1469               if (version == NULL)
1470                 {
1471                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1472                                 i, v);
1473                   continue;
1474                 }
1475
1476               Stringpool::Key version_key;
1477               version = this->namepool_.add(version, true, &version_key);
1478
1479               // If this is an absolute symbol, and the version name
1480               // and symbol name are the same, then this is the
1481               // version definition symbol.  These symbols exist to
1482               // support using -u to pull in particular versions.  We
1483               // do not want to record a version for them.
1484               if (st_shndx == elfcpp::SHN_ABS
1485                   && !is_ordinary
1486                   && name_key == version_key)
1487                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1488                                             false, *psym, st_shndx, is_ordinary,
1489                                             st_shndx);
1490               else
1491                 {
1492                   const bool is_default_version =
1493                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1494                   res = this->add_from_object(dynobj, name, name_key, version,
1495                                               version_key, is_default_version,
1496                                               *psym, st_shndx,
1497                                               is_ordinary, st_shndx);
1498                 }
1499             }
1500         }
1501
1502       // Note that it is possible that RES was overridden by an
1503       // earlier object, in which case it can't be aliased here.
1504       if (st_shndx != elfcpp::SHN_UNDEF
1505           && is_ordinary
1506           && psym->get_st_type() == elfcpp::STT_OBJECT
1507           && res->source() == Symbol::FROM_OBJECT
1508           && res->object() == dynobj)
1509         object_symbols.push_back(res);
1510
1511       if (sympointers != NULL)
1512         (*sympointers)[i] = res;
1513     }
1514
1515   this->record_weak_aliases(&object_symbols);
1516 }
1517
1518 // Add a symbol from a incremental object file.
1519
1520 template<int size, bool big_endian>
1521 Sized_symbol<size>*
1522 Symbol_table::add_from_incrobj(
1523     Object* obj,
1524     const char* name,
1525     const char* ver,
1526     elfcpp::Sym<size, big_endian>* sym)
1527 {
1528   unsigned int st_shndx = sym->get_st_shndx();
1529   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1530
1531   Stringpool::Key ver_key = 0;
1532   bool is_default_version = false;
1533   bool is_forced_local = false;
1534
1535   Stringpool::Key name_key;
1536   name = this->namepool_.add(name, true, &name_key);
1537
1538   Sized_symbol<size>* res;
1539   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1540                               is_default_version, *sym, st_shndx,
1541                               is_ordinary, st_shndx);
1542
1543   if (is_forced_local)
1544     this->force_local(res);
1545
1546   return res;
1547 }
1548
1549 // This is used to sort weak aliases.  We sort them first by section
1550 // index, then by offset, then by weak ahead of strong.
1551
1552 template<int size>
1553 class Weak_alias_sorter
1554 {
1555  public:
1556   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1557 };
1558
1559 template<int size>
1560 bool
1561 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1562                                     const Sized_symbol<size>* s2) const
1563 {
1564   bool is_ordinary;
1565   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1566   gold_assert(is_ordinary);
1567   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1568   gold_assert(is_ordinary);
1569   if (s1_shndx != s2_shndx)
1570     return s1_shndx < s2_shndx;
1571
1572   if (s1->value() != s2->value())
1573     return s1->value() < s2->value();
1574   if (s1->binding() != s2->binding())
1575     {
1576       if (s1->binding() == elfcpp::STB_WEAK)
1577         return true;
1578       if (s2->binding() == elfcpp::STB_WEAK)
1579         return false;
1580     }
1581   return std::string(s1->name()) < std::string(s2->name());
1582 }
1583
1584 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1585 // for any weak aliases, and record them so that if we add the weak
1586 // alias to the dynamic symbol table, we also add the corresponding
1587 // strong symbol.
1588
1589 template<int size>
1590 void
1591 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1592 {
1593   // Sort the vector by section index, then by offset, then by weak
1594   // ahead of strong.
1595   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1596
1597   // Walk through the vector.  For each weak definition, record
1598   // aliases.
1599   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1600          symbols->begin();
1601        p != symbols->end();
1602        ++p)
1603     {
1604       if ((*p)->binding() != elfcpp::STB_WEAK)
1605         continue;
1606
1607       // Build a circular list of weak aliases.  Each symbol points to
1608       // the next one in the circular list.
1609
1610       Sized_symbol<size>* from_sym = *p;
1611       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1612       for (q = p + 1; q != symbols->end(); ++q)
1613         {
1614           bool dummy;
1615           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1616               || (*q)->value() != from_sym->value())
1617             break;
1618
1619           this->weak_aliases_[from_sym] = *q;
1620           from_sym->set_has_alias();
1621           from_sym = *q;
1622         }
1623
1624       if (from_sym != *p)
1625         {
1626           this->weak_aliases_[from_sym] = *p;
1627           from_sym->set_has_alias();
1628         }
1629
1630       p = q - 1;
1631     }
1632 }
1633
1634 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1635 // true, then only create the symbol if there is a reference to it.
1636 // If this does not return NULL, it sets *POLDSYM to the existing
1637 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1638 // resolve the newly created symbol to the old one.  This
1639 // canonicalizes *PNAME and *PVERSION.
1640
1641 template<int size, bool big_endian>
1642 Sized_symbol<size>*
1643 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1644                                     bool only_if_ref,
1645                                     Sized_symbol<size>** poldsym,
1646                                     bool* resolve_oldsym)
1647 {
1648   *resolve_oldsym = false;
1649
1650   // If the caller didn't give us a version, see if we get one from
1651   // the version script.
1652   std::string v;
1653   bool is_default_version = false;
1654   if (*pversion == NULL)
1655     {
1656       bool is_global;
1657       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1658         {
1659           if (is_global && !v.empty())
1660             {
1661               *pversion = v.c_str();
1662               // If we get the version from a version script, then we
1663               // are also the default version.
1664               is_default_version = true;
1665             }
1666         }
1667     }
1668
1669   Symbol* oldsym;
1670   Sized_symbol<size>* sym;
1671
1672   bool add_to_table = false;
1673   typename Symbol_table_type::iterator add_loc = this->table_.end();
1674   bool add_def_to_table = false;
1675   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1676
1677   if (only_if_ref)
1678     {
1679       oldsym = this->lookup(*pname, *pversion);
1680       if (oldsym == NULL && is_default_version)
1681         oldsym = this->lookup(*pname, NULL);
1682       if (oldsym == NULL || !oldsym->is_undefined())
1683         return NULL;
1684
1685       *pname = oldsym->name();
1686       if (is_default_version)
1687         *pversion = this->namepool_.add(*pversion, true, NULL);
1688       else
1689         *pversion = oldsym->version();
1690     }
1691   else
1692     {
1693       // Canonicalize NAME and VERSION.
1694       Stringpool::Key name_key;
1695       *pname = this->namepool_.add(*pname, true, &name_key);
1696
1697       Stringpool::Key version_key = 0;
1698       if (*pversion != NULL)
1699         *pversion = this->namepool_.add(*pversion, true, &version_key);
1700
1701       Symbol* const snull = NULL;
1702       std::pair<typename Symbol_table_type::iterator, bool> ins =
1703         this->table_.insert(std::make_pair(std::make_pair(name_key,
1704                                                           version_key),
1705                                            snull));
1706
1707       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1708         std::make_pair(this->table_.end(), false);
1709       if (is_default_version)
1710         {
1711           const Stringpool::Key vnull = 0;
1712           insdefault =
1713             this->table_.insert(std::make_pair(std::make_pair(name_key,
1714                                                               vnull),
1715                                                snull));
1716         }
1717
1718       if (!ins.second)
1719         {
1720           // We already have a symbol table entry for NAME/VERSION.
1721           oldsym = ins.first->second;
1722           gold_assert(oldsym != NULL);
1723
1724           if (is_default_version)
1725             {
1726               Sized_symbol<size>* soldsym =
1727                 this->get_sized_symbol<size>(oldsym);
1728               this->define_default_version<size, big_endian>(soldsym,
1729                                                              insdefault.second,
1730                                                              insdefault.first);
1731             }
1732         }
1733       else
1734         {
1735           // We haven't seen this symbol before.
1736           gold_assert(ins.first->second == NULL);
1737
1738           add_to_table = true;
1739           add_loc = ins.first;
1740
1741           if (is_default_version && !insdefault.second)
1742             {
1743               // We are adding NAME/VERSION, and it is the default
1744               // version.  We already have an entry for NAME/NULL.
1745               oldsym = insdefault.first->second;
1746               *resolve_oldsym = true;
1747             }
1748           else
1749             {
1750               oldsym = NULL;
1751
1752               if (is_default_version)
1753                 {
1754                   add_def_to_table = true;
1755                   add_def_loc = insdefault.first;
1756                 }
1757             }
1758         }
1759     }
1760
1761   const Target& target = parameters->target();
1762   if (!target.has_make_symbol())
1763     sym = new Sized_symbol<size>();
1764   else
1765     {
1766       Sized_target<size, big_endian>* sized_target =
1767         parameters->sized_target<size, big_endian>();
1768       sym = sized_target->make_symbol();
1769       if (sym == NULL)
1770         return NULL;
1771     }
1772
1773   if (add_to_table)
1774     add_loc->second = sym;
1775   else
1776     gold_assert(oldsym != NULL);
1777
1778   if (add_def_to_table)
1779     add_def_loc->second = sym;
1780
1781   *poldsym = this->get_sized_symbol<size>(oldsym);
1782
1783   return sym;
1784 }
1785
1786 // Define a symbol based on an Output_data.
1787
1788 Symbol*
1789 Symbol_table::define_in_output_data(const char* name,
1790                                     const char* version,
1791                                     Defined defined,
1792                                     Output_data* od,
1793                                     uint64_t value,
1794                                     uint64_t symsize,
1795                                     elfcpp::STT type,
1796                                     elfcpp::STB binding,
1797                                     elfcpp::STV visibility,
1798                                     unsigned char nonvis,
1799                                     bool offset_is_from_end,
1800                                     bool only_if_ref)
1801 {
1802   if (parameters->target().get_size() == 32)
1803     {
1804 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1805       return this->do_define_in_output_data<32>(name, version, defined, od,
1806                                                 value, symsize, type, binding,
1807                                                 visibility, nonvis,
1808                                                 offset_is_from_end,
1809                                                 only_if_ref);
1810 #else
1811       gold_unreachable();
1812 #endif
1813     }
1814   else if (parameters->target().get_size() == 64)
1815     {
1816 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1817       return this->do_define_in_output_data<64>(name, version, defined, od,
1818                                                 value, symsize, type, binding,
1819                                                 visibility, nonvis,
1820                                                 offset_is_from_end,
1821                                                 only_if_ref);
1822 #else
1823       gold_unreachable();
1824 #endif
1825     }
1826   else
1827     gold_unreachable();
1828 }
1829
1830 // Define a symbol in an Output_data, sized version.
1831
1832 template<int size>
1833 Sized_symbol<size>*
1834 Symbol_table::do_define_in_output_data(
1835     const char* name,
1836     const char* version,
1837     Defined defined,
1838     Output_data* od,
1839     typename elfcpp::Elf_types<size>::Elf_Addr value,
1840     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1841     elfcpp::STT type,
1842     elfcpp::STB binding,
1843     elfcpp::STV visibility,
1844     unsigned char nonvis,
1845     bool offset_is_from_end,
1846     bool only_if_ref)
1847 {
1848   Sized_symbol<size>* sym;
1849   Sized_symbol<size>* oldsym;
1850   bool resolve_oldsym;
1851
1852   if (parameters->target().is_big_endian())
1853     {
1854 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1855       sym = this->define_special_symbol<size, true>(&name, &version,
1856                                                     only_if_ref, &oldsym,
1857                                                     &resolve_oldsym);
1858 #else
1859       gold_unreachable();
1860 #endif
1861     }
1862   else
1863     {
1864 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1865       sym = this->define_special_symbol<size, false>(&name, &version,
1866                                                      only_if_ref, &oldsym,
1867                                                      &resolve_oldsym);
1868 #else
1869       gold_unreachable();
1870 #endif
1871     }
1872
1873   if (sym == NULL)
1874     return NULL;
1875
1876   sym->init_output_data(name, version, od, value, symsize, type, binding,
1877                         visibility, nonvis, offset_is_from_end,
1878                         defined == PREDEFINED);
1879
1880   if (oldsym == NULL)
1881     {
1882       if (binding == elfcpp::STB_LOCAL
1883           || this->version_script_.symbol_is_local(name))
1884         this->force_local(sym);
1885       else if (version != NULL)
1886         sym->set_is_default();
1887       return sym;
1888     }
1889
1890   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1891     this->override_with_special(oldsym, sym);
1892
1893   if (resolve_oldsym)
1894     return sym;
1895   else
1896     {
1897       delete sym;
1898       return oldsym;
1899     }
1900 }
1901
1902 // Define a symbol based on an Output_segment.
1903
1904 Symbol*
1905 Symbol_table::define_in_output_segment(const char* name,
1906                                        const char* version,
1907                                        Defined defined,
1908                                        Output_segment* os,
1909                                        uint64_t value,
1910                                        uint64_t symsize,
1911                                        elfcpp::STT type,
1912                                        elfcpp::STB binding,
1913                                        elfcpp::STV visibility,
1914                                        unsigned char nonvis,
1915                                        Symbol::Segment_offset_base offset_base,
1916                                        bool only_if_ref)
1917 {
1918   if (parameters->target().get_size() == 32)
1919     {
1920 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1921       return this->do_define_in_output_segment<32>(name, version, defined, os,
1922                                                    value, symsize, type,
1923                                                    binding, visibility, nonvis,
1924                                                    offset_base, only_if_ref);
1925 #else
1926       gold_unreachable();
1927 #endif
1928     }
1929   else if (parameters->target().get_size() == 64)
1930     {
1931 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1932       return this->do_define_in_output_segment<64>(name, version, defined, os,
1933                                                    value, symsize, type,
1934                                                    binding, visibility, nonvis,
1935                                                    offset_base, only_if_ref);
1936 #else
1937       gold_unreachable();
1938 #endif
1939     }
1940   else
1941     gold_unreachable();
1942 }
1943
1944 // Define a symbol in an Output_segment, sized version.
1945
1946 template<int size>
1947 Sized_symbol<size>*
1948 Symbol_table::do_define_in_output_segment(
1949     const char* name,
1950     const char* version,
1951     Defined defined,
1952     Output_segment* os,
1953     typename elfcpp::Elf_types<size>::Elf_Addr value,
1954     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1955     elfcpp::STT type,
1956     elfcpp::STB binding,
1957     elfcpp::STV visibility,
1958     unsigned char nonvis,
1959     Symbol::Segment_offset_base offset_base,
1960     bool only_if_ref)
1961 {
1962   Sized_symbol<size>* sym;
1963   Sized_symbol<size>* oldsym;
1964   bool resolve_oldsym;
1965
1966   if (parameters->target().is_big_endian())
1967     {
1968 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1969       sym = this->define_special_symbol<size, true>(&name, &version,
1970                                                     only_if_ref, &oldsym,
1971                                                     &resolve_oldsym);
1972 #else
1973       gold_unreachable();
1974 #endif
1975     }
1976   else
1977     {
1978 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1979       sym = this->define_special_symbol<size, false>(&name, &version,
1980                                                      only_if_ref, &oldsym,
1981                                                      &resolve_oldsym);
1982 #else
1983       gold_unreachable();
1984 #endif
1985     }
1986
1987   if (sym == NULL)
1988     return NULL;
1989
1990   sym->init_output_segment(name, version, os, value, symsize, type, binding,
1991                            visibility, nonvis, offset_base,
1992                            defined == PREDEFINED);
1993
1994   if (oldsym == NULL)
1995     {
1996       if (binding == elfcpp::STB_LOCAL
1997           || this->version_script_.symbol_is_local(name))
1998         this->force_local(sym);
1999       else if (version != NULL)
2000         sym->set_is_default();
2001       return sym;
2002     }
2003
2004   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2005     this->override_with_special(oldsym, sym);
2006
2007   if (resolve_oldsym)
2008     return sym;
2009   else
2010     {
2011       delete sym;
2012       return oldsym;
2013     }
2014 }
2015
2016 // Define a special symbol with a constant value.  It is a multiple
2017 // definition error if this symbol is already defined.
2018
2019 Symbol*
2020 Symbol_table::define_as_constant(const char* name,
2021                                  const char* version,
2022                                  Defined defined,
2023                                  uint64_t value,
2024                                  uint64_t symsize,
2025                                  elfcpp::STT type,
2026                                  elfcpp::STB binding,
2027                                  elfcpp::STV visibility,
2028                                  unsigned char nonvis,
2029                                  bool only_if_ref,
2030                                  bool force_override)
2031 {
2032   if (parameters->target().get_size() == 32)
2033     {
2034 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2035       return this->do_define_as_constant<32>(name, version, defined, value,
2036                                              symsize, type, binding,
2037                                              visibility, nonvis, only_if_ref,
2038                                              force_override);
2039 #else
2040       gold_unreachable();
2041 #endif
2042     }
2043   else if (parameters->target().get_size() == 64)
2044     {
2045 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2046       return this->do_define_as_constant<64>(name, version, defined, value,
2047                                              symsize, type, binding,
2048                                              visibility, nonvis, only_if_ref,
2049                                              force_override);
2050 #else
2051       gold_unreachable();
2052 #endif
2053     }
2054   else
2055     gold_unreachable();
2056 }
2057
2058 // Define a symbol as a constant, sized version.
2059
2060 template<int size>
2061 Sized_symbol<size>*
2062 Symbol_table::do_define_as_constant(
2063     const char* name,
2064     const char* version,
2065     Defined defined,
2066     typename elfcpp::Elf_types<size>::Elf_Addr value,
2067     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2068     elfcpp::STT type,
2069     elfcpp::STB binding,
2070     elfcpp::STV visibility,
2071     unsigned char nonvis,
2072     bool only_if_ref,
2073     bool force_override)
2074 {
2075   Sized_symbol<size>* sym;
2076   Sized_symbol<size>* oldsym;
2077   bool resolve_oldsym;
2078
2079   if (parameters->target().is_big_endian())
2080     {
2081 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2082       sym = this->define_special_symbol<size, true>(&name, &version,
2083                                                     only_if_ref, &oldsym,
2084                                                     &resolve_oldsym);
2085 #else
2086       gold_unreachable();
2087 #endif
2088     }
2089   else
2090     {
2091 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2092       sym = this->define_special_symbol<size, false>(&name, &version,
2093                                                      only_if_ref, &oldsym,
2094                                                      &resolve_oldsym);
2095 #else
2096       gold_unreachable();
2097 #endif
2098     }
2099
2100   if (sym == NULL)
2101     return NULL;
2102
2103   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2104                      nonvis, defined == PREDEFINED);
2105
2106   if (oldsym == NULL)
2107     {
2108       // Version symbols are absolute symbols with name == version.
2109       // We don't want to force them to be local.
2110       if ((version == NULL
2111            || name != version
2112            || value != 0)
2113           && (binding == elfcpp::STB_LOCAL
2114               || this->version_script_.symbol_is_local(name)))
2115         this->force_local(sym);
2116       else if (version != NULL
2117                && (name != version || value != 0))
2118         sym->set_is_default();
2119       return sym;
2120     }
2121
2122   if (force_override
2123       || Symbol_table::should_override_with_special(oldsym, type, defined))
2124     this->override_with_special(oldsym, sym);
2125
2126   if (resolve_oldsym)
2127     return sym;
2128   else
2129     {
2130       delete sym;
2131       return oldsym;
2132     }
2133 }
2134
2135 // Define a set of symbols in output sections.
2136
2137 void
2138 Symbol_table::define_symbols(const Layout* layout, int count,
2139                              const Define_symbol_in_section* p,
2140                              bool only_if_ref)
2141 {
2142   for (int i = 0; i < count; ++i, ++p)
2143     {
2144       Output_section* os = layout->find_output_section(p->output_section);
2145       if (os != NULL)
2146         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2147                                     p->size, p->type, p->binding,
2148                                     p->visibility, p->nonvis,
2149                                     p->offset_is_from_end,
2150                                     only_if_ref || p->only_if_ref);
2151       else
2152         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2153                                  p->type, p->binding, p->visibility, p->nonvis,
2154                                  only_if_ref || p->only_if_ref,
2155                                  false);
2156     }
2157 }
2158
2159 // Define a set of symbols in output segments.
2160
2161 void
2162 Symbol_table::define_symbols(const Layout* layout, int count,
2163                              const Define_symbol_in_segment* p,
2164                              bool only_if_ref)
2165 {
2166   for (int i = 0; i < count; ++i, ++p)
2167     {
2168       Output_segment* os = layout->find_output_segment(p->segment_type,
2169                                                        p->segment_flags_set,
2170                                                        p->segment_flags_clear);
2171       if (os != NULL)
2172         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2173                                        p->size, p->type, p->binding,
2174                                        p->visibility, p->nonvis,
2175                                        p->offset_base,
2176                                        only_if_ref || p->only_if_ref);
2177       else
2178         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2179                                  p->type, p->binding, p->visibility, p->nonvis,
2180                                  only_if_ref || p->only_if_ref,
2181                                  false);
2182     }
2183 }
2184
2185 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2186 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2187 // the offset within POSD.
2188
2189 template<int size>
2190 void
2191 Symbol_table::define_with_copy_reloc(
2192     Sized_symbol<size>* csym,
2193     Output_data* posd,
2194     typename elfcpp::Elf_types<size>::Elf_Addr value)
2195 {
2196   gold_assert(csym->is_from_dynobj());
2197   gold_assert(!csym->is_copied_from_dynobj());
2198   Object* object = csym->object();
2199   gold_assert(object->is_dynamic());
2200   Dynobj* dynobj = static_cast<Dynobj*>(object);
2201
2202   // Our copied variable has to override any variable in a shared
2203   // library.
2204   elfcpp::STB binding = csym->binding();
2205   if (binding == elfcpp::STB_WEAK)
2206     binding = elfcpp::STB_GLOBAL;
2207
2208   this->define_in_output_data(csym->name(), csym->version(), COPY,
2209                               posd, value, csym->symsize(),
2210                               csym->type(), binding,
2211                               csym->visibility(), csym->nonvis(),
2212                               false, false);
2213
2214   csym->set_is_copied_from_dynobj();
2215   csym->set_needs_dynsym_entry();
2216
2217   this->copied_symbol_dynobjs_[csym] = dynobj;
2218
2219   // We have now defined all aliases, but we have not entered them all
2220   // in the copied_symbol_dynobjs_ map.
2221   if (csym->has_alias())
2222     {
2223       Symbol* sym = csym;
2224       while (true)
2225         {
2226           sym = this->weak_aliases_[sym];
2227           if (sym == csym)
2228             break;
2229           gold_assert(sym->output_data() == posd);
2230
2231           sym->set_is_copied_from_dynobj();
2232           this->copied_symbol_dynobjs_[sym] = dynobj;
2233         }
2234     }
2235 }
2236
2237 // SYM is defined using a COPY reloc.  Return the dynamic object where
2238 // the original definition was found.
2239
2240 Dynobj*
2241 Symbol_table::get_copy_source(const Symbol* sym) const
2242 {
2243   gold_assert(sym->is_copied_from_dynobj());
2244   Copied_symbol_dynobjs::const_iterator p =
2245     this->copied_symbol_dynobjs_.find(sym);
2246   gold_assert(p != this->copied_symbol_dynobjs_.end());
2247   return p->second;
2248 }
2249
2250 // Add any undefined symbols named on the command line.
2251
2252 void
2253 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2254 {
2255   if (parameters->options().any_undefined()
2256       || layout->script_options()->any_unreferenced())
2257     {
2258       if (parameters->target().get_size() == 32)
2259         {
2260 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2261           this->do_add_undefined_symbols_from_command_line<32>(layout);
2262 #else
2263           gold_unreachable();
2264 #endif
2265         }
2266       else if (parameters->target().get_size() == 64)
2267         {
2268 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2269           this->do_add_undefined_symbols_from_command_line<64>(layout);
2270 #else
2271           gold_unreachable();
2272 #endif
2273         }
2274       else
2275         gold_unreachable();
2276     }
2277 }
2278
2279 template<int size>
2280 void
2281 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2282 {
2283   for (options::String_set::const_iterator p =
2284          parameters->options().undefined_begin();
2285        p != parameters->options().undefined_end();
2286        ++p)
2287     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2288
2289   for (Script_options::referenced_const_iterator p =
2290          layout->script_options()->referenced_begin();
2291        p != layout->script_options()->referenced_end();
2292        ++p)
2293     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2294 }
2295
2296 template<int size>
2297 void
2298 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2299 {
2300   if (this->lookup(name) != NULL)
2301     return;
2302
2303   const char* version = NULL;
2304
2305   Sized_symbol<size>* sym;
2306   Sized_symbol<size>* oldsym;
2307   bool resolve_oldsym;
2308   if (parameters->target().is_big_endian())
2309     {
2310 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2311       sym = this->define_special_symbol<size, true>(&name, &version,
2312                                                     false, &oldsym,
2313                                                     &resolve_oldsym);
2314 #else
2315       gold_unreachable();
2316 #endif
2317     }
2318   else
2319     {
2320 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2321       sym = this->define_special_symbol<size, false>(&name, &version,
2322                                                      false, &oldsym,
2323                                                      &resolve_oldsym);
2324 #else
2325       gold_unreachable();
2326 #endif
2327     }
2328
2329   gold_assert(oldsym == NULL);
2330
2331   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2332                       elfcpp::STV_DEFAULT, 0);
2333   ++this->saw_undefined_;
2334 }
2335
2336 // Set the dynamic symbol indexes.  INDEX is the index of the first
2337 // global dynamic symbol.  Pointers to the symbols are stored into the
2338 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2339 // updated dynamic symbol index.
2340
2341 unsigned int
2342 Symbol_table::set_dynsym_indexes(unsigned int index,
2343                                  std::vector<Symbol*>* syms,
2344                                  Stringpool* dynpool,
2345                                  Versions* versions)
2346 {
2347   for (Symbol_table_type::iterator p = this->table_.begin();
2348        p != this->table_.end();
2349        ++p)
2350     {
2351       Symbol* sym = p->second;
2352
2353       // Note that SYM may already have a dynamic symbol index, since
2354       // some symbols appear more than once in the symbol table, with
2355       // and without a version.
2356
2357       if (!sym->should_add_dynsym_entry(this))
2358         sym->set_dynsym_index(-1U);
2359       else if (!sym->has_dynsym_index())
2360         {
2361           sym->set_dynsym_index(index);
2362           ++index;
2363           syms->push_back(sym);
2364           dynpool->add(sym->name(), false, NULL);
2365
2366           // Record any version information.
2367           if (sym->version() != NULL)
2368             versions->record_version(this, dynpool, sym);
2369
2370           // If the symbol is defined in a dynamic object and is
2371           // referenced in a regular object, then mark the dynamic
2372           // object as needed.  This is used to implement --as-needed.
2373           if (sym->is_from_dynobj() && sym->in_reg())
2374             sym->object()->set_is_needed();
2375         }
2376     }
2377
2378   // Finish up the versions.  In some cases this may add new dynamic
2379   // symbols.
2380   index = versions->finalize(this, index, syms);
2381
2382   return index;
2383 }
2384
2385 // Set the final values for all the symbols.  The index of the first
2386 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2387 // file offset OFF.  Add their names to POOL.  Return the new file
2388 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2389
2390 off_t
2391 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2392                        size_t dyncount, Stringpool* pool,
2393                        unsigned int* plocal_symcount)
2394 {
2395   off_t ret;
2396
2397   gold_assert(*plocal_symcount != 0);
2398   this->first_global_index_ = *plocal_symcount;
2399
2400   this->dynamic_offset_ = dynoff;
2401   this->first_dynamic_global_index_ = dyn_global_index;
2402   this->dynamic_count_ = dyncount;
2403
2404   if (parameters->target().get_size() == 32)
2405     {
2406 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2407       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2408 #else
2409       gold_unreachable();
2410 #endif
2411     }
2412   else if (parameters->target().get_size() == 64)
2413     {
2414 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2415       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2416 #else
2417       gold_unreachable();
2418 #endif
2419     }
2420   else
2421     gold_unreachable();
2422
2423   // Now that we have the final symbol table, we can reliably note
2424   // which symbols should get warnings.
2425   this->warnings_.note_warnings(this);
2426
2427   return ret;
2428 }
2429
2430 // SYM is going into the symbol table at *PINDEX.  Add the name to
2431 // POOL, update *PINDEX and *POFF.
2432
2433 template<int size>
2434 void
2435 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2436                                   unsigned int* pindex, off_t* poff)
2437 {
2438   sym->set_symtab_index(*pindex);
2439   if (sym->version() == NULL || !parameters->options().relocatable())
2440     pool->add(sym->name(), false, NULL);
2441   else
2442     pool->add(sym->versioned_name(), true, NULL);
2443   ++*pindex;
2444   *poff += elfcpp::Elf_sizes<size>::sym_size;
2445 }
2446
2447 // Set the final value for all the symbols.  This is called after
2448 // Layout::finalize, so all the output sections have their final
2449 // address.
2450
2451 template<int size>
2452 off_t
2453 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2454                              unsigned int* plocal_symcount)
2455 {
2456   off = align_address(off, size >> 3);
2457   this->offset_ = off;
2458
2459   unsigned int index = *plocal_symcount;
2460   const unsigned int orig_index = index;
2461
2462   // First do all the symbols which have been forced to be local, as
2463   // they must appear before all global symbols.
2464   for (Forced_locals::iterator p = this->forced_locals_.begin();
2465        p != this->forced_locals_.end();
2466        ++p)
2467     {
2468       Symbol* sym = *p;
2469       gold_assert(sym->is_forced_local());
2470       if (this->sized_finalize_symbol<size>(sym))
2471         {
2472           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2473           ++*plocal_symcount;
2474         }
2475     }
2476
2477   // Now do all the remaining symbols.
2478   for (Symbol_table_type::iterator p = this->table_.begin();
2479        p != this->table_.end();
2480        ++p)
2481     {
2482       Symbol* sym = p->second;
2483       if (this->sized_finalize_symbol<size>(sym))
2484         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2485     }
2486
2487   this->output_count_ = index - orig_index;
2488
2489   return off;
2490 }
2491
2492 // Compute the final value of SYM and store status in location PSTATUS.
2493 // During relaxation, this may be called multiple times for a symbol to
2494 // compute its would-be final value in each relaxation pass.
2495
2496 template<int size>
2497 typename Sized_symbol<size>::Value_type
2498 Symbol_table::compute_final_value(
2499     const Sized_symbol<size>* sym,
2500     Compute_final_value_status* pstatus) const
2501 {
2502   typedef typename Sized_symbol<size>::Value_type Value_type;
2503   Value_type value;
2504
2505   switch (sym->source())
2506     {
2507     case Symbol::FROM_OBJECT:
2508       {
2509         bool is_ordinary;
2510         unsigned int shndx = sym->shndx(&is_ordinary);
2511
2512         if (!is_ordinary
2513             && shndx != elfcpp::SHN_ABS
2514             && !Symbol::is_common_shndx(shndx))
2515           {
2516             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2517             return 0;
2518           }
2519
2520         Object* symobj = sym->object();
2521         if (symobj->is_dynamic())
2522           {
2523             value = 0;
2524             shndx = elfcpp::SHN_UNDEF;
2525           }
2526         else if (symobj->pluginobj() != NULL)
2527           {
2528             value = 0;
2529             shndx = elfcpp::SHN_UNDEF;
2530           }
2531         else if (shndx == elfcpp::SHN_UNDEF)
2532           value = 0;
2533         else if (!is_ordinary
2534                  && (shndx == elfcpp::SHN_ABS
2535                      || Symbol::is_common_shndx(shndx)))
2536           value = sym->value();
2537         else
2538           {
2539             Relobj* relobj = static_cast<Relobj*>(symobj);
2540             Output_section* os = relobj->output_section(shndx);
2541
2542             if (this->is_section_folded(relobj, shndx))
2543               {
2544                 gold_assert(os == NULL);
2545                 // Get the os of the section it is folded onto.
2546                 Section_id folded = this->icf_->get_folded_section(relobj,
2547                                                                    shndx);
2548                 gold_assert(folded.first != NULL);
2549                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2550                 unsigned folded_shndx = folded.second;
2551
2552                 os = folded_obj->output_section(folded_shndx);  
2553                 gold_assert(os != NULL);
2554
2555                 // Replace (relobj, shndx) with canonical ICF input section.
2556                 shndx = folded_shndx;
2557                 relobj = folded_obj;
2558               }
2559
2560             uint64_t secoff64 = relobj->output_section_offset(shndx);
2561             if (os == NULL)
2562               {
2563                 bool static_or_reloc = (parameters->doing_static_link() ||
2564                                         parameters->options().relocatable());
2565                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2566
2567                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2568                 return 0;
2569               }
2570
2571             if (secoff64 == -1ULL)
2572               {
2573                 // The section needs special handling (e.g., a merge section).
2574
2575                 value = os->output_address(relobj, shndx, sym->value());
2576               }
2577             else
2578               {
2579                 Value_type secoff =
2580                   convert_types<Value_type, uint64_t>(secoff64);
2581                 if (sym->type() == elfcpp::STT_TLS)
2582                   value = sym->value() + os->tls_offset() + secoff;
2583                 else
2584                   value = sym->value() + os->address() + secoff;
2585               }
2586           }
2587       }
2588       break;
2589
2590     case Symbol::IN_OUTPUT_DATA:
2591       {
2592         Output_data* od = sym->output_data();
2593         value = sym->value();
2594         if (sym->type() != elfcpp::STT_TLS)
2595           value += od->address();
2596         else
2597           {
2598             Output_section* os = od->output_section();
2599             gold_assert(os != NULL);
2600             value += os->tls_offset() + (od->address() - os->address());
2601           }
2602         if (sym->offset_is_from_end())
2603           value += od->data_size();
2604       }
2605       break;
2606
2607     case Symbol::IN_OUTPUT_SEGMENT:
2608       {
2609         Output_segment* os = sym->output_segment();
2610         value = sym->value();
2611         if (sym->type() != elfcpp::STT_TLS)
2612           value += os->vaddr();
2613         switch (sym->offset_base())
2614           {
2615           case Symbol::SEGMENT_START:
2616             break;
2617           case Symbol::SEGMENT_END:
2618             value += os->memsz();
2619             break;
2620           case Symbol::SEGMENT_BSS:
2621             value += os->filesz();
2622             break;
2623           default:
2624             gold_unreachable();
2625           }
2626       }
2627       break;
2628
2629     case Symbol::IS_CONSTANT:
2630       value = sym->value();
2631       break;
2632
2633     case Symbol::IS_UNDEFINED:
2634       value = 0;
2635       break;
2636
2637     default:
2638       gold_unreachable();
2639     }
2640
2641   *pstatus = CFVS_OK;
2642   return value;
2643 }
2644
2645 // Finalize the symbol SYM.  This returns true if the symbol should be
2646 // added to the symbol table, false otherwise.
2647
2648 template<int size>
2649 bool
2650 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2651 {
2652   typedef typename Sized_symbol<size>::Value_type Value_type;
2653
2654   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2655
2656   // The default version of a symbol may appear twice in the symbol
2657   // table.  We only need to finalize it once.
2658   if (sym->has_symtab_index())
2659     return false;
2660
2661   if (!sym->in_reg())
2662     {
2663       gold_assert(!sym->has_symtab_index());
2664       sym->set_symtab_index(-1U);
2665       gold_assert(sym->dynsym_index() == -1U);
2666       return false;
2667     }
2668
2669   // If the symbol is only present on plugin files, the plugin decided we
2670   // don't need it.
2671   if (!sym->in_real_elf())
2672     {
2673       gold_assert(!sym->has_symtab_index());
2674       sym->set_symtab_index(-1U);
2675       return false;
2676     }
2677
2678   // Compute final symbol value.
2679   Compute_final_value_status status;
2680   Value_type value = this->compute_final_value(sym, &status);
2681
2682   switch (status)
2683     {
2684     case CFVS_OK:
2685       break;
2686     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2687       {
2688         bool is_ordinary;
2689         unsigned int shndx = sym->shndx(&is_ordinary);
2690         gold_error(_("%s: unsupported symbol section 0x%x"),
2691                    sym->demangled_name().c_str(), shndx);
2692       }
2693       break;
2694     case CFVS_NO_OUTPUT_SECTION:
2695       sym->set_symtab_index(-1U);
2696       return false;
2697     default:
2698       gold_unreachable();
2699     }
2700
2701   sym->set_value(value);
2702
2703   if (parameters->options().strip_all()
2704       || !parameters->options().should_retain_symbol(sym->name()))
2705     {
2706       sym->set_symtab_index(-1U);
2707       return false;
2708     }
2709
2710   return true;
2711 }
2712
2713 // Write out the global symbols.
2714
2715 void
2716 Symbol_table::write_globals(const Stringpool* sympool,
2717                             const Stringpool* dynpool,
2718                             Output_symtab_xindex* symtab_xindex,
2719                             Output_symtab_xindex* dynsym_xindex,
2720                             Output_file* of) const
2721 {
2722   switch (parameters->size_and_endianness())
2723     {
2724 #ifdef HAVE_TARGET_32_LITTLE
2725     case Parameters::TARGET_32_LITTLE:
2726       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2727                                            dynsym_xindex, of);
2728       break;
2729 #endif
2730 #ifdef HAVE_TARGET_32_BIG
2731     case Parameters::TARGET_32_BIG:
2732       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2733                                           dynsym_xindex, of);
2734       break;
2735 #endif
2736 #ifdef HAVE_TARGET_64_LITTLE
2737     case Parameters::TARGET_64_LITTLE:
2738       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2739                                            dynsym_xindex, of);
2740       break;
2741 #endif
2742 #ifdef HAVE_TARGET_64_BIG
2743     case Parameters::TARGET_64_BIG:
2744       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2745                                           dynsym_xindex, of);
2746       break;
2747 #endif
2748     default:
2749       gold_unreachable();
2750     }
2751 }
2752
2753 // Write out the global symbols.
2754
2755 template<int size, bool big_endian>
2756 void
2757 Symbol_table::sized_write_globals(const Stringpool* sympool,
2758                                   const Stringpool* dynpool,
2759                                   Output_symtab_xindex* symtab_xindex,
2760                                   Output_symtab_xindex* dynsym_xindex,
2761                                   Output_file* of) const
2762 {
2763   const Target& target = parameters->target();
2764
2765   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2766
2767   const unsigned int output_count = this->output_count_;
2768   const section_size_type oview_size = output_count * sym_size;
2769   const unsigned int first_global_index = this->first_global_index_;
2770   unsigned char* psyms;
2771   if (this->offset_ == 0 || output_count == 0)
2772     psyms = NULL;
2773   else
2774     psyms = of->get_output_view(this->offset_, oview_size);
2775
2776   const unsigned int dynamic_count = this->dynamic_count_;
2777   const section_size_type dynamic_size = dynamic_count * sym_size;
2778   const unsigned int first_dynamic_global_index =
2779     this->first_dynamic_global_index_;
2780   unsigned char* dynamic_view;
2781   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2782     dynamic_view = NULL;
2783   else
2784     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2785
2786   for (Symbol_table_type::const_iterator p = this->table_.begin();
2787        p != this->table_.end();
2788        ++p)
2789     {
2790       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2791
2792       // Possibly warn about unresolved symbols in shared libraries.
2793       this->warn_about_undefined_dynobj_symbol(sym);
2794
2795       unsigned int sym_index = sym->symtab_index();
2796       unsigned int dynsym_index;
2797       if (dynamic_view == NULL)
2798         dynsym_index = -1U;
2799       else
2800         dynsym_index = sym->dynsym_index();
2801
2802       if (sym_index == -1U && dynsym_index == -1U)
2803         {
2804           // This symbol is not included in the output file.
2805           continue;
2806         }
2807
2808       unsigned int shndx;
2809       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2810       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2811       elfcpp::STB binding = sym->binding();
2812       switch (sym->source())
2813         {
2814         case Symbol::FROM_OBJECT:
2815           {
2816             bool is_ordinary;
2817             unsigned int in_shndx = sym->shndx(&is_ordinary);
2818
2819             if (!is_ordinary
2820                 && in_shndx != elfcpp::SHN_ABS
2821                 && !Symbol::is_common_shndx(in_shndx))
2822               {
2823                 gold_error(_("%s: unsupported symbol section 0x%x"),
2824                            sym->demangled_name().c_str(), in_shndx);
2825                 shndx = in_shndx;
2826               }
2827             else
2828               {
2829                 Object* symobj = sym->object();
2830                 if (symobj->is_dynamic())
2831                   {
2832                     if (sym->needs_dynsym_value())
2833                       dynsym_value = target.dynsym_value(sym);
2834                     shndx = elfcpp::SHN_UNDEF;
2835                     if (sym->is_undef_binding_weak())
2836                       binding = elfcpp::STB_WEAK;
2837                     else
2838                       binding = elfcpp::STB_GLOBAL;
2839                   }
2840                 else if (symobj->pluginobj() != NULL)
2841                   shndx = elfcpp::SHN_UNDEF;
2842                 else if (in_shndx == elfcpp::SHN_UNDEF
2843                          || (!is_ordinary
2844                              && (in_shndx == elfcpp::SHN_ABS
2845                                  || Symbol::is_common_shndx(in_shndx))))
2846                   shndx = in_shndx;
2847                 else
2848                   {
2849                     Relobj* relobj = static_cast<Relobj*>(symobj);
2850                     Output_section* os = relobj->output_section(in_shndx);
2851                     if (this->is_section_folded(relobj, in_shndx))
2852                       {
2853                         // This global symbol must be written out even though
2854                         // it is folded.
2855                         // Get the os of the section it is folded onto.
2856                         Section_id folded =
2857                              this->icf_->get_folded_section(relobj, in_shndx);
2858                         gold_assert(folded.first !=NULL);
2859                         Relobj* folded_obj = 
2860                           reinterpret_cast<Relobj*>(folded.first);
2861                         os = folded_obj->output_section(folded.second);  
2862                         gold_assert(os != NULL);
2863                       }
2864                     gold_assert(os != NULL);
2865                     shndx = os->out_shndx();
2866
2867                     if (shndx >= elfcpp::SHN_LORESERVE)
2868                       {
2869                         if (sym_index != -1U)
2870                           symtab_xindex->add(sym_index, shndx);
2871                         if (dynsym_index != -1U)
2872                           dynsym_xindex->add(dynsym_index, shndx);
2873                         shndx = elfcpp::SHN_XINDEX;
2874                       }
2875
2876                     // In object files symbol values are section
2877                     // relative.
2878                     if (parameters->options().relocatable())
2879                       sym_value -= os->address();
2880                   }
2881               }
2882           }
2883           break;
2884
2885         case Symbol::IN_OUTPUT_DATA:
2886           shndx = sym->output_data()->out_shndx();
2887           if (shndx >= elfcpp::SHN_LORESERVE)
2888             {
2889               if (sym_index != -1U)
2890                 symtab_xindex->add(sym_index, shndx);
2891               if (dynsym_index != -1U)
2892                 dynsym_xindex->add(dynsym_index, shndx);
2893               shndx = elfcpp::SHN_XINDEX;
2894             }
2895           break;
2896
2897         case Symbol::IN_OUTPUT_SEGMENT:
2898           shndx = elfcpp::SHN_ABS;
2899           break;
2900
2901         case Symbol::IS_CONSTANT:
2902           shndx = elfcpp::SHN_ABS;
2903           break;
2904
2905         case Symbol::IS_UNDEFINED:
2906           shndx = elfcpp::SHN_UNDEF;
2907           break;
2908
2909         default:
2910           gold_unreachable();
2911         }
2912
2913       if (sym_index != -1U)
2914         {
2915           sym_index -= first_global_index;
2916           gold_assert(sym_index < output_count);
2917           unsigned char* ps = psyms + (sym_index * sym_size);
2918           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2919                                                      binding, sympool, ps);
2920         }
2921
2922       if (dynsym_index != -1U)
2923         {
2924           dynsym_index -= first_dynamic_global_index;
2925           gold_assert(dynsym_index < dynamic_count);
2926           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2927           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2928                                                      binding, dynpool, pd);
2929         }
2930     }
2931
2932   of->write_output_view(this->offset_, oview_size, psyms);
2933   if (dynamic_view != NULL)
2934     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2935 }
2936
2937 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2938 // strtab holding the name.
2939
2940 template<int size, bool big_endian>
2941 void
2942 Symbol_table::sized_write_symbol(
2943     Sized_symbol<size>* sym,
2944     typename elfcpp::Elf_types<size>::Elf_Addr value,
2945     unsigned int shndx,
2946     elfcpp::STB binding,
2947     const Stringpool* pool,
2948     unsigned char* p) const
2949 {
2950   elfcpp::Sym_write<size, big_endian> osym(p);
2951   if (sym->version() == NULL || !parameters->options().relocatable())
2952     osym.put_st_name(pool->get_offset(sym->name()));
2953   else
2954     osym.put_st_name(pool->get_offset(sym->versioned_name()));
2955   osym.put_st_value(value);
2956   // Use a symbol size of zero for undefined symbols from shared libraries.
2957   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2958     osym.put_st_size(0);
2959   else
2960     osym.put_st_size(sym->symsize());
2961   elfcpp::STT type = sym->type();
2962   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2963   if (type == elfcpp::STT_GNU_IFUNC
2964       && sym->is_from_dynobj())
2965     type = elfcpp::STT_FUNC;
2966   // A version script may have overridden the default binding.
2967   if (sym->is_forced_local())
2968     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2969   else
2970     osym.put_st_info(elfcpp::elf_st_info(binding, type));
2971   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2972   osym.put_st_shndx(shndx);
2973 }
2974
2975 // Check for unresolved symbols in shared libraries.  This is
2976 // controlled by the --allow-shlib-undefined option.
2977
2978 // We only warn about libraries for which we have seen all the
2979 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2980 // which were not seen in this link.  If we didn't see a DT_NEEDED
2981 // entry, we aren't going to be able to reliably report whether the
2982 // symbol is undefined.
2983
2984 // We also don't warn about libraries found in a system library
2985 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2986 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2987 // can have undefined references satisfied by ld-linux.so.
2988
2989 inline void
2990 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2991 {
2992   bool dummy;
2993   if (sym->source() == Symbol::FROM_OBJECT
2994       && sym->object()->is_dynamic()
2995       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2996       && sym->binding() != elfcpp::STB_WEAK
2997       && !parameters->options().allow_shlib_undefined()
2998       && !parameters->target().is_defined_by_abi(sym)
2999       && !sym->object()->is_in_system_directory())
3000     {
3001       // A very ugly cast.
3002       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3003       if (!dynobj->has_unknown_needed_entries())
3004         gold_undefined_symbol(sym);
3005     }
3006 }
3007
3008 // Write out a section symbol.  Return the update offset.
3009
3010 void
3011 Symbol_table::write_section_symbol(const Output_section* os,
3012                                    Output_symtab_xindex* symtab_xindex,
3013                                    Output_file* of,
3014                                    off_t offset) const
3015 {
3016   switch (parameters->size_and_endianness())
3017     {
3018 #ifdef HAVE_TARGET_32_LITTLE
3019     case Parameters::TARGET_32_LITTLE:
3020       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3021                                                   offset);
3022       break;
3023 #endif
3024 #ifdef HAVE_TARGET_32_BIG
3025     case Parameters::TARGET_32_BIG:
3026       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3027                                                  offset);
3028       break;
3029 #endif
3030 #ifdef HAVE_TARGET_64_LITTLE
3031     case Parameters::TARGET_64_LITTLE:
3032       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3033                                                   offset);
3034       break;
3035 #endif
3036 #ifdef HAVE_TARGET_64_BIG
3037     case Parameters::TARGET_64_BIG:
3038       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3039                                                  offset);
3040       break;
3041 #endif
3042     default:
3043       gold_unreachable();
3044     }
3045 }
3046
3047 // Write out a section symbol, specialized for size and endianness.
3048
3049 template<int size, bool big_endian>
3050 void
3051 Symbol_table::sized_write_section_symbol(const Output_section* os,
3052                                          Output_symtab_xindex* symtab_xindex,
3053                                          Output_file* of,
3054                                          off_t offset) const
3055 {
3056   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3057
3058   unsigned char* pov = of->get_output_view(offset, sym_size);
3059
3060   elfcpp::Sym_write<size, big_endian> osym(pov);
3061   osym.put_st_name(0);
3062   if (parameters->options().relocatable())
3063     osym.put_st_value(0);
3064   else
3065     osym.put_st_value(os->address());
3066   osym.put_st_size(0);
3067   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3068                                        elfcpp::STT_SECTION));
3069   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3070
3071   unsigned int shndx = os->out_shndx();
3072   if (shndx >= elfcpp::SHN_LORESERVE)
3073     {
3074       symtab_xindex->add(os->symtab_index(), shndx);
3075       shndx = elfcpp::SHN_XINDEX;
3076     }
3077   osym.put_st_shndx(shndx);
3078
3079   of->write_output_view(offset, sym_size, pov);
3080 }
3081
3082 // Print statistical information to stderr.  This is used for --stats.
3083
3084 void
3085 Symbol_table::print_stats() const
3086 {
3087 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3088   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3089           program_name, this->table_.size(), this->table_.bucket_count());
3090 #else
3091   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3092           program_name, this->table_.size());
3093 #endif
3094   this->namepool_.print_stats("symbol table stringpool");
3095 }
3096
3097 // We check for ODR violations by looking for symbols with the same
3098 // name for which the debugging information reports that they were
3099 // defined in disjoint source locations.  When comparing the source
3100 // location, we consider instances with the same base filename to be
3101 // the same.  This is because different object files/shared libraries
3102 // can include the same header file using different paths, and
3103 // different optimization settings can make the line number appear to
3104 // be a couple lines off, and we don't want to report an ODR violation
3105 // in those cases.
3106
3107 // This struct is used to compare line information, as returned by
3108 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3109 // operator used with std::sort.
3110
3111 struct Odr_violation_compare
3112 {
3113   bool
3114   operator()(const std::string& s1, const std::string& s2) const
3115   {
3116     // Inputs should be of the form "dirname/filename:linenum" where
3117     // "dirname/" is optional.  We want to compare just the filename:linenum.
3118
3119     // Find the last '/' in each string.
3120     std::string::size_type s1begin = s1.rfind('/');
3121     std::string::size_type s2begin = s2.rfind('/');
3122     // If there was no '/' in a string, start at the beginning.
3123     if (s1begin == std::string::npos)
3124       s1begin = 0;
3125     if (s2begin == std::string::npos)
3126       s2begin = 0;
3127     return s1.compare(s1begin, std::string::npos,
3128                       s2, s2begin, std::string::npos) < 0;
3129   }
3130 };
3131
3132 // Returns all of the lines attached to LOC, not just the one the
3133 // instruction actually came from.
3134 std::vector<std::string>
3135 Symbol_table::linenos_from_loc(const Task* task,
3136                                const Symbol_location& loc)
3137 {
3138   // We need to lock the object in order to read it.  This
3139   // means that we have to run in a singleton Task.  If we
3140   // want to run this in a general Task for better
3141   // performance, we will need one Task for object, plus
3142   // appropriate locking to ensure that we don't conflict with
3143   // other uses of the object.  Also note, one_addr2line is not
3144   // currently thread-safe.
3145   Task_lock_obj<Object> tl(task, loc.object);
3146
3147   std::vector<std::string> result;
3148   // 16 is the size of the object-cache that one_addr2line should use.
3149   std::string canonical_result = Dwarf_line_info::one_addr2line(
3150       loc.object, loc.shndx, loc.offset, 16, &result);
3151   if (!canonical_result.empty())
3152     result.push_back(canonical_result);
3153   return result;
3154 }
3155
3156 // OutputIterator that records if it was ever assigned to.  This
3157 // allows it to be used with std::set_intersection() to check for
3158 // intersection rather than computing the intersection.
3159 struct Check_intersection
3160 {
3161   Check_intersection()
3162     : value_(false)
3163   {}
3164
3165   bool had_intersection() const
3166   { return this->value_; }
3167
3168   Check_intersection& operator++()
3169   { return *this; }
3170
3171   Check_intersection& operator*()
3172   { return *this; }
3173
3174   template<typename T>
3175   Check_intersection& operator=(const T&)
3176   {
3177     this->value_ = true;
3178     return *this;
3179   }
3180
3181  private:
3182   bool value_;
3183 };
3184
3185 // Check candidate_odr_violations_ to find symbols with the same name
3186 // but apparently different definitions (different source-file/line-no
3187 // for each line assigned to the first instruction).
3188
3189 void
3190 Symbol_table::detect_odr_violations(const Task* task,
3191                                     const char* output_file_name) const
3192 {
3193   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3194        it != candidate_odr_violations_.end();
3195        ++it)
3196     {
3197       const char* const symbol_name = it->first;
3198
3199       std::string first_object_name;
3200       std::vector<std::string> first_object_linenos;
3201
3202       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3203           locs = it->second.begin();
3204       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3205           locs_end = it->second.end();
3206       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3207         {
3208           // Save the line numbers from the first definition to
3209           // compare to the other definitions.  Ideally, we'd compare
3210           // every definition to every other, but we don't want to
3211           // take O(N^2) time to do this.  This shortcut may cause
3212           // false negatives that appear or disappear depending on the
3213           // link order, but it won't cause false positives.
3214           first_object_name = locs->object->name();
3215           first_object_linenos = this->linenos_from_loc(task, *locs);
3216         }
3217
3218       // Sort by Odr_violation_compare to make std::set_intersection work.
3219       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3220                 Odr_violation_compare());
3221
3222       for (; locs != locs_end; ++locs)
3223         {
3224           std::vector<std::string> linenos =
3225               this->linenos_from_loc(task, *locs);
3226           // linenos will be empty if we couldn't parse the debug info.
3227           if (linenos.empty())
3228             continue;
3229           // Sort by Odr_violation_compare to make std::set_intersection work.
3230           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3231
3232           Check_intersection intersection_result =
3233               std::set_intersection(first_object_linenos.begin(),
3234                                     first_object_linenos.end(),
3235                                     linenos.begin(),
3236                                     linenos.end(),
3237                                     Check_intersection(),
3238                                     Odr_violation_compare());
3239           if (!intersection_result.had_intersection())
3240             {
3241               gold_warning(_("while linking %s: symbol '%s' defined in "
3242                              "multiple places (possible ODR violation):"),
3243                            output_file_name, demangle(symbol_name).c_str());
3244               // This only prints one location from each definition,
3245               // which may not be the location we expect to intersect
3246               // with another definition.  We could print the whole
3247               // set of locations, but that seems too verbose.
3248               gold_assert(!first_object_linenos.empty());
3249               gold_assert(!linenos.empty());
3250               fprintf(stderr, _("  %s from %s\n"),
3251                       first_object_linenos[0].c_str(),
3252                       first_object_name.c_str());
3253               fprintf(stderr, _("  %s from %s\n"),
3254                       linenos[0].c_str(),
3255                       locs->object->name().c_str());
3256               // Only print one broken pair, to avoid needing to
3257               // compare against a list of the disjoint definition
3258               // locations we've found so far.  (If we kept comparing
3259               // against just the first one, we'd get a lot of
3260               // redundant complaints about the second definition
3261               // location.)
3262               break;
3263             }
3264         }
3265     }
3266   // We only call one_addr2line() in this function, so we can clear its cache.
3267   Dwarf_line_info::clear_addr2line_cache();
3268 }
3269
3270 // Warnings functions.
3271
3272 // Add a new warning.
3273
3274 void
3275 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3276                       const std::string& warning)
3277 {
3278   name = symtab->canonicalize_name(name);
3279   this->warnings_[name].set(obj, warning);
3280 }
3281
3282 // Look through the warnings and mark the symbols for which we should
3283 // warn.  This is called during Layout::finalize when we know the
3284 // sources for all the symbols.
3285
3286 void
3287 Warnings::note_warnings(Symbol_table* symtab)
3288 {
3289   for (Warning_table::iterator p = this->warnings_.begin();
3290        p != this->warnings_.end();
3291        ++p)
3292     {
3293       Symbol* sym = symtab->lookup(p->first, NULL);
3294       if (sym != NULL
3295           && sym->source() == Symbol::FROM_OBJECT
3296           && sym->object() == p->second.object)
3297         sym->set_has_warning();
3298     }
3299 }
3300
3301 // Issue a warning.  This is called when we see a relocation against a
3302 // symbol for which has a warning.
3303
3304 template<int size, bool big_endian>
3305 void
3306 Warnings::issue_warning(const Symbol* sym,
3307                         const Relocate_info<size, big_endian>* relinfo,
3308                         size_t relnum, off_t reloffset) const
3309 {
3310   gold_assert(sym->has_warning());
3311
3312   // We don't want to issue a warning for a relocation against the
3313   // symbol in the same object file in which the symbol is defined.
3314   if (sym->object() == relinfo->object)
3315     return;
3316
3317   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3318   gold_assert(p != this->warnings_.end());
3319   gold_warning_at_location(relinfo, relnum, reloffset,
3320                            "%s", p->second.text.c_str());
3321 }
3322
3323 // Instantiate the templates we need.  We could use the configure
3324 // script to restrict this to only the ones needed for implemented
3325 // targets.
3326
3327 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3328 template
3329 void
3330 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3331 #endif
3332
3333 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3334 template
3335 void
3336 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3337 #endif
3338
3339 #ifdef HAVE_TARGET_32_LITTLE
3340 template
3341 void
3342 Symbol_table::add_from_relobj<32, false>(
3343     Sized_relobj_file<32, false>* relobj,
3344     const unsigned char* syms,
3345     size_t count,
3346     size_t symndx_offset,
3347     const char* sym_names,
3348     size_t sym_name_size,
3349     Sized_relobj_file<32, false>::Symbols* sympointers,
3350     size_t* defined);
3351 #endif
3352
3353 #ifdef HAVE_TARGET_32_BIG
3354 template
3355 void
3356 Symbol_table::add_from_relobj<32, true>(
3357     Sized_relobj_file<32, true>* relobj,
3358     const unsigned char* syms,
3359     size_t count,
3360     size_t symndx_offset,
3361     const char* sym_names,
3362     size_t sym_name_size,
3363     Sized_relobj_file<32, true>::Symbols* sympointers,
3364     size_t* defined);
3365 #endif
3366
3367 #ifdef HAVE_TARGET_64_LITTLE
3368 template
3369 void
3370 Symbol_table::add_from_relobj<64, false>(
3371     Sized_relobj_file<64, false>* relobj,
3372     const unsigned char* syms,
3373     size_t count,
3374     size_t symndx_offset,
3375     const char* sym_names,
3376     size_t sym_name_size,
3377     Sized_relobj_file<64, false>::Symbols* sympointers,
3378     size_t* defined);
3379 #endif
3380
3381 #ifdef HAVE_TARGET_64_BIG
3382 template
3383 void
3384 Symbol_table::add_from_relobj<64, true>(
3385     Sized_relobj_file<64, true>* relobj,
3386     const unsigned char* syms,
3387     size_t count,
3388     size_t symndx_offset,
3389     const char* sym_names,
3390     size_t sym_name_size,
3391     Sized_relobj_file<64, true>::Symbols* sympointers,
3392     size_t* defined);
3393 #endif
3394
3395 #ifdef HAVE_TARGET_32_LITTLE
3396 template
3397 Symbol*
3398 Symbol_table::add_from_pluginobj<32, false>(
3399     Sized_pluginobj<32, false>* obj,
3400     const char* name,
3401     const char* ver,
3402     elfcpp::Sym<32, false>* sym);
3403 #endif
3404
3405 #ifdef HAVE_TARGET_32_BIG
3406 template
3407 Symbol*
3408 Symbol_table::add_from_pluginobj<32, true>(
3409     Sized_pluginobj<32, true>* obj,
3410     const char* name,
3411     const char* ver,
3412     elfcpp::Sym<32, true>* sym);
3413 #endif
3414
3415 #ifdef HAVE_TARGET_64_LITTLE
3416 template
3417 Symbol*
3418 Symbol_table::add_from_pluginobj<64, false>(
3419     Sized_pluginobj<64, false>* obj,
3420     const char* name,
3421     const char* ver,
3422     elfcpp::Sym<64, false>* sym);
3423 #endif
3424
3425 #ifdef HAVE_TARGET_64_BIG
3426 template
3427 Symbol*
3428 Symbol_table::add_from_pluginobj<64, true>(
3429     Sized_pluginobj<64, true>* obj,
3430     const char* name,
3431     const char* ver,
3432     elfcpp::Sym<64, true>* sym);
3433 #endif
3434
3435 #ifdef HAVE_TARGET_32_LITTLE
3436 template
3437 void
3438 Symbol_table::add_from_dynobj<32, false>(
3439     Sized_dynobj<32, false>* dynobj,
3440     const unsigned char* syms,
3441     size_t count,
3442     const char* sym_names,
3443     size_t sym_name_size,
3444     const unsigned char* versym,
3445     size_t versym_size,
3446     const std::vector<const char*>* version_map,
3447     Sized_relobj_file<32, false>::Symbols* sympointers,
3448     size_t* defined);
3449 #endif
3450
3451 #ifdef HAVE_TARGET_32_BIG
3452 template
3453 void
3454 Symbol_table::add_from_dynobj<32, true>(
3455     Sized_dynobj<32, true>* dynobj,
3456     const unsigned char* syms,
3457     size_t count,
3458     const char* sym_names,
3459     size_t sym_name_size,
3460     const unsigned char* versym,
3461     size_t versym_size,
3462     const std::vector<const char*>* version_map,
3463     Sized_relobj_file<32, true>::Symbols* sympointers,
3464     size_t* defined);
3465 #endif
3466
3467 #ifdef HAVE_TARGET_64_LITTLE
3468 template
3469 void
3470 Symbol_table::add_from_dynobj<64, false>(
3471     Sized_dynobj<64, false>* dynobj,
3472     const unsigned char* syms,
3473     size_t count,
3474     const char* sym_names,
3475     size_t sym_name_size,
3476     const unsigned char* versym,
3477     size_t versym_size,
3478     const std::vector<const char*>* version_map,
3479     Sized_relobj_file<64, false>::Symbols* sympointers,
3480     size_t* defined);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_64_BIG
3484 template
3485 void
3486 Symbol_table::add_from_dynobj<64, true>(
3487     Sized_dynobj<64, true>* dynobj,
3488     const unsigned char* syms,
3489     size_t count,
3490     const char* sym_names,
3491     size_t sym_name_size,
3492     const unsigned char* versym,
3493     size_t versym_size,
3494     const std::vector<const char*>* version_map,
3495     Sized_relobj_file<64, true>::Symbols* sympointers,
3496     size_t* defined);
3497 #endif
3498
3499 #ifdef HAVE_TARGET_32_LITTLE
3500 template
3501 Sized_symbol<32>*
3502 Symbol_table::add_from_incrobj(
3503     Object* obj,
3504     const char* name,
3505     const char* ver,
3506     elfcpp::Sym<32, false>* sym);
3507 #endif
3508
3509 #ifdef HAVE_TARGET_32_BIG
3510 template
3511 Sized_symbol<32>*
3512 Symbol_table::add_from_incrobj(
3513     Object* obj,
3514     const char* name,
3515     const char* ver,
3516     elfcpp::Sym<32, true>* sym);
3517 #endif
3518
3519 #ifdef HAVE_TARGET_64_LITTLE
3520 template
3521 Sized_symbol<64>*
3522 Symbol_table::add_from_incrobj(
3523     Object* obj,
3524     const char* name,
3525     const char* ver,
3526     elfcpp::Sym<64, false>* sym);
3527 #endif
3528
3529 #ifdef HAVE_TARGET_64_BIG
3530 template
3531 Sized_symbol<64>*
3532 Symbol_table::add_from_incrobj(
3533     Object* obj,
3534     const char* name,
3535     const char* ver,
3536     elfcpp::Sym<64, true>* sym);
3537 #endif
3538
3539 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3540 template
3541 void
3542 Symbol_table::define_with_copy_reloc<32>(
3543     Sized_symbol<32>* sym,
3544     Output_data* posd,
3545     elfcpp::Elf_types<32>::Elf_Addr value);
3546 #endif
3547
3548 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3549 template
3550 void
3551 Symbol_table::define_with_copy_reloc<64>(
3552     Sized_symbol<64>* sym,
3553     Output_data* posd,
3554     elfcpp::Elf_types<64>::Elf_Addr value);
3555 #endif
3556
3557 #ifdef HAVE_TARGET_32_LITTLE
3558 template
3559 void
3560 Warnings::issue_warning<32, false>(const Symbol* sym,
3561                                    const Relocate_info<32, false>* relinfo,
3562                                    size_t relnum, off_t reloffset) const;
3563 #endif
3564
3565 #ifdef HAVE_TARGET_32_BIG
3566 template
3567 void
3568 Warnings::issue_warning<32, true>(const Symbol* sym,
3569                                   const Relocate_info<32, true>* relinfo,
3570                                   size_t relnum, off_t reloffset) const;
3571 #endif
3572
3573 #ifdef HAVE_TARGET_64_LITTLE
3574 template
3575 void
3576 Warnings::issue_warning<64, false>(const Symbol* sym,
3577                                    const Relocate_info<64, false>* relinfo,
3578                                    size_t relnum, off_t reloffset) const;
3579 #endif
3580
3581 #ifdef HAVE_TARGET_64_BIG
3582 template
3583 void
3584 Warnings::issue_warning<64, true>(const Symbol* sym,
3585                                   const Relocate_info<64, true>* relinfo,
3586                                   size_t relnum, off_t reloffset) const;
3587 #endif
3588
3589 } // End namespace gold.